2019教师考试(初中数学试卷)
(完整版)2019年江西省教师招聘考试初中数学真题
2019 年江西教师招聘考试《初中数学学科专业知
识》真题及答案剖析
2019-05-13
本源:江西易公培训学校
分享到 0
2019 年江西教师招聘考试
《初中数学学科专业知识》真题及答案剖析
——易公教育出品
第一部分客观题
一、单项选择题(本大题共50 小题,每题 1 分,共 50 分)
1、《义务教育授课课程标准(2011 年版)》指出“......适应(A)个性发展的需要,使得人人都能获取优异的授课教育,不同样的人在数学上获取不同样的发展。
”
A. 学生
B. 教师
C. 家长
D. 学生和教师
2、在现代社会中,数学教育还是(D)的重要方面,...... ,是平生发展的需要。
A. 基础教育
B. 基本技术培养
C. 基本应用培养
D. 平生教育
3、数学教师专业技术的特点有:数学性、( B )和显效性。
A. 科学性
B. 教育性
C. 实践性
D. 崇敬性
4、数学的基本思想主要指( A )的思想。
①数学推理②数学抽象③数学建模④数学应用
A. ①②③
B. ①③④
C. ②③④
D. ①②③④
5、《义务教育授课课程标准(2011 年版)》 ......、问题解决方面及(C)方面。
A.创新精神
B.授课相长
C.感神态度
D.应企图识
6、数学运算是指在清楚运算对象的基础上,......,数学运算是(A),是计算机解决问题的基础。
A.演绎推理
B.类比推理
C.归纳推理
D.含情推理
7、数学学习议论既要......,也要重视学习的(C)。
(完整版)2019下半年教师资格证真题及答案——初中数学
(完整版)2019下半年教师资格证真题及答案——初中数学-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2019下半年教师资格证真题及答案—初中数学每个科目考试时长为2小时,采取纸笔化考试。
一、单项选择题(本大题共8小题,每小题5分,共40分)参考答案:B参考答案:D参考答案:D参考答案:A参考答案:C?参考答案:B7.在平面直角坐标系中,将一个多边形依次沿两个坐标轴方向分别平移2个单位和3个单位后,得到的图形与原来的图形的关系不一定正确的是()A.全等B.平移C.相似D.对称参考答案:D8. 学生是数学学习的主体是数学教学的重要理念,下列关于教师角色的概述不正确的是()A.组织者B.引导者C.合作者D.指挥者参考答案:D二、简答题(本大题共5小题,每小题7分,共35分)参考答案:(2)以第一问中的椭圆方程为例,在该变化下得到的新方程是圆的标准方程,其中图形的大小、形状、几何中心的位置都发生了变化。
参考答案:参考解析:11、一个袋子里有8个黑球,8个白球,随机不放回地连续取球五次。
每次取出1个球,求最多取到3个白球的概率。
参考答案:参考解析:12. 简述研究中学几何问题的三种主要方法。
[答案要点]研究中学几何问题的方法主要数形结合、化归思想、变换思想。
中学几何数学是-门比较抽象的学科,包括的空间和数量的关系,数形结合能够帮助学生将两者相互转化,使抽象的知识更便于理解学习。
在中学几何学习中,数形结合的思想具有重要的作用,教师在教学中运用数形结合思想,能够将几何图形用代数的形式表示,并利用代数方式解决几何问题。
例如,根据几何性质,建立只限于平面的代数方程,或是根据代数方程,确定点、线、面三者之间关系。
数形结合将几何图形与代数公式密切的联系在一起,利用代数语言将几何问题简化,使学生更容易解决问题,是几何教学中的核心思想方法。
化归思想是数学中普遍运用的一种思想,在中学几何教学中,教师常运用这一思想,基本的运用方法就是将几何问题转化为代数问题,利用代数知识将问题解决后,再返回到几何中。
2019 年下半年教师资格考试 《数学学科知识与教学能力(初级中学)》真题试卷及答案
(时间 120 分钟 满分 150 分) 一、单项选择题(本大题共 8 小题,每小题 5 分,共 40 分)
1.在利用导数定义证明的过程中用到的极限是()
A. lim x0
sin x
x
1
B.
lim
x
1
1 x
x
e C. lim x
x
x
1 D. lim qx x
X=
0
0
,Y=
0
1
,满足
XY=O,且 X≠O,则 Y≠O,故 C 错误;选项 D,若 M 是可逆矩阵时,MX=MY 的两边同时左乘 M-1 可得,X=Y,故 D 错误。
3.D【解析】由于被积函数 ex ex 是奇函数,奇函数在区间[-1,1]上的定积分为 0, 2
故选 D。
4.A【解析】因为旋转轴是
0 n n1 1 x ,当 n ,n 0 时,则有
lim
n
f
x
f
0
lim n
f
n x n 0 ,则
f
x
f
0
0,
∴ f x 0 ,即 f(x)=0。
四、论述题 15.【参考答案】学生的数学学习应当是一个生动活泼的、主动的富有个性的过 程。认真听讲、积极思考、动手实践、自主探索、合作交流等,都是学生学习数 学的重要方式。 学生的数学学习应当有足够的时间和空间经历观察、实验、猜测、计算、推理、 验证等活动过程在数学教学中,必须通过学生主动的活动包括观察、描述、画图、 操作、猜想、实验、收集整理数据、思考、推理、交流和应用等等,让学生亲身 体验如何做数学,实现数学的“再创造”,并从中感受到数学的力量,教师在学 生进行数学学习的过程中应当给他们留有充分的思维空间,使学生能够真正的从 事数学思维活动。培养学生的数学学习习惯应该从以下几方面入手: 1.使学生认识学习的重要性; 2.培养学生认真听课的习惯:首先要提前预习,明确听课的目的;其次在课堂教 学中提高学生的学习兴趣;最后在教学过程中及时对学生的表现进行评价,有助 于学生认真听课习惯的养成; 3.培养学生认真思考的习惯; 4.培养学生想象的习惯; 5.培养学生认真复习的习惯; 6.培养学生认真完成作业的习惯。 五、案例分析题 16.【参考答案】(1)学生解方程时并没有按照分式方程的标准解法,而是直接 移项再去化简分式的分子和分母;解分式方程是中学数学学习的一个重点内容, 也是一个难点,学生出现这种问题可能在于运算基础不够扎实,想要直接约去分 式的分子与分母,一定要保证约去的式子不能为 0。
2019上半年《数学学科知识与教学能力(初中)》教师资格试题及答案
2019上半年教师资格《数学学科知识与教学能力(初中》试题一、单项选择题(本大题共8小题,每小题5分,共40分)1.下列选项中,运算结果一定是无理数的是( )。
A. 有理数与无理数的和B. 有理数与有理数的差C. 无理数与无理数的和D. 无理数与无理数的差2.在空间直角坐标系中,由参数方程所确定的曲线的一般方程是( )。
. ...3.已知空间直角坐标与球坐标的变换公式) ,(p≥0,-π<0≤π,),则在球坐标系中,表示的图形是( )。
A. 柱面 B. 圆面C. 半平面D. 半锥面A B C D,则f(1)=().A.- 1B.0C.1 D .兀6.若矩阵,有三个线性无关的特征向量,i=2是A的二重特征根,则 ( )。
三、解答题(本大题1小题,10分)14.设R²为二维欧氏平面,F 是R²到R²的映射,如果存在一个实数p,0<p<1,使得对于任意的P ,Q ∈R ²,有d (F (P ),F (Q ))≤Pd(P ,Q )(其中d (P ,Q )表 示P,Q 两点间的距离),则称F 是压缩映射。
设映射T:R² → R²,1,V(x,y) ∈R²。
(1)证明:映射T 是压缩映射;(4分)(2)设P(x,v)为R²中任意 一 点,令P=T(P - 1),n=1,2,3, … ,求(6分)五、案例分析题(本大题1小题,20分)阅读案例,并回答问题。
16.案例;甲、乙两位数学教师均选用如下素材组织了探究活动,如图1所示,这是一个三级台阶,它的每一级的长、宽、高分别为50cm,25cm和15cm,A和B是这个台阶的两个相对端点,B点上有一只蚂蚁,想到A点去吃食物。
请你想一想,这只蚂蚁从B点出发,沿着台阶面爬到A点的最短路线是什么?图1【乙教师】展示情境,将问题进行分析,出示了一张台阶模样的纸片,边说边将纸片拉直,如图2所示,然后让大家研究。
【教师资格考试真题】2019年上半年中小学教师资格考试真题试卷(初级中学)数学
教师资格考试真题2019年上半年中小学教师资格考试真题试卷数学学科知识与教学能力(初级中学)一、单项选择题(本大题共8小题,每小题5分,共40分)1.下列选项中,运算结果一定是无理数的是()A.有理数与无理数的和B.有理数与有理数的差C.无理数与无理数的和D.无理数与无理数的差2.在空间直角坐标系中,由参数方程()22cos ,sin ,02sin 2x a t y a t t z a t π⎧=⎪=≤≤⎨⎪=⎩所确定的曲线的一般方程是()A.2,2x y a z xy +=⎧⎨=⎩B.2,4x y a z xy+=⎧⎨=⎩ C.2222,2x y a z xy ⎧+=⎪⎨=⎪⎩ D.2222,4x y a z xy⎧+=⎪⎨=⎪⎩ 3.已知空间直角坐标与球坐标的变换公式为cos cos ,cos sin ,0,,22sin x y z ρθϕππρθϕρπϕπθρθ=⎧⎪⎛⎫=≥-<≤-≤≤⎨ ⎪⎝⎭⎪=⎩,则在球坐标系中,3πθ=表示的图形是()A.柱面B.圆面C.半平面D.半锥面4.设A 为n 阶方阵,B 是A 经过若干次初等行变换得到的矩阵,则下列结论正确的是() A.=A B B.≠A BC.若0=A ,则一定有0=BD.若0>A ,则一定有0>B5.已知()()()()12111121!n n n f x x n π∞--==--∑,则f(1)=() A.-1B.0C.1D.π6.若矩阵1114335A x y -⎛⎫⎪= ⎪ ⎪--⎝⎭有三个线性无关的特征向量,2λ=是A 的二重特征根,则()A.x=-2,y=2B.x=1,y=-1C.x=2,y=-2D.x=-1,y=17.下列描述为演绎推理的是()A.从一般到特殊的推理B.从特殊到一般的推理C.通过实验验证结论的推理D.通过观察猜想得到结论的推理8.《义务教育数学课程标准》(2011年版)从四个方面阐述了课程目标,这个四个目标是()A.知识技能、数学思考、问题解决、情感态度B.基础知识、基本技能、问题解决、情感态度C.基础知识、基本技能、数学思考、情感态度D.知识技能、问题解决、数学创新、情感态度二、简答题(本大题共5小题,每小题7分,共35分)9.一次实践活动中,某班甲、乙两个小组各20名同学在综合实践基地脱玉米粒,一天内每人完成脱粒数量(千克)的数据如下:甲组:57,59,63,63,64,71,71,71,72,7575,78,79,82,83,83,85,86,86,89乙组:50,53,57,62,62,63,65,65,67,6869,73,76,77,78,85,85,88,94,96问题:(1)分别计算甲、乙两组同学脱粒数量(千克)的中位数;(2分) (2)比照甲、乙两组数据,请你给出2种信息,并说明实际意义。
2019下半年教师资格证考试《初中数学学科知识与教学能力》真题(含答案)
2019下半年教师资格证考试《初中数学学科知识与教学能力》真题(含答案)注意事项:1.考试时间为120 分钟,满分为150 分。
2.请按规定在答题卡上填涂、作答。
在试卷上作答无效,不予评分。
2019年下半年中小学教师资格考试《初中数学学科知识与能力》参考答案及解析12.参考答案:(1)函数与方程的思想方法:函数思想是指用函数的概念和性质去分析问题、转化问题和解决问题;方程思想是从问题的数量关系入手,应用数学语言将问题中的条件转化为数学模型(方程(组)、不等式(组)),然后通过解方程或不等式来解决问题。
(2)数形结合思想:所谓数形结合思想,就是在研究问题时把数和形结合考虑,把问题的数量关系转化为图形性质,或把图形性质转化为数量关系,从而使复杂问题简单化,抽象问题具体化。
解题中的数形结合,是指对问题既进行几何直观的呈现,又进行代数抽象的揭示,两个方面相辅相成,而不是简单地代数问题用几何方法或几何问题用代数方法,两方面有机结合才是完整的数形结合。
如:在解应用题中常常借助线段图的直观帮助分析数量关系。
(3)转换化归的思想方法:由数学结论呈现的公理化结构,使得数学上任何一个正确的结论都可以按照需要和可能而成为推断其他结论的依据,于是,任何一个待解决的问题只需通过某种转化过程,归结到一类已经解决或比较容易解决的问题上,即可获得原有问题的解决,这就是转换化归的思想方法。
它是一种极具数学特征的思想方法。
简言之,就是指在求解数学问题时,如果对当前的问题感到生疏困惑,可以把它进行变换转化,化繁为简、化难为易、化生为熟,从而使问题得以解决。
这种思想是科学研究与数学学习中常用的方法,它是解决问题获得新知的重要思想。
数学问题解决中的模式识别、分类讨论、消元、降次等策略或方法,都明显体现了转换化归的思想方法。
13.参考答案:课堂上学生能否自主参与学习活动是学生能否成为学习的主人的明显标志。
只有学生在情感、思维、动作等方面自主参与了教学活动,学生学习的主体性才能体现,才能使他们以最大的热情、最佳的精神状态投入到数学学习中。
2019下半年全国教师资格《初中数学》教师资格证试题【含解析】
2019年下半年中小学教师资格考试初中数学试题【附解析】2019下半年全国教师资格《初中数学》教师资格证试题(2)2019下半年全国教师资格《初中数学》教师资格证试题(3)来源:网络时间:2019-11-0510:42:292019下半年全国教师资格《初中数学》答案解析2019年下半年中小学教师资格考试《初中数学学科知识与能力》参考答案及解析12.参考答案:(1)函数与方程的思想方法:函数思想是指用函数的概念和性质去分析问题、转化问题和解决问题;方程思想是从问题的数量关系入手,应用数学语言将问题中的条件转化为数学模型(方程(组)、不等式(组)),然后通过解方程或不等式来解决问题。
(2)数形结合思想:所谓数形结合思想,就是在研究问题时把数和形结合考虑,把问题的数量关系转化为图形性质,或把图形性质转化为数量关系,从而使复杂问题简单化,抽象问题具体化。
解题中的数形结合,是指对问题既进行几何直观的呈现,又进行代数抽象的揭示,两个方面相辅相成,而不是简单地代数问题用几何方法或几何问题用代数方法,两方面有机结合才是完整的数形结合。
如:在解应用题中常常借助线段图的直观帮助分析数量关系。
(3)转换化归的思想方法:由数学结论呈现的公理化结构,使得数学上任何一个正确的结论都可以按照需要和可能而成为推断其他结论的依据,于是,任何一个待解决的问题只需通过某种转化过程,归结到一类已经解决或比较容易解决的问题上,即可获得原有问题的解决,这就是转换化归的思想方法。
它是一种极具数学特征的思想方法。
简言之,就是指在求解数学问题时,如果对当前的问题感到生疏困惑,可以把它进行变换转化,化繁为简、化难为易、化生为熟,从而使问题得以解决。
这种思想是科学研究与数学学习中常用的方法,它是解决问题获得新知的重要思想。
数学问题解决中的模式识别、分类讨论、消元、降次等策略或方法,都明显体现了转换化归的思想方法。
13.参考答案:课堂上学生能否自主参与学习活动是学生能否成为学习的主人的明显标志。
2019上半年教师资格考试初中数学真题及答案
2019上半年教师资格考试初中数学真题及答案第1部分:单项选择题,共7题,每题只有一个正确答案,多选或少选均不得分。
1.[单选题]下列选项中,运算结果-定是无理数的是( )。
A)有理数与无理数的和B)有理数与有理数的差C)无理数与无理数的和D)无理数与无理数的差答案:A解析:本题考查有理数与无理数的性质。
(1)有理数与有理数:和、差、积、商均为有理数(求商时除数不为零)。
(2)有理数与无理数:①-个有理数和-个无理数的和、差为无理数;②-个非零有理数与-个无理数 的积、商为无理数。
(3)无理数与无理数:和、差、积、商可能是有理数,也可能是无理数。
2.[单选题]在空间直角坐标系中,由参数方程所确定的曲线的-般方程是( )。
A)AB)BC)CD)D答案:B解析:本题考查空间曲线的方程。
可得=4xy,所以将参数方程化成-般方程为3.[单选题]设 A 为 n 阶方阵,B 是 A 经过若干次初等行变换得到的矩阵,则下列结论正确的是( )。
A)|A|=|B|B)|A|≠|B|C)若|A|=0,则-定有|B|=0D)若|A|>0,则-定有|B|>0答案:C解析:本题考查矩阵初等变换及行列式的性质。
若对 n 阶矩阵 A 作如下三种行(列)变换得到矩阵 B: ①互换矩阵的两行(列);②用-个非零数 k 乘矩阵的某-行(列);③把矩阵某-行(列)的 k 倍加到另-行(列)上。
则对 应行列式的关系依次为|B|=-|A|,|B|=k|A|,|B|=|A|,所以若 n 阶矩阵 A 经若干次初等行(列)变换得到矩阵曰, 则有|B|=k|A|,k 是-个非零常数。
因此当|A|=0 时,-定有|B|=k|A|=0。
4.[单选题]已知则.f(1)=( )A)-lB)0C)1D)π答案:B解析:本 题 考 查 泰 勒 级 数 的 相 关 知 识 。
因 为5.[单选题]若矩阵有三个线性无关的特征向量,A=2 是 A 的二重特征根,则( )A)x=-2,y=2B)x=1,y=-1C)x=2,y=-2D)x=-1,y=1答案:C解析:本题考查矩阵特征向量的相关知识。
2019年上半年中小学教师资格考试真题试卷(初级中学)数学
2019 年上半年中小学教师资格考试真题试卷数学学科知识与教课能力(初级中学)一、单项选择题(本大题共 8 小题,每题 5 分,共 40 分)1.以下选项中,运算结果必定是无理数的是()A. 有理数与无理数的和B.有理数与有理数的差C.无理数与无理数的和D.无理数与无理数的差x a cos 2 t,2.在空间直角坐标系中,由参数方程 y a sin 2 t, 0 t 2 所确定的曲线的一 z a sin 2t般方程是()x y a, x y a,A.2xyB.4xyz 2z 2x 2 y 2 a 2 ,x 2 y 2 a 2 ,C.2xy D.z 2 4 xyz 23.已知空间直角坐标与球坐标的变换公式为x cos cos ,ycos sin ,0, , 2 ,则在球坐标系中,表zsin23示的图形是()A. 柱面B. 圆面C.半平面D.半锥面4.设 A 为 n 阶方阵, B 是 A 经过若干次初等行变换获得的矩阵,则以下结论正确的是()A. A BC.若 A0 ,则必定有 B 0D.若 A 0 ,则必定有 B 0 已知f xn 11x 2n 1,则 f(1)=()5.1n 12n 1 !A.-1B.0C.1D.11 16.若矩阵A x4y 有三个线性没关的特色向量, 2 是A的二重特色33 5根,则()A.x=-2,y=2B.x=1,y=-1C.x=2,y=-2D.x=-1,y=17.以下描绘为演绎推理的是()A.从一般到特别的推理B.从特别到一般的推理C.经过实验考证结论的推理D.经过察看猜想获得结论的推理8.《义务教育数学课程标准》(2011 年版)从四个方面论述了课程目标,这个四个目标是()A.知识技术、数学思虑、问题解决、感情态度B.基础知识、基本技术、问题解决、感情态度C.基础知识、基本技术、数学思虑、感情态度D.知识技术、问题解决、数学创新、感情态度二、简答题(本大题共 5 小题,每题 7 分,共 35 分)9.一次实践活动中,某班甲、乙两个小组各20 名同学在综合实践基地脱玉米粒,一天内每人达成脱粒数目(千克)的数据以下:甲组: 57,59,63,63,64,71,71,71,72,7575,78,79,82,83,83,85,86,86,89乙组: 50,53,57,62,62,63,65,65,67,6869,73,76,77,78,85,85,88,94,96问题:( 1)分别计算甲、乙两组同学脱粒数目(千克)的中位数;( 2 分)( 2)对比甲、乙两组数据,请你给出 2 种信息,并说明实质意义。
(完整版)2019下半年教师资格证真题及答案——初中数学
2019下半年教师资格证真题及答案一初中数学每个科目考试时长为2小时,采取纸笔化考试。
一、单项选择题(本大题共8小题,每小题5分,共40分)L在利用导数定义证明的过程中用到的极限是A.D. limg' = 0.0 < 1参考答案:B2.设M,X T Y为ri阶方阵,则下列命题一定正确的是()A. XY二YXB Jd(XY)曲卡MYC.若XY二0 且X M O,则Y二0D+若MX=MY且蘭泊0,则X二Y参考答案:D3.下列定积分计算结果正确的是()-IJr - x f 十总心0-> 2 x + 2)cZv = 0"心0参考答案:D4.将橢空长轴施转一周,j = 0'L] 2 ]■T V * ( — I- — t - - =1 & a 2 b 1X V zB. r + r + r=l/ b" <? C\ r' + y +z' =aD x 2 4 v 3 4-r 1 = 6r参考答案:AB.斷得濮转曲直的方程为t J乩轻忙吐和久是方程俎口“的两亍不阔的基础解氣IMF列炜论疋确的力九向笊i1!q a; A的戟小A 必的帙B. iHpnflla _叫,A的他1鬥叫』削4, A的秋匚制;d Hl a a. A 的ft *';1 r| itrlt A虑的枚D出站g a 頁的快畸向WMIR 屁的Ifc无关参考答案:C6•三个非零向量共面.则下列结论不一定成立的是()A. (ax b) c = 0B. z7 + Z? + f = 0C. a, b, c线性相关D. (axe} b 0参考答案:B7•在平面直角坐标系中,将一个多边形依次沿两个坐标轴方向分别平移2个单位和3个单位后,得到的图形与原来的图形的关系不一定正确的是()A.全等B.平移C相似D.对称参考答案:D8.学生是数学学习的主体是数学教学的重要理念,下列关于教A.组织者B.引导者C合作者D扌旨挥者参考答案:D、简答题(本大题共5小题,每小题7分,共35分)1卜].F =变换Y^AX^B.其屮变换距阵/二—U2■# S =&丿*3⑴讪畤+卩側变换卜珂:艸叭M 鬥(2)举例说明缶该变换卜•什么性换保持不变.什么性质发生变化(例M ⑴分》参考答案:(2)以第一问中的椭圆方程为例,在该变化下得到的新方程是圆的标准方程,其中图形的大小、形状、几何中心的位置都发生了变化。
2019年下半年教师资格证考试《初中数学》真题及答案
2019年下半年教师资格证考试《初中数学》真题及答案一、单项选择题。
下列各题的备选答案中,只有一个是符合题目要求的,请根据题干要求选择正确答案。
(本大题共8小题,每小题5分,共40分)1在利用导数定义证明=的过程中用到的极限是()。
A、B、(1+)C、D、q2设为n阶方阵,则下列命题一定正确的是()。
A、B、C、若且,则D、若且,则3下列定积分计算结果正确的是()。
A、B、C、D、4将椭圆绕长轴旋转一周,所得旋转曲面的方程为()。
A、B、=1C、D、5设和,是方程组的两个不同的基础解系,则下列结论正确的()。
A、向量组的秩小于向量组的秩B、向量组的秩大于向量组的秩C、向量组的秩等于向量组的秩D、向量组的秩与向量组的秩无关6三个非零向量共面,则下列结论不一定成立的是()。
A、B、C、线性相关D、7在平面直角坐标系中,将一个多边形依次沿两个坐标轴方向分别平移2个单位和3个单位后,得到的图形与原来的图形的关系不一定正确的是()。
A、全等B、平移C、相似D、对称8学生是数学学习的主体是数学教学的重要理念,下列关于教师角色的概述不正确的是()。
A、组织者B、引导者C、合作者D、指挥者二、简答题。
请按题目要求,进行简答。
(本大题共5小题,每小题7分,共35分)9设,,变换,其中变换矩阵,(1)写出椭圆在该变换下满足的曲线方程(5分)(2)举例说明在该变换下什么性质保持不变,什么性质发生变化(例如距离、斜率等)(2分)10利用一元函数积分计算下列问题:(1)求曲线与所围平面图形面积(4分)(2)求曲线段绕x轴旋转一周所围成的几何体体积(3分)11一个袋子里有8个黑球,8个白球,随机不放回地连续取球五次。
每次取出1个球,求最多取到3个白球的概率。
12简述研究中学几何问题的三种主要方法。
13简述数学教学活动中调动学生学习积极性的原则。
三、解答题。
请对以下题目进行解答。
(本大题共1小题,共10分)14对于问题:“已知函数在上可导,且,对于任何,有,求证。
2019年下半年教师资格考试真题--数学--初级中学
12.简述研究中学几何问题的三种主要方法。
13.简述数学教学活动中调动学生学习积极性的原则。
三、解答题(本大题共 10 分)
14.对于问题:“已知函数 f(x)在[0,1]上可导,且 f(0)=0,对于任何 x∈[0,1],有
f ' x f x ,求证:f(x)=0,x∈[0,1]。”有人是这样做的:
5.设向量组α1,α2 和β1,β2 是方程组 AX=O 的两个不同的基础解系,则下列结论 正确的是()
A.向量组α1,α2,β1 的秩小于向量组β1,β2 的秩 B.向量组α1,α2,β1 的秩大于向量组β1,β2 的秩 C.向量组α1,α2,β1 的秩等于向量组β1,β2 的秩 D.向量组α1,α2,β1 的秩与向量组β1,β2 的秩无关 6.若三个非零向量共面,则下列结论不一定成立的是()
x
x
1 D. lim qx x
0,0
q
1
2.设 M,X,Y 为 n 阶方阵,则下列命题一定正确的是() A.XY=YX B.M(X+Y)=MX+MY C.若 XY=O 且 X≠O,则 Y=OD.若 MX=MY 且 M≠O,则 X=Y 3.下列定积分计算结果正确的是()
A. 1 x2 x3 dx 0 B. 1 ex ex dx 0 C. 1 ln x 2dx 0 D. 1 ex ex dx 0
1
1 2
1
1 2
4.将椭圆
x a
2 2
y2 b2
1, a
b
0,绕长轴旋转一周,所得旋转曲面的方程为()
z 0
A.
x2 a2
y2 b2
2019下半年全国教师资格《初中数学》教师资格证试题及详细参考答案
《初中数学学科知识与能力》参考答案及解析12.参考答案:(1)函数与方程的思想方法:函数思想是指用函数的概念和性质去分析问题、转化问题和解决问题;方程思想是从问题的数量关系入手,应用数学语言将问题中的条件转化为数学模型(方程(组)、不等式(组)),然后通过解方程或不等式来解决问题。
(2)数形结合思想:所谓数形结合思想,就是在研究问题时把数和形结合考虑,把问题的数量关系转化为图形性质,或把图形性质转化为数量关系,从而使复杂问题简单化,抽象问题具体化。
解题中的数形结合,是指对问题既进行几何直观的呈现,又进行代数抽象的揭示,两个方面相辅相成,而不是简单地代数问题用几何方法或几何问题用代数方法,两方面有机结合才是完整的数形结合。
如:在解应用题中常常借助线段图的直观帮助分析数量关系。
(3)转换化归的思想方法:由数学结论呈现的公理化结构,使得数学上任何一个正确的结论都可以按照需要和可能而成为推断其他结论的依据,于是,任何一个待解决的问题只需通过某种转化过程,归结到一类已经解决或比较容易解决的问题上,即可获得原有问题的解决,这就是转换化归的思想方法。
它是一种极具数学特征的思想方法。
简言之,就是指在求解数学问题时,如果对当前的问题感到生疏困惑,可以把它进行变换转化,化繁为简、化难为易、化生为熟,从而使问题得以解决。
这种思想是科学研究与数学学习中常用的方法,它是解决问题获得新知的重要思想。
数学问题解决中的模式识别、分类讨论、消元、降次等策略或方法,都明显体现了转换化归的思想方法。
13.参考答案:课堂上学生能否自主参与学习活动是学生能否成为学习的主人的明显标志。
只有学生在情感、思维、动作等方面自主参与了教学活动,学生学习的主体性才能体现,才能使他们以最大的热情、最佳的精神状态投入到数学学习中。
1.情意原则——激发动机与兴趣创设问题情境,以问题引导学习,形成认知冲突,激发求知欲,激活思维。
同时,通过“追问”等方式,使学生的这种心理倾向保持在一个适度状态。
2019年浙江省教师招聘考试统考试卷真题(中学数学)
二、简答题
1.选择教学方法的依据
2.学习概念过程,如何学习数学概念,并对其中一条进行举例分析
三、论述题
1.如理解抽象性,如何贯彻具体与抽象相结合的原则
2.写一篇有关“对数函数及其性质”的说课稿
专业知识部分:
选择题
填空题
计算题:微分、积分、代数基础解系(通解)、圆锥曲线
中学数学专业知识
4.了解中学数学教学的基本方法:讲授法、讨论法、发现法。掌握中学数学教学的基本原则:严谨性与量力性相结合的原则、抽象与具体相结合的原则、理论与实践相结合的原则、发展与巩固相结合的原则。
5.了解数学基础知识教学和基本能力培养的重要意义。掌握数学概念、数学命题、数学思想方法教学的一般要求与教学途径。理解培养学生运算能力、逻辑思维能力、空间想象能力以及创新思维能力与实践能力的重要作用与基本途径。
4.不等式
掌握不等式的基本性质,不等式的证明、不等式的解法,含绝对值不等式。利用基本不等式解决实际问题。
5.数列
掌握等差数列、等比数列的概念、通项公式以及前n项和公式的推导以及应用。
6.排列组合与二项式定理
了解排列、组合、排列数、组合数等概念。理解加法原理和乘法原理,掌握常见排列或组合问题的解决方法,掌握二项式定理以及二项展开式的性质以及应用。
6.了解中学数学教学工作。掌握备课、上课、说课、评课的基本要求。理解学生数学学习评价的内容与方法。掌握现代信息技术在数学教学中的作用。
2.函数
了解映射、反函数等概念,掌握函数的基本性质(定义域、值域、单调性、奇偶性、周期性),理解基本初等函数的图形与性质之间的关系,掌握基本初等函数的性质以及应用。
3.三角函数
了解角、弧度制、任意角的三角函数、三角函数线等概念,理解同角三角函数的基本关系式、诱导公式、两角和与差的正弦、余弦、二倍角、半角、积化和差、和差化积等三角公式的内在联系以及公式在求值、化简、证明中的应用。掌握正弦函数、余弦函数的图像、性质以及图像之间的变换规律,掌握正弦定理、余弦定理在解斜三角形中的应用。
2019年下半年教师资格证考试《初中数学》真题及答案
2019年下半年教师资格证考试《初中数学》真题及答案一、单项选择题。
下列各题的备选答案中,只有一个是符合题目要求的,请根据题干要求选择正确答案。
(本大题共8小题,每小题5分,共40分)1在利用导数定义证明=的过程中用到的极限是()。
A、B、(1+)C、D、q2设为n阶方阵,则下列命题一定正确的是()。
A、B、C、若且,则D、若且,则3下列定积分计算结果正确的是()。
A、B、C、D、4将椭圆绕长轴旋转一周,所得旋转曲面的方程为()。
A、B、=1C、D、5设和,是方程组的两个不同的基础解系,则下列结论正确的()。
A、向量组的秩小于向量组的秩B、向量组的秩大于向量组的秩C、向量组的秩等于向量组的秩D、向量组的秩与向量组的秩无关6三个非零向量共面,则下列结论不一定成立的是()。
A、B、C、线性相关D、7在平面直角坐标系中,将一个多边形依次沿两个坐标轴方向分别平移2个单位和3个单位后,得到的图形与原来的图形的关系不一定正确的是()。
A、全等B、平移C、相似D、对称8学生是数学学习的主体是数学教学的重要理念,下列关于教师角色的概述不正确的是()。
A、组织者B、引导者C、合作者D、指挥者二、简答题。
请按题目要求,进行简答。
(本大题共5小题,每小题7分,共35分)9设,,变换,其中变换矩阵,(1)写出椭圆在该变换下满足的曲线方程(5分)(2)举例说明在该变换下什么性质保持不变,什么性质发生变化(例如距离、斜率等)(2分)10利用一元函数积分计算下列问题:(1)求曲线与所围平面图形面积(4分)(2)求曲线段绕x轴旋转一周所围成的几何体体积(3分)11一个袋子里有8个黑球,8个白球,随机不放回地连续取球五次。
每次取出1个球,求最多取到3个白球的概率。
12简述研究中学几何问题的三种主要方法。
13简述数学教学活动中调动学生学习积极性的原则。
三、解答题。
请对以下题目进行解答。
(本大题共1小题,共10分)14对于问题:“已知函数在上可导,且,对于任何,有,求证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年杭州市中小学教师教学能力水平考核
初中数学试卷
应考教师须知:
1.本卷分三个部分,共9道题,满分100分,考试时间120分钟.
2.答题前,请在密封区内填写市(县)名、校名、姓名、准考证号和所申报的职称. 3.答题要做到书写端正,字迹清楚,行款整齐,卷面整洁.
4.加*号的试题, 申报高级职称者必做, 申报中级职称者不做.
第一部分(30分)
1.《数学课程标准》在课程的目标中, 不仅使用“了解, 理解, 掌握和灵活运用”等刻画知识技能的目标动词, 而且使用了“经历(感受), 体验(体会), 探索”等刻画数学活动水平的过程性目标动词. 请结合你的具体教学, 谈谈你在教学中如何实施这些过程性的目标.
2. 目前我们已经进入了信息时代, 计算机在人类生产生活中起到了举足轻重的作用. 请
说明数学与计算机的结合有着哪些重要意义? 数学课程的设计应如何重视现代信息技术的运用?
第二部分(30分)
3. 同一个数学问题, 由于观察的角度不同, 对问题的分析, 理解的层次不同, 就可以导
致转化目标与方法的不同. 但共同的目的都是为了做到化繁为简,化隐为显,化难为易,化未知为已知,化一般为特殊,化抽象为具体……
请说明在利用化归思想解决思想问题时, 重点要注意的问题是什么? 并举出一个你印象最为深刻的利用化归思想解题的例子.
4.“等腰三角形”是一种特殊而重要的三角形, 是学习几何图形的基础,也是图形变换和演绎推理的重要元素之一. 请你针对“等腰三角形的判定”这一教学内容(老教材浙教
版第三册9.13节“等腰三角形的判定定理”; 新教材华师大版七年级下9.3-2“等腰三角形的识别”), 写出教学设计过程中的教学目标, 重点难点和注意事项. (请说明自己的教学设计根据的教材版本, 不需整堂课的设计).
*
5. (此题为申报高级职称的教师加试题) 有人认为数学是教会的,即数学是通过教师的
教,从而转化为学生的数学;也有人认为数学是学会的,即数学是通过学生自己的学,才能转化为学生的数学. 对以上两种教学指导观你的看法怎么样?你在数学教学中遵循的是什么样的指导观?请作简单介绍.
第三部分(40分)
6. 当m 为整数时, 关于x 的方程01)12()12(2=++--x m x m 是否有有理根? 如果有,
求出m 的值; 如果没有, 请说明理由..
7. 如图, 两圆同心, 半径分别为6与8, 又矩形ABCD 的边AB 和
CD 分别为小大两圆的弦. 则当矩形ABCD 面积最大时, 求此矩
形的周长.
8. 在一个抛物线型的隧道模型中,用了三种正方形的钢筋支架,画设计图时,如果在直角坐标系中,抛物线的解析式为c x y +-=2,正方形ABCD 的边长和正方形EFGH 的边长之比为5:1,求正方形MNPQ 的边长。
9. 某单位化50万元买回一台高科技设备. 根据对这种型号设备的跟踪调查显示, 该设备投入使用后, 若将养护和维修的费用均摊到每一天, 则有结论: 第x 天应付的养护和维修费为]500)1([41+-x 元.
(1) 如果将该设备从开始投入使用到报废所付的养护费, 维修费及设备购买费之和均摊到每一天, 叫做日平均损耗. 请你将日平均损耗y (元)表示为x (天)的函数; (2) 按照此行业的技术和安全管理要求, 当此设备的日平均损耗达到最小值时, 就应当报废. 问该设备投入使用多少天应当报废?
注: 在解本题时可能要用到以下两个知识点, 如果需要可直接引用结论. ① 对于任意正整数n , 有2)1(321+=++++n n n Λ;
② 对于任意正常数b a ,和正实数x , 有b
a
xb
ax b x x
a y 2
2
=≥+=, 当
x b a x =时,
函数y 可取到最小值b
a
2.。