概率论与数理统计(浙大版)第四章

合集下载

浙江大学概率论与数理统计第四章习题

浙江大学概率论与数理统计第四章习题

















其它 0, 1 E( X ) xf X ( x )dx 0 4 x 4dx 4 / 5 1 2 2 3 12 y dx 12 ( y y ),0 y 1 fY ( y ) f ( x, y )dx y 其它 0, E (Y ) yfY ( y )dy 112( y 3 y 4 )dx 12( 1 1 ) 3 0 4 5 5
P{Z =k}= 0.1 0.9
i
10 k
k
10-k
,k=0,1,2,…,10.
1, 第i次检验时要调整设备(Zi>1) (i=1,2,3,4) 设随机变量Xi= 0, 第i次检验时不调整设备(Zi1) 则 X=X1+ X2+ X3+ X4 , 由于 P{Xi=0}=P{Zi1}=P{Zi=0}+P{Zi=1} =0.910+100.10.99=1.90.99 P{Xi=1}=1-P{Xi=0}=1-1.90.99 Xi服从(0-1)分布,故其数学期望 E(Xi)=P{Xi=1}=1-1.90.99 (i=1,2,3,4) 而 E(X)=E(X1)+E(X2)+E(X3)+E(X4)=4[1-1.90.99]=1.0556
Z 22 32 42 12 22 32 0 2 12 22 pk 0.2 0.1 0.0 0.1 0.0 0.3 0.1 0.1 0.1
1 2
1 3
1 3
1 2
1 15
整理得
Z pk 0 1 4 9 0.1 0.2 0.3 0.4

概率论与数理统计第四章

概率论与数理统计第四章

E (b) b E (aX ) aE ( X )
2. E(X+Y) = E(X)+E(Y);
推广 : E [ X i ] E ( X i )
i 1 i 1 n n
E ( ai X i ) ai E ( X i )
i 1 i 1
n
n
3. 设X、Y独立,则 E(XY)=E(X)E(Y);
例2.(X,Y)服从二维正态分布,其概率密度为 1 f ( x, y ) 2 21 2 1
1 y 1 2 x 1 y 2 y 2 2 exp{ [( ) 2 ( )( )( ) ]} 2 1 1 2 2 (1 )
证明: XY
Cov(kX, kY)=k2Cov(X,Y)
■相关系数
定义 设D(X)>0, D(Y)>0, 称
XY
Cov( X , Y ) X EX Y EY E[ ] D( X ) D(Y ) DX DY
为随机变量X和Y的相关系数(标准协方差)
X Y E( X Y ) XY
练习
1.设离散型随机变量(X,Y)的分布列为 Y 0 1 2 X 则E(XY)=( ) 0 1/3 1/6 1/9 1 0 1/6 1/9 2 0 0 1/9
2.设随机变量X的概率密度为
e x f ( x) 0 x0 其它
Y=e-2X,则EY=( )
■数学期望的性质
1. 设a,b是常数,则E(aX+b)=aE(X)+b;
对正态分布而言,X、Y相互独立 与互不相关是等价的。
例4.设随机变量(X,Y)~N(1, 1, 9, 16, -0.5) 令
第四章 随机变量的数字特征

浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答

浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答

解 (1)高该小班有 n 个人,每个人数学考试的分数的可能取值为 0,1,2,…,100,n
个人分数这和的可能取值为 0,1,2,…,100n,平均分数的可能取值为 0 , 1 ,..., 100n , 则 nn n
样本空间为
S=
k n
k
=
0,1, 2,⋯,100n
(2)样本空间 S={10,11,…},S 中含有可数无限多个样本点。 (3)设 1 表示正品,0 有示次品,则样本空间为
而 AB= {(1,6),(6,1)}。由条件概率公式,得
P(B
A)
=
P( AB) P( A)
∑200
P(B) = P( A2 ∪ A3 ∪⋯∪, A200)= P( Ai )
i=2
显然,这种解法太麻烦,用对立事件求解就很简单。令事件 B ={恰有 0 个次品或恰有
1 个次品},即 B = A0 ∪ A1 ,而
P(B)
=
P( A0

A1 )
=
P( A0 ) +
P( A1)
=
C 200 1100
{ } S= (x, y) x2 + y2 ≤ 1
------------------------------------------------------------------------------2.设 A,B,C 为三个事件,用 A,B,C 的运算关系表示下列事件。 (1)A 发生,B 与 C 不发生; (2)A 与 B 都发生,而 C 不发生; (3)A,B,C 中至少有一个发生; (4)A,B,C 都发生; (5)A,B,C 都不发生; (6)A,B,C 中不多于一个发生; (7)A,B,C 中不多于两个发生; (8)A,B,C 中至少有两个发生。

浙江大学概率论与数理统计第4版复习笔记详解

浙江大学概率论与数理统计第4版复习笔记详解

浙江大学概率论与数理统计第4版复习笔记详解|才聪学习网浙江大学《概率论与数理统计》(第4版)笔记和课后习题(含考研真题)详解文章来源:才聪学习网/概率论与数理统计内容简介本书是浙江大学盛骤等主编的《概率论与数理统计》(第4版)的学习辅导书,主要包括以下内容:(1)梳理知识脉络,浓缩学科精华。

本书每章的复习笔记均对该章的重难点进行了整理,并参考了国内名校名师讲授该教材的课堂笔记。

因此,本书的内容几乎浓缩了该教材的知识精华。

(2)详解课后习题,巩固重点难点。

本书参考大量相关辅导资料,对盛骤主编的《概率论与数理统计》(第4版)的课后思考题进行了详细的分析和解答,并对相关重要知识点进行了延伸和归纳。

(3)精选考研真题,培养解题思路。

本书从历年考研真题中挑选最具代表性的部分,并对之做了详尽的解析。

所选考研真题基本涵盖了每章的考点和难点,考生可以据此了解考研真题的命题风格和难易程度,并检验自己的复习效果。

目录第1章概率论的基本概念1.1 复习笔记1.2 课后习题详解1.3 考研真题详解第2章随机变量及其分布2.1 复习笔记2.2 课后习题详解2.3 考研真题详解第3章多维随机变量及其分布3.1 复习笔记3.2 课后习题详解3.3 考研真题详解第4章随机变量的数字特征4.1 复习笔记4.2 课后习题详解4.3 考研真题详解第5章大数定律及中心极限定理5.1 复习笔记5.2 课后习题详解5.3 考研真题详解第6章样本及抽样分布6.1 复习笔记6.2 课后习题详解6.3 考研真题详解第7章参数估计7.1 复习笔记7.2 课后习题详解7.3 考研真题详解第8章假设检验8.1 复习笔记8.2 课后习题详解8.3 考研真题详解第9章方差分析及回归分析9.1 复习笔记9.2 课后习题详解9.3 考研真题详解第10章bootstrap方法10.1 复习笔记10.2 课后习题详解10.3 考研真题详解第11章在数理统计中应用Excel软件11.1 复习笔记11.2 课后习题详解11.3 考研真题详解第12章随机过程及其统计描述12.1 复习笔记12.2 课后习题详解12.3 考研真题详解第13章马尔可夫链13.1 复习笔记13.2 课后习题详解13.3 考研真题详解第14章平稳随机过程14.1 复习笔记14.2 课后习题详解14.3 考研真题详解复习笔记详解第1章概率论的基本概念1.1 复习笔记在个别试验中其结果呈现出不确定性,在大量重复试验中其结果又具有统计规律性的现象,称为随机现象.一、随机试验1.定义试验包括各种各样的科学实验,甚至对某一事物的某一特征的观察也认为是一种试验.2.试验的特点(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.在概率论中,将具有上述三个特点的试验称为随机试验.二、样本空间、随机事件1.样本空间随机试验E的所有可能结果组成的集合称为E的样本空间,记为S.样本空间的元素,即E的每个结果,称为样本点.2.随机事件一般地,称试验E的样本空间S的子集为E的随机事件,简称事件.在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别地,由一个样本点组成的单点集,称为基本事件.样本空间S包含所有的样本点,它是S自身的子集:(1)在每次试验中它总是发生的,S称为必然事件.(2)空集不包含任何样本点,也是样本空间的子集,它在每次试验中都不发生,称为不可能事件.3.事件间的关系与事件的运算事件间的关系与事件的运算按照集合论中集合之间的关系和集合运算来处理.设试验E的样本空间为S,而A,B,A k(k=1,2,…)是S的子集.(1)包含关系①若,则称事件B包含事件A,即事件A发生必导致事件B发生;②若且,即A=B,则称事件A与事件B相等.(2)和事件事件A∪B={x|x∈A或x∈B)称为事件A与事件B的和事件.当且仅当A,B 中至少有一个发生时,事件A B发生.称为n个事件A1,A2,…,A n的和事件;称为可列个事件A1,A2,…的和事件.(3)积事件事件A∩B={x|x∈A且x∈B)称为事件A与事件B的积事件.当且仅当A,B 同时发生时,事件A∩B发生.A∩B也记作AB.称为n个事件A1,A2,…,A n的积事件;称为可列个事件A1,A2,…的积事件.(4)差事件事件A-B={x|x∈A且x B)称为事件A与事件B的差事件.当且仅当A发生、B不发生时事件A-B发生.(5)互斥若,则称事件A与B是互不相容的,或互斥的.即事件A与事件B不能同时发生.基本事件是两两互不相容的.(6)逆事件若A∪B=S且,则称事件A与事件B互为逆事件,又称事件A与事件B互为对立事件.对每次试验而言,事件A、B中必有一个发生,且仅有一个发生.A的对立事件记为.(7)定律设A,B,C为事件,则有:①交换律:A∪B=B∪A;A∩B=B∩A;②结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C;③分配律:A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A ∩C);④德摩根律:;.。

概率论与数理统计》课后习题答案第四章

概率论与数理统计》课后习题答案第四章

习题4.11.设10个零件中有3个不合格. 现任取一个使用,若取到不合格品,则丢弃重新抽取一个,试求取到合格品之前取出的不合格品数X 的数学期望.解 可得X 的概率分布为0123~77711030120120X ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为7771()012310301201204531208E X =⨯+⨯+⨯+⨯==2..某人有n 把外形相似的钥匙,其中只有1把能打开房门,但他不知道是哪一把,只好逐把试开.求此人直至将门打开所需的试开次数X 的数学期望.解 可得X 的概率分布为12~111n X nn n ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为111()121(1)122E X n n n nn n n n =⨯+⨯++⨯++==3.设5次重复独立试验中每次试验的成功率为0.9,若记失败次数为X ,求X 的数学期望。

解 由题意~(5,0.1)X B ,则X 的数学期望为 ()50.10.E X =⨯= 4.设某地每年因交通事故死亡的人数服从泊松分布.据统计,在一年中因交通事故死亡一人的概率是死亡两人的概率的21,求该地每年因交通事故死亡的平均人数。

解 设该地每年因交通事故死亡的人数为X ,由题意X 服从泊松分布() (0)P λλ>.因1{1}{2}2P X P X === 即121 41!22!ee λλλλλ--=⇒= 于是X 的数学期望为()4E X λ== 所以地每年因交通事故死亡的平均人数为4人。

5.设随机变量X 在区间(1,7)上服从均匀分布,求2{()}P X E X <. 解 因X 在区间(1,7)上服从均匀分布,故X 的数学期望为17()42E X +== 于是22{()}{4}1 {22}6P X E X P X P X <=<=<-<<=6.设连续型随机变量X 的概率密度为01() (,0)0 b ax x p x a b ⎧<<=>⎨⎩其它又知()0.75E X =,求,a b 的值解 由密度函数的性质可得()1p x dx +∞-∞=⎰即1111b aax dx b =⇒=+⎰又由()0.75E X =,可得1()0.75b xp x dx x ax dx +∞-∞=⋅=⎰⎰即0.752ab =+ 求解110.752ab a b ⎧=⎪⎪+⎨⎪=⎪+⎩可得 3,2a b ==.7.设随机变量X 的概率密度为0<1()2 120 x x p x x x <⎧⎪=-≤<⎨⎪⎩其它求数学期望()E X解1201331221()() (2) ()133E X xp x dxx xdx x x dx x x x +∞-∞==⋅+⋅-=+-=⎰⎰⎰8.设随机变量X 的概率分布为X -2 -1 0 1 P 0.2 0.3 0.1 0.4 求 (1)(21)E X -;(2)2()E X .解 (1) (21)2()1E X E X -=- 其中()20.210.3010.40.3E X =-⨯-⨯++⨯=-则(21)2()12(0.3)1 1.6E X E X -=-=⨯--=-(2)22222()0.2(2)0.3(1)0.100.41 1.5E X =⨯-+⨯-+⨯+⨯=9.假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作。

概率论与数理统计第四章补充习题

概率论与数理统计第四章补充习题

第四章补充习题一、 填空题1、 设随机变量X 则Y X 和的相关系数XY ρ= ,=),(2222Y X Cov Y X 的协方差和 。

2、设随机变量Y X 和的数学期望分别为22和-,方差分别为41和,而相关系数为5.0-,则根据切比雪夫不等式{}≤≥+6Y X P 。

3、设随机变量Y X 与相互独立且均服从正态分布2(0,)N , 则)(Y X E -= ,=-)(Y X D 。

4、随机变量ξ服从指数分布,参数λ= 时,72)(2=ξE 。

5、设随机变量Y X ,,2)(-=X E ,4)(=Y E ,4)(=X D ,9)(=Y D ,5.0-=XY ρ, =-+-)323(22Y XY X E 。

6、设随机变量Y X 与的相关系数9.0=XY ρ,若4.0-=X Z ,则=YZ ρ 。

7、设Y X ,同分布,密度函数均为⎪⎩⎪⎨⎧<<=其它若0102)(2tx xtx f ,使t Y X C E 1))2((=+, 则=C 。

8、设随机变量X 的数学期望和方差均为0,则{}=≠0X P 。

9、将一枚均匀硬币连掷3次,用X 表示正面出现的总次数,Y 表示第一次掷得的正面数, 则=)(XY E ,=),(Y X Cov ,=XY ρ 。

二、选择题1、设随机变量Y X 和独立同分布,记 Y X V Y X U +=-=,,则随机变量V U 与必然( ) (A )不独立, (B) 独立, (C) 相关系数不为零, (D) 相关系数为零。

2、将一枚硬币掷n 次,以Y X 和分别表示正面朝上和反面朝上的次数,则Y X 和的相关系数等于( )。

(A )1- (B) 0 (C)21(D) 1。

3、设随机变量Y X 和相互独立且分别服从正态分布(0, 1)N 和(1, 1)N ,则( )。

(A) {}210=≤+Y X P , (B) {}211=≤+Y X P , (C) {}210=≤-Y X P , (D) {}211=≤-Y X P 。

(浙大第四版)概率论与数理统计知识点总结

(浙大第四版)概率论与数理统计知识点总结
1° 0≤P(A)≤1,
2° P(Ω) =1
3° 对于两两互不相容的事件 , ,…有
常称为可列(完全)可加性。
则称P(A)为事件 的概率。
(8)古典概型
1° ,
2° 。
设任一事件 ,它是由 组成的,则有
P(A)= =
(9)几何概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A,
(4)
(5)对于
.
(4)离散型与连续型的关系
(5)边缘分布
离散型
X的边缘分布为

Y的边缘分布为

连续型
X的边缘分布密度为
Y的边缘分布密度为
(6)条件分布
离散型
在已知X=xi的条件下,Y取值的条件分布为
在已知Y=yj的条件下,X取值的条件分布为
连续型
在已知Y=y的条件下,X的条件分布密度为

在已知X=x的条件下,Y的条件分布密度为
Z=X+Y
根据定义计算:
对于连续型,fZ(z)=
两个独立的正态分布的和仍为正态分布( )。
n个相互独立的正态分布的线性组合,仍服从正态分布。

Z=max,min(X1,X2,…Xn)
若 相互独立,其分布函数分别为 ,则Z=max,min(X1,X2,…Xn)的分布函数为:
分布
设n个随机变量 相互独立,且服从标准正态分布,可以证明它们的平方和
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如P(Ω/B)=1 P( /A)=1-P(B/A)
(13)乘法公式
乘法公式:

概率论与数理统计第四章习题参考答案

概率论与数理统计第四章习题参考答案

=
⎡ E⎢
1
⎢⎣ n −1
n i =1
(Xi

⎤ X )2 ⎥
⎥⎦
=
1 n −1
⎡ E⎢
⎢⎣
n i =1
X
2 i

nX
2⎤ ⎥ ⎥⎦
=
1 n −1
⎡n ⎢ ⎢⎣ i=1
E
(
X
2 i
)

nE( X
2⎤ )⎥ ⎥⎦
∑[ ] [ ] =
1 n −1
⎧ ⎨ ⎩
n i =1
D(X i ) + E 2 (X i )
X −µ 3/2
<
⎫ 1.96⎬
=
0.95

故,正态总体均值 µ 的 95%的置信区间为 (X − 2.94, X + 2.94)
代入样本值得正态总体均值 µ 的 95%的置信区间为(-2.565,3.315)。
(2)当σ 未知时,由 T = X − µ ~ t(n − 1) 即T = X − µ ~ t(3) ,所以
n
−a n
=0 =0
无解。由此不能求得
a,
b
的极大似然估计量。
⎩ ∂b
b−a
解:X
的概率密度为
f
(x)
=
⎪⎧ ⎨b
1 −
a
,
a

x

b

⎪⎩ 0, 其它
似然函数为 L(a, b) = 1 , θ1 ≤ xi ≤ θ 2 ,i = 1,2,L, n , (b − a)n
对于给定的样本值 (x1 , x2 ,L, xn )

n
D(

浙江大学概率论与数理统计(盛骤第四版)——概率论部分1-90页精品文档

浙江大学概率论与数理统计(盛骤第四版)——概率论部分1-90页精品文档
fn ( A )
# 频率 反映了事件A发生的频繁程度。
15
n
Ai Ai A1 A2
n
n
An; Ai Ai=A1A2 An;
i1
i1
i1
i1
例:设A={ 甲来听课 },B={ 乙来听课 } ,则:
A B {甲、乙至少有一人来}
都不来}
A BAB{甲、乙至少有一人不来}
14
§3 频率与概率
例:



称S中的元素e为基本事件或样本点.
一枚硬币抛一次 S={正面,反面}; 记录一城市一日中发生交通事故次数
S={0,1,2,…}; 记录某地一昼夜最高温度x,最低温度y
S={(x,y)|T0≤y≤x≤T1}; 记录一批产品的寿命x S={ x|a≤x≤b }
10
(二) 随机事件
一般我们称S的子集A为E的随机事件A,当且 仅当A所包含的一个样本点发生称事件A发生。 例:观察89路公交车浙大站候车人数,S={0,1,2,…};
概率论与数理统计是研究随机现象 数量规律的一门学科。
1
第一章 概率论的基本概念
• 1.1 随机试验 • 1.2 样本空间 • 1.3 概率和频率 • 1.4 等可能概型(古典概型) • 1.5 条件概率 • 1.6 独立性
第二章 随机变量及其分布
• 2.1 随机变量 • 2.2 离散型随机变量及其分布 • 2.3 随机变量的分布函数 • 2.4 连续型随机变量及其概率密度 • 2.5 随机变量的函数的分布
记 A={至少有10人候车}={10,11,12,…} S, A为随机事件,A可能发生,也可能不发生。
如果将S亦视作事件,则每次试验S总是发生, 故又称S为必然事件。 为方便起见,记Φ 为不可能事件,Φ 不包含

概率论与数理统计(浙江大学版本)

概率论与数理统计(浙江大学版本)
随机事件
二、样本空间(p2)
1、样本空间:试验的所有可能结果所 组成的集合称为样本空间,记为={e}; 2、样本点: 试验的单个结果或样本空间 的单元素称为样本点,记为e. 3.由样本点组成的单点集称为基本事件, 也记为e.

幻灯片 6
随机事件
1.定义 样本空间的任意一个子集称为随机事件, 简称“ 事件”.记作A、B、C等

(3) 可列可加性:设A1,A2,…, 是一列两两互不 相容的事件,即AiAj=,(ij), i , j=1, 2, …, 有 P( A1 A2 … )= P(A1) +P(A2)+…. 则称P(A)为事件A的概率。 (1.1)
2.概率的性质 P(10-13) (1) 有限可加性:设A1,A2,…An , 是n个两两互 不相容的事件,即AiAj= ,(ij), i , j=1, 2, …, n ,则有 P( A1 A2 … An)= P(A1) +P(A2)+… P(An); (2) 单调不减性:若事件AB,则 P(A)≥P(B) (3)事件差 A、B是两个事件, 则 P(A-B)=P(A)-P(AB)
(4) 加法公式:对任意两事件A、B,有 P(AB)=P(A)+P(B)-P(AB) 该公式可推广到任意n个事件A1,A2,…,An的 情形;
(3) 互补性:P(A)=1- P(A);
(5) 可分性:对任意两事件A、B,有 P(A)=P(AB)+P(AB ) .
某市有甲,乙,丙三种报纸,订每种报纸的人数分 别占全体市民人数的 30%, 其中有 10% 的人同 时定甲,乙两种报纸.没有人同时订甲乙或乙丙 报纸.求从该市任选一人,他至少订有一种报纸 的概率.
随机现象:不确定性与统计规律性

概率论.pdf

概率论.pdf

考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@参考教材概率论与数理统计第四版(浙江大学主编)重要定理、性质、公式、结论经典例题、重要例题及不需要做的题目第一章概率论的基本概念(考小题)第一节随机试验(了解)第二节样本空间,随机事件(了解)第三节频率与概率(频率可以不用看,了解)第四节等可能概率(古典概论)(难点非重点,做一些基本题即可)第五节条件概率(重要,考小题为主,考大题有时会用到)第六节独立性(重要,考小题为主,大题经常会用到)第二章随机变量及其分布(至少考小题,考大题一定会用到)第一节随机变量(了解)第二节离散型随机变量及其分布律(重要,经常考)第三节随机变量的分布函数(重要,每年必考)第四节连续型随机变量及其概率密度(重要,每年必考)第五节随机变量的函数分布(重要,大题的命题点)第三章多维随机变量及其分布(考大题可能性极大)第一节二维随机变量(了解)第二节边缘分布(理解)第三节条件分布(理解)第四节概率独立的随机变量(重要,基本每年必考)第五节两个随机变量函数的分布(重要,大题的经典命题点)第四章随机变量的数字特征(重要)第一节数学期望(重要,每年必考)第二节方差(重要,每年必考)第三节协方差与相关系数(重要,经常考)第四节矩,协方差矩阵(矩,了解,协方差矩阵不用看).第五章大数定律及中心极限定理(了解)第一节大数定律(了解,关注定律的前提条件与结论)第二节中心极限定理(了解,关注定理的前提条件与结论)考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@第六章样本及抽样分布(考小题为主)第一随机样本(了解,其中有重要概念,简单随机样本)第二直方图和箱线图(重要,考小题)第三抽样分布(重要,考小题)第七章参数估计(重要,考大题经典章节)第一节点估计(极其重要,矩估计:重点非难点,最大似然估计(重点且难点))第二节基于截尾样本的最大似然估计(不用看)第三节估计量的评选标准(数一重要,数三不用看)第四区间估计(数一理解,考的比较少)第五正态总体均值与方差的区间估计(数一理解,考的比较少)第六(0-1)分布参数的区间估计(不用看)第七单侧置信区间(理解,一般不考)(第四-第七,只有数一考,数三均不用看)第八章假设检验(理解,一般不考,只有数一有要求,数三不考)第一假设检验(理解)第二正态总体均值的假设检验(理解)第三正态总体方差的假设检验(理解)第四,第五,第六,第七,第八(均不用看).考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@考研数学概率统计的重点难点必考点及重要例题和习题不用做的例题和习题第一章概率论的基本概念P3最后4行的小写字体不用看P5例3不用做(一)频率不用看P6-7 例 1 与例 2 均不用做,P7 概率重点看P9 等可能概率一般都不单独考,考大题经常会用到,P13 例 6 不用做,P14 例 8 不用做 P14 条件概率重点看,P15 例 2 不用做,P16 例 3 不用做,P17 例 4 重点做P17(三)全概率公式和贝叶斯公式为难点P19例5不用做,P20独立性为考研数学的绝对重点,P22例2与例3均不用做P23例4重点做P24-29 不用做的习题是 1、5、6、10、12、15、16、18、19、20、21、23、25、26、29、32、34、35、38、39、40第二章随机变量及其分布P30 例 1 不用看P37 泊松定理只需要记住结论,证明可以不用看P38 随机变量的分布函数为考研必考概念P42 连续性随机变量概率密度为考研必考点P50 随机变量的函数的分布是考大题的重要命题点P53 例 5 不用做P55-59 不用做的习题 1、5、6、7、9、10、11、13、15、16、19、22、27、28、30、31、38、39第三章多位随机变量及其分布P63 性质 4 的解释不用看P65 例 1 不用做,P66 例 3 重点做一下(提升计算能力)P68 例 1 不用做,P72 相互独立的随机变量为重点章节P76 两个随机变量的函数的分布为考大题的重要备考章节P78 例 3 不用做,P81 例 5 不用做P84-89 不用做的习题是 3、6、7、10、11、12、13、28、31第四章随机变量的数字特征P91 例 1 不用做,P92 例 3 与例 4 不用做,P93 例 5 不用做P95 中间的证明不用看,P96 例 8 与例 10 不用做P97 例 11 不用做,P100 例 13 不用做,P105 不用做P107 XY的两条重要性质的推导及含义不用看考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@P108 只需要看前四行即只需要记住定理 4 证明可以不用看P109 例 2 重点做(提升计算能力)P110 矩为一般考点,协方差矩阵不用看P113-118 不用做的习题是 1.4.5.12.13.15.16.18.19.22.23.24.35.36.37.38第五章大数定律及中心极限定理(难点非重点)P124 例 1 不用做P126-127 不用做的习题是 2、4、5、10、11、13第六章样本及抽样分布(一般考点考小题)P130 第四行简单随机样本为重要概念P130 第二节直方图和箱线图不用看P135 第三节抽样分布(考小题),P136 统计量定义及几个常见统计量要重点看而且要牢记其表达式P137 经验分布函数只有数三同学稍微了解P138-141 数理统计所有的三大分布的典型模式要牢记但三种分布的概率密度表达式可以不用记P145-147 定理 2 的证明与推广均不用看P147-148 不用做的习题是 1、5、6、10、11第七章参数估计(数一数三的绝对的重点和难点)P149 点估计数一数三的绝对重点矩估计重点非难点,最大似然估计重点且难点P163-155 例 4 例 5 例 6 重点做P156-158 第二节基于截尾样本的最大似然估计不用看P158 估计量的评选标准数一重点看,数三大纲上虽然没有但建议数三看一下最好P161-168 区间估计,正态总体均值与方差的区间估计,只有数一看,为一般考点P168 0-1 分布参数的区间估计数一数三均不用看P169 单侧置信区间,只有数一看,为一般考点P193-177 数三不用做的习题为 4(3)、6、7、8、9、10、11-27 均不用做数一不用做的习题为4(3)、6、7、8、9、15、17、20、21、22、23、26、27第八章假设检验(数一特有的考点,难点非重点)数一只需要看前四节P178-193从第五节以后均不需要看P218-223 习题只需要做 1、2、3、4 其余的题目可以不用做考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@。

(完整word版)概率论与数理统计教案第四章(word文档良心出品)

(完整word版)概率论与数理统计教案第四章(word文档良心出品)
作业布置
课后习题微积分标准化作业
大纲要求
理解随机变量方差的定义及方差的概率含义
熟悉方差的性质
掌握随机变量的方差计算公式
熟练常用随机变量的方差
教 学 基 本 内 容
一、基本概念:
1.方差和标准差的定义
设是一个随机变量,如果存在,则称
为随机变量 的方差。称方差 的算术平方根
为随机变量 的标准差。
二、方差的性质
授课序号02
教 学 基 本 指 标
教学课题
第四章第二节方差和标准差
课的类型
新知识课
教学方法
讲授、课堂提问、讨论、启发、自学
教学手段
黑板多媒体结合
教学重点
方差的定义及求解,方差的性质
教学难点
方差的性质及其与期望性质的比较
参考教材
高教版、浙大版《概率论与梳理统计》武汉大学同济大学 《微积分学习指导》
安玉伟等《高等数学定理 方法 问题》
2.变异系数
随机变量的数学期望, 方差存在, 那么称
为随机变量 的变异系数。
3. 连续型随机变量的分位数和中位数
设连续型随机变量的分布函数为, 密度函数为,, 则称为的分布的分位数。特别地, 当时, 称为中位数。
4、众数
当为离散型随机变量时, 假定的分布律为。如果存在实数, 使得。那么, 称为(或所服从的分布)的众数。
90
100
乙班分数
40
60
70
80
90
100
人数
2
9
18
9
2
人数
3
1
8
13
8
7
频率
频率
甲、乙两班概率统计的平均成绩是一样的,现选出一个班级参加比赛,应选哪个班级?

概率论与数理统计 第四章

概率论与数理统计   第四章

50 1 1 1 ( ) 49 2 100 2
数理统计
28

骣n 1 2 2 E (S ) = E 琪 X i - nX 琪 å 琪 n - 1 桫= 1 i
= 1 n- 1 n n 1
2
1 n 2 2 EX i nEX n 1 i 1
2
(n E X
若总体X是连续型随机变量,其概率密度为
f ( x ),
则样本的联合概率密度为
f ( x1 , x 2 , , x n ) f ( x1 ) f ( x 2 ) f ( x n )
对于离散型总体,有相似的结论。
数理统计 17
例 设 ( X 1 , X 2 , , X n ) 是取自正态总体 N ( , 2 ) 的 样本,求样本的概率分布。 解 总体X的密度函数为
数理统计
30
X EX 1 P DX
X 1 P 1 10
0 .0 2 E X DX
E(X ) 0 D(X ) 1 100
显然
X ( 1 ) m in X i ,
1 i n
X (n) m ax X i ,
1 i n
两者也分别称为最小次序统计量和最大次序统计量. 称
R X ( n ) X ( 1 ) 为样本极差
X n1 ( 2 ) Md 1 (X n X n ( ) (1 ) 2 2 2 n 为奇数 (4 - 15) n 为偶数
总体 样本
随机变量 X 随机向量
( X 1 , X 2 , , X n )
数理统计
15
在一次试验中,样本的具体观测值 称为样本值。记为 ( x 1 , x 2 , , x n ) . 有时候样本与样本值使用同一符号, 但含义不同。 简单随机样本 若 X 1 , X 2 , X n 是相互独立的并与总体

浙江大学概率论与数理统计第4版复习笔记详解

浙江大学概率论与数理统计第4版复习笔记详解

浙江大学概率论与数理统计第4版复习笔记详解|才聪学习网浙江大学《概率论与数理统计》(第4版)笔记和课后习题(含考研真题)详解文章来源:才聪学习网/概率论与数理统计内容简介本书是浙江大学盛骤等主编的《概率论与数理统计》(第4版)的学习辅导书,主要包括以下内容:(1)梳理知识脉络,浓缩学科精华。

本书每章的复习笔记均对该章的重难点进行了整理,并参考了国内名校名师讲授该教材的课堂笔记。

因此,本书的内容几乎浓缩了该教材的知识精华。

(2)详解课后习题,巩固重点难点。

本书参考大量相关辅导资料,对盛骤主编的《概率论与数理统计》(第4版)的课后思考题进行了详细的分析和解答,并对相关重要知识点进行了延伸和归纳。

(3)精选考研真题,培养解题思路。

本书从历年考研真题中挑选最具代表性的部分,并对之做了详尽的解析。

所选考研真题基本涵盖了每章的考点和难点,考生可以据此了解考研真题的命题风格和难易程度,并检验自己的复习效果。

目录第1章概率论的基本概念1.1 复习笔记1.2 课后习题详解1.3 考研真题详解第2章随机变量及其分布2.1 复习笔记2.2 课后习题详解2.3 考研真题详解第3章多维随机变量及其分布3.1 复习笔记3.2 课后习题详解3.3 考研真题详解第4章随机变量的数字特征4.1 复习笔记4.2 课后习题详解4.3 考研真题详解第5章大数定律及中心极限定理5.1 复习笔记5.2 课后习题详解5.3 考研真题详解第6章样本及抽样分布6.1 复习笔记6.2 课后习题详解6.3 考研真题详解第7章参数估计7.1 复习笔记7.2 课后习题详解7.3 考研真题详解第8章假设检验8.1 复习笔记8.2 课后习题详解8.3 考研真题详解第9章方差分析及回归分析9.1 复习笔记9.2 课后习题详解9.3 考研真题详解第10章bootstrap方法10.1 复习笔记10.2 课后习题详解10.3 考研真题详解第11章在数理统计中应用Excel软件11.1 复习笔记11.2 课后习题详解11.3 考研真题详解第12章随机过程及其统计描述12.1 复习笔记12.2 课后习题详解12.3 考研真题详解第13章马尔可夫链13.1 复习笔记13.2 课后习题详解13.3 考研真题详解第14章平稳随机过程14.1 复习笔记14.2 课后习题详解14.3 考研真题详解复习笔记详解第1章概率论的基本概念1.1 复习笔记在个别试验中其结果呈现出不确定性,在大量重复试验中其结果又具有统计规律性的现象,称为随机现象.一、随机试验1.定义试验包括各种各样的科学实验,甚至对某一事物的某一特征的观察也认为是一种试验.2.试验的特点(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.在概率论中,将具有上述三个特点的试验称为随机试验.二、样本空间、随机事件1.样本空间随机试验E的所有可能结果组成的集合称为E的样本空间,记为S.样本空间的元素,即E的每个结果,称为样本点.2.随机事件一般地,称试验E的样本空间S的子集为E的随机事件,简称事件.在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别地,由一个样本点组成的单点集,称为基本事件.样本空间S包含所有的样本点,它是S自身的子集:(1)在每次试验中它总是发生的,S称为必然事件.(2)空集不包含任何样本点,也是样本空间的子集,它在每次试验中都不发生,称为不可能事件.3.事件间的关系与事件的运算事件间的关系与事件的运算按照集合论中集合之间的关系和集合运算来处理.设试验E的样本空间为S,而A,B,A k(k=1,2,…)是S的子集.(1)包含关系①若,则称事件B包含事件A,即事件A发生必导致事件B发生;②若且,即A=B,则称事件A与事件B相等.(2)和事件事件A∪B={x|x∈A或x∈B)称为事件A与事件B的和事件.当且仅当A,B 中至少有一个发生时,事件A B发生.称为n个事件A1,A2,…,A n的和事件;称为可列个事件A1,A2,…的和事件.(3)积事件事件A∩B={x|x∈A且x∈B)称为事件A与事件B的积事件.当且仅当A,B 同时发生时,事件A∩B发生.A∩B也记作AB.称为n个事件A1,A2,…,A n的积事件;称为可列个事件A1,A2,…的积事件.(4)差事件事件A-B={x|x∈A且x B)称为事件A与事件B的差事件.当且仅当A发生、B不发生时事件A-B发生.(5)互斥若,则称事件A与B是互不相容的,或互斥的.即事件A与事件B不能同时发生.基本事件是两两互不相容的.(6)逆事件若A∪B=S且,则称事件A与事件B互为逆事件,又称事件A与事件B互为对立事件.对每次试验而言,事件A、B中必有一个发生,且仅有一个发生.A的对立事件记为.(7)定律设A,B,C为事件,则有:①交换律:A∪B=B∪A;A∩B=B∩A;②结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C;③分配律:A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A ∩C);④德摩根律:;.。

概率论与数理统计浙大版第四章课件

概率论与数理统计浙大版第四章课件
上述定理也可以推广到两个或两个以上 随机变量的函数的情况。
定理:设Z是随机变量X , Y的函数:Z g( X , Y ) g是连续函数 ,
若二维离散型随机变量 X , Y 的分布律为:
P( X xi , Y y j ) pij , i, j 1, 2,
则有E (Z ) E[ g ( X , Y )] g ( xi , y j ) pij 这里设上式右边的级数绝对收敛,
一民航送客车载有20位旅客自机场出发旅客有10个车站可以下车如到达一个车站没有旅客下车就不停车以x表示停车的次数求设每位旅客在各个车站下车是等可能的并设各旅客是否下车相互独立第站没有人下车第站有人下车1020第站有人下车20本题是将x分解成数个随机变量之和然后利用随机变量和的数学期望等于随机变量数学期望之和来求数学期望这种处理方法具有一定的普遍意义


10
定理:设Y是随机变量X的函数:Y g ( X ) g是连续函数 ,
X 是离散型随机变量,它的分布律为:
P( X xk ) pk , k 1, 2,
若 g ( xk ) pk 绝对收敛,则有E (Y ) E[ g ( X )] g ( xk ) pk
k 1 k 1
所以甲的成绩好于乙的成绩。
对于甲来说, 10 、80 、10 分别是8环、环、 9 10环的概率; 100 100 100
对于乙来说, 20 、65 、15 分别是8环、环、 9 10环的概率; 100 100 100
若用它们相应的概率表示,就得到了数学期望, 也称为均值(加权均值)。
定义: 设离散型随机变量X 的分布律为:P( X xk ) pk k 1, 2,
x

解:

概率论与数理统计第四章第四节 大数定理与中心极限定理

概率论与数理统计第四章第四节 大数定理与中心极限定理

第四节 大数定理与中心极限定理概率论与数理统计是研究随机现象统计规律性的学科. 而随机现象的规律性在相同的条件下进行大量重复试验时会呈现某种稳定性. 例如, 大量的抛掷硬币的随机试验中, 正面出现频率; 在大量文字资料中, 字母使用频率; 工厂大量生产某种产品过程中, 产品的废品率等. 一般地, 要从随机现象中去寻求事件内在的必然规律, 就要研究大量随机现象的问题.在生产实践中, 人们还认识到大量试验数据、测量数据的算术平均值也具有稳定性. 这种稳定性就是我们将要讨论的大数定律的客观背景. 在这一节中,我们将介绍有关随机变量序列的最基本的两类极限定理----大数定理和中心极限定理.教学目标:了解大数定理与中心极限定理。

教学重点:大数定理与中心定理。

教学难点:中心定理。

教学内容:一、依概率收敛与微积分学中的收敛性的概念类似, 在概率论中, 我们要考虑随机变量序列的收敛性.定义1 设 ,,,,21n X X X 是一个随机变量序列, a 为一个常数,若对于任意给定的正数ε,有 ,1}|{|lim =<-∞→εa X P n n 则称序列 ,,,,21n X X X 依概率收敛于a , 记为).(∞→−→−n a X Pn定理1 设,,b Y a X Pn P n −→−−→−又设函数),(y x g 在点),(b a 连续, 则),(),(b a g Y X g Pn n −→−.二、切比雪夫不等式定理2设随机变量X 有期望μ=)(X E 和方差2)(σ=X D ,则对于任给0>ε, 有22}|{|εσεμ≤≥-X P .上述不等式称切比雪夫不等式.注:(i) 由切比雪夫不等式可以看出,若2σ越小, 则事件}|)({|ε<-X E X的概率越大, 即, 随机变量X 集中在期望附近的可能性越大. 由此可见方差刻划了随机变量取值的离散程度.(ii) 当方差已知时,切比雪夫不等式给出了X 与它的期望的偏差不小于ε的概率的估计式.如取,3σε= 则有.111.09}3|)({|22≈≤≥-σσσX E X P故对任给的分布,只要期望和方差2σ存在, 则随机变量X 取值偏离)(X E 超过σ3的概率小于0.111.三、大数定理1.切比雪夫大数定律定理3 (切比雪夫大数定律)设 ,,,,21n X X X 是两两不相关的随机变量序列,它们数学期望和方差均存在, 且方差有共同的上界, 即,,2,1,)( =≤i K X D i 则对任意0>ε, 有1)(11lim 11=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-∑∑==∞→εn i i n i i n X E n X n P 注: 定理表明: 当n 很大时,随机变量序列}{n X 的算术平均值∑=ni i X n 11依概率收敛于其数学期望∑=ni i X E n 1)(1.2.伯努利大数定理定理4 (伯努利大数定律)设A n 是n 重伯努利试验中事件A 发生的次数, p 是事件A 在每次试验中发生的概率, 则对任意的0>ε, 有1lim =⎭⎬⎫⎩⎨⎧<-→∞εp n n P A n 或 0l i m =⎭⎬⎫⎩⎨⎧≥-→∞εp n n P A n . 注:(i) 伯努利大数定律是定理1的推论的一种特例, 它表明: 当重复试验次数n 充分大时, 事件A 发生的频率nn A依概率收敛于事件A 发生的概率p .定理以严格的数学形式表达了频率的稳定性. 在实际应用中, 当试验次数很大时,便可以用事件发生的频率来近似代替事件的概率.(ii) 如果事件A 的概率很小,则由伯努利大数定律知事件A 发生的频率也是很小的,或者说事件A 很少发生. 即“概率很小的随机事件在个别试验中几乎不会发生”,这一原理称为小概率原理,它的实际应用很广泛. 但应注意到,小概率事件与不可能事件是有区别的. 在多次试验中,小概率事件也可能发生.3.辛钦大数定理 定理5 (辛钦大数定律) 设随机变量 ,,,,21n X X X 相互独立, 服从同一分布,且具有数学期望,,2,1,)( ==i X E i μ 则对任意0>ε, 有11lim 1=⎭⎬⎫⎩⎨⎧<-∑=∞→εμn i i n X n P . 注: (i) 定理不要求随机变量的方差存在;(ii) 伯努利大数定律是辛钦大数定律的特殊情况;(iii) 辛钦大数定律为寻找随机变量的期望值提供了一条实际可行的途径. 例如, 要估计某地区的平均亩产量, 可收割某些有代表性的地块, 如n 块,计算其平均亩产量, 则当n 较大时,可用它作为整个地区平均亩产量的一个估计. 此类做法在实际应用中具有重要意义.四、中心极限定理在实际问题中, 许多随机现象是由大量相互独立的随机因素综合影响所形成, 其中每一个因素在总的影响中所起的作用是微小的. 这类随机变量一般都服从或近似服从正态分布. 以一门大炮的射程为例, 影响大炮的射程的随机因素包括: 大炮炮身结构的制造导致的误差, 炮弹及炮弹内炸药在质量上的误差, 瞄准时的误差, 受风速、风向的干扰而造成的误差等. 其中每一种误差造成的影响在总的影响中所起的作用是微小的, 并且可以看成是相互独立的, 人们关心的是这众多误差因素对大炮射程所造成的总影响. 因此需要讨论大量独立随机变量和的问题.中心极限定理回答了大量独立随机变量和的近似分布问题, 其结论表明: 当一个量受许多随机因素(主导因素除外) 的共同影响而随机取值, 则它的分布就近似服从正态分布.1.林德伯格—勒维定理定理6 (林德伯格—勒维) 设 ,,,,21n X X X 是独立同分布的随机变量序列, 且,,,2,1,)(,)(2n i X D X E i i ===σμ则 ⎰∑∞--=∞→=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-x t n i i n dt e x n n X P 2/1221lim πσμ 注: 定理6表明: 当n 充分大时, n 个具有期望和方差的独立同分布的随机变量之和近似服从正态分布. 虽然在一般情况下, 我们很难求出n X X X +++ 21的分布的确切形式, 但当n 很大时, 可求出其近似分布. 由定理结论有.1),/,(~)1,0(~/1)1,0(~1211∑∑∑====⇒-⇒-n i i ni i ni i X n X n N X N nX n N n n X σμσμσμ近似近似故定理又可表述为: 均值为μ, 方差的02>σ的独立同分布的随机变量 ,,,,21n X X X 的算术平均值X , 当n 充分大时近似地服从均值为μ,方差为n /2σ的正态分布. 这一结果是数理统计中大样本统计推断的理论基础.2. 棣莫佛—拉普拉斯定理在第二章中,作为二项分布的正态近似,我们曾经介绍了棣莫佛—拉普拉斯定理,这里再次给出,并利用上述中心极限定理证明之.定理7(棣莫佛—拉普拉斯定理)设随机变量n Y 服从参数p n ,)10(<<p 的二项分布, 则对任意x , 有)(21)1(lim 22x dt e x p np np Y P x tn n Φ==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--⎰∞--∞→π注: 易见,棣莫佛—拉普拉斯定理就是林德伯格—勒维定理的一个特殊情况.3.用频率估计概率的误差设n μ为n 重贝努里试验中事件A 发生的频率, p 为每次试验中事件A 发生的概率,,1p q -=由棣莫佛—拉普拉斯定理,有⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-<-=⎭⎬⎫⎩⎨⎧<-pq n npqnp pq nP p n P n n εμεεμ .12-⎪⎪⎭⎫ ⎝⎛Φ=⎪⎪⎭⎫ ⎝⎛-Φ-⎪⎪⎭⎫ ⎝⎛Φ≈pq n pq n pq n εεε这个关系式可用解决用频率估计概率的计算问题:4. 李雅普诺夫定理定理8(李雅普诺夫定理) 设随机变量 ,,,,21n X X X 相互独立, 它们具有数学期望和方差: ,2,1,0)(,)(2=>==i X D X E kk k k σμ,记.122∑==nk k nB σ 若存在正数δ, 使得当∞→n 时,,0}|{|1122→-∑=++nk k knXE Bδδμ则随机变量之和∑=n k k X 1的标准化变量:nnk kn k kn k k n k k nk k n B X X D X E X Z ∑∑∑∑∑=====-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=11111μ的分布函数)(x F n 对于任意x , 满足).(21lim )(lim 2/112x dt e x B X P x F x t n n k k n k k n n n Φ==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-=⎰∑∑∞--==∞→∞→πμ注:定理8表明, 在定理的条件下, 随机变量.11nnk kn k kn B X Z ∑∑==-=μ当n 很大时,近似地服从正态分布)1,0(N . 由此, 当n 很大时,∑∑==+=nk k n n nk k Z B X 11μ近似地服从正态分布⎪⎪⎭⎫ ⎝⎛∑=21,n n k k B N μ.这就是说,无论各个随机变量),2,1( =k X k 服从什么分布,只要满足定理的条件,那么它们的和∑=nk k X 1当n 很大时,就近似地服从正态分布.这就是为什么正态随机变量在概率论中占有重要地位的一个基本原因.在很多问题中,所考虑的随机变量可以表示成很多个独立的随机变量之和,例如,在任一指定时刻,一个城市的耗电量是大量用户耗电量的总和;一个物理实验的测量误差是由许多观察不到的、可加的微小误差所合成的,它们往往近似地服从正态分布.例题选讲:切比雪夫不等式例1(讲义例1)在每次试验中, 事件A发生的概率为0.75, 利用切比雪夫不等式求: 事件A出现的频率在0.74~0.76之间的概率至少为0.90?中心极限定理例2(讲义例2) 一盒同型号螺丝钉共有100个,已知该型号的螺丝钉的重量是一个随机变量,期望值是100g标准差是10g, 一盒螺丝钉的重量超过10.2kg的概率.例3 (讲义例3)计算机在进行数学计算时,遵从四舍五入原则。

概率论与数理统计第四章课后习题及参考答案

概率论与数理统计第四章课后习题及参考答案

概率论与数理统计第四章课后习题及参考答案1.在下列句子中随机地取一个单词,以X 表示取到的单词包含的字母的个数,试写出X 的分布律,并求)(X E .Have a good time解:本题的随机试验属于古典概型.所给句子共4个单词,其中有一个单词含一个字母,有3个单词含4个字母,则X 的所有可能取值为1,4,有41)1(==X P ,43)4(==X P ,从而413434411)(=⋅+⋅=X E .2.在上述句子的13个字母中随机地取一个字母,以Y 表示取到的字母所在的单词所含的字母数,写出Y 的分布律,并求)(Y E .解:本题的随机试验属于古典概型.Y 的所有可能取值为1,4,样本空间Ω由13个字母组成,即共有13个样本点,则131)1(==Y P ,1312)4(==Y P ,从而1349131241311)(=⋅+⋅=Y E .3.一批产品有一、二、三等品及废品4种,所占比例分别为60%,20%,10%和10%,各级产品的出厂价分别为6元、8.4元、4元和2元,求产品的平均出厂价.解:设产品的出厂价为X (元),则X 的所有可能取值为6,8.4,4,2,由题设可知X 的分布律为X 68.442P6.02.01.01.0则16.51.021.042.08.46.06)(=⨯+⨯+⨯+⨯=X E (元).4.设随机变量X 具有分布:51)(==k X P ,5,4,3,2,1=k ,求)(X E ,)(2X E 及2)2(+X E .解:3)54321(51)(=++++=X E ,11)54321(51)(222222=++++=X E ,274)(4)()44()2(222=++=++=+X E X E X X E X E .5.设离散型随机变量X 的分布列为k k kk X P 21)!2)1((=-=, ,2,1=k ,问X 是否有数学期望.解:因为∑∑∞=∞==⋅-111212)1(k k k k kkk 发散,所以X 的数学期望不存在.6.设随机变量X 具有密度函数⎪⎩⎪⎨⎧≤≤-=其他.,0,22,cos 2)(2πππx x x f 求)(X E 及)(X D .解:因为x x 2cos 在]2,2[ππ-上为奇函数,所以0d cos 2d )()(222=⋅==⎰⎰-∞+∞-πππx x x x x f x X E ,2112d cos 2d )()(2222222-=⋅==⎰⎰-∞+∞-ππππx x x x x f x X E ,故2112)]([)()(222-=-=πX E X E X D .7.设随机变量X 具有密度函数⎪⎩⎪⎨⎧<<-≤<=其他.,0,21,2,10,)(x x x x x f 求)(X E 及)(X D .解:1d )2(d d )()(2112=-+==⎰⎰⎰∞+∞-x x x x x x x f x X E ,67d )2(d d )()(2121322=-+==⎰⎰⎰∞+∞-x x x x x x x f x X E ,61)]([)()(22=-=X E X E X D .8.设随机变量X 在)21,21(-上服从均匀分布,求)sin(X Y π=的数学期望与方差.解:由题可知X 的密度函数为⎪⎩⎪⎨⎧<<-=其他.,0,2121,1)(x x f 则0d 1sin d )(sin )][sin()(2121=⋅===⎰⎰-∞+∞-x x x x f x X E Y E πππ,21d 1sin d )(sin )]([sin )(21212222=⋅===⎰⎰-∞+∞-x x x x f x X E Y E πππ,21)]([)()(22=-=Y E Y E Y D .9.某正方形场地,按照航空测量的数据,它的边长的数学期望为350m ,又知航空测量的误差随机变量X 的分布列为X (m)30-20-10-0102030P05.008.016.042.016.008.005.0而场地边长随机变量Y 等于边长的数学期望与测量误差之和,即X Y +=350,求场地面积的数学期望.解:设场地面积为S ,则2Y S =,16.01042.0016.0)10(08.0)20(05.030)(⨯+⨯+⨯-+⨯-+⨯-=X E 005.03008.020=⨯+⨯+,16.01042.0016.0)10(08.0)20(05.0)30()(222222⨯+⨯+⨯-+⨯-+⨯-=X E 18605.03008.02022=⨯+⨯+,故)350700(])350[()()(2222++=+==X X E X E Y E S E 122686350)(700)(22=++=X E X E .10.A ,B 两台机床同时加工零件,每生产一批较大的产品时,出次品的概率如下表所示:A 机床次品数X 0123概率P7.02.006.004.0B 机床次品数X 0123概率P8.006.004.010.0问哪一台机床加工质量较好.解:44.004.0306.022.017.00)(=⨯+⨯+⨯+⨯=X E ,8.004.0306.022.017.00)(22222=⨯+⨯+⨯+⨯=X E ,6064.0)]([)()(22=-=X E X E X D ,44.010.0304.0206.018.00)(=⨯+⨯+⨯+⨯=Y E ,12.110.0304.0206.018.00)(22222=⨯+⨯+⨯+⨯=Y E ,9264.0)]([)()(22=-=Y E Y E Y D ,)()(Y E X E =,但)()(Y D X D <,故A 机床加工质量较好.11.设随机变量X 与Y 相互独立,且方差存在,试证:22)]()[()()]([)()()(Y E X D Y D X E Y D X D XY D ++=,由此得出)()()(Y D X D XY D ≥.证:22)]([])[()(XY E XY E XY D -=222)]()([)(Y E X E Y X E -=2222)]([)]([)()(Y E X E Y E X E -=2222)]([)]([})]([)(}{)]([)({Y E X E Y E Y D X E X D -++=22)]()[()()]([)()(Y E X D Y D X E Y D X D ++=.因为)(X D ,)(Y D ,2)]([X E ,2)]([Y E 非负,所以)()()(Y D X D XY D ≥.12.已知随机变量X 的密度函数为⎩⎨⎧≤≤++=其他.,010,)(2x c bx x a x f又已知5.0)(=X E ,15.0)(=X D ,求a ,b ,c .解:c b a x c bx x a x x f ++=++==⎰⎰∞+∞-2131d )(d )(1102,c b a x c bx x a x x x f x X E 213141d )(d )()(5.0102++=++===⎰⎰∞+∞-,⎰⎰++-=-==∞+∞-1222d )()5.0(d )()]([)(15.0xc bx x a x x x f X E x X D 41314151-++=c b a ,解之得12=a ,12-=b ,3=c .13.设),(Y X 的分布律为(1)求)(X E 及)(Y E ;(2)设XYZ =,求)(Z E ;(3)设2)(Y X Z -=,求)(Z E .解:(1)2)13.00(3)1.001.0(2)1.01.02.0(1)(=++⨯+++⨯+++⨯=X E ,0)1.01.01.0(1)3.001.0(0)01.02.0()1()(=++⨯+++⨯+++⨯-=Y E ,(2)1.01)3.001.0(00)31(1.021(2.01)(⨯+++⨯+⨯-+⨯-+⨯-=Z E 1511.0311.021-=⨯+⨯+,(3)1.0)01(0)]1(3[1.0)]1(2[2.0)]1(1[)(2222⨯-+⨯--+⨯--+⨯--=Z E 51.0)13(1.0)12(1.0)11(3.0)03(0)02(22222=⨯-+⨯-+⨯-+⨯-+⨯-+.14.设随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤+=其他.,0,10,20,3),(y x yx y x f求)(X E ,)(Y E ,)(Y X E +及)(22Y X E +.解:⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(911d d 31020=+⋅=⎰⎰y x y x x ,⎰⎰∞+∞-∞+∞-=y x y x yf Y E d d ),()(95d d 31020=+⋅=⎰⎰y x y x y ,⎰⎰∞+∞-∞+∞-+=+y x y x f y x Y X E d d ),()()(916d d 3)(1020=+⋅+=⎰⎰y x y x y x ,⎰⎰∞+∞-∞+∞-+=+y x y x f y x Y X E d d ),()()(2222613d d 3)(102022=+⋅+=⎰⎰y x y x y x .15.),(Y X 在区域}1,0,0|),{(≤+≥≥=y x y x y x D 上服从均匀分布,求)(X E ,)23(Y X E -及)(XY E .解:由题可知),(Y X 的联合密度函数为⎩⎨⎧≤≤-≤≤=其他.,0,10,10,2),(y y x y x f ⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(31d d 21010==⎰⎰-yy x x ,⎰⎰∞+∞-∞+∞--=-y x y x f y x Y X E d d ),()23()23(31d d )23(21010=-=⎰⎰-yy x y x ,⎰⎰∞+∞-∞+∞-=y x y x xyf XY E d d ),()(121d d 21010==⎰⎰-y y x xy .16.设二维随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧>+≤+=.1,0,1,1),(2222y x y x y x f π证明:随机变量X 与Y 不相关,也不相互独立.证:⎰⎰⎰⎰⋅=⋅=∞+∞-∞+∞-πθθππ201d d cos 1d d 1)(r r r y x x X E ,同理,0)(=Y E ,⎰⎰⎰⎰⋅⋅=⋅=∞+∞-∞+∞-πθθθππ201d d sin cos 1d d 1)(r r r r y x xy XY E ,0)()()(),cov(=-=Y E X E XY E Y X ,故随机变量X 与Y 不相关.当11≤≤-x 时,ππ21112d 1d ),()(22x y y y x f x f x x X -===⎰⎰---∞+∞-,其他,0)(=x f X ,故⎪⎩⎪⎨⎧≤≤--=其他.,0,11,12)(2x x x f X π同理,⎪⎩⎪⎨⎧≤≤--=其他.,0,11,12)(2y y y f Y π易得)()(),(y f x f y x f Y X ≠,故随机变量X 与Y 不相互独立.17.设随机变量1X ,2X 的概率密度分别为⎩⎨⎧≤>=-.0,0,0,e 2)(21x x x f x ,⎩⎨⎧≤>=-.0,0,0,e 4)(42y y y f y 试用数学期望的性质求:(1))(21X X E +及)32(221X X E -;(2)又设1X ,2X 相互独立,求)(21X X E .解:由题可知1X ~)2(E ,2X ~)4(E ,则21)(1=X E ,41)(2=X E ,161)(2=X D ,81)]([)()(22222=+=X E X D X E .(1)43)()()(2121=+=+X E X E X X E ,85)(3)(2)32(221221=-=-X E X E X X E .(2)81)()()(2121==X E X E X X E .18.(1)设1X ,2X ,3X 及4X 独立同在)1,0(上服从均匀分布,求)51(41∑=k k kX D ;(2)已知随机变量X ,Y 的方差分别为25和36,相关系数为4.0,求Y X U 23+=的方差.解:(1)由题易得121)(=i X D ,)51(41∑=k k kX D )(5141∑==k kkX D )](4)(3)(2)([514321X D X D X D X D +++=21)4321(121512222=+++⋅=.(2)由已知25)(=X D ,36)(=Y D ,4.0)()(),cov(==Y D X D Y X XY ρ,得12),cov(=Y X ,)2,3cov(2)2()3()23()(Y X Y D X D Y X D U D ++=+=513),cov(232)(2)(322=⋅⋅++=Y X Y D X D .19.一民航送客车载有20位旅客自机场开出,旅客有10个车站可以下车,如果到达一个车站没有旅客下车就不停车,以X 表示停车的次数,求)(X E (设每位旅客在各个车站下车是等可能的,并设各旅客是否下车相互独立).解:引入随机变量⎩⎨⎧=站无人下车.,在第站有人下车;,在第i i X i 01,10,,2,1 =i .易知1021X X X X +++= .按题意,任一旅客在第i 站不下车的概率为9.0,因此20位旅客都不在第i 站下车的概率为209.0,在第i 站有人下车的概率为209.01-,也就是209.0)0(==i X P ,209.01)1(-==i X P ,10,,2,1 =i .由此209.01)(-=i X E ,10,,2,1 =i .进而)()()()()(10211021X E X E X E X X X E X E +++=+++= 784.8)9.01(1020=-=(次).20.将n 只球(1~n 号)随机地放进n 只盒子(1~n 号)中去,一只盒子装一只球.若一只球装入与球同号的盒子中,称为一个配对,记X 为总的配对数,求)(X E .解:引入随机变量⎩⎨⎧=号盒子.号球未放入第第号盒子号球放入第第i i i i X i ,0,,1,n i ,,2,1 =,则n X X X X +++= 21,显然n X P i 1)1(==,则nX P i 11)0(-==,n i ,,2,1 =,从而nX E i 1)(=,n i ,,2,1 =,于是1)()()()()(2121=+++=+++=n n X E X E X E X X X E X E .21.设随机变量),(Y X 的分布律为试验证X 和Y 是不相关的,但X 和Y 不是相互独立的.证:0)25.00(2)025.0(1)025.0()1()25.00(2)(=+⨯++⨯++⨯-++⨯-=X E ,5)25.00025.0(4)025.025.00(1)(=+++⨯++++⨯=Y E ,0)4(25.0)8(0225.0125.0)1(02)(⨯-+⨯-+⨯+⨯+⨯-+⨯-=XY E 025.0804=⨯+⨯+,所以0)()()(),cov(=-=Y E X E XY E Y X ,故X 与Y 不相关.易知25.025.00)2(=+=-=X P ,5.0025.025.00)1(=+++==Y P ,0)1,2(==-=Y X P ,有)1()2()1,2(=-=≠=-=Y P X P Y X P ,故X 与Y 不相互独立.22.设二维随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤+=其他.,0,10,10,),(y x y x y x f 求)(X E ,)(Y E ,)(X D ,)(Y D ,)(XY E ,),cov(Y X 及XY ρ.解:127d d )(d d ),()(1010=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,125d d )(d d ),()(1010222=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,14411)]([)()(22=-=X E X E X D ,由轮换对称性,得127)(=Y E ,14411)(=Y D ,31d d )(d d ),()(1010=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x xy y x y x xyf XY E ,1441)()()(),cov(-=-=Y E X E XY E Y X ,111)()(),cov(-==Y D X D Y X XY ρ.23.设X ~),(2σμN ,Y ~),(2σμN ,且X ,Y 相互独立.求Y X Z βα+=1和Y X Z βα-=2的相关系数(α,β是不为0的常数).解:由题可知μ==)()(Y E X E ,2)()(σ==Y D X D ,则2222)]([)()(σμ+=+=X E X D X E ,2222)]([)()(σμ+=+=Y E Y D Y E ,μβαβα)()()(1+=+=Y X E Z E ,μβαβα)()()(2-=-=Y X E Z E ,222221)()()()()(σβαβαβα+=+=+=Y D X D Y X D Z D ,222222)()()()()(σβαβαβα+=+=-=Y D X D Y X D Z D ,)()])([()(222221Y X E Y X Y X E Z Z E βαβαβα-=-+=))(()()(22222222σμβαβα+-=-=Y E X E ,222212121)()()()(),cov(σβα-=-=Z E Z E Z Z E Z Z ,22222121)()(),cov(21βαβαρ+-==Z D Z D Z Z Z Z .24.设),(Y X 的联合概率密度为⎩⎨⎧≤≤≤≤--=.,0,10,10,2),(其他y x y x y x f (1)求),cov(Y X ,XY ρ和)32(Y X D -;11(2)X 与Y 是否独立?解:(1)125d d )2(d d ),()(1010=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,41d d )2(d d ),()(1010222=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,61d d )2(d d ),()(1010=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x xy y x y x xyf XY E ,14411)]([)()(22=-=X E X E X D ,由轮换对称性,125)(=Y E ,14411)(=Y D ,1441)()()(),cov(-=-=Y E X E XY E Y X ,111)()(),cov(-==Y D X D Y X XY ρ,)3,2cov(2)3()2()32(Y X Y D X D Y X D -+-+=-144155),cov(12)(3)(222=-+=Y X Y D X D .(2)当10≤≤x 时,x y y x y y x f x f X -=--==⎰⎰∞+∞-23d )2(d ),()(10,其他,0)(=x f X ,故⎪⎩⎪⎨⎧≤≤-=其他.,0,10,23)(x x x f X 同理,⎪⎩⎪⎨⎧≤≤-=其他.,0,10,23)(y y y f Y 因为)()(),(y f x f y x f Y X ≠,故X 与Y 不相互独立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E (Z )



g ( x, y) f ( x, y)dxdy
x 20 20 10 x
dx 1000 y 1 100 dy dx 500( x y) 1 100 dy
10 10
20
14166.7(元)
数学期望的特性:
1.设C是常数,则有E(C) C
k 解:X的分布律为:P( X k ) e
k!
k 0,1, 0
X的数学期望为:
E( X ) k e
k 0

k
k!
e

(k 1)!
k 1

k 1
e e
即 E( X )
பைடு நூலகம்
设 X U (a, b),求E( X )。 例6:
x0 x0
根据N的概率密度fmin(x),可得到E(N).
E( N ) x 2 e
0 2x
x 2 2 x0 e f min ( x) x0 0
是 指 数 分 布 的 密 度 函 数


dx xe
2 x 0
| e
这一性质可以推广到任意有限个随机变量线性组合的情况
证明:
1. C是常数,P( X C) 1, E( X ) E(C ) 1 C C
下面仅对连续型随机变量给予证明:
2. E (CX ) Cxf ( x)dx C




xf ( x)dx CE( X )
2.设X 是一个随机变量,C是常数,则有E(CX ) CE( X )
3.设X , Y 是两个随机变量,则有E( X Y ) E( X ) E(Y )
将上面三项合起来就是:E(aX bY c) aE( X ) bE(Y ) c
4.设X , Y 是相互独立的随机变量,则有E( XY ) E( X ) E(Y )
x

解:
1 e x 0 X k (k 1, 2) 的分布函数F ( x) x0 0 串联情况下,N min X1, X 2 , 故N的分布函数为:
x
2x Fmin ( x) 1 (1 F ( x)) 2 1 e 0
若级数 xk pk 绝对收敛,则称级数 xk pk的和为随机变量X
k 1 k 1
的数学期望,记为E X ,即 E X xk pk
k 1

定义: 设连续型随机变量X 的概率概率为f x , 若积分



xf ( x)dx 绝对收敛 (即



x f x dx <)
0
2 x

2 x dx e |0
2
2
从而E ( N ) 2
问题:将2个电子装置并联联接组成整机, 整机的平均寿命又该如何计算?
例3:设有10个同种电子元件,其中2个废品。装配仪器
时,从这10个中任取1个,若是废品,扔掉后重取 1只,求在取到正品之前已取出的废品数X的期望。 解:X的分布律为:
考虑:先求E (Y )


yfY ( y )dy,这里
你算对了吗?哪个更容易呢?
3 dx 3 2 1 y 2x y 3 dx fY ( y ) y 2 x3 y 2 0
0 y 1 y 1 其他
例10:某商店经销某种商品,每周进货量X与需求量Y是相互独立的 随机变量,且都在区间[10,20]上均匀分布。商店每售出一 单位商品可获利1000元;若需求量超过进货量,商店可从它处 调剂供应,这时每单位商品可获利500元;试计算此商店经销 该种商品每周所获得利润的数学期望。
则 X ~ b(5, 0.2)
设Y表示一周内所获利润,则
P(Y 10) P( X 0) (1 0.2)5 0.328, 其余同理可得,于是Y的分布率为:
Y
2
0
5
10
pk
0.057 0.205 0.410 0.328
于是 E (Y ) 5.216 (万元)
设 X ( ), 求E( X )。 例5:
X 是连续型随机变量,它的概率密度为f ( x)
则有E (Y ) E( g ( X ))



g ( x) f ( x)dx 绝对收敛

g ( x) f ( x)dx
定理的重要意义在于我们求E (Y )时,不必算出Y的分布律或 概率密度,而只要利用X 的分布律或概率密度就可以了。
§1 数学期望
例1:甲、乙两人射击比赛,各射击100次,其中甲、乙的成绩 如下: 甲 8 9 10 乙 8 9 10 次数 10 80 10 次数 20 65 15
评定他们的成绩好坏。 解:计算甲的平均成绩: 计算乙的平均成绩:
8 10 9 80 10 10 8 10 9 80 10 10 9 100 100 100 100 8 20 9 65 10 15 8 20 9 65 10 15 8.95 100 100 100 100
i 1 j 1
若二维连续型随机变量 X , Y 的概率密度为:
则有E ( Z ) E ( g ( X , Y ))





g ( x, y) f ( x, y)dxdy
这里设上式右边的积分绝对收敛
特别地,E ( X )



xf ( x, y)dxdy


yf ( x, y)dydx
y 1 x
X=1
x 1 E( ) 1 f ( x, y )dydx dx 1 3 dy 4 3 xy 1 XY x 2x y x 3 3 1 ( 16 12 )dx 3 ( 1 1) 3 [ 2 ] | 1 dx 4 1 4 1 4 5 5 x x 2x 2y x
(0 0)
2
(1 0)
2
0.15
(0 1)
2 2 (1 2) sin 0.15 0.25 2
0.25 sin
(1 1)
0.2 sin
(0 2)
0.15
例9:设随机变量(X,Y)的概率密度为:
3 3 2 f ( x, y) 2 x y 0 1 y x, x 1 x 求数学期望E 其他
例7:已知某零件的横截面是个圆,对横截面的直径X进
行测量,其值在区间(1,2)上均匀分布,求横截 面面积S的数学期望。
1, 1 x 2 解:X 的密度函数为:f ( x) 其他 0,
4 E (S ) x2 f ( x)dx 4
S
X2

2
1
x2 dx
4
7 12
例8:设二维随机变量 X , Y 的联合分布律为
X 0 1 Y 0 1 2
0.1 0.25 0.15 0.15 0.2 0.15
求随机变量 Z sin
解:E ( Z ) E[sin sin 2
(X Y)
2
] sin
的数学期望。
0.1 sin 2
(X Y)

10
定理:设Y是随机变量X的函数:Y g ( X ) g是连续函数 ,
X 是离散型随机变量,它的分布律为:
P( X xk ) pk , k 1, 2,
若 g ( xk ) pk 绝对收敛,则有E (Y ) E[ g ( X )] g ( xk ) pk
k 1 k 1
上述定理也可以推广到两个或两个以上 随机变量的函数的情况。
定理:设Z是随机变量X , Y的函数:Z g( X , Y ) g是连续函数 ,
若二维离散型随机变量 X , Y 的分布律为:
P( X xi , Y y j ) pij , i, j 1, 2,
则有E (Z ) E[ g ( X , Y )] g ( xi , y j ) pij 这里设上式右边的级数绝对收敛,
1 b-a a x b 解:X的概率密度为: f ( x) 其他 0
X的数学期望为:
E( X )


xf ( x)dx

b
a
x dx a b 2 ba
即数学期望位于区间(a, b)的中点
几种重要分布的数学期望
1、 设X ~ b( n, p), 则E ( X ) np 2、 设X ~ ( ), 则E ( X ) ab 3、 设X ~ U (a , b), 则E ( X ) 2 4、 设X ~ N ( , 2 ), 则E ( X ) 5、 设X服 从 参 数 为 的 指 数 分 布 , 则E ( X ) 1
解:设Z表示该种商品每周所得的利润,则
若Y X 1000Y , Z g( X ,Y ) 500(X+Y), 若Y X
X 和Y 相互独立,因此( X , Y )的概率密度为 1 100, 10 x 20,10 y 20 f ( x, y ) 其他 0,
则称积分



xf ( x)dx 的值为随机变量X 的数学期望,记为E ( X )

即 E ( X ) xf ( x)dx
数学期望简称期望,又称均值。
例2:有2个相互独立工作的电子装置,它们的寿命 X k k 1,2 , 1 服从同一指数分布,其概率密度为: f ( x) x0 e 0 x0 若将这2个电子装置串联联接 0 组成整机,求整机寿命N(以小时计)的数学期望。
相关文档
最新文档