§2.2.1《椭圆及其标准方程》导学案
选修2-1教案2.2.1椭圆及其标准方程、几何性质

2.2.1圆及其标准方程教学要求:从具体情境中抽象出椭圆的模型,掌握椭圆的定义,标准方程 教学重点:椭圆的定义和标准方程 教学难点:椭圆标准方程的推导 教学过程:一、新课导入:取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个圆.如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?(学生动手,观察结果)思考:移动的笔尖(动点)满足的几何条件是什么?经过观察后思考:在移动笔尖的过程中,细绳的长度保持不变,即笔尖到两个定点的距离之和等于常数. 二、讲授新课:1. 定义椭圆:把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.2.椭圆标准方程的推导:以经过椭圆两焦点12,F F 的直线为x 轴,线段12F F 的垂直平分线为y 轴,建立直角坐标系xOy .设(,)M x y 是椭圆上任意一点,椭圆的焦距为()20c c >,那么焦点12,F F 的坐标分别为(),0c -,(),0c ,又设M 与12,F F 的距离之和等于2a ,根据椭圆的定义,则有122MF MF a +=,用两点间的距离公式代入,画简后的222221x y a a c+=-,此时引入222b ac =-要讲清楚. 即椭圆的标准方程是()222210x y a b a b+=>>. 根据对称性,若焦点在y 轴上,则椭圆的标准方程是()222210x y a b b a+=>>.两个焦点坐标()()12,0,,0F c F c -.通过椭圆的定义及推导,给学生强调两个基本的等式:122MF MF a +=和222b c a +=3. 例1 写出适合下列条件的椭圆的标准方程:⑴4,1a b ==,焦点在x 轴上;⑵4,a c ==y 轴上;⑶10,a b c +==(教师引导——学生回答) 例2 已知椭圆两个焦点的坐标分别是()()2,0,2,0-,并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程.(教师分析——学生演板——教师点评) 三、巩固练习:1. 写出适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,焦距等于4,并且经过点(3,P -;⑵焦点坐标分别为()()0,4,0,4-,5a =; ⑶10,4a c a c +=-=. 2. 作业:40P 第2题.2.2椭圆及其标准方程教学要求:掌握点的轨迹的求法,坐标法的基本思想和应用. 教学重点:求点的轨迹方程,坐标法的基本思想和应用. 教学难点:求点的轨迹方程,坐标法的基本思想和应用. 教学过程: 一、复习:1.椭圆的定义,椭圆的焦点坐标,焦距.2.关于椭圆的两个基本等式. 二、讲授新课:1. 例1 设点,A B 的坐标分别为()()5,0,5,0-,.直线,AM BM 相交于点M ,且它们的斜率之积是49-,求点M 的轨迹方程. 求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式. (教师引导——示范书写)2. 练习:1.点,A B 的坐标是()()1,0,1,0-,直线,AM BM 相交于点M ,且直线AM 的斜率与直线BM 的斜率的商是2,点M 的轨迹是什么? (教师分析——学生演板——教师点评)2.求到定点()2,0A 与到定直线8x =的距离之比为2的动点的轨迹方程. (教师分析——学生演板——教师点评)3. 例2 在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?相关点法:寻求点M 的坐标,x y 与中间00,x y 的关系,然后消去00,x y ,得到点M 的轨迹方程.(教师引导——示范书写) 4. 练习: 1.47P 第7题.2.已知三角形ABC 的一边长为6,周长为16,求顶点A 的轨迹方程. 5.知识小结:①注意求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式.②相关点法:寻求点M 的坐标,x y 与中间00,x y 的关系,然后消去00,x y ,得到点M 的轨迹方程. 三、作业: 40P 第4题 精讲精练第8练.2.2椭圆的简单几何性质教学要求:根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形;根据几何条件求出曲线方程,并利用曲线的方程研究它的性质,画图. 教学重点:通过几何性质求椭圆方程并画图. 教学难点:通过几何性质求椭圆方程并画图. 教学过程: 一、复习:1.椭圆的定义,椭圆的焦点坐标,焦距.2.椭圆的标准方程. 二、讲授新课:1.范围——变量,x y 的取值范围,亦即曲线的取值范围:横坐标a x a -<<;纵坐标b x b -<<.方法:①观察图像法; ②代数方法.2.对称性——既是轴对称图形,关于x 轴对称,也关于y 轴对称;又是中心对称图形. 方法:①观察图像法; ②定义法.3.顶点:椭圆的长轴122A A a =,椭圆的短轴122B B b =,椭圆与四个对称轴的交点叫做椭圆的顶点,()()()()1212,0,,0,,0,,0A a A aB b B b --.4.离心率:刻画椭圆的扁平程度.把椭圆的焦点与长轴长的比c a 称为离心率.记ce a=. 可以理解为在椭圆的长轴长不变的前提下,两个焦点离开中心的程度.5.例题例4 求椭圆221625400x y +=的长轴和短轴的长,离心率,焦点和定点坐标. 提示:将一般方程化为标准方程. (学生回答——老师书写)练习:求椭圆22416x y +=和椭圆22981x y +=的长轴和短轴长,离心率,焦点坐标,定点坐标.(学生演板——教师点评)例5 点(),M x y 与定点()4,0F 的距离和它到直线25:4l x =的距离之比是常数45,求点M 的轨迹.(教师分析——示范书写)三、课堂练习:①比较下列每组椭圆的形状,哪一个更圆,哪一个更扁?⑴22936x y +=与2211612x y += ⑵22936x y +=与221610x y +=(学生口答,并说明原因)②求适合下列条件的椭圆的标准方程.⑴经过点()(,P Q -⑵长轴长是短轴长的3倍,且经过点()3,0P ⑶焦距是8,离心率等于0.8 (学生演板,教师点评) ③作业:47P 第4题.。
§2.2.1椭圆及其标准方程(1)

鹿邑三高导学案高二年级数学学科 编写人:毛新正审核人:刘雪纯备课组长签字:课题:§2.1.1椭圆及其标准方程(1) 课时:2 本期总课时:9I 、(1)课标考纲解读:理解并掌握椭圆的定义。
(2)状元学习方案:自学与小组讨论相结合。
II 、1.学习目标(1)理解椭圆的定义.(2)掌握求椭圆的方程的方法;2.学习重点:掌握椭圆的定义及其标准方程。
学习难点:椭圆的标准方程的推导与化简。
3.学法指导:通过自学讨论与课堂展示相结合。
4.知识链接:求曲线方程的方法。
III 、学习过程[教材助读]:问题1:根据课本上椭圆的定义,制作道具,自画椭圆问题2:写出椭圆上的点满足的关系式 ,若2a =21F F ,动点的轨迹是 ,若2a 〈21F F ,动点的轨迹是 ;问题3:这两个定点叫做椭圆的_______。
两个定点的距离用______表示。
问题4:指出图中的哪些线段的长度是a___________________。
问题5:建立坐标系后,利用问题2的关系式,阅读教材理解推导椭圆方程过程问题6:椭圆的标准方程是:___________________________问题7:上面的a,b,c 三个量满足的关系式__________________________[预习自测]1、设P 是椭圆1162522=+yx上的一点,21,F F 是椭圆的两个焦点,则=+21PF PF ( ) A 、10 B 、8 C 、5 D 、42、 椭圆的顶点为(-5,0),(5,0)和(0,-4),(0,4),则其方程为_________________________3、 椭圆221259xy+=的焦点坐标____________________________。
4椭圆22xy110036+=上一点P 到左焦点的距离是6.5,则到右焦点的距离是_____5、已知椭圆12222=+ya x 的一个焦点为(2,0),则椭圆的方程为( ) A 、12422=+yxB 、12322=+yxC 、1222=+yx D 、12622=+yx[合作探究 展示点评]探究一:椭圆的基本量根据下列方程,分别求出椭圆中 a,b,c 的值 1.椭圆2222146x y +=, 则a= ,b= ,c= 。
《2.2.1-椭圆及其标准方程》优秀教学设计

《2.2.1-椭圆及其标准方程》教学设计一、教学内容解析教学内容属概念性知识,是通过描述椭圆形成过程进行定义的作为椭圆本质属性的揭示和椭圆方程建立的基石,理应作为本堂课的教学重点同时,椭圆的标准方程作为今后研究椭圆性质的根本依据,自然成为本节课的另一教学重点学生对椭圆和方程即数形结合思想的理解,椭圆定义和椭圆标准方程的联系成为了本堂课的教学难点圆锥曲线是平面解析几何研究的主要对象圆锥曲线的有关知识不仅在生产、日常生活和科学技术中有着广泛的应用,而且是今后进一步数学的基础教科书以椭圆为学习圆锥曲线的开始和重点,可见本节内容所处的重要地位通过本节学习,学生一方面认识到一般椭圆与圆的区别与联系,另一方面也为后面利用方程研究椭圆的几何性质以及为学生类比椭圆的研究过程和方法,学习双曲线、抛物线奠定了基础学习过程启发学生能够发现问题和提出问题,善于思考,学会分析问题和创造地解决问题;培养学生抽象概括能力和逻辑思维能力二、教学目标设置:1.知识与技能目标(1)学生能掌握椭圆的定义焦点,焦距的概念.(2)学生能推导并掌握椭圆的标准方程.(3)学生在学习过程中进一步感受曲线方程的概念,体会建立曲线方程的基本方法,运用数形结合的数学思想方法解决问题.2.过程与方法目标:(1)学生通过经历椭圆形成的情境感知椭圆的定义并亲自参与归纳.培养学生发现规律、认识规律的能力.(2)学生类比圆的方程的推导过程尝试推导椭圆标准方程,培养学生利用已知方法解决实际问题的能力.(3)在椭圆定义的获得和其标准方程的推导过程中进一步渗透数形结合等价转化等数学思想方法.3.情感态度与价值观目标:(1)通过椭圆定义的获得让学生感知数学知识与实际生活的密切联系培养学生探索数学知识的兴趣并感受数学美的熏陶.(2)通过标准方程的推导培养学生观察,运算能力和求简意识并能懂得欣赏数学的“简洁美”.(3)通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识.三、学生学情分析1.能力分析①学生已初步掌握用坐标法研究直线和圆的方程,②对含有两个根式方程的化简能力薄弱.2.认知分析①学生已初步熟悉求曲线方程的基本步骤,②学生已经掌握直线和圆的方程,对曲线的方程的概念有一定的了解,3.情感分析学生具有积极的学习态度,强烈的探究欲望,能主动参与研究.四、教学策略分析教学中通过创设情境,充分调动学生已有的学习经验,让学生经历“创设情境——总结概括——启发引导——探究完善——实际应用”的过程,发现新的知识,又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质.课堂教学中创设问题的情境,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效地渗透数学思想方法,发展学生思维品质,这是本节课的教学原则.根据这样的原则及所要完成的教学目标,我采用如下的教学方法和手段:1.引导发现法:用课件演示动点的轨迹,启发学生归纳、概括椭圆定义.2.探索讨论法:由学生通过联想、归纳把原有的求轨迹方法迁移到新情况中,有利于学生对知识进行主动建构;有利于突出重点,突破难点,发挥其创造性.这两种方法是适应新课程体系的一种全新教学模式,它能更好地体现学生的主体性,实现师生、生生交流,体现课堂的开放性与公平性.在教学中适当利用多媒体课件辅助教学,增强动感及直观感,增大教学容量,提高教学质量.五、教学过程:(一)复习引入1.给学生放视频天宫一号与神八的运行轨迹,说一说你对生活中椭圆的认识.伴随图片展示使同学们感到椭圆就在我们身边.意图:(1)、从学生所关心的实际问题引入,使学生了解数学来源于实际.(2)、使学生更直观、形象地了解后面要学的内容;2.手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上同一定点,套上笔拉紧绳子,移动笔尖画出的轨迹是圆.再将这一条定长的细绳的两端固定在画图板上的两定点,当绳长大于两点间的距离时,用铅笔把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆随后动画呈现.同时演示在ppt上。
椭圆及其标准方程教学设计

椭圆及其标准方程的教学设计镇赉一中刘海武【设计理念】:本节课的教学设计是针对学习情况中等的学生设计的。
借助多媒体辅助手段,创设问题的情境,充分体现量力性,语言的严谨性,具体性和抽象性形结合的数学教学原则,引导学生自主学习,积极参与到教学中来,让学生在思维参与中学会学习、学会合作、学会创新。
让探究式教学走进课堂.一、【教材分析】:1、教学内容:选修2.2.1椭圆及其标准方程。
本节研究椭圆的定义、图形及标准方程的推导学生了解和体验椭圆的定义的推导和标准方程。
会运用待定系数法和定义法求椭圆标准方程。
2、教学地位:本节是在学生学完曲线和方程以及圆以后学习的一种圆锥曲线,它不仅可以检验前面所学的知识,而且还为后继内容双曲线、抛物线的学习提供研究方法,使学生在同化、顺应的过程中,将知识正确认识,所以这节课内容具有承上起下的重要作用。
3、教学重点:椭圆定义、标准方程4、教学难点:椭圆标准方程的建立和参数b的引入二、【教学目标】:1、知识与技能目标:(1).通过椭圆概念的引入与标准方程的推导,培养学生分析探索能力,增强运用坐标法解决几何问题的能力。
(2)。
掌握椭圆的定义、标准方程,会用椭圆的定义标准方程解决实简单问题;(3)。
理解椭圆标准方程的推导过程及化简无理方程的常用的方法;了解求椭圆的上动点的相关点的轨迹方程的方法。
2、过程与方法目标:(1)通过观察图片、做画椭圆的实验,获得椭圆形成的感性认识。
(2)推导椭圆标准方程时,利用计算机直观形象的特点,扫除学生在参数a、b 的引入、焦点在y轴上标准方程理解上的障碍。
(3)采用互动探究式教学。
学生分组讨论,教师启发讨论的形式,加强师生、生生的交流,开拓思路。
3、情感态度与价值观目标:(1)通过学生个性化的学习增强学生的自信心和意志力。
(2)通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。
(3)通过神州五号的引入对学生进行爱国主义教育,增强民族自豪感。
(导学案)2.2.1椭圆及其标准方程

2.1.1 椭圆及其标准方程(1) (导学案)【学习目标】(1)从具体情境中抽象出椭圆的模型;(2)掌握椭圆的定义,能用坐标法求椭圆的标准方程; (3)掌握椭圆的标准方程的推导及标准方程的形式。
【重点、难点】重点:椭圆的定义及其标准方程。
难点:椭圆标准方程的推导与化简。
【学习方法】探究、讨论、归纳、类比 一、【基础知识链接】1、曲线可以看作是适合某种条件的点的集合或轨迹。
求曲线方程的一般步骤是: → → → → 。
其中,建立坐标系一般应遵循 的原则。
2、平面内两点间的距离公式:设A (x 1,y 1),B (x 2,y 2),则︱AB ︱=二、【新知导学】 探究任务一:椭圆的定义 【教材导读】 预习课本P38的内容,动动手,做教材P38中的“探究”,并完成下列问题:(1)、设笔尖(动点)为M ,两个定点1F ,2F 的距离为2c ,绳长为2a ,当22a c >时,动点M 的轨迹是 ;当22a c =时,动点M 的轨迹是 ;当22a c <时,动点M 的轨迹是 。
(2)、椭圆的定义:把平面内动点M 与两个定点1F ,2F 的距离之和等于常数(2a大于 )的点的轨迹叫做 . 这两个定点叫做椭圆的 ,两焦点的距离(2c )叫做 .探究任务二:椭圆的标准方程【教材导读】 预习课本P38至P39的内容,并完成下列问题(1)、观察椭圆的形状,可以发现椭圆既是 对称图形,又是 对称图形。
(2)、怎样建立坐标系,才能使求出的椭圆方程最为简单?①、建系;以 为x 轴, 为y 轴,建立平面直角坐标系,则1F ,2F 的坐标分别为:. ②、设点并写出点集:设M ( , )为椭圆上任意一点,根据椭圆定义知:③、列方程:④、化简方程得:⑤、为使上述方程简单并具有对称美,引入字母 ,令 = a 2 - c 2,则方程可化为(3)、类似的,焦点在 轴上的椭圆的标准方程为 : ,其中焦点1F ,2F 的坐标为: .(4)点的位置?试一试:根据下列椭圆方程,写出,,a b c 的值,并指出焦点的坐标: (1)221169y x +=; (2) 2212516y x +=; (1)a = ;b = ;c = (2)a = ;b = ;c = 焦点坐标为: 焦点坐标为: 待课堂上与老师和同学探究解决。
高二数学2.2.1椭圆及其标准方程教案1人教新课标A版选修21

P F 2F 1课题:2.2.1椭圆及其标准方程(1) 第 课时 总序第 个教案课型: 新授课 编写时时间: 年 月 日 执行时间: 年 月 日教学目标:◆ 知识与技能目标理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;理解椭圆标准方程的推导过程及化简无理方程的常用的方法;了解求椭圆的动点的伴随点的轨迹方程的一般方法.◆ 过程与方法目标通过作图展示与操作,必须让学生认同:圆、椭圆、双曲线和抛物线都是圆锥曲线,是因它们都是平面与圆锥曲面相截而得其名;已知几何图形建立直角坐标系的两个原则,及引入参量22b a c =-的意义,培养学生用对称的美学思维来体现数学的和谐美。
◆ 情感、态度与价值观目标会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问题来思考,培养学生的数形结合的思想方法;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能力.批 注教学重点:理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题。
教学难点:理解椭圆标准方程的推导过程及化简无理方程的常用的方法。
教学用具: 多媒体,三角板 教学方法: 推导,分析教学过程: 一、课前准备(预习教材P 38~ P 40)复习1:过两点(0,1),(2,0)的直线方程 .复习2:方程22(3)(1)4x y -++= 表示以 为圆心, 为半径的 .二、新课导学 ※ 学习探究取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个 .如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?思考:移动的笔尖(动点)满足的几何条件是什么?经过观察后思考:在移动笔尖的过程中,细绳的 保持不变,即笔尖 等于常数.新知1: 我们把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 .反思:若将常数记为2a ,为什么122a F F >? 当122a F F =时,其轨迹为 ;当122a F F <时,其轨迹为 .试试:已知1(4,0)F -,2(4,0)F ,到1F ,2F 两点的距离之和等于8的点的轨迹是 .小结:应用椭圆的定义注意两点:①分清动点和定点;②看是否满足常数122a F F >. 新知2:焦点在x 轴上的椭圆的标准方程 ()222210x y a b a b +=>> 其中222b ac =- 若焦点在y 轴上,两个焦点坐标 ,则椭圆的标准方程是 .※ 典型例题例1 写出适合下列条件的椭圆的标准方程: ⑴4,1a b ==,焦点在x 轴上;⑵4,15a c ==,焦点在y 轴上;⑶10,25a b c +==.变式:方程214x ym+=表示焦点在x 轴上的椭圆,则实数m 的范围 .小结:椭圆标准方程中:222a b c =+ ;a b > .例2 已知椭圆两个焦点的坐标分别是()2,0-,(2,0),并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程 .变式:椭圆过点 ()2,0-,(2,0),(0,3),求它的标准方程.小结:由椭圆的定义出发,得椭圆标准方程 .※ 动手试试练1. 已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是( ).彗星太阳A .23B .6C .43D .12练2 .方程219x ym-=表示焦点在y 轴上的椭圆,求实数m 的范围.三、总结提升 ※ 学习小结 1. 椭圆的定义: 2. 椭圆的标准方程:※ 知识拓展1997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔·波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空1997年2月至3月间,许多人目睹了这一天文现象天文学家是如何计算出彗星出现的准确时间呢?原来,海尔·波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1.平面内一动点M 到两定点1F 、2F 距离之和为常数2a ,则点M 的轨迹为( ).A .椭圆B .圆C .无轨迹D .椭圆或线段或无轨迹2.如果方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ).A .(0,)+∞B .(0,2)C .(1,)+∞D .(0,1)3.如果椭圆22110036x y +=上一点P 到焦点1F 的距离等于6,那么点P 到另一个焦点2F 的距离是( ).A .4B .14C .12D .84.椭圆两焦点间的距离为16,且椭圆上某一点到两焦点的距离分别等于9和15,则椭圆的标准方程 是 .5.如果点(,)M x y 在运动过程中,总满足关系式2222(3)(3)10x y x y ++++-=,点M 的轨迹是 ,它的方程是 .课后作业1. 写出适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,焦距等于4,并且经过点()3,26P -; ⑵焦点坐标分别为()()0,4,0,4-,5a =;⑶10,4a c a c+=-=.2. 椭圆2214x yn+=的焦距为2,求n的值.教学后记:。
椭圆及其标准方程导学案

2.2.1 椭圆及其标准方程导学案(第一课时)营山二中 龚玉伦【学法指导】1.仔细阅读教材(P 38—P 40),独立完成导学案,规范书写,用红色笔勾画 出疑惑点,课上讨论交流。
2.通过动手画出椭圆图形,研究椭圆的标准方程。
【学习目标】1.掌握椭圆的定义,标准方程的两种形式及推导过程。
2.会根据条件确定椭圆的标准方程,掌握用待定系数法求椭圆的标准方程。
3.通过对卫星发射的再现,培养学生爱国主义情操,民族自豪感,通过对天体运动的分析, 激发学生的求知欲. 【学习重、难点】学习重点:椭圆的定义和椭圆的标准方程.学习难点:椭圆的标准方程的推导,椭圆的定义中常数加以限制的原因.【预习案】预习一:椭圆的定义(仔细阅读教材P 38,回答下列问题)1.取一条定长的细绳,把细绳的两端拉开一段距离,分别用图钉固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线 ,在移动笔尖的过程中,细绳的 保持不变,即笔尖到两定点的距离之和等于 .2.思考下列问题:(1)作图的过程中哪些量没有变?的位置不变, 的长度不变。
(2)为什么作图过程中笔尖要绷紧?保证无论笔尖移动到任何位置,笔尖到两定点到距离之和(3)笔尖所对应的动点M 到两个定点F 1、F 2的距离有什么长度之间的关系? = 绳长3.平面内与两个定点1F ,2F 的 的点的轨迹叫做椭圆。
这两个定点 叫做椭圆的 , 叫做椭圆的焦距。
预习二:对椭圆定义的理解1.将“大于|1F 2F |”改为“等于|1F 2F |”的常数,其他条件不变,点的轨迹是2.将“大于|1F 2F |”改为“小于|1F 2F |”的常数,其他条件不变,点的轨迹存在吗?预习三:椭圆的标准方程及其推导:(仔细阅读教材P 39-P 40,回答下列问题)思考:用坐标法求动点轨迹方程的一般步骤是什么?(1) (2) (3) (4) (5)根据定义推导椭圆标准方程:取过焦点21,F F 的直线为x 轴,线段21F F 的垂直平分线为y 轴设),(y x M 为椭圆上的任意一点,椭圆的焦距是c 2(0>c ).则)0,(),0,(21c F c F -,又设M 与21,F F 距离之和等于a 2(c a 22>) {})0( 221>=+=∴a a MF MF M P=1MF 又 ,=2MF a y c x y c x 2)()(2222=+-+++∴ -=++∴a y c x 2)(22 ,等式两边平方整理得:=+-22)(y c x a , 等式两边再平方整理得:)()(22222222c a a y a x c a -=+-, 由定义c a 22>,022>-∴c a两边同除以)(222c a a -得 122222=-+ca y a x ① 观察右图,你能从中找出表示22,,c a c a -的线段吗?= =a ; = =c ; =22c a -令=-22c a 代入①,得 )0(12222>>=+b a by a x ②由曲线与方程的关系可知,方程②为焦点在x 轴上的椭圆的标准方程它的焦点在x 轴上,两个焦点坐标分别是 ,其中c b a ,,满足的关系式为【探究案】探究一:推出焦点在y 轴上的椭圆的标准方程:如果焦点F 1,F 2在y 轴上,且F 1,F 2的坐标分别为),0(),,0(c c -,b a ,的意义同上,那么由{}()0 221>=+=a a MF MF M P 得与a y c x y c x 2)()(2222=+-+++相比较,只需将 对调就可得到焦点在y 轴上的椭圆的标准方程它的焦点在y 轴上,两个焦点坐标分别是 ,其中c b a ,,满足的关系式为探究二:对椭圆标准方程的认识1.椭圆的标准方程有什么特点?①椭圆的标准方程的形式: 左边是 ,右边是 ②椭圆的标准方程中a 、b 的关系是2.如何区分焦点在x 轴上的椭圆的标准方程与焦点在y 轴上的椭圆的标准方程?结论:看标准方程中2x ,2y 分母的大小,哪个分母 ,焦点就在 。
2.2.1 椭圆及其标准方程

课题:2.2.1椭圆及其标准方程重难点突破预设方案一、联系生活实际,突破重难点。
《数学课程标准》指出:“教师应该充分利用学生已有的生活经验,指导学生把所学的数学知识应用到现实中去,以体会数学在现实生活中的应用价值”。
数学起源于生活,又作用于生活,运用所学数学知识,解决生活中的许多实际问题,能使学生进一步对数学产生亲切感,增强学生对数学知识的应用意识,从而培养学生的自主创新能力。
在《椭圆及其标准方程》一课中,1、取一条定长的细绳,把它的两端都固定在图板的同一处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个什么图形?2.如果把细绳两端拉开一段距离,分别固定在图板上的两点F1、F2处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么图形?3.在问题2中,移动的笔尖始终满足怎样的几何条件?教师轻而易举地突破了重点。
二、采到“自主探究”的学习方式,突破重难点。
“自主探究”地学习更有利于知识的掌握和能力的培养。
在教学中当学生已经理解椭圆定义的情况下解决问题情境中提出的实际问题时,教师趁热打铁地让学生自主探究:1.到两定点F1(-2,0)和F2(2,0)的距离之和为4的点的轨迹是() A.椭圆B.线段C.圆D.以上都不对2.若焦点在x轴上的椭圆的方程是x26+y2m2=1,则该椭圆焦距的取值范围是()A.(0,6) B.(0,6) C.(0,26) D.(0, 12)3.若椭圆x225+y29=1上一点P到一个焦点的距离为5,则P到另一个焦点的距离为()A.5B.6 C.4D.1学生掌握了知识,并体会到了自己的自主作用,同时教学的重难点也迎刃而解。
三、通过有效的学生活动进一步巩固知识,使重难点化于无形。
当学生已经对知识有一定的掌握后。
若方程x25-k+y2k-3=1表示椭圆,求k的取值范围.(易错辨析:忽略椭圆标准方程的隐含条件致误)教师安排让学生用使本节的知识在学生的脑袋里相当牢固。
椭圆及其标准方程(优秀获奖教案)-椭圆及其标准方程教案

2.2.1椭圆及其标准方程(1)教学目标:重点: 椭圆的定义及椭圆标准方程,用待定系数法和定义法求曲线方程.难点:椭圆标准方程的建立和推导.知识点:椭圆定义及标准方程.能力点:通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;通过对椭圆标准方程的推导,使学生进一步掌握求曲线方程的一般方法,提高学生运用坐标法解决几何问题的能力懂得欣赏数学的“简洁美”,并渗透数形结合和等价转化的数学思想方法.教育点:通过椭圆定义的归纳和标准方程的推导,培养学生发现规律、认识规律并利用规律解决实际问题的能力,培养学生探索数学的兴趣,激发学生的学习热情.自主探究点:1.通过教学情境中具体的学习活动(如动手实验、自主探究、合作交流等),引导学生发现并提出数学问题,并在作出合理推导的基础上,形成椭圆的定义;2.探讨椭圆标准方程的最简形式,并通过对解决问题过程的反思,获得求曲线方程的一般方法.考试点:椭圆定义及标准方程,利用其解决有关的椭圆问题易错易混点:在用椭圆标准方程时,学生一般在“焦点的位置”上容易出错.拓展点:如何利用坐标法探讨其它圆锥曲线的方程.教具准备多媒体课件和三角板课堂模式学案导学一、引入新课【创设情景】材料1:对椭圆的感性认识.通过演示课前准备的生活中有关椭圆的实物和图片,让学生从感性上认识椭圆.材料2:20XX 年6月16日下午18时,“神州九号”载人飞船顺利升空,实现多人多天飞行,标志着我国航天事业又上了一个新台阶,请问:“神州九号”飞船的运行轨道是什么?多媒体展示“神州九号”运行轨道图片.【设计意图】利用多媒体,展示学生常见的椭圆形状的物品,让学生从感性上认识椭圆.通过“神州九号”的轨道录像,让学生感受现实,激发学生的学习兴趣,培养爱国思想. 思考1:自然界处处存在着椭圆,我们如何用自己的双手画出椭圆呢?思考2:在圆的学习中我们知道,平面内到一定点的距离为定长的点的轨迹是圆.那么,到两定点距离之和等于常数的点的轨迹又是什么呢?【设计意图】对于生活中、数学中的圆,学生已经有一定的认识和研究,但对椭圆,学生只停留在直观感受,基于它俩的关系,引导学生用上一章所学,来研究椭圆. 学生分组做试验,教师同时做好指导:按照课本上介绍的方法,学生用一块纸板;两个图钉,一根无弹性的细绳试画椭圆,让学生自己动手画,同桌相互切磋,探讨研究.(提醒学生:作图过程中注意观察椭圆的几何特征,即椭圆上的点要满足怎样的几何条件)思考:点M 运动时,12,F F 移动了吗?点M 按照什么条件运动形成的轨迹是椭圆?1.在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?3.当绳长小于两图钉之间的距离时,还能画出图形吗?学生经过动手操作→独立思考→小组讨论→共同交流的探究过程, 师生共同总结规律:当1212||||||MF MF F F +> 时,M 点的轨迹为椭圆;当1212||||||MF MF F F +=时,M 点的轨迹为线段1F 2F ; 当1212||||||MF MF F F +<时,M 点的轨迹不存在. 【设计意图】在本环节中并不是急于向学生交待椭圆的定义,而是设计一个实验,一是为了给学生一个动手实验的机会,让学生体会椭圆上点的运动规律;二是通过实践思考,为进一步上升到理论做准备.二、探究新知 (一)归纳定义思考:焦点为21,F F 的椭圆上任一点M ,有什么性质?设椭圆上任一点为M ,则有)22(22121F F c a a MF MF =>=+【设计意图】通过学生观察、思考、讨论,概括出椭圆的定义,让学生全程参与概念的探究过程,加深理解,提高概括能力和数学语言的表达能力.(二)椭圆标准方程的推导复习提问求曲线方程的一般步骤:(教师提问,针对对于学生回答情况做一总结) (1)建系、设点;(2)写出点的集合;(3)列式;(4)化简;(5)证明. 思考:如何建系,才能使求出的方程最简呢?由学生自主提出建立坐标系的不同方法,教师根据学生提出的“建系”方式,把学生分成若干组,分别按不同的建系的方法推导方程,进行比较。
椭圆及其标准方程导学案

§2.1.1椭圆及其标准方程导学案学习目标:1.了解椭圆的实际背景,通过作图探究抽象出椭圆的定义,了解椭圆标准方程的推导及化简过程. 2.掌握椭圆的定义及其标准方程.学习重点:椭圆的定义和标准方程的理解与应用.【课前知识准备】1.平面内,到定点的距离等于定长的点的轨迹是 .2.圆心为)0,0(,半径为4的圆的标准方程是 .做一做:将细绳的两端拉开一段距离,分别固定在板上的21,F F 两处,用铅笔把细绳拉紧,使铅笔(动点M )在画纸上慢慢移动形成轨迹.想一想:你作出的点的轨迹是什么图形?①在作图过程中,哪些点的位置不变,哪些距离改变,哪些量不变?②改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?③绳长能小于两图钉之间的距离吗?新知1:椭圆的定义平面内与两个定点21,F F 的距离之和等于常数(大于||21F F )的点的轨迹叫做 ,定点21,F F 叫做 ,两焦点间的距离||21F F 叫做符号表示:问题1:定义中需要注意什么?跟踪练习1:用定义判断下列动点:M 的轨迹是否为椭圆。
(1)到F1(-2,0)、F2(2,0)的距离之和为6的点的轨迹。
(2)到F1(0,-2)、F2(0,2)的距离之和为4的点的轨迹。
(3)到F1(-2,0)、F2(0,2)的距离之和为3的点的轨迹。
问题2:如何求椭圆的方程?(提示:类比求圆的轨迹方程的方法)新知2:椭圆的标准方程为( )【说明】①焦点在 轴上②焦点坐标为1F ( , ), 2F ( , ); ③c b a ,,的关系为: .跟踪练习2:根据下列椭圆方程,说出方程中a 、b 、c 的值.(1)192522=+y x ; (2) 114416922=+y x ;问题3:回顾椭圆方程的探求过程,若把两焦点1F 、2F 放在y 轴上恰当的位置,椭圆的方程又是什么呢?( )【说明】①焦点在 轴上②焦点坐标为1F ( , ), 2F ( , ); ③c b a ,,的关系为: .问题4:在图形中,a,b,c 分别代表哪段的长度?根据椭圆的标准方程,如何判断焦点的位置?跟踪练习3:判定下列椭圆的焦点在哪个轴上,并写出焦点坐标。
高中数学椭圆及其标准方程导学案

2.椭圆及其标准方程〔第一课时〕导学案【学习目标】1. 掌握椭圆的定义和标准方程;2. 会求简单的椭圆方程;3.经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力。
4.稳固用坐标化的方法求动点轨迹方程。
【重点难点】重点:椭圆定义的理解和标准方程的运用难点:标准方程的建立与推导【课前探究】阅读并预习教材,找出疑惑之处,完成以下问题1、自制工具,使用拉线法在纸板上演示椭圆定义做出椭圆思考:改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?绳长能小于两图钉之间的距离吗?2、圆的定义:椭圆的定义:3、类比圆的方程的推导过程,尝试自己推导椭圆的标准方程【课中探究】研讨互动,问题生成1、椭圆定义:平面内与两个定点F1,F2的距离和等于常数2a 〔大于12F F 〕的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距2c。
2、椭圆的标准方程:思考1:根据椭圆的定义,找出椭圆中的等量关系,并用集合表示?思考2:建系设点,推导椭圆的标准方程?以F1,F2所在的直线为x轴,线段F1,F2的中点为原点建立直角坐标系设M〔x , y〕,则F1(-c,0),F2(c,0),设122MF MF a+=思考3:如果椭圆的焦点在y轴上呢?请大家小组讨论,猜测椭圆的方程有何改变?椭圆的标准方程:22221(0)x y a b a b +=>>22221(0)y x a b ab+=>>课中反应练习:1、请判断以下哪些方程表示椭圆,如果是,则判断焦点在哪个轴上?指出22,a b 。
〔1〕22110036x y += 〔2〕22136100x y += 〔3〕2213636x y += 〔4〕22110036x y -=请同学们总结分析椭圆标准方程的结构特点:,焦点在坐标轴上,则椭圆的标准方程为 。
高中数学选修2-1 导学案

2.2 椭圆2.2.1 椭圆及其标准方程学习目标1.掌握椭圆的定义及其标准方程;2.理解椭圆的标准方程的推导,椭圆的定义中常数加以限制的原因。
基础感知预习教材,完成下列问题:(1)平面内的点的轨迹叫做椭圆,这两个定点叫做椭圆的,两焦点之间的距离叫做椭圆的(2)椭圆的标准方程:当焦点在x轴时,标准方程为;当焦点在y轴时,椭圆的标准方程为(3)集合语言:点集P={M||MF1|+|MF2|=2a,2a>|F1F2|}当2a=|F1F2|时,轨迹是当2a<|F1F2|时,轨迹是合作学习例 1.已知椭圆两个焦点的坐标分别是(-2,0)(2,0),并且经过点(2.5,-1.5),求它的标准方程。
例2.在圆x2+y2=4上任取一点P,过点P作x 轴的垂线段PD,D为垂足,当点P在圆上运动时,线段PD的中点M的轨迹是什么?例3.设点A、B的坐标分别为(-5,0)(5,0),直线AM、BM相交于点M,且他们的斜率之积是-4/9,求点M的轨迹方程?当堂检测课后练习2.2.2 椭圆的简单几何性质 班级 姓名 小组学习目标1.掌握椭圆的几何性质2.椭圆的几何性质的实际应用 基础感知合作学习例1.求椭圆16x 2+25y 2=400的长轴和短轴长、离心率、焦点、顶点坐标例2.点M (x,y )与定点F (4,0)的距离和它到直线425x 的距离之比是常数54,求点M 的轨迹方程当堂检测《师说》随堂自测限时训练(1)班级姓名小组1.焦点在x轴上,a=6,c=1的椭圆的标准方程为:2.已知椭圆的方程为m2x2+16y2=16m2,焦点在x轴上,则m的取值范围:3.过点(-3,2)且与4x2+9y2=36有相同焦点的椭圆方程为:4.已知椭圆的方程是25x2+a2y2=25a2,它的两个焦点分别是F1,F2,且|F1F2|=8,弦AB过点F1,则三角形ABF2的周长为:5.椭圆25x2+16y2=1的焦点坐标是:6.已知两定点F1(-1,0)F2(1,0),动点P满足:|PF1|+|PF2|=2|F1F2|,求:(1)点P的轨迹方程(2)若∠F1PF2=120。
《椭圆及其标准方程》教案(通用4篇)

《椭圆及其标准方程》教案(通用4篇)《椭圆及其标准方程》篇1教学目标:(一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程.(二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力.(三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神.教学重点:椭圆的定义和椭圆的标准方程.教学难点:椭圆标准方程的推导.教学方法:探究式教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.教具准备:多媒体和自制教具:绘图板、图钉、细绳.教学过程:(一)设置情景,引出课题问题:XX年10月12日上午9时,“神州六号”载人飞船顺利升空,实现多人多天飞行,标志着我国航天事业又上了一个新台阶,请问:“神州六号”飞船的运行轨道是什么?多媒体展示“神州六号”运行轨道图片.(二)启发诱导,推陈出新复习旧知识:圆的定义是什么?圆的标准方程是什么形式?提出新问题:椭圆是怎么画出来的?椭圆的定义是什么?它的标准方程又是什么形式?引出课题:椭圆及其标准方程(三)小组合作,形成概念动画演示椭圆形成过程.提问:点m运动时,f1、f2移动了吗?点m按照什么条件运动形成的轨迹是椭圆?下面请同学们在绘图板上作图,思考绘图板上提出的问题:1.在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?3.当绳长小于两图钉之间的距离时,还能画出图形吗?学生经过动手操作→独立思考→小组讨论→共同交流的探究过程,得出这样三个结论:椭圆线段不存在并归纳出椭圆的定义:平面内与两个定点、的距离的和等于常数(大于)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.(四)椭圆标准方程的推导:1.回顾:求曲线方程的一般步骤:建系、设点、列式、化简.2.提问:如何建系,使求出的方程最简?由各小组讨论,请小组代表汇报研讨结果.各组分别选定一种方案:(以下过程按照第一种方案)①建系:以所在直线为x轴,以线段的垂直平分线为y轴,建立直角坐标系。
椭圆及其标准方程(第一课时)导学案

课题:2.2.1 椭圆及其标准方程(第一课时)【课标要求】1.了解椭圆的实际背景,经历从具体情境中抽象出椭圆的过程、椭圆标准方程的推导与化简过程. 2.掌握椭圆的定义、标准方程及几何图形.【考纲要求】(1)掌握椭圆的定义,标准方程和椭圆的简单几何性质,理解椭圆的参数方程。
(2)了解圆锥曲线的初步应用。
编写者试图通过本节教材,使学生系统地掌握坐标法并进一步激活数形结合的数学思想。
【教学目标叙写】根据学生在日常生活中的经验积累,对椭圆形状有了初步的认识。
通过典故的课堂引入及从圆和相关的图片引入着手学生亲自体验画椭圆,激发学习的兴趣和研究椭圆定义的求知欲,去发现椭圆定义的本质,探索图形变化规律,掌握椭圆的概念。
从而推导出椭圆标准方程并会利用待定系数法求椭圆标准方程。
【使用说明与学法指导】1.阅读探究课本P38-P40的基础知识,自主高效预习;2.阅读导学案预习案部分的内容,自主自主完成各项要求;3.结合课本基础知识和例题及预习案,完成预习自测题;对合作探究部分认真审题,做不好的上课时组内讨论。
4.本导学案中题号后凡标明A ,B ,C 的只要求相应层次的学生完成即可。
5.将预习中不能解决的问题标识出来,并写到后面“我的疑惑”处,准备课上讨论质疑。
【预习案】一. 温故夯基1.圆心为O ,半径为r 的圆上的点M 满足集合P ={M||MO|=r},其中r>0. 2.求曲线方程的基本方法有:_________,_________,__________ 二.知新益能1.课堂引入:这是一个发生在古希腊的故事:西西里岛的一个岩洞里,被关押的犯人不堪忍受这非人的待遇,他们偷偷聚集在岩洞的最里面,小声议论越狱和暴动的办法。
但是,他们商量好的计划很快就被看守人员掌握了,看守人员提前采取了措施,使商量好的计划无法实行,犯人们开始互相猜疑,认为一定是出了叛徒,但是不管怎么查找,也找不到告密者是谁,这究竟是怎么回事呢?原来,并没有人当叛徒去告密,当然找不到告密者了。
椭圆及标准方程导学案

椭圆及其标准方程导学案教学目标1.使学生理解椭圆的定义,掌握椭圆的标准方程的推导及标准方程.2.通过对椭圆概念的引入与标准方程的推导,培养学生分析探索能力,增强运用坐标法解决几何问题的能力。
3.通过对椭圆标准方程的推导的教学,可以提高对各种知识的综合运用能力.学习重点重点:椭圆的定义和椭圆的标准方程.学习难点:椭圆的标准方程的推导,椭圆的定义中常数加以限制的原因.课前预习学案复习回顾:1:什么叫做曲线的方程?求曲线方程的一般步骤是什么?其中哪几个步骤必不可少?.问题2:圆的几何特征是什么?你能否可类似地提出一些轨迹命题作广泛的探索?新知预习取一条一定长的细绳,把它的两端固定在画图板上的F1和F2两点(如图2-13),当绳长大于F1和F2的距离时,用铅笔尖把绳子拉紧,使笔尖在图板上慢慢移动一周,观察画出的图形.课堂探究学案一.椭圆的定义:思考:这里的常数有什么限制吗?二.椭圆标准方程的推导1.标准方程的推导(1)建立坐标系(2)设点(3)列式(4)化简椭圆的标准方程:__________________________________________________ 思考与讨论1.若焦点在y轴上,椭圆的标准方程是什么?2.两种标准方程的比较三.典型例题例1.求适合下列条件的椭圆的标准方程两个焦点的坐标分别是(—3,0)(3,0),椭圆上一点P 与两交点的距离的和等于8.例题2两个焦点的坐标分别是(-2,0)(2,0),并且椭圆经过点(25,—23 )。
四、课堂小结五、当堂检测求适合下列条件的椭圆的标准方程:。
椭圆及其标准方程(1)

C. D.
3.如果椭圆 上一点 到焦点 的距离等于6,那么点 到另一个焦点 的距离是().
A.4 B.14 C.12 D.8
4.椭圆两焦点间的距离为 ,且椭圆上某一点到两焦点的距离分别等于 和 ,则椭圆的标准方程
是.
5.如果点 在运动过程中,总满足关系式 ,点 的轨迹是,它的方程是.
课后作业
A. B.6 C. D.12
练2.方程 表示焦点在 轴上的椭圆,求实数 的范围.
三、总结提升
※学习小结
1.椭圆的定义:
2.椭圆的标准方程:
※知识拓展
1997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔·波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空 1997年2月至3月间,许多人目睹了这一天文现象 天文学家是如何计算出彗星出现的准确时间呢?原来,海尔·波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长.
思考:移动的笔尖(动点)满足的几何条件是什么?
经过观察后思考:在移动笔尖的过程中,细绳的保持不变,即笔尖等于常数.
新知1:我们把平面内与两个定点 的距离之和等于常数(大于 )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.
反思:若将常数记为 ,为什么 ?
当 时,其轨迹为;
⑵ ,焦点在 轴上;
⑶ .
变式:方程 表示焦点在 轴上的椭圆,则实数 的范围.
小结:椭圆标准方程中: ; .
例2已知椭圆两个焦点的坐标分别是 , ,并且经过点 ,求它的标准方程.
变式:椭圆过点 , , ,求它的标准方程.
人教课标版高中数学选修2-1《椭圆及其标准方程(第2课时)》教学设计

2.2.1 椭圆及其标准方程(第二课时)一、教学目标 (一)学习目标1.掌握椭圆的定义与标准方程;2.会求椭圆的标准方程. (二)学习重点用待定系数法与定义法求椭圆方程 (三)学习难点掌握求椭圆方程的基本方法. 二、教学设计 (一)预习任务设计 1.预习任务(1)读一读:阅读教材第38页至第40页. (2)想一想:如何求椭圆的标准方程?(3)写一写:椭圆的一般方程: . 2.预习自测(1)已知6,1a c ==,则椭圆的标准方程为( )A.2213635x y +=B.2213635y x +=C.221365x y += D.以上都不对 【解题过程】由于条件中只给出,a c 的值,椭圆的焦点位置不确定,有两种可能性,故答案为D.【思路点拨】求椭圆方程时,要先定型后定量. 【答案】D(2)已知椭圆的方程为222116x y m +=,焦点在x 轴上,则m 的取值范围是( )A.44m -≤≤B.44m -<<C.4m >或4m <-D.04m << 【解题过程】由条件可知:216m <可得:44m -<<. 【思路点拨】把握椭圆方程的结构特征解题. 【答案】B(3)若ABC ∆的两个顶点坐标为(4,0),(4,0)A B -,ABC ∆的周长为18,则顶点C 的轨迹方程为( )A.221259x y +=B.221(0)259y x y +=≠C.221(0)169x y y +=≠D.221(0)259x y y +=≠ 【解题过程】由条件可知:||||10||CA CB AB +=>,故点C 的轨迹是以,A B 为焦点,210a =的椭圆.考虑到,,A B C 三点构成三角形,故0y ≠. 【思路点拨】利用椭圆的定义解题. 【答案】D(4)已知椭圆的方程是2221(5)25x y a a +=>,它的两个焦点分别为12,F F ,且12||8F F =,弦AB 过1F ,则2ABF ∆的周长为( )A.10B.20C.D. 【解题过程】2251641a =+=.由椭圆的定义得:2ABF ∆的周长为:221212||||||(||||)(||||)4AB AF BF AF AF BF BF a ++=+++==. 【思路点拨】利用椭圆定义求解即可. 【答案】D (二)课堂设计 1.知识回顾 (1)椭圆的定义; (2)椭圆的标准方程. 2.新知讲解探究 如何求椭圆标准方程 ●活动① 双基口答练习①方程194522=+y x 表示到焦点1F (-6,0) 和2F __(6,0)_的距离和为常数____的椭圆;②求满足下列条件的椭圆的标准方程:(1)125,(3,0),(3,0)a F F =-,22+12516x y = (2)5,3a c ==2222+1+125161625x y x y ==,③如果方程2214x y m +=表示焦点在x 轴的椭圆,则实数m 的取值范围是(0,4). ●活动② 归纳提炼方法例1 已知椭圆两个焦点的坐标分别是12(2,0),(2,0)F F -,并且经过点53(,)22P -,求它的标准方程. 【知识点】椭圆的定义和标准方程. 【解题过程】 法一:定义法:因为椭圆的焦点在x 轴上,所以设它的标准方程为).0(12222>>=+b a by a x由椭圆的定义知,,102232252322522222=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=a所以10=a .又因为2c =,所以.6410222=-=-=c a b因此,所求椭圆的标准方程为.161022=+y x 法二:待定系数法:由题意,椭圆的两个焦点在x 轴上,所以设它的标准方程为).0(12222>>=+b a by a x 由已知,2c =,所以.422=-b a ①又由已知,得123252222=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛b a ②联立①②解方程组,得6,1022==b a .因此,所求椭圆的标准方程为.161022=+y x【思路点拨】先确定标准方程的形式,用椭圆的定义或待定系数法求解. 求椭圆标准方程的解题步骤: (1)确定焦点的位置; (2)设出椭圆的标准方程;(3)用椭圆的定义或待定系数法确定a 、b 的值,写出椭圆的标准方程.【答案】.161022=+y x同类训练 求适合下列条件的椭圆的标准方程. (1)焦距为8,经过点(0,P ;(2)与椭圆22194x y +=有相同焦点,且过点(3,2)M -.【知识点】椭圆的定义和标准方程.【解题过程】(1)∵焦距是8,即28,4c c =∴=①若焦点在x轴上,则b =,222241640,a b c ∴=+=+=∴椭圆方程为2214024x y +=; ②若焦点在y轴上,则a =,22224168,b a c ∴=-=-=∴椭圆方程为221248y x +=.(2)由题意设所求方程为222215x y a a +=-,∵过点(3,2)M -∴229415a a +=-,解得215a =或23a =(舍) ∴椭圆方程为2211510x y +=.【思路点拨】牢记椭圆的标准方程【答案】(1)2214024x y +=;(2)2211510x y +=.例2.如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作垂线段'PP ,求线段'PP 的中点M 的轨迹. 【知识点】椭圆的定义和标准方程.【解题过程】设动点M 的坐标为),(y x ,则P 的坐标为)2,(y x 因为点P 在圆心为坐标原点半径为2的圆上,所以有 4)2(22=+y x .即2214x y +=. 所以点M 的轨迹是椭圆,方程是1422=+y x【思路点拨】这种利用未知点表示一个或几个与之相关的已知点,从而求解未知点轨迹方程的方法,即为相关点法,是解析几何中常用的求轨迹的方法.【答案】1422=+y x ●活动③ 强化提升 灵活应用例3. 等腰直角三角形ABC 中,斜边BC长为,一个椭圆以C为其中一个焦点,另一个焦点在线段AB 上,且椭圆经过点,A B ,求该椭圆方程.【知识点】椭圆的定义和标准方程.【解题过程】由题意知24=BC ,设椭圆的另一个焦点为D . 以直线DC 为x 轴,线段DC 的中点为原点建立直角坐标系。
椭圆及标准方程导学案

椭圆及标准方程导学案 课题椭圆及标准方程 课型 新授课 初备时间 11.6 科目 数学 班 级 备课人 薛生军 复备时间学习目标 1.理解椭圆的定义,掌握椭圆的两类标准方程.2.掌握椭圆焦点、焦距的含义、并会用待定系数法和直接法求椭圆的标准方程。
学习重点 椭圆的两类标准方程学习难点 会用待定系数法直接法求椭圆的标准方程一、自主学习:认真填写练习册第二章学案一的预习自查部分二、效果检测:1、已知(1)椭圆14922=+y x ,则a=_________;b= __________; c= __________;焦点在__________轴上,坐标为____________;(2)椭圆14922=+x y , 则a=________;b=___________;c= __________; 焦点在__________轴上,坐标为_____________;(3)写出适合下列条件的椭圆的标准方程:<1>a=4,b=1,焦点在x 轴上;<2>a=4,c=15,焦点在y 轴上;<3>a+b=10,c=25。
2、求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点距离的和等于10;(2)两个焦点的坐标分别是(0,-2)、(0,2),且椭圆经过点(23-,25)。
三、合作探究:1.若方程1162522=++-my m x 表示焦点在y 轴上的椭圆,则实数m 的取值范围是什么?2.已知A,B 是两定点,8=AB ,且三角形ABC 的周长等于18,求点C 满足的一个方程。
四、课堂检测:28页练习二1.2.3五、课后巩固:1.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是 。
2.椭圆1251622=+y x 的焦点坐标是 。
3.经过点M (3,-2),N (-23,1)的椭圆的标准方程是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
百度文库 - 让每个人平等地提升自我!
111
高二数学选修 2-1 §
一、学习任务:
1.理解椭圆的定义,掌握求椭圆的方程,和一些几何性质。
培养解析法的思想。
2.椭圆的定义和标准方程。
二、探究新知:(学习情景,自主学习,合作探究,(问题1,2,3)当堂检查,巩固训练,拓展延伸,对点训练,
感受高考等) 自主学习:
(一)、学习情景: 已知两定点F 1F 2距离为6,求动点M 到两定点距离的和为10的轨迹方程. (二)、 问题导学:
问题1:根据课本上椭圆的定义,制作教具,画椭圆?
问题2:写出椭圆上的点满足的关系式________________________________________
问题3:这两个定点叫做椭圆的_______。
两个定点的距离用______表示。
常数用______表示 问题4:椭圆的定义为什么要满足2a >2c 呢?
(1)当2a >∣F 1F 2∣时,轨迹是_____ (2)当2a =∣F 1F 2∣时,轨迹是_____
(3)当2a <∣F 1F 2∣时轨迹是. _____
对点训练: 动点P 到两定点F1(-4,0),F2(4,
0)的距离和是8,则动点P 的轨迹为( )
(A )椭圆 (B )线段F 1F 2 (C )直线F 1F 2 (D )不能确定。
问题5:建立坐标系后,利用问题2的关系式,写出推导椭圆方程的过程 问题6:椭圆的标准方程是:___________________________ 问题7:上面的a,b,c 三个量满足的关系式为:___________ 问题8:如何判断焦点在何轴? (三)、当堂检查
根据下列方程,分别求出a 、b 、c
(1)椭圆标准方程为16
102
2=+y x ,则a = ,b = , =c ;
(2)椭圆标准方程为15
2
2
=+y x ,则a = ,b = , =c ; (3)椭圆标准方程为822
2=+y x ,则a = ,b = , =c . 书本课后练习
1.如果椭圆136
1002
2=+y x 上一点P 到焦点F 1的距离等于6,那么点P 到另一个焦点F 2的距离是_____.
2.写出适合下列条件的椭圆的标准方程:
(1) 1,4==b a ,焦点在x 轴上;(2)15,4==c a ,焦点在x 轴上.(3)a +b =10,c =25 (四)、合作、探究、展示:
例1 已知椭圆两个焦点的坐标分别是()2,0-,()2,0,并且经过点53,22⎛⎫
-
⎪⎝⎭
,求它的标准方程. 变式题:1.已知椭圆的焦点在y 轴上,且椭圆经过点P(-2,2)和Q(0,-3),求此椭圆的标准方程. 变式题:2.已知椭圆经过两个点P(-2,2)和Q(0,-3),求此椭圆的标准方程. 规律方法总结 例2、 如图,在圆2
24x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,求线段PD 的
中点M 的轨迹方程
例3、如图,设A ,B 的坐标分别为()10,0-,()10,0.直线AM ,BM 相交于点M ,且它们的斜率之积为4
9
-,求点M 的
轨迹方程.
三、 本节小结和感悟
思考:1若方程
116252
2=++-m
y m x 表示焦点在y 轴上的椭圆,则m 的取值范围是? 2 方程 √x 2 + (y+3)2 + √x 2 + (y-3)2 = 10表示曲线为 。
x
y
F 1
F 2
B 1
P
l y
M
D
x
P。