最新北师大版七年级数学上册第四单元基本平面图形知识点
七年级数学北师大版上学期第四章基本平面图形(单元小结)
A.AC=BC
B.AC+BC=AB
C.AB=2AC
D.BC=
1 2
AB
4.如图所示,把一副三角板叠放在一起,则∠ACD=___1__5___°.
结论:一副三角板拼成角的度数是15的 倍数
考点专练
5.如图,C是线段AB上的一点,M是线段AC的中点,若AB =8 cm,BC=2 cm,求MC的长。
解: ∵ AB=8 cm,BC=2 cm, ∴AC=AB-BC=8-2=6cm
解:由(1)可知∠MON=1/2∠AOB.
因为∠AOB=α 所以∠MON=α/2
考点专练
(3)如果(1)中∠BOC=β(β为锐角),其他条件不 变,求∠MON的度数;
解:由(1)可∠MON=1/2∠AOB.
因为∠AOB=90° 所以∠MON=45°
考点专练
(4)从(1),(2),(3)的结果中能看出什么规律? 解: 分析(1),(2),(3)的结
名称 比较方法 图形
表示方法 中点或角平分线
线段 测量法、
视察法、 A 叠合法
a B
角 测量法、
A
视察法、
1
叠合法
O
B
线段AB 线段a
在线段上,并且把这条线 段分成两条相等线段的 点叫做这条线段的中点.
∠AOB ∠1 ∠O
从一个角的顶点引出的一 条射线,把这个角分成两 个相等的角,这条射线叫 做这个角的平分线.
又∵ M是线段AC的中点, ∴MC= 1 AC=3cm
2
12.【易错】画图计算: 在直线 l 上有 A,B,C 三点,使得 AB=4 cm,BC=6 cm.如果 点 O 是线段 AC 的中点,那么线段 OB 的长度是多少?
解:①如图:
北师大版七年级数学上册第四单元基本平面图形
第四章:基本平面图形知识梳理一、线段、射线、直线1、线段、射线、直线的定义(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。
线段可以量出长度。
(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。
射线无法量出长度。
(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。
直线无法量出长度。
结论:直线、射线、线段之间的区别:联系:射线是直线的一部分。
线段是射线的一部分,也是直线的一部分 2、线段、射线、直线的表示方法(1)线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。
(2)射线的表示方法只有一种:用端点和射线上的另一个点来表示,端点要写在前面。
(3)直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示。
3、直线公理:过两点有且只有一条直线。
简称两点确定一条直线。
4、线段的比较 (1)叠合比较法;(2)度量比较法。
5、线段公理:“两点之间,线段最短”。
连接两点的线段的长度,叫做这两点的距离。
6、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。
若C 是线段AB 的中点,则:AC=BC=21AB 或AB=2AC=2BC 。
例题:1、如果线段AB=5cm ,BC= 3cm ,那么A 、C 两点间的距离是( )A .8 cmB 、2㎝C .4 cmD .不能确定解:D 点拨:A 、B 、C 三点位置不确定,可能共线,也可能不共线.2、已知线段AB=20㎝,C 为 AB 中点,D 为CB 上一点,E 为DB 的中点,且EB=3 ㎝,则CD= ____cm .解:4 点拨:由题意,BC=0.5AB=10cm ,DB=2 EB=6cm ,则CD=BC -DB =10-6=4(cm )3、平面上有三个点,可以确定直线的条数是( )A 、1B .2C .3D .1或 3二、角1、角的概念:(1)角可以看成是由两条有共同端点的射线组成的图形。
北师大版七年级上册数学第四章基本的平面图形讲义(学生、家长、教师必备)
第四章基本平面图形■通关口诀:三线入门学几何;线段距离要分清。
温习数角数线段;中点角分三描述。
点点滴滴认识圆;六十进制作了解。
多边形与对角线;学习几何打基础。
比线比角要熟练;尺规作图知初步。
■正奇数学学堂第一讲:线段、射线、直线【知识点一】“三线”的基本概念{1.线段:不定义的基本概念。
两个特征:一是直的;二是有两个端点。
2.射线:把线段一方无限延长所形成的图形叫做射线。
三个特征:直的;一个端点;向一方无限延长。
3.直线:把线段向两方无限延长形成的图形叫做直线。
三个特征:直的;无端点;向两方无限延长。
4.注意:三线都是直的。
线段和射线都是直线的一部分。
区别在端点个数和是否延长及延长的方向。
〖母亲题示例〗1.填写下表:名称图例端点数延伸方向有无长度线段射线直线2.下图中哪个是线段,哪个是射线,哪个是直线?【知识点二】线段、射线、直线的表示方法。
1.线段:可以用表示两爹端点的大写字母或一个小写字母来表示。
名称+字母(无顺序)。
2.射线:可以用端点和射线上的另一点表示。
名称+字母(字母有顺序,端点字母必须在前)。
3.直线:可以用两个大写字母来表示。
也可以用一个小写字母来表示。
名称+字母(不讲顺序)。
4.注意:线段-字母相同即相同;射线:字母、顺序都相同,才能断定同一线;直线:字母相同即同线。
〖母亲题示例〗1.如图,A,B在直线l上,下列说法错误的是()A.线段AB和线段BA同一条线段B.直线AB和直线BA同一条直线C.射线AB和射线BA同一条射线D.图中以点A 为端点的射线有两条.【知识点三】直线的性质(老大:代表两个小弟。
)1.交点:两条直线相交,只有一个交点。
2.两点定线:经过两点有且只有一条直线。
(简记:两点确定一条直线)。
3.探求:过一点有无数条直线。
过两点以上不一定有直线。
但它们可以在一条直线上。
4.求交点:过平面内n条直线最多有(1)2n n —个交点。
5.数线段:①n个点= (1)2n n 条线段②n条基本线段:退乘法求线段数。
《基本平面图形》基础知识点
(1)圆的定义:定义①:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆,记作“⊙O”,读作“圆O”.
定义②:圆可以看做是所有到定点O的距离等于定长r的点的集合.
(2)与圆有关的概念:弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等.
③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).
(2)点与直线的位置关系:①点经过直线,说明点在直线上;直线公理:经过两点有且只有一条直线.简称:两点确定一条直线.
(4)经过一点的直线有无数条,过两点就唯一确定,过三点就不一定了.
(1)角的和差倍分
①∠AOB是∠AOC和∠BOC的和,记作:∠AOB=∠AOC+∠BOC.∠AOC是∠AOB和∠BOC的差,记作:∠AOC=∠AOB-∠BOC.②若射线OC是∠AOB的三等分线,则∠AOB=3∠BOC或∠BOC= ∠AOB.
(2)度、分、秒的加减运算.在进行度分秒的加减时,要将度与度,分与分,秒与秒相加减,分秒相加,逢60要进位,相减时,要借1化60.
(3)扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,
或 (其中l为扇形的弧长)
(4)求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.
(5)求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.
九、角平分线的定义
(1)角平分线的定义
从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.
(2)性质:若OC是∠AOB的平分线
则∠AOC=∠BOC= ∠AOB或∠AOB=2∠AOC=2∠BOC.
最新北师大版七年级数学上册第四单元基本平面图形知识点
第四章:基本平面图形知识梳理一、线段、射线、直线1、线段、射线、直线的定义(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。
线段可以量出长度。
(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。
射线无法量出长度。
(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。
直线无法量出长度。
: 联系:射线是直线的一部分。
线段是射线的一部分,也是直线的一部分。
2、点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
3、直线的性质(1)直线公理:经过两个点有且只有一条直线。
简称两点确定一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
4、线段的比较(1)叠合比较法(用圆规截取线段);(2)度量比较法(用刻度尺度量)。
5、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。
(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
6、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。
若C 是线段AB 的中点,则:AC=BC=21AB 或AB=2AC=2BC 。
二、角1、角的概念:(1)角可以看成是由两条有共同端点的射线组成的图形。
两条射线叫角的边,共同的端点叫角的顶点。
(2)角还可以看成是一条射线绕着它的端点旋转所成的图形。
2、角的表示方法:角用“∠”符号表示,角的表示方法有以下四种: ①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B ,∠C 等。
七年级数学上册《基本平面图形》知识点归纳北师大版
七年级数学上册《基本平面图形》知识点归纳北师大版七年级数学上册《基本平面图形》知识点归纳北师大版1. 线段、射线、直线1)线段(1)概念:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点;有长度,有方向性;(2)表示法:一条线段可以用它的两个端点的大写字母来表示,以A,B为端点的线段,可以记作“线段AB”或“线段BA”;用一个小写字母表示,如“线段a”.(3)线段基本性质:两点之间,线段最短.(4)两点间的距离:两点之间线段的长度(5)线段大小的比较方法:叠合法、度量法2)射线①概念:直线上的一点和它一旁的部分叫做射线,这点叫做射线的端点;可以向一端无限延伸,有方向性;②表示法:一个射线可以用它的端点和射线上的另一点来表示,点O是端点,点A是射线上异于端点的另一点,记作“射线OA”;3)直线(1)概念:直线是直的,没有端点,可以向两边无限延伸.(2)表示法:一条直线可以用一个小写字母表示,如“直线a”;也可以用在直线上的两个点来表示,如“直线AB” .(3)性质:经过一点可以画无数条直线;经过两点有且只有一条直线(4)点与直线关系:点在直线上,或者说直线经过这个点;点在直线外,或者说直线不经过这个点;(5)直线与直线关系:平行,相交,垂直;2.角1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.2)从运动的观点看,角也可以看成是由一条射线绕着它的端点旋转而成的图形.3)平角和周角:一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角,终边继续旋转,当它又和始边重合时,所成的角叫做周角.4)角的表示方法:(1)用三个大写字母表示,记作∠AOB 或∠BOA其中O是角的顶点,写在中间;A,B分别是角的两条边上一点,写在两边,可以交换位置.(2)用大写的英文字母表示,记作∠O,用这种方法表示角的前提是以这个点做顶点的角只有一个,否则容易引起歧义.(3)用数字或小写希腊字母表示,在靠近顶点处加上弧线注上阿拉伯数字或小写希腊字母;5)角的度量:量角器:对中(顶点对中心),重合(角的一边与量角器上零刻度重合),读数(读出角的另一边所在线的度数)角的单位换算:度分秒是常用的角的度量单位,把一个周角360等分,每一份就是1度的角,记作1°,把一度的角60等分,每一份叫做1分的角,记作1′ ;把1分的角60等分,每一份叫做1秒的角,叫做1″ ; 1周角=2平角=4直角;1°=60′ ,1′ =60″;两级之间进阶是60.6)角的分类:锐角大于0度小于90度,直角90度,钝角大于90度小于180度,平角180度,周角360度)角的比较:度量法、叠合法3.多边形和圆的初步认识:1)三角形(1)定义:由三条不在同一条直线上的线段首尾顺次相接组成的图形叫做三角形,组成三角形的线段叫三角形的边,相邻两边的公共端点是三角形的顶点,相邻两边组成的角是三角形的内角,简称三角形的角;(2)表示方法:三角形用符号“ △”表示,顶点为A,B,C的三角形记作“△ ABC”,读作“三角形ABC”;ABC的三边,有时也用a,b,c;顶点A所对的边BC用a表示,顶点B所对的边AC用b表示,顶点C所对的边AB 用c表示.2)多边形(1)定义:若干条不在同一直线上的线段首尾顺次相接组成的封闭图形叫做多边形;多边形有几条边就叫做几边形,只讨论凸多边形.(2)内角:相邻两条边组成的角叫做多边形的内角,n边形有n个角.(3)多边形的对角线:连接不相邻两个顶点的线段(4)多边形的分割:任何一个多边形都可以分割成若干个三角形,一个n边形从一个顶点出发,分别连接这个顶点与其余各顶点,可以将其分割成(n-2)个三角形.(5)正多边形:各边相等,各角也相等的多边形叫做正多边形)圆(1)定义:在平面上,一条线段绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆(2)确定圆的条件:圆心(确定圆的位置)和半径(确定圆的大小),二者缺一不可.(3)圆弧:圆上任意两点之间的部分叫做圆弧.(4)扇形:由一条弧和经过这条弧的端点的两条半径组成的图形.(5)圆心角:顶点在圆心的角叫做圆心角。
北师大版七年级数学第四章----- 基本平面图形
第四章 基本平面图形思维导图形图面平本基⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧=︒⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧︒︒︒︒︒"=''=︒⎩⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧)(36036018090909006016012为扇形的半径为圆心角的度数,π扇形面积:—用扇形所占百分比乘—圆心角的度数相关计算角叫做圆心角圆心角:顶点在圆心的形径所组成的图形叫做扇这条弧的端点的两条半扇形:由一条弧和经过的部分叫做圆弧圆弧:圆上任意两点间点形成的图形点旋转一周,另一个端段绕着它固定的一个端定义:平面上,一条线圆做正多边形各角也相等的多边形叫正多边形:各边相等,两个顶点的线段边形中,连接不相邻的多边形的对角线:在多图形次相连组成的封闭平面一直线上的线段首尾顺定义:由若干条不在同多边形大小比较线射线叫做这个角的平分的角,这条把这个角分成两个相等顶点引出的一条射线,角平分线:从一个角的的角,小于钝角:大于的角直角:等于的角,小于锐角:大于小于平角的角的分类,角的单位换算:希腊字母表示一个阿拉伯数字或一个字母或一个大写字母或表示方法:用三个大写而成的射线绕着它的端点旋转角也可以看成是由一条顶点的公共端点是这个角的的射线组成,两条射线角由两条具有公共端点定义角长短比较之间线段的长度两点之间的距离:两点最短性质:两点之间,线段点段分成两条相等线段的线段的中点:把一条线字母表示表示,也可用一个小写的两个端点的大写字母表示方法:用表示线段看做线段板的边沿都可以近似地定义:绷紧的琴弦、黑线段倒字母写在前面,不能颠字母表示,表示端点的表示方法:用两个大写限延长就形成了射线定义:将线段向一方无射线有一条直线性质:经过两点有且只个小写字母表示意两点的大写字母或一表示方法:用直线上任了直线个方向无限延长就形成定义:将线段向两个两直线扇形R n R n S考点精讲考点一线段、射线、直线线段、射线、直线的概念1.线段:期紧的琴弦、黑板的边沿都可以近似地看做线段.线段有两个特征:一是直的;二是有两个端点.2.射线:将线段向一个方向无限延长就形成了射线.手电筒、探照灯所射出的光线可以近似地看做射线.射线有三个特征:一是直的;二是有一个端点三是向一方无限延伸.3.直线:将线段向两个方向无限延长就形成了直线,直线有三个特征:一是直的;二是没有端点;三是向两方无限延伸.线段、射线、直线的表示方法名称图例表方方法线段用一个小写字母表示,如:线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).射线用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA直线用一个小写字母表示,如:直线l;用直线上的两个大写字母表示,如直线AB(或直线BA).线段、射线、直线的区别与联系名称线段射线直线不同点端点个数2个1个无伸展性不可延长只能向一方无限延长向两方无限延长度量可以度量不可度量不可度量联系将线段向一个方向无限延长就形成了射线,向两个方向无限延长就形成了直线,线段和射线都可以看做直线的一部分共同点都是直的,不是曲的拓展:线段的延长线是有方向的,作延长线时要特别注意表示线段的字母的顺序,以便确定延长的方向.“线段BA”与“线段AB”是同一条线段,但“线段AB的延长线”与“线段BA的延长线”却不是同一条.如图,图中,线段AB的延长线如图(1),线段BA的延长线如图(2).直线的性质1.画直线的常用工具是直尺,经过一点A可以画出无数条直线.2.直线的基本性质:经过两点有且只有一条直线(这一事实可以简述为:两点确定一条直线)线段的性质两点的所有连线中,线段最短.简单说成:两点之间的所有连线中,线段最短.可简称为“两点之间线段最短”两点之间的距离两点之间线段的长度,叫做这两点之间的距离.特别提醒:考点二比较线段的长短(1)线段是一个图形;两点间的距离是指线段的长度,是一个数值.(2)线段的长度可用刻度尺测量.比较两条线段的长短已知线段AB和CD.1.叠合法:把它们放在同一条直线上比较.具体作法如下:画一条直线l,在l上先作出线段AB,再作出线段CD,并使点C与点A重合,点D与点B位于点A的同侧,则:(1)如果点D与点B重合,就说线段AB与线段CD相等,记作AB=CD,如图①所示;(2)如果点D在线段AB内部,就说线段AB大于线段CD,记作AB>CD,如图②所示;(3)如果点D在线段AB外部,就说线段AB小于线段CD,记作AB<CD,如图③所示.2.度量法:先用刻度尺量出线段AB与线段CD的长度,再进行比较.特别提醒:用测量法比较线段的长短时,要采用相同的测量标准,单位要统一.作一条线段等于已知线段如图所示,作图步骤为:(1)作一条射线AB;(2)用圆规量出已知线段的长度(记作a);(3)用圆规在射线AB上截取AC=a.则线段AC就是所求作的线段.线段的中点特别提醒:(1)线段的中点必须在线段上,线段的中点只有一个,三等分点有两个,四等分点有三个.(2)利用线段的中点可以写出线段相等或成倍分关系的等式.(3)若点C是线段AB的中点,则AC=BC;但若AC=BC,则点C不一定是线段AB的中点.角的定义1.角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点,这两条射线叫做角的边.构成角的两个基本条件;一是角的顶点,二是角的边.如图所示,角的顶点是点O,角的边是射线OA,OB.考点三角2.从运动的观点看,角也可以看成是由一条射线绕着它的端点旋转而成的图形.如图所示,∠BAC可以看成是以A为端点的射线,从AB的位置绕点A旋转到AC的位置而成的图形.3.一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角.终边继续旋转,当它又和始边重合时,所成的角叫做周角.如图(1)所示,射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,所成的角叫做平角:如图(2)所示,射线OA绕它的端点旋转一周所成的角叫做周角.在小学数学中,我们已经知道:1平角=180°,1周角=360°.拓展:平角与直线、周角与射线的区别:平角是一个角,它的始边和终边在同一条直线上,但方向相反;直线是一条线,没有端点,可以向两边无限延长,这是两个不同的概念,不能说“一条直线就是平角”或“平角是一条直线”.同样,周角是始边旋转360°后与终边重合而构成的角,这时构成角的两条边的两条射线重合,同样也不能说“一条射线是周角”或“周角是一条射线”.特别提醒:(1)平角和周角都是“角”,而不是”线”因此不能说“一条直线就是平角”,也不能说“一条射线就是周角.(2)没有特殊说明,我们只讨论大于等于0且小于等于180°的角.角的表示方法角的几何符号是“∠”,角的表示方法有以下几种:图例记法适用范围及注意事项用三个大写字母表示,如∠AOB或∠BOA任何情况都适用,用此方法表示角时,顶点的字母必须写在中间用一个大写字母表示,如∠O以这一点为顶点的角只有一个时才适用用数字1,2,3,…表示,如∠AOB可记作∠1任何情况都适用,用此方法表示角时,要用小弧线表示出角的范围,即从哪边到哪边用小写希腊字母α,β,…表示,如∠BOC可记作∠α任何情况都适用,用此方法表示角时,要用小弧线表示出角的范围,即从哪边到哪边考点三角特别提醒:当以某一点为顶点的角较多时,不能只用表示顶点的大写字母表示角,一般可用数字或希腊字母表示.角的分类小于平角的角可按大小分成三类:当一个角等于平角的一半时,这个角叫直角;大于零度角且小于直角的角叫锐角;大于直角且小于平角的角叫钝角.1周角=2平角=4直角=360°,1平角=2直角=180°,1直角=90°.角的度量及换算1.角的度量单位角的度量单位主要有度、分、秒,符号分别是“°”“′”“″”.把一个周角360等分,每一份就是1度的角,记作1°;把1度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″.以度、分、秒为单位的角的度量制,叫做角度制.此外,还有其他度量角的单位制.2.角度制的换算1周角=360°,1平角=180°,1°=60′,1′=160⎛⎫⎪⎝⎭,1′=60″,1″=160''⎛⎫⎪⎝⎭.3.角的度量方法最常用的量角的工具是量角器.用量角器量角时要注意对中(顶点对中心)、重合(一边与量角器的零刻度线重合)、读数(读出另一边所对的度数)这三点.考点四角的比较角的大小比较名称方法举例度量法用量角器量出两个角的度数,度数大的角大,度数小的角小,度数相等的角相等用量角器量得∠1=50°,∠2=45°,所以∠1>∠2.叠合法把两个角的一条边和顶点叠合在一起,另一条边在叠合边的同侧,通过观察另一条边的位置来比较两个角的大小如果EF与BC重合,如图),那么∠DEF等于∠ABC,记作∠DEF=∠ABC.如果EF落在∠ABC的外部,如图,那么∠DEF大于∠ABC,记作∠DEF>∠ABC.如果EF落在∠ABC的内部,如图,那么∠DEF小于∠ABC,记作∠DEF<∠ABC.注意:(1)角的大小与角的两边的长短、粗细无关,只与角的两边张开的程度有关;考点四角的比较(2)角的大小一旦确定,它的大小就不因图形的位置,图形的放大或缩小而改变.特别提醒:(1)比较角的大小时,有时也可用估测法,即直接通过观察的方法,比较角的大小.此方法较为直观,但不够准确,适用于角度差别较大或精确度要求不高的角的大小的比较.(2)“测量法”中角的大小关系和角的度数大小关系是一致的,是从“数的方面”来比较角的大小.“叠合法”中比较角的大小时,一定要使两个角的顶点及一边重合,将角的另一边落在重合的边的同侧,这是从“形”的方面来比较角的大小.两者比较大小的结果是一致的.角的平分线定义:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.如图所示,如图所示,射线OC是∠BOA的平分线,则∠BOC=∠COA=21∠BOA,∠BOA=2∠BOC=2∠C0A.特别提醒:(1)角的平分线是一条射线,不是线段,也不是直线.(2)若OC是∠AOB的平分线,则OC必然在∠AOB的内部.考点五多边形和圆的初步认识多边形的有关概念1.多边形:由若干条不在同一直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形.三角形、四边形、五边形、六边形等都是多边形,组成多边形的各条线段叫做多边形的边,相邻两条边的公共端点叫做多边形的顶点,相邻两条边所组成的角叫做多边形的内角,简称多边形的角.特别提醒:多边形的特征:①多边形是平面图形,要和立体图形区分开;②多边形是由不在同一直线上的线段组成的封闭图形;③组成多边形的各条线段首尾顺次相连.2.多边形的对角线:在多边形中,连接不相邻两个顶点的线段叫做多边形的对角线. 拓展:从n边形每一个顶点都能引出(n-3)条对角线,共有n个顶点,但每条对角线都重复计算了一次,从而对角线共有2)3(nn条.正多边形各边相等,各角也相等的多边形叫做正多边形.如图所示的多边形分别是正三角形、正四边形(正方形)、正五边形、正六边形、正八边形.拓展:多边形可分为凸多边形和凹多边形,如没有特别说明,本书所说的多边形都是指凸多边形,即多边形总在任何一条边所在直线的同一侧,凸多边形的每个内角都小于180°.圆、圆弧、扇形、圆心角的概念1.平面上,一条线段绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆.固定的端点O称为圆心,线段OA称为半径(如图所示)2.圆上任意两点A ,B 间的部分叫做圆弧,简称弧,记作.读作圆弧AB 或“弧AB ”(现阶段一般研究小于半圆的弧)3.由一条弧AB 和经过这条弧的端点的两条半径OA ,OB 所组成的图形叫做扇形;顶点在圆心的角叫做圆心角.如图所示的阴影部分就是扇形AOB .∠AOB 就是圆中的一个圆心角,∠AOB 也可记作∠1.特别提醒:圆心和半径是确定一个圆的两个必须条件.圆心确定圆的位置,半径确定圆的大小,二者缺一不可.圆心角的度数(1)一个圆可以分割成若干个扇形,这些扇形的面积的和等于圆的面积(2)因为一个周角为360°,所以分成的几个扇形的圆心角的度数之和=360,每一个扇形圆心角的度数=360°×(每一个扇形圆心角占周角的百分比)拓展:半径为R 的圆,其面积S =πR 2,将圆等分为360个小扇形,则每个圆心角为1°的小扇形的面积是3602R π,所以圆心角为n 的扇形的面是3602R n π.。
北师大版(2024新版)七年级数学上册第四章课件:第四章 基本的平面图形 小结与复习
第四章 基本的平面图形 小结与复习
知识梳理
基 本 平 面 图 形
直线 两点确定一条直线
线段 射线
两点之间线段最短 线段的中点 线段比较长短
角的定义
角
角平分线
角比较大小
尺规作图
知识梳理
基 本 平 面 图 形
多边形
定义 对角线 正多边形
定义
圆
弧 扇形
圆心角
知识回顾
伸
是否 可以 度量
不能 度量
不能 度量
表示方法
表示 方法
备注
作图 描述
射线 AB
A,B两点 以A为端点
有序,端 作射线
点在前
AB
直线
AB 或直 线BA 或直线
a
A,B两点
无序
过A,B两点 作直线AB
知识回顾
2.两点确定一条直线 经过两点有且只有一条直线.
二、比较线段的长度 1.线段的基本事实 两点之间的所有连线中,线段__最__短___. 简述为:两点之间,线段__最__短____ .
基础巩固
4.下午2时15分到5时30分,时钟的时针转过的度数 为__9_7_.5_°_.
解析:时钟被分成12个大格,相当于把圆分成12等份, 每一等份等于30°. 分针转360°时,时针转一格,即30°. 从2时15分到5时30分,时针走了(3.5-0.25)格, 即30°×(3.5-0.25)=97.5°.
知识回顾
4.角的度量 (1)角的度量单位是度、分、秒. (2)它们之间的关系是六十进制的,即1°=60′,1′=60″.
5.方向角 借助角表示方向,通常以正北或正南为基准,配以偏 西或偏东的角度来描述方向.
全章热门考点整合应用(第四章+基本平面图形)课件+2024-2025学年北师大版数学七年级上册
返回
1
2
3
4
5
6
7
8
9
10
11
12
13
14
核心考点整合
所以 AD =2 BD . 所以 AD + BD =2 BD + BD ,即
AB =3 BD ,故①正确.
因为 AC = BD ,所以 AD = BC .
因为 M , N 分别是线段 AD , BC 的中点,
所以 AM = AD = BC = BN ,
返回
1
2
3
4
5
6
7
8
9
10
11
12
13
14
核心考点整合
考点2 线段的相关计算与作图
3. [2024湘潭期末]已知线段 AB =4 cm,延长线段 AB 至点
C ,使 BC =2 AB ,若 D 点为线段 AC 的中点,则线段 BD
长为
2
cm.
返回
1
2
3
4
5
6
7
8
9
10
11
12
13
14
核心考点整合
1
2
3
4
5
6
7
8
9
10
返回
11
12
13
14
核心考点整合
7. [新趋势·过程性学习]如图,在用直尺和圆规作一个角等于
已知角时,小李进行了以下5个步骤,将这5个步骤按正确
的顺序排列为(
B
)
A. ①②③④⑤
B. ①③②⑤④
C. ①④③⑤②
D. ②①③④⑤
1
2
3
北师大版数学七年级上册第四章基本平面图形单元复习课件
多边形的概念
定义:多边形是由一些 不在同一条直线 上的 线段首尾
顺次 相连组成的 封闭平面图形.
【注意】
①组成多边形的线段在“同一平面内”;
②线段必须“不在同一直线上”且线段条数不少于3条;
③首尾顺次相连;
④封闭图形.
我们平常所说的多边形都是指凸多边形,即多边形总在任何一
第四单元复习
线段有两个端点.
将线段向一个方向无限延长形成了射线.
射线有一个端点.
直线
要点归纳:表示直线的方法
①用一个小写字母表示,如直线m;
②用两个大写字母表示,注:这两个大写字母可交换顺序.
1. 射线用它的端点和射线上的另一点来表示 ( 表示
端点的字母必须写在前面 ) 或用一个小写字母表示.
2. 线段 (1) 用表示端点的两个大写字母表示;
圆弧(简称弧):圆上任意两点A,B间的部分,
读作“圆弧AB”或“弧AB”.
扇形:由一条弧AB和经过这条弧的端点的两条半径
OA,OB所组成的图形.
圆心角:顶点在圆心的角.
(2)过n边形的每一个顶点有几条对角线?
… n边形
边数
对角线数
4
5
6
n
1
2点有(n-3)条对角线,
(−)
条边所在直线的同一侧.
多边形相邻两边组成的角叫多边形的内角
多边形的边与它的邻边的延长线组成的角叫多边形的外角
n-2
每个n边形都可以分割成_________个三角形.
各边相等,各角也相等的多边形叫做正多边形.
圆:平面上,一条线段绕着一个端点旋转一周,另一个
端点形成的图形.
圆心:固定的端点O.
七年级数学上册 第四章 基本的平面图形 (知识归纳+考点攻略+方法技巧)复习课件(新版)北师大版
D.南偏西 60°
2.在一次航海中,在一艘货轮的北偏东 54°的方向上有一 艘渔船,那么货轮在渔船的_南__偏__西__5_4_°_方向上.
最新北师大版初中数学精品
数学·课标版(BS)
第四章复习
针对第10题训练
1.如图 4-3 所示,A,B,C 是一条公路上的三个村庄, A,B 间路程为 100 km,A,C 间路程为 40 km,现在 A,B 之间建一个车站 P,设 P,C 之间的路程为 x km.
A.148° B.132° C.128° D.90°
最新北师大版初中数学精品
数学·课标版(BS)
阶段综合测试四(月考)
最新北师大版初中数学精品
数学·课标版(BS)
阶段综合测试四(月考)
试卷讲练
考
整式及其加减和平面图形是七年级数学的重要组成
查
部分,在各类考试和中考当中常以填空题、选择题、计 算题和作图题形式出现.本卷主要考查了代数式、代数
最新北师大版初中数学精品
数学·课标版(BS)
阶段综合测试四(月考)
针对第10题训练
现有若干个★与○的图形,按一定的规律排列如下: ★○★★○★★★○★★★★○★○★★○★★★○★ ★★★○★○★★○★★★○★★★★○★○★… 则前 2013 个图形中有_5_7_5___个○的图形.
[解析] 设多边形有 n 条边,则 n-2=8,解得 n=10. 所以这个多边形的边数是 10.
2.经过多边形的一个顶点的所有对角线把多边形分成 10
个三角形,这个多边形从一个顶点出发的对角线条数是( B )
A.8
B.9
C.10
D.11
[解析] 设多边形有 n 条边,则 n-2=10,解得 n=12. 故这个多边形是十二边形. 所以这个多边形从一个顶点出发的对角线条数是 12-3=9.
七年级数学上册《基本平面图形》知识点归纳北师大版
七年级数学上册《基本平面图形》知识点归纳北师大版1.线段、射线、直线)线段(1)概念:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点;有长度,有方向性;(2)表示法:一条线段可以用它的两个端点的大写字母来表示,以A,B为端点的线段,可以记作“线段AB”或“线段BA”;用一个小写字母表示,如“线段a”.(3)线段基本性质:两点之间,线段最短.(4)两点间的距离:两点之间线段的长度(5)线段大小的比较方法:叠合法、度量法2)射线①概念:直线上的一点和它一旁的部分叫做射线,这点叫做射线的端点;可以向一端无限延伸,有方向性;②表示法:一个射线可以用它的端点和射线上的另一点来表示,点o是端点,点A是射线上异于端点的另一点,记作“射线oA”;3)直线(1)概念:直线是直的,没有端点,可以向两边无限延伸.(2)表示法:一条直线可以用一个小写字母表示,如“直线a”;也可以用在直线上的两个点来表示,如“直线AB”.(3)性质:经过一点可以画无数条直线;经过两点有且只有一条直线(4)点与直线关系:点在直线上,或者说直线经过这个点;点在直线外,或者说直线不经过这个点;(5)直线与直线关系:平行,相交,垂直;2.角)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.2)从运动的观点看,角也可以看成是由一条射线绕着它的端点旋转而成的图形.3)平角和周角:一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角,终边继续旋转,当它又和始边重合时,所成的角叫做周角.4)角的表示方法:(1)用三个大写字母表示,记作∠AoB或∠BoA其中o 是角的顶点,写在中间;A,B分别是角的两条边上一点,写在两边,可以交换位置.(2)用大写的英文字母表示,记作∠o,用这种方法表示角的前提是以这个点做顶点的角只有一个,否则容易引起歧义.(3)用数字或小写希腊字母表示,在靠近顶点处加上弧线注上阿拉伯数字或小写希腊字母;5)角的度量:量角器:对中(顶点对中心),重合(角的一边与量角器上零刻度重合),读数(读出角的另一边所在线的度数)角的单位换算:度分秒是常用的角的度量单位,把一个周角360等分,每一份就是1度的角,记作1°,把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,叫做1″;1周角=2平角=4直角;1°=60′,1′=60″;两级之间进阶是60.6)角的分类:锐角大于0度小于90度,直角90度,钝角大于90度小于180度,平角180度,周角360度.7)角的比较:度量法、叠合法3.多边形和圆的初步认识:)三角形(1)定义:由三条不在同一条直线上的线段首尾顺次相接组成的图形叫做三角形,组成三角形的线段叫三角形的边,相邻两边的公共端点是三角形的顶点,相邻两边组成的角是三角形的内角,简称三角形的角;(2)表示方法:三角形用符号“△”表示,顶点为A,B,c的三角形记作“△ABc”,读作“三角形ABc”;ABc的三边,有时也用a,b,c;顶点A所对的边Bc用a表示,顶点B 所对的边Ac用b表示,顶点c所对的边AB用c表示.2)多边形(1)定义:若干条不在同一直线上的线段首尾顺次相接组成的封闭图形叫做多边形;多边形有几条边就叫做几边形,只讨论凸多边形.(2)内角:相邻两条边组成的角叫做多边形的内角,n 边形有n个角.(3)多边形的对角线:连接不相邻两个顶点的线段(4)多边形的分割:任何一个多边形都可以分割成若干个三角形,一个n边形从一个顶点出发,分别连接这个顶点与其余各顶点,可以将其分割成(n-2)个三角形.(5)正多边形:各边相等,各角也相等的多边形叫做正多边形.3)圆(1)定义:在平面上,一条线段绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆(2)确定圆的条件:圆心(确定圆的位置)和半径(确定圆的大小),二者缺一不可.(3)圆弧:圆上任意两点之间的部分叫做圆弧.(4)扇形:由一条弧和经过这条弧的端点的两条半径组成的图形.(5)圆心角:顶点在圆心的角叫做圆心角。
北师大版七年级数学上册第四章基本平面图形知识点总结【含答案】
北师大版七年级数学上册 第四章 基本平面图形 知识点总结知识点一:基本图形特点(1)线段 两个端点 可测量 线段CD 或线段DC ,或者线段m 。
(2)射线 一个端点 不可测量 射线DE ,其中D 点是端点(3)直线 没有端点 不可测量 直线EF 或直线FE ,或直线Ɩ 。
(4)角的表示方法:①用三个大写字母;如∠ABC (顶点字母在中间) ②用一个大写字母,如∠B (以这个点为顶点的角只有一个) ③用一个数字,如∠1;④用一个希腊字母,如∠ α 。
知识点二:(1)将一根细木条固定在墙上,至少需要钉 2个钉子,理由: 两点确定一条直线 。
(3)过平面内三个点中的任意两个点可作 1条或者3条 直线。
(2)若一条直线上有n 个点,则有 条线段、 2n 条射线和 1条直线。
(4)平面内n 条直线两两相交,有 个交点。
(5)平面内一个点O 发出n 条射线,那么角的个数为 个角。
知识点三:方位角方法:视角互换,度数不变,位相反。
如:操场上,小明对小亮说:“你在我的北偏东30°方向上”,那么小亮可以对小明说:“你在我的 A 方向上”( )A .南偏西30°B .北偏东30°C .北偏东60°D .南偏西60°2)1(-n n 2)1(-n n 2)1(-n nA B O 知识点四:时钟指针夹角 (1)一圈360° (2)一大格360÷12=30°(3)m 点整时,时针与分针夹角: 30m º 当度数大于180º时,再用(4)m 点n 分时,时针与分针夹角: |5.5n -30m |º 360º减去。
知识点五:度的换算(一)法则: 大单位化小单位乘以 进率60 。
小单位化大单位除以 进率60 。
(二)题型: ①45°= 87′ = 5220″②1800″= 30 分= 0.5 度 ③( )°= 15 ′④ 47.43°= 47 ° 25 ′ 48 ″。
七年级数学上册(北师大版2024)第四章基本平面图形4.2角的认识
(2) 180°-126°34′23″ =(179-126)°+(59-34)′+(60-23)″ =53°25′37″
课堂检测
1.(1)请用字母表示图6中的 每个城市. (2)请用字母分别表示以北京 为中心的每两个城市之间的夹 角.
B A E
C D
能力提升
如图,下列各图中分别各有多少角?
3个角
北师大版七年级上册
第四章 基本平面图形
4.2 角的认识
学习目标 1.理解角的概念,掌握角的表示方法.(重点) 2.会正确使用量角器,认识角的常用度量单位. 3.会进行度、分、秒的简单换算(难点)
﹙
﹙
探究新知
角的定义
角是由两条具有公共端点的射线组成的图形。
边
射线
顶点
射线
边
B 角的定义(动态)
终边
(整数化小数)
巩固练习
1. 用度表示37°12′18″
解:37°12′18″ =37°+12′+(18÷60)' =37°+12.3' =37°+(12.3÷60)° =37.205°.
典例解析
例4 计算: (1)32°19′+16°53′35″
(2)180°-126°34′23″
解: (1)32°19′+16°53′35″ =(32+16) °+(19+53) ′+35″ =48°+72′+35″ =49°12°35″
(2) 78.43° =78°+0.43°
=45°+0.6×60′ =45°36′
=78°+0.43×60′ =78°+25.8′ =78°25′+0.8×60′ =78°25′48″
2024-2025学年度北师版七年级上册数学 第四章 基本平面图形回顾与思考课件(43张PPT)
②当点 C 在点 B 的左边时,
返回目录
数学 七年级上册 BS版
因为点 M 为线段 AC 的中点,
1
1
所以 AM = AC = ×12=6(cm).
2
2
当点 C 在点 B 的右边时,
因为点 M 为线段 AC 的中点,
1
1
所以 AM = AC = ×20=10(cm).
2
2
综上所述, AM =6cm或10cm.
有 9 个.
【解析】逆时针方向,以 OA 为始边的角有4个,
以 OE 为始边的角有3个,以 OD 为始边的角有2
个,以 OC 为始边的角有1个,其中有1个角为直
角,故锐角共有4+3+2+1-1=9(个).故
答案为9.
返回目录
数学 七年级上册 BS版
2. 夏夏和数学小组的同学们研究多边形对角线的相关问题,请
所以12'+0.6'=12.6'.
因为1°=60',所以12.6'=0.21°.
所以100°12'36″=100.21°.
故答案为100.21.
返回目录
数学 七年级上册 BS版
2. 如图,现在的时间是9时30分,则时钟面上的时针与分针的
夹角是 105° .
360°
【解析】由题意可知,时钟面上每一个大格的度数为
返回目录
数学 七年级上册 BS版
(2)当线段上有 n 个点时,共有
(−1)
2
条线段(用含 n
的代数式表示);
【解析】(2)根据题意,得当线段上有 n 个点时,共有
(−1)
(−1)
条线段.故答案为
.
【知识学习】七年级数学上册《基本平面图形》知识点归纳北师大版
七年级数学上册《基本平面图形》知识点归纳北师大版1.线段、射线、直线)线段(1)概念:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点;有长度,有方向性;(2)表示法:一条线段可以用它的两个端点的大写字母来表示,以A,B为端点的线段,可以记作“线段AB”或“线段BA”;用一个小写字母表示,如“线段a”.(3)线段基本性质:两点之间,线段最短.(4)两点间的距离:两点之间线段的长度(5)线段大小的比较方法:叠合法、度量法2)射线①概念:直线上的一点和它一旁的部分叫做射线,这点叫做射线的端点;可以向一端无限延伸,有方向性;②表示法:一个射线可以用它的端点和射线上的另一点来表示,点o是端点,点A是射线上异于端点的另一点,记作“射线oA”;3)直线(1)概念:直线是直的,没有端点,可以向两边无限延伸.(2)表示法:一条直线可以用一个小写字母表示,如“直线a”;也可以用在直线上的两个点来表示,如“直线AB”.(3)性质:经过一点可以画无数条直线;经过两点有且只有一条直线(4)点与直线关系:点在直线上,或者说直线经过这个点;点在直线外,或者说直线不经过这个点;(5)直线与直线关系:平行,相交,垂直;2.角)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.2)从运动的观点看,角也可以看成是由一条射线绕着它的端点旋转而成的图形.3)平角和周角:一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角,终边继续旋转,当它又和始边重合时,所成的角叫做周角.4)角的表示方法:(1)用三个大写字母表示,记作∠AoB或∠BoA其中o 是角的顶点,写在中间;A,B分别是角的两条边上一点,写在两边,可以交换位置.(2)用大写的英文字母表示,记作∠o,用这种方法表示角的前提是以这个点做顶点的角只有一个,否则容易引起歧义.(3)用数字或小写希腊字母表示,在靠近顶点处加上弧线注上阿拉伯数字或小写希腊字母;5)角的度量:量角器:对中(顶点对中心),重合(角的一边与量角器上零刻度重合),读数(读出角的另一边所在线的度数)角的单位换算:度分秒是常用的角的度量单位,把一个周角360等分,每一份就是1度的角,记作1°,把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,叫做1″;1周角=2平角=4直角;1°=60′,1′=60″;两级之间进阶是60.6)角的分类:锐角大于0度小于90度,直角90度,钝角大于90度小于180度,平角180度,周角360度.7)角的比较:度量法、叠合法3.多边形和圆的初步认识:)三角形(1)定义:由三条不在同一条直线上的线段首尾顺次相接组成的图形叫做三角形,组成三角形的线段叫三角形的边,相邻两边的公共端点是三角形的顶点,相邻两边组成的角是三角形的内角,简称三角形的角;(2)表示方法:三角形用符号“△”表示,顶点为A,B,c的三角形记作“△ABc”,读作“三角形ABc”;ABc的三边,有时也用a,b,c;顶点A所对的边Bc用a表示,顶点B 所对的边Ac用b表示,顶点c所对的边AB用c表示.2)多边形(1)定义:若干条不在同一直线上的线段首尾顺次相接组成的封闭图形叫做多边形;多边形有几条边就叫做几边形,只讨论凸多边形.(2)内角:相邻两条边组成的角叫做多边形的内角,n 边形有n个角.(3)多边形的对角线:连接不相邻两个顶点的线段(4)多边形的分割:任何一个多边形都可以分割成若干个三角形,一个n边形从一个顶点出发,分别连接这个顶点与其余各顶点,可以将其分割成(n-2)个三角形.(5)正多边形:各边相等,各角也相等的多边形叫做正多边形.3)圆(1)定义:在平面上,一条线段绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆(2)确定圆的条件:圆心(确定圆的位置)和半径(确定圆的大小),二者缺一不可.(3)圆弧:圆上任意两点之间的部分叫做圆弧.(4)扇形:由一条弧和经过这条弧的端点的两条半径组成的图形.(5)圆心角:顶点在圆心的角叫做圆心角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章:基本平面图形知识梳理一、线段、射线、直线1、线段、射线、直线的定义(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。
线段可以量出长度。
(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。
射线无法量出长度。
(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。
直线无法量出长度。
: 联系:射线是直线的一部分。
线段是射线的一部分,也是直线的一部分。
2、点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
3、直线的性质(1)直线公理:经过两个点有且只有一条直线。
简称两点确定一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
4、线段的比较(1)叠合比较法(用圆规截取线段);(2)度量比较法(用刻度尺度量)。
5、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。
(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
6、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。
若C 是线段AB 的中点,则:AC=BC=21AB 或AB=2AC=2BC 。
二、角1、角的概念:(1)角可以看成是由两条有共同端点的射线组成的图形。
两条射线叫角的边,共同的端点叫角的顶点。
(2)角还可以看成是一条射线绕着它的端点旋转所成的图形。
2、角的表示方法:角用“∠”符号表示,角的表示方法有以下四种: ①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B ,∠C 等。
C④用三个大写英文字母表示任一个角,如∠BAD ,∠BAE ,∠CAE 等。
注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。
3、角的度量:会用量角器来度量角的大小。
角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n 度记作“n °”。
把1°的角60等分,每一份叫做1分的角,1分记作“1′”, 1°=60′。
把1′的角60等分,每一份叫做1秒的角,1秒记作“1″”,1′=60″。
4、锐角、直角、钝角、平角、周角的概念和大小 ①平角:角的两边成一条直线时,这个角叫平角。
②周角:角的一边旋转一周,与另一边重合时,这个角叫周角。
③0°<锐角<90°,直角=90°,90°<钝角<180°,平角=180°,周角=360°。
④ 角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。
5、画两个角的和,以及画两个角的差①用量角器量出要画的两个角的大小,再用量角器来画。
②三角板的每个角的度数,30°、60°、90°、45°。
6、角的平分线从角的顶点出发将一个角分成两个相等的角的射线叫角的平分线。
若BD 是∠ABC 的平分线,则有:∠ABD=∠CBD=21∠ABC ;∠ABC=2∠ABD=2∠CBD 7、拓展: 钟面角(1)钟面角是指时针与分针在某一时刻所成的角。
我们知道钟面数字从1到12共有12个大格,60个小格,而1周角=360°,所以钟面上每个大格对应360°÷12=30°的角,每个小格对应360°÷60=6°的角,这样,时针每走1小时对应30°的角,每走1分钟对应30°÷60=0.5°的角;分针每走1分钟对应6°的角。
(2)钟面角的计算公式:①当时针在分针前面时,钟面角=30°m+0.5°n -6°n ; ②当时针在分针后面时,钟面角=6°n -30°m -0.5°n ;其中m 表示时针所指钟面的时钟数,n 表示分针所指钟面的分钟数,即m 点n 分。
三、多边形和圆的初步认识 1、多边形的定义:三角形、四边形、五边形等都是多边形,它们都是由若干条不在同一直线上的 线段首尾依次相连组成的封闭平面图形。
2、多边形的基本元素顶点:如图,在多边形ABCDEF 中,点A,B,C,D,E,F 是多边形的顶点; 边:线段AB,BC,CD,DE,EF,FA 是多边形的边;内角:∠FAB, ∠ABC, ∠BCD, ∠CDE, ∠DEF, ∠AFE 是多边形的内角(可简称为多边形的角)。
对角线:如图,AD,AE 都是连接不相邻两个顶点的线段,像这样的线段叫做多边形的对角线。
3、正多边形各边相等,各角也相等的多边形叫做正多边形。
例如:正方形是正四边形,它的各边都相等,各角都是90°;等边三角形即正三角形,它的各边都相等,各角都是60°。
4、n 边形的分割(分割成三角形):(1)从某一顶点出发:)2(-n 个。
由此可得n 边形的内角和公式:︒⋅-180)2(n 。
(2)从一边上某一点出发:)1(-n 个。
(3)从内部任意一点出发:n 个 。
5、圆的概念(1)如图,平面上,一条线段绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆。
固定的端点O 称为圆心;线段OA 称为半径。
以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”。
(2)相关概念弧:圆上任意两点A ,B 之间的部分叫做圆弧,简称弧,记做⌒ AB,读作“圆弧AB ”或“弧AB ”。
扇形:由一条弧AB 和经过这条弧的端点的两条半径OA,OB 所组成的图形叫做扇形。
圆心角:顶点在圆心的角叫做圆心角。
课后作业1.下列说法正确的是( )A. 两点之间的连线中,直线最短B.若P 是线段AB 的中点,则AP=BPC. 若AP=BP, 则P 是线段AB 的中点D. 两点之间的线段叫做者两点之间的距离 2.如果线段AB=5cm,线段BC=4cm,那么A,C 两点之间的距离是( ) A. 9cm B.1cm C.1cm 或9cm D.以上答案都不对3.在直线L 上依次取三点M,N,P, 已知MN=5,NP=3, Q 是线段MP 的中点,则线段QN 的长度是( ) A. 1 B. 1.5 C. 2.5 D. 44.已知A 、B 两点之间的距离是10 cm ,C 是线段AB 上的任意一点,则AC 中点与BC 中点间距离是( ) A.3 cm; B.4 cm; C.5 cm; D.不能计算5.把两条线段AB 和CD 放在同一条直线上比较长短时,下列说法错误的是( ) A. 如果线段AB 的两个端点均落在线段CD 的内部,那么AB<CD B. 如果A,C 重合,B 落在线段CD 的内部,那么AB<CDC. 如果线段AB 的一个端点在线段CD 的内部,另一个端点在线段CD 的外部,那么AB 〉CDD. 如果B ,D 重合,A ,C 位于点B 的同侧,且A 落在线段CD 的外部,则AB 〉CD 6. 5点20分时,时钟的时针和分针的夹角为( ) A .30°B .40°C .45°D .50°7.如果从一个多边形的一个顶点出发,分别连接这个定点与其余各顶点,可将这个多边形分割成2013个三角形,那么此多边形的边数为 。
8.工人师傅在用方地砖铺地时,常常打两个木桩然后沿着拉紧的线铺地,这样地砖就铺得整齐,这是根据什么道理 .9. 如图,图中三角形的个数为_______。
10. 计算:48°39′+67°41′=_________;90°-78°19′40″=________11.方格纸中四个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为__________。
O AB第20题图ABC DE 12.将一张长方形纸片,按图中的方式折叠,BC ,BD 为折痕,求∠CBD 的度数。
13.归纳与猜想(1)观察图填空:图①中有 个角;图②中有 个角;图③中有 个角. (2)据图①~③猜想:从一个角内引n 条射线可组成几个角?14.如图,∠AOC 和∠BOD 都是直角,且∠AOB=150°,求∠COD 的度数。
15. 阅读下面文字,完成题目中的问题:①平面上没有直线时,整个平面是1部分;②当平面上画出一条直线时,就把平面分成2部分;③当平面上有两条直线时,最多把平面分成4部分;④当平面上有三条直线时,最多可以把平面分成7部分;… 完成下面问题: (1)根据上述事实填写下列表格平面上直线的条数 01 23… 平面被分成几部分…(2)当平面上有n 条直线时,最多可以把平面分成 部分. 16.如图已知点C 为AB 上一点,AC =12cm, CB =32AC ,D 、E 分别为AC 、AB 的中点求DE 的长。
学习《中小学教师违反职业道德行为处理办法》 心 得 体 会本人根据教育局与学校有关文件精神,我认真学习《中小学教师违反职业道德行为处理办法》,以下是我的一点心得:(一)以德为本,身正为范作为教师的我们,面对的是一群活泼天真的孩子,我们对待孩子时要怀着一颗真诚的爱心,要把学生当着自己的孩子一样去关心、庇护。
酷爱学生是教师的天职和美德,教师应当等量齐观地对待所有的学生,绝不能厚此薄彼。
特别是对有缺点或犯了错误的学生,一定要和风细雨,要多一点耐心,多一点仔细,多一点责任心,多一点信心,多一点爱心……遇事一定要冷静,保持平常心。
作为教师,要满腔热情地帮助学生,建立尊重学生人格尊严的法制观念,不轻视学生,更不答应体罚或变相体罚学生。
教学质量的进步,很大程度上取决于教师影响力的大小,而教师的影响力主要由品格因素、才能因素、知识因素和情感因素组成。
身教重于言教,由于教师职业的示范性极其重要,所以要求自己必须时时、处处用模范的言行去影响学生、教育学生。
(二)严谨治学,以德施教酷爱学生实在不是一件轻易做到的事,让学生体会到教师的爱就更加困难。
北师大林崇德教授以为,“疼爱自己的孩子是本能,而酷爱他人的孩子是神圣!”由于教师对学生的爱,从本质上说是一种只讲付出不求回报、无私的、没有血缘关系的爱,是一种严慈相济的。