船舶结构强度有限元计算分析中的技巧
船舶结构强度分析中有限元模拟研究
船舶结构强度分析中有限元模拟研究船舶是一个复杂的结构系统,其结构强度的验证和评估是一个非常重要的任务。
船舶操作环境的变化和船体负荷情况的不同可能会对船舶结构系统造成很大的影响。
因此,对于船舶结构强度分析的研究也变得越来越重要。
其中,有限元模拟是评估船舶结构强度的一种有效方法。
本文将深入探讨船舶结构强度分析中有限元模拟的研究内容。
一、船舶结构强度分析船舶结构强度分析是指针对船舶结构的材料性能、结构疲劳、碰撞、波浪荷载等进行分析,以确定船舶结构在正常航行或在极端情况下(如船舶碰撞、航行在大浪中等)的承受能力。
船舶结构有着严格的设计和要求,因为其直接关系到船舶的安全和寿命。
船舶结构的材料和结构设计、检验、评估和强度计算,都需要考虑到不同的条件和要求,同时,船舶结构的工作环境和应用场景对其强度分析也有着重要的影响因素。
二、有限元模拟有限元模拟是使用数学方法对船舶结构进行强度分析的一种方法。
在有限元模拟中,将结构物分成许多小的网格单元,分别描述其中每一部分的材料、质量和物理属性,最后使用数值计算方法求解所有小的网格单元在外部力和边界条件作用下的响应。
根据这些响应结果,可以得到整个结构物的形变和应力状态,从而进行调整和优化结构的设计。
有限元模拟主要应用于三类结构强度问题的求解。
第一类是线性问题,这类问题通常涉及单一外部载荷或重力负荷下的结构稳态分析。
在这种情况下,解能够通过线性代数方法得到。
第二类问题是非线性问题,通常涉及到材料的非线性行为,如弹性-塑性材料的应变硬化特性。
这类问题通常需要求解非线性方程组,并且需要考虑到结构应力集中的区域。
第三类问题是动力问题,为瞬态行为和非稳定结构系统的性能分析。
例如,波浪可引起船舶结构物的动态应力响应。
三、有限元模拟在船舶结构强度分析中的应用在船舶结构强度分析中,有限元模拟是一种高度灵活且可靠的分析方法。
有限元分析的优点在于可以通过受力分析得到结构物的应力和变形状态,这样可以得出适当的形状和尺寸以满足稳定和强度要求。
58m起重船有限元强度计算
58m起重船有限元强度计算
近年来,随着我国船舶工业的飞速发展,起重船已经成为了国内外重要的海洋工程建设和海上运输领域中不可缺少的重要设备之一。
而随着起重船的运用范围不断扩大,各种需求因素的影响也越来越显著,其中强度计算就成了维持起重船正常运行的重要保障。
此次研究,我们将使用有限元强度计算方法,针对一款58m起重船进行强度计算。
根据起重船的结构部位特点,我们将以起重船的船体和吊臂为研究对象,通过建立其三维模型并对模型进行有限元网格划分,进行强度分析和计算。
首先,我们以起重船的船体为研究对象。
在建立船体模型时,考虑到船体应力和附加载荷对于船体的影响,我们在模型中加入了地震、离心力、平衡荷载和弯曲荷载等各种载荷因素。
我们利用ANSYS软件对模型进行有限元网格划分,通过计算船体模型的最大主应力和最大剪应力,来对其强度进行评估。
同时,在计算强度过程中,我们还对起重船的材料特性进行了分析和确认,并对其强度指标进行了评估。
通过对模型进行的强度计算,我们得到了船体在各种荷载作用下的应力和变形情况。
最后,在对58m起重船进行有限元强度计算的过程中,我们还应考虑到实际使用中可能出现的各种因素,比如海况、气候、使用状况等,以评估起重船在实际使用过程中的安全性、稳定性和耐用性等因素。
同时,我们还应结合国家有关航海法规标准,对58m起重船的设计和强度计算结果进行综合评估和比较,为起重船在实际使用中提供全方位的强度保障。
综上所述,有限元强度计算方法是一种计算起重船强度的重要手段,其可以对起重船的结构部件进行精确、定量的评估和分析,为起重船在实际使用中提供强有力的支持和保障。
28000 t多用途船首楼加强结构有限元强度分析
28000 t多用途船首楼加强结构有限元强度分析本文将针对一艘28000 t多用途船的首楼加强结构进行有限元强度分析。
首先,介绍该船的基本情况和首楼结构设计方案,然后,给出有限元模型和边界条件。
接着,进行计算,并分析其结果。
最后,提出一些建议和结论。
一、船舶基本情况该船为中国造船集团公司设计研究院设计,船长度为190.00m,船宽为32.26m,型深为18.10m,设计总吨位为28000t。
该船为多用途船,可用于散货运输、集装箱运输、油船等不同类型的货物运输。
首楼位于船头部分,是船体结构中较为重要的部分,需要进行加强以达到防护和支撑作用。
二、首楼结构设计方案为了提高首楼强度和稳定性,在船体设计中需要对首楼进行加强。
首先,在原有首楼结构基础上加装侧板,提高侧部强度;其次,加装绞刀柱和纵梁,提高纵向支撑能力;再次,加固首楼底板,增加底部强度。
三、有限元模型和边界条件在进行有限元分析前,需要建立一个精细的有限元模型。
首先,对整个船体进行数值化建模,包括船体的各个结构部分。
然后,按照首楼加强结构设计方案,对首楼部分进行加固,建立新的有限元模型。
接着,需要确定边界条件。
在进行有限元计算时,需要确定边界条件,以便进行一个完整的力学分析。
由于首楼位于船体的前部,处于海浪和风浪影响较大的区域,需要考虑风浪载荷的影响。
同时,还需要考虑船体的移动和弯曲等因素。
四、计算与分析在确定有限元模型和边界条件后,进行了有限元计算和强度分析。
在计算过程中,考虑了船体在不同风浪条件下的载荷,进行了强度分析和振动分析。
根据计算结果可以得出:首楼加强结构设计方案符合设计要求,能够提高船体的强度和稳定性。
在不同风浪条件下,首楼结构都有足够的强度和稳定性,能够保证船舶在航行时的安全性和稳定性。
五、建议和结论针对以上计算和分析结果,提出如下建议和结论:(1) 首楼加强结构设计方案符合设计要求,能够提高船体的强度和稳定性。
(2) 在进行船体设计时,需要综合考虑船舶的航行条件和使用要求,以便确定最佳的结构设计方案。
船舶结构有限元分析
船舶结构有限元分析谢㊀凯摘㊀要:从比较经典的优化设计方法,到启发式优化设计方法,再到现代代理模型的优化设计方法,虽然都在一定程度上优化了船舶结构,但是在使用过程中也都存在着一些问题,这便促进了船舶结构由规范的方法逐渐开始向着有限元解决方向发展,进而使得整船结构的优化设计成为可能,而为了更好地实现船舶结构有限元模型中开孔和船舶结构的快速建模,并针对有限网格的局限区域细化设计方案,文章主要基于现阶段的船舶结构设计平台,对有限元在船舶相贯结构切口力学分析中的相关应用和船舶结构有限元模型数据计算生成进行了详细的介绍,希望能够通过介绍在一定程度上减轻审图验船人员的劳动,提高审图效率㊂关键词:船舶;结构;有限元分析㊀㊀一㊁有限元在船舶相贯结构切口力学分析中的相关应用介绍船上有大量纵横交错的构件,必然会存在着众多构件相贯切口,所以需要对有限元在船舶相贯结构切口力学分析中的相关应用进行介绍㊂而船舶在航行时,会由于不良切口的存在,使构件产生裂缝,甚至还会使得整个相贯切口区的结构发生严重破坏㊂因此,在船舶结构有限元分析中有必要对此种结构进行详细的力学分析,以便可以从其应用过程中发现力学性能较好的相贯切口形式和加强方法,进而利用有限元分析方法来提高计算效率㊂二㊁船舶结构有限元模型数据计算生成船舶结构优化设计是在满足强度㊁刚度还有稳定性和频率等条件的约束下,借助数学方法和计算编程来对设计者的船舶结构参数进行的一种方法,这样的技术对于未来船舶结构的发展有着十分重要的作用,而要想更进一步的优化有限元算法,提高船舶结构的发展,就需要对船舶结构有限元模型数据计算生成进行分析,而通过一定的调查研究发现,船舶结构有限元模型数据计算生成主要包括以下四个方面:船舶结构有限元数据模型概述㊁肋位线数据库的建立㊁型材库的建立㊁节点数据生成介绍等,以下主要对船舶结构有限元模型数据计算生成的几个方面进行了详细的介绍㊂(一)船舶结构有限元数据模型概述一般来说,有限元建模主要会经过创建点㊁生成单元㊁赋予属性等三个步骤,其中创建节点主要是为生成单元做准备的,而赋予属性又是在已经生成的单元上进行的㊂由这个过程可以看出来,要想实现从二维图到三维图有限元模型的转换,首先需要生成建立有限元模型所需的各种数据,比如节点三维坐标㊁板单元属性还有梁单元属性等㊂另外,这些数据的计算生成方法也十分重要㊂在这些介绍完毕后,需要根据有限元模型中节点㊁单元㊁属性之间的关系,来进行船舶结构有限元数据模型的研究,同时也为接下来的研究奠定良好的基础㊂(二)肋位线数据库的建立肋位线数据的建立主要包括肋位号㊁肋位位置㊁肋位线Y㊁Z坐标及其展开长度(i=1㊁2㊁3 n其中n为肋位线的点数)㊂程序读取船体肋位线型数据文件,获取肋位号和肋位线上点的坐标数据,然后计算肋位位置和肋位线展开长度等数据㊂其中肋位线的数据主要保存在Access数据表中,需要根据这些数据,生成全船肋位线图,方便接下来的计算㊂(三)型材库的建立船舶结构有限元模型数据计算生成还包括型材库的建立,在进行船舶结构有限元模型数据计算中建立一个可以包含多种型材的型材库,这个型材库中包含有T型材料㊁球扁钢㊁角钢等多种类型,多种类型规格的型材㊂而且每一款型材都会用一个型材号表示,这些型材数据保存在型材标准数据库中,可以往数据库里添加新的型材,同时也可以对数据库中已经有的型材进行修改或者删除㊂在建立好型材库后,需要点击 Patran 菜单中设置型材规格选项,将会出现选择型材规格的窗口,在确定后选择一个款型材,然后在结构图上选择一系列相同型材的结构线,并将程序通过一定的方法将其应用在该款型材号附着的这些结构上㊂(四)节点数据生成介绍节点数据生成介绍主要包括六个方面的内容,这六个方面分别是计算外板节点坐标㊁获取连接梁单元型材号㊁获取连接板单元板厚㊁获取节点位置信息㊁计算节点法线方向㊁计算节点重复数等㊂首先,计算外板节点坐标,需要通过算法用外板展开图上纵向线和竖向线来求交点,求出节点在肋位线上的展开长度,并通过节点在肋位线上展开长度求出该节点坐标值,再计算甲板节点坐标,以圆弧形梁拱为例,求该肋位线的梁拱高度最后得到实际结果;其次,获取连接梁单元型材号,需要获取与节点左连接和右连接的梁单元型材号,再获取与节点上关联和下关联的梁电源型材号;再次,获取连接板单元板厚,在节点所在板平面内,从节点的东北㊁西北等四个方向分别选取一个与之相距较近的点进行计算;最后,获取节点位置信息和计算节点法线方向,最后是计算节点重复数,然后再计算得到目标模块中所有节点坐标后,比较每个节点坐标值,对于其中任意节点,都要提高重视㊂三㊁结语综上所述,随着船舶结构的大型化和复杂化,传统船舶结构分析方法已经难以适应时代发展,所以需要进行改革和创新,而也就是改革和创新使得船舶结构分析方法逐渐由现代规范计算方法过渡到了有限元的计算方法,这使得整个船舱甚至是船舶结构的发展逐渐走向成熟,同时,也在一定程度上促进着有限元计算方法的成熟㊂而对于优化设计而言,船舶局部结构的优化设计已经难以满足设计者需求,而且实践也证明了实际效益㊂因此,基于有限元分析的船舶结构已经逐渐成为结构优化设计的整体趋势㊂参考文献:[1]管义锋,吴剑国,俞铭华,等.船舶大开口结构有限元分析专用前后处理软件的设计[J].船舶工程,2001(6):9-11.[2]尹群.Super-SAP有限元分析软件在船舶结构力学分析中的应用[J].造船技术,2000(1):36-37.[3]郑云龙.在型船舶结构有限元静动力分析方法及软件系统[J].船舶工程,1998(3):9-11.作者简介:谢凯,舟山中远海运重工有限公司㊂261。
船舶结构强度分析与优化方法
船舶结构强度分析与优化方法船舶作为一种重要的水上交通工具,其结构强度直接关系到船舶的安全性、可靠性和使用寿命。
因此,对船舶结构强度进行准确的分析和有效的优化是船舶设计和建造过程中至关重要的环节。
船舶在航行过程中会受到各种外力的作用,如静水压力、波浪载荷、货物载荷、风载荷等。
这些外力会使船舶结构产生变形和应力,如果应力超过了材料的强度极限,就会导致结构的破坏,从而引发严重的安全事故。
因此,在船舶设计阶段,就需要对船舶结构的强度进行精确的分析,以确保船舶在各种工况下都能够安全可靠地运行。
船舶结构强度分析的方法主要有两种:传统的解析方法和现代的数值方法。
传统的解析方法主要是基于材料力学和结构力学的理论,通过简化船舶结构的几何形状和载荷分布,建立数学模型,求解结构的应力和变形。
这种方法虽然简单直观,但由于其对船舶结构和载荷的简化过于严重,往往难以准确地反映船舶结构的实际受力情况,因此在现代船舶设计中已经逐渐被淘汰。
现代的数值方法主要包括有限元法、边界元法和有限差分法等。
其中,有限元法是目前船舶结构强度分析中应用最为广泛的方法。
有限元法的基本思想是将连续的船舶结构离散成有限个单元,通过对单元的分析和组合,求解整个结构的应力和变形。
这种方法可以较为准确地模拟船舶结构的复杂几何形状和载荷分布,从而得到较为精确的分析结果。
在进行船舶结构强度分析时,首先需要建立船舶结构的有限元模型。
这包括对船舶结构进行几何建模、网格划分、材料属性定义和边界条件设置等。
几何建模是将船舶结构的实际形状转化为计算机能够识别的数学模型,网格划分是将几何模型离散成有限个单元,材料属性定义是确定船舶结构所用材料的力学性能参数,边界条件设置是模拟船舶结构在实际运行过程中的约束和载荷情况。
建立好有限元模型后,就可以通过有限元分析软件进行求解。
求解的结果包括结构的应力分布、变形情况和振动特性等。
通过对这些结果的分析,可以评估船舶结构的强度是否满足设计要求。
Ansys在船舶有限元分析中的应用技巧_梁单元
Ansys 在船舶有限元分析中的应用技巧———梁单元刘 九虎 陆红艳 (华南理工大学交通学院)(上海船舶运输科学研究所)关键词 船舶 有限元 Ansys 梁单元一 前 言船舶作为水上的结构物,在对它进行有限元分析时,通常会以加筋板的形式进行模拟,所以板壳元和梁元是此类分析中最常用的单元。
本文针对Ansys 当中的三维梁元beam44的应用技巧展开讨论。
早期的有限元软件在处理梁单元时,通常存在以下缺点:(1)实常数定义较为麻烦通常对三维梁元而言,需要用户给出梁截面一系列参数:截面积、关于两个轴的惯性矩、扭矩、抗弯模量等,这些参数都需要用户通过计算或查表得到。
(2)梁的定位不直观通常一个梁元的定位需要三个点:起始节点i 、j 和定位点k (对于角钢、工字钢等型材而言,通常取其腹板平面上的某一点k ,且k 不与i 、j 共线)。
早期的fem 用户在前处理的时候看到的梁元仅仅是一条直线(如图1直线25所示),这样就有可能发生图2-(b )、图3-(b )所示错误而不自知。
图1图2-(a ) 甲板结构T梁的正确定位图2-(b ) 甲板结构T 梁的错误定位图3-(a ) 舭部结构T 梁的正确定位 图3-(b ) 舭部结构T 梁的错误定位二 Ansys 梁分析中的几点应用技巧本文首先结合图1所示加筋板结构谈一下beam44的应用技巧(以下如不特别声明,长度单位为cm ,力的单位为kg f )。
图1中板1346为船体某处甲板(图中已给出各点坐标),下面铺设一根甲板桁25,尺寸为┴6×1006×120(单位:mm )。
1 选择单元类型Preprocess or →E lement T yent T ype :选Shell63和Beam442 定义梁单元截面尺寸Preprocess or →Sections →Beam →C omm on Sectns :注意:O ffset T o 、O ffset -Y 和O ffset -z 的填写3 定义实常数Preprocess or →Real C onstants →…定义板的厚度,梁的实常数不用定义(因为前面已经定义了梁的截面)图44 定义材料Preprocess or →Material Props →Material M odels …5 建立几何模型Preprocess or →M odeling →Create →K eypoints →In Ac 2tive CS …Preprocess or →M odeling →Create →K eypoints →Lines…Preprocess or →M odeling →Create →Areas …6 赋板和梁的属性赋板的属性Preprocess or →Meshing →Mesh Attibues …赋板的属性赋梁的属性Preprocess or →Meshing →Mesh Attibues →Picked Lines +:图5注意(图4):●Pick Orientation K eypoint (s )钩选框默认值是N o ,这里须钩为Y se 。
船舶结构强度有限元计算分析中的技巧
船舶结构强度有限元计算分析中的技巧
1.确定准确的边界条件:在进行有限元分析之前,必须确定准确的边
界条件,包括施加在结构上的载荷和约束条件。
载荷可以来自于船体自重、海浪、风力等,而约束条件则取决于结构在实际使用中的支撑方式和边界。
2.适当的网格划分:将船体结构划分为有限元网格时,需要平衡网格
密度和计算的效率。
网格应该足够细化以准确地刻画结构的几何形状和应
力分布,但过度细化会导致计算时间过长。
3.材料力学性质的准确建模:船舶结构通常由多种材料构成,每种材
料都有不同的力学性质。
在有限元分析中,必须准确地建模材料的弹性模量、屈服强度、断裂韧性等参数,以获得准确的应力和变形结果。
4.船舶结构的非线性分析:船舶结构在承受大量载荷时可能会发生非
线性行为,例如材料的塑性变形、变形引起的刚度变化等。
在分析中,可
以使用非线性有限元分析技术来模拟这些行为,例如使用非线性材料模型
或考虑接触和接缝等。
5.动态分析考虑:船舶结构通常在动态环境中运行,例如在海浪、船
舶振动等影响下。
因此,在分析中需要考虑结构的动态响应。
可以采用模
态分析、动态响应分析等方法来评估结构在不同动态情况下的强度。
6.结果验证和后处理:在完成有限元分析后,应对结果进行验证。
这
可以包括与实验数据的比较、与规范要求的比较等。
同时,还需要进行合
理的后处理,以便更好地理解结果,例如绘制应力云图、应力集中区域以
及确定最薄弱的部位。
58m起重船有限元强度计算
58m起重船有限元强度计算有限元强度计算是一种利用有限元分析方法,对起重船进行结构强度分析和计算的技术手段。
在进行起重船的有限元强度计算时,需要考虑起重船的结构特点、荷载情况和材料性能等因素,通过有限元分析软件对其进行建模和模拟,最终获取起重船在各种工况下的应力、变形等参数,以评估其结构的安全性和可靠性。
一般来说,起重船的有限元强度计算主要包括以下几个步骤:1. 建立起重船的有限元模型。
首先需要对起重船的结构进行三维建模,包括船体、吊臂、支撑结构等部件。
然后根据实际情况给出结构的约束、荷载条件和材料性能参数等。
2. 进行静力分析。
在建立好有限元模型后,需要进行静力分析,计算起重船在不同工况下的受力情况,包括自重、载荷、风荷载、船体和吊臂的应力等。
3. 进行动力分析。
除了静力分析外,还需对起重船进行动力分析,考虑在船舶运行和吊重过程中产生的动态荷载,如风浪、潮流等。
通过动力分析得到起重船在吊重过程中的应力和变形等情况。
4. 计算与评估。
最后需要对所得到的计算结果进行分析和评估,判断起重船在各种工况下的结构安全性和可靠性,以确定其是否符合设计要求和规范要求。
起重船的有限元强度计算对于评估起重船的结构强度和安全性具有重要的意义。
通过有限元分析,可以较为精确地预测起重船受力情况和结构行为,为船舶设计和使用过程中的结构优化和改进提供依据。
有限元强度计算也有助于发现起重船在设计、制造和使用过程中可能存在的结构问题,及时进行修复和改进,以确保起重船在运行过程中的安全可靠。
通过有限元强度计算可以为起重船的结构设计提供参考和借鉴,促进船舶结构设计和研发水平的提高。
起重船的有限元强度计算是一项重要的技术手段,对于提高起重船的结构安全性、可靠性和经济性具有积极的意义。
通过合理、准确地进行有限元强度计算,可以为起重船的设计、制造和使用提供科学的依据,为船舶行业发展和船舶工程的进步做出积极贡献。
船舶有限元计算范文
船舶有限元计算范文船舶有限元计算是一种用于分析船舶结构强度和刚度性能的计算方法。
它基于有限元理论和数值计算方法,通过将船舶结构划分为有限数量的单元,对每个单元进行力学计算,并考虑单元之间的相互作用,最终得到整体结构的应力和变形情况。
1.建立有限元模型:根据船体结构的实际几何尺寸和材料特性,将其离散成一系列有限元单元,如三角形或四边形等。
每个单元具有一定的材料特性和节点位置。
通常,规模较大的船舶模型会划分成数百万至数亿个单元,以确保模型的准确性。
2.确定边界条件:通过在船舶结构的边界处施加约束条件,如固定约束或位移约束,来限制模型的运动自由度。
这些约束条件是根据实际问题和分析需要确定的。
3.施加载荷:根据实际工况和使用环境,将相应的载荷施加到有限元模型上。
这些载荷可以是静态力、动态力、重力或液体压力等。
根据船舶的使用情况和荷载条件,可以进行多次加载,以模拟各种实际工况。
4.进行数值计算:使用数值计算方法,如有限元法、有限差分法或有限体积法等,对有限元模型进行计算。
在计算过程中,可以考虑诸如非线性材料行为、大变形、接触问题和材料破坏等复杂因素。
通过迭代求解结构的平衡状态,计算每个单元的应力和变形情况。
5.分析结果:通过分析计算结果,评估船体结构的强度和刚度性能。
可以确定结构的关键部位和薄弱环节,并进行结构优化设计。
此外,还可以进行疲劳分析、动力响应分析和安全性评估等。
然而,船舶有限元计算也存在一些挑战和限制。
首先,船舶结构通常非常复杂,包含许多几何形状和材料特性的变化,这增加了有限元模型的建立和计算的复杂性。
其次,大规模的有限元模型需要大量的计算资源和计算时间,所以在实际应用中需要合理选择模型和求解算法。
此外,由于材料特性的不确定性和模型简化的限制,船舶有限元计算结果可能存在一定的误差和不确定性。
总体而言,船舶有限元计算是一种重要的工程分析方法,可以为船舶结构的设计和评估提供有力的支持。
随着计算技术的不断发展和改进,船舶有限元计算在船舶工程领域将继续发挥重要的作用。
船舶关键部件静强度及疲劳寿命的有限元分析方法
工程应用船舶物资与市场 510 引言船舶设计是海洋航运技术的一个非常重要的部分,也非常昂贵。
对于特殊类型的高科技船舶,设计的成本约为70%。
中国目前是造船大国,但就产品匹配速度、生产过程和自主创新速度而言,中国船舶与世界水平的差距巨大。
为了确保船舶的可靠运行和耐久性,需要进行可靠性分析。
在计算应力时,损耗强度和产品寿命通常通过增加允许安全系数而增加。
本文的主要功能是对船舶进行三维建模,并对主干和承载梁等关键部件进行静态强度分析。
1 有限元分析的基本方法1.1 建立有限元模型通常有2种方法:直接法和间接法。
直接法:通过直接使用结构化元素法创建分析模型;间接法:首先创建分析对象的几何模型,然后导出单独的最终模型。
间接法是最常用的建模方法,适用于节点多、单元多的复杂结构。
1.2 设置边界条件限制必须确保整体自由度为0。
限制方法必须支持与组件的实际状态匹配。
可以选择固定弹簧、接触、硬连接来模拟许多实际约束。
限制应服从对称边界限制,荷载的应用包括表面荷载、中心荷载和体荷载。
在施加荷载时,应记住荷载单位必须均匀。
1.3 模型解算选择求解类型,如线性常力、条件静力、响应、弯曲或谐响应分析;然后根据解的类型设置适当解的输出并开始求解。
2 有限元分析与疲劳寿命分析方法的异同船舶关键部件静强度及疲劳寿命的有限元分析方法石义杰(中船澄西船舶修造有限公司,江苏 江阴 214400)摘 要 :船舶构件力学性能测试与分析可大大提高船舶主要部件的生产工艺。
同时,可以对船舶主要构件的疲劳强度。
使用有限元进行寿命分析,从而快速检测和改进薄弱环节,降低制造船舶主要构件的成本。
本文将利用有限元程序和疲劳分析对主要船舶部件的疲劳强度和寿命进行分析,为今后的船舶设计和生产提供参考。
关键词:船舶;有限元;强度;疲劳寿命中图分类号:U661.43 文献标识码:A DOI:10.19727/ki.cbwzysc.2019.11.016[引用格式]石义杰.船舶关键部件静强度及疲劳寿命的有限元分析方法[J].船舶物资与市场,2019(11):51-52.收稿日期:2019-10-12作者简介:石义杰(1989-),男,本科,工程师,研究方向为船舶结构设计。
船舶结构的强度分析
船舶结构的强度分析船舶作为一种重要的水上交通工具,其结构的强度对船舶的安全和运行能力至关重要。
船舶结构的强度分析是对船舶结构在不同负荷情况下的性能进行评估和预测的过程,它在船舶设计、制造和运营中起着重要的作用。
一、船舶结构的强度要求船舶结构的强度要求是为了确保船舶在各种复杂的工作条件下仍能够承受各种力学载荷,并保持结构的完整性和稳定性。
船舶在航行中会受到来自波浪、风力、潮流等外部力的作用,同时还要承受自身的结构重量以及载货量的影响。
因此,船舶结构的强度分析需要考虑这些作用力,并进行综合分析。
二、船舶结构的强度分析方法船舶结构的强度分析一般通过有限元分析方法来进行。
有限元分析是一种数值分析方法,它将结构划分为许多小的有限元,通过计算每个有限元的应力和应变,并进行相应的求解和模拟,从而得到结构的强度分布和整体性能。
有限元分析方法不仅能够更真实地反映船舶结构的受力状态,还具有较高的计算精度和计算效率。
三、船舶结构的强度分析参数在船舶结构的强度分析中,有一些重要的参数需要考虑,如材料的力学性能、船舶的尺寸和形状、载荷分布以及液体和气体的影响等。
不同的船舶类型和用途,其结构的强度要求和分析参数也会有所不同。
例如,客船和货船对结构强度的要求可能不尽相同,因此在分析时需要根据实际情况进行合理的选择和设置。
四、船舶结构的强度优化在船舶结构的强度分析过程中,一般会通过一系列的试验和仿真来验证结构的强度性能,并根据结果进行优化设计。
强度优化的目标是在满足强度要求的前提下,最大程度地减少结构的重量和成本,提高船舶的运载能力和经济效益。
优化设计可以通过调整结构参数、优化材料选择和改进制造工艺等途径来实现。
五、船舶结构的强度分析的应用船舶结构的强度分析在船舶领域广泛应用,可以用于新船舶的设计和建造,也可以用于现有船舶的评估和维修。
在新船舶设计过程中,通过结构的强度分析可以评估各种设计方案的可行性,并确定适当的结构参数和材料选择。
58m起重船有限元强度计算
58m起重船有限元强度计算随着经济的发展和船舶的多样化,起重船成为现代船舶中不可或缺的一种。
起重船是一种专用船舶,主要用于货物的装卸作业,是重要的水上机械设备。
起重船通常由船体、电力设备、机械传动装置和吊臂组成。
船体是起重船的核心部件,为了确保起重船在运行过程中的安全性和稳定性,需要对其进行强度计算。
本文将针对58m起重船的强度计算进行分析。
一、船体结构58m起重船的船体主要由龙骨、外壳和甲板组成。
龙骨为船体的纵向骨架,作为船体的支撑和强化结构,通常呈现一种井字形结构。
外壳是船体的主要承重结构,其作用是承受各种载荷和作用力并将其传递给龙骨。
甲板是船体的顶部覆盖结构,用途是为船员和货物提供平稳的工作和生活空间。
有限元是一种基于数学方法的分析技术,可用于计算船体结构的强度和稳定性。
在有限元分析中,船体结构被分解为许多简单的元素,每个元素都具有一些特定的属性和材料参数。
这些元素之间通过节点连接,形成一个复杂的网格结构。
然后通过在节点处施加载荷或位移,可以计算出每个元素的应力和变形,从而获得整个结构的强度和稳定性。
在对58m起重船进行强度计算时,需要进行以下步骤:1、建立有限元模型,将船体结构分解为许多元素并进行网格划分。
2、设定边界条件,即对结构进行载荷和约束的设置。
3、计算每个元素的应力和变形,并将结果与材料性能进行比较。
4、评估整个结构的强度和稳定性,确定其是否满足船级社的要求和国际标准。
1、船体结构的尺寸、形状和材料参数。
2、船体在各种载荷和环境条件下的应力和变形情况,如水压、风力、浪高等。
3、船体的设计和建造标准,如船级社的规定和国际标准等。
通过有限元强度计算,可以评估58m起重船的结构强度和稳定性,为其安全运行提供保障和指导。
同时,还可以优化船体结构设计和材料选择,提高船舶的经济性和环保性能。
船舶结构设计中的疲劳强度分析
船舶结构设计中的疲劳强度分析一、引言随着人民生活水平的不断提高,海洋运输成为国际贸易中不可或缺的一部分,船舶结构的安全性和可靠性越来越受到重视。
而疲劳强度分析技术在船舶结构设计中具有重要的作用。
二、疲劳强度分析概述疲劳强度是指物体在交替应力作用下产生损伤的能力,通常用承受交替应力循环以致导致断裂所需的循环次数来表示。
而疲劳强度分析是通过计算某一结构在规定的载荷条件下的循环次数,确定该结构的疲劳寿命和疲劳强度,从而保证船舶结构的安全性和可靠性。
三、疲劳强度分析技术1. 疲劳载荷谱分析疲劳载荷谱分析是指对船舶在实际使用中所受到的载荷进行统计和分析,确定疲劳载荷谱。
通过对载荷谱分析,可以获得船舶在实际使用时所受到的疲劳载荷谱,为疲劳强度分析提供了重要的基础数据。
2. 有限元疲劳强度分析有限元疲劳强度分析是指采用有限元方法对船舶结构模型进行建模和分析,计算其在实际载荷条件下的疲劳强度。
该方法可以模拟船舶结构的实际使用情况,准确地计算疲劳强度,为船舶结构的设计提供科学依据。
3. 应力集中系数法疲劳强度分析应力集中系数法疲劳强度分析是指通过计算结构中应力集中系数,来评估结构在疲劳载荷下的疲劳性能。
该方法简单易行,适用于设计初期的疲劳强度评估。
4. 频域方法疲劳强度分析频域方法疲劳强度分析是指通过对结构的振动信号进行频域分析,计算出其疲劳强度。
该方法能够准确地计算某一结构的疲劳寿命和疲劳强度,但需要大量的数据处理,复杂度较高。
四、结构材料的疲劳特性船舶结构材料的疲劳特性是指材料在交替应力作用下的损伤特性。
不同种类的结构材料具有不同的疲劳特性。
一般来说,疲劳寿命越长的材料可以承受更多的循环次数,对于船舶结构的设计来说,需要选择具有较长疲劳寿命的材料,以确保结构的安全性和可靠性。
五、结论疲劳强度分析技术在船舶结构设计中具有重要的作用,可以评估船舶在疲劳载荷下的性能,为船舶结构的安全性和可靠性提供保障。
在选择结构材料时,需要考虑其疲劳特性,选择具有较长疲劳寿命的材料。
58m起重船有限元强度计算
58m起重船有限元强度计算起重船是一种通过起重机构进行货物吊装和运输的特种船舶,用于港口、航道、河道、水电站等场合的货物装卸作业。
起重船需要具备足够的强度来承受起重机构产生的巨大荷载,并保证船体的稳定性和耐久性。
本文将介绍起重船有限元强度计算的几个关键步骤。
起重船的结构通常由船体、起重机构、船尾和推进装置等部分组成。
在强度计算中,我们主要关注船体的结构强度。
第一步,确定有限元模型。
有限元法是一种基于数值计算的工程分析方法,它将结构划分为多个小单元,通过计算每个单元的应力和变形来推导整个结构的强度特性。
在起重船的有限元模型中,通常包括船体的外部壳板和内部纵横隔舱的框架和甲板等部分。
根据实际情况选择合适的单元类型和尺寸。
第二步,确定荷载条件。
起重船在工作状态下需要承受多种荷载,包括自船重、起重机构产生的货物重量、水动力荷载、风荷载等。
根据船舶设计规范和实际工况,确定每个荷载的大小和分布情况。
第三步,进行有限元分析。
利用有限元软件,将荷载作用于有限元模型,计算结构在荷载作用下的应力和变形。
通过分析计算结果,可以评估结构的强度和刚度,发现可能存在的问题和隐患。
第四步,优化设计。
如果有限元分析中发现结构存在强度不足或变形过大的问题,可以进行结构的优化设计。
常见的优化方法包括加强结构的某些部位、增加材料的厚度或强度等。
通过多次迭代,不断改进结构设计,使其满足强度要求。
第五步,验证计算结果。
在优化设计完成后,需要对修正后的结构进行验证计算,以确保其满足强度要求。
这可以通过再次进行有限元分析,将荷载作用于修正后的模型,检查结构的应力和变形是否满足设计要求。
起重船的有限元强度计算是一个复杂的工程分析问题,需要综合考虑结构的多种荷载和多个工况下的应力和变形。
通过科学的分析方法,可以为起重船的结构设计提供有力支持,确保其安全可靠地承载起重机构的运行。
船舶结构强度有限元计算分析中的技巧
船舶结构强度有限元计算分析中的技巧陈有芳、章伟星中国船级社北京科研所船舶结构强度有限元计算分析中的技巧Skills of Ship Structural Strength Analysis By FEM陈有芳、章伟星(中国船级社北京科研所)摘要:在对船舶结构进行有限元计算分析和评估中,一般采用的是舱段板梁模型,不可避免要面临应力的选取问题。
对于弯曲板单元,有限元计算输出的应力包括上下表面的应力,我们在评估中一般采用中面应力作为工作应力,中面应力应该是上下表面应力的平均,如果在实际操作中采用上下表面应力的平均的方法来得到中面应力,将比较麻烦,也不直观。
本文对在船舶结构有限元分析评估中采用中面应力作为工作应力的原理、方法以及如何在MSC.Patran中如何得到中面应力的技巧做一介绍,供船舶结构分析工程师参考使用。
并做了一些测试和分析。
关键词:船舶结构有限元强度中面应力 MSC.PatranAbstract: In analyzing and evaluating of ship structures by FEM, a plate-beam FE model within holds is generally used and it is unavoidable to solve how to select the stress used. For bending plate, the output stresses include the stresses of up-surface and lower-surface, but in ship structure strength analysis, the mid-surface stress is used as applied stress in general. As we know, the mid-surface stress is the average value of up-surface stress and the lower-surface stress. It is discommodious to obtain the mid-surface stress by the up-surface stress and lower-surface stress in practice. The paper introduces the theory and method of using the mid-surface stress as the applying stress in ship structure strength analysis, and the skills about how to obtain the mid-surface stress in MSC/PATRAN. Some tests and analysis have also been carried in this paper.Keys:Ship Structure Finite Element Strength Mid-surface Stress MSC.patran1 概述一般来讲,对承受面外压力的板进行强度校核时,应对板的上下表面应力进行校核,相应的强度标准也是对应的上下表面应力,这些均应该建立在能对板的应力精确计算的基础上。
有限元分析在船舶复杂结构强度计算与优化中的应用
有限元分析在船舶复杂结构强度计算与优化中的应用摘要:近些年,受我国社会发展的影响,我国的科学水平不断提升。
由于船舶在日常营运过程中需要承受复杂的力学载荷,比如海浪拍击作用力、船载设备的重力等,船舶复杂结构比如舱壁的肋板、动力系统结构件等一旦出现结构破坏,会造成严重的事故。
因此,为了保证船舶结构在复杂力学工况下不会产生失效现象,必须针对船舶复杂结构件进行力学优化。
有限元分析法是业界目前应用非常广泛的一种强度分析法,本文主要介绍有限元分析法的基本流程,结合三维建模软件CREO和有限元划分软件Hypermesh以及有限元分析软件Ansys对船舶舱壁的肋板进行强度分析和优化设计。
关键词:有限元分析;CREO;Hypermesh;Ansys;强度分析引言现代的航行条件以及航运的特点对船舶的性能提出了越来越高的要求。
船舶结构较为复杂,船舶的结构设计是船舶设计的基础,而船舶的结构强度分析是船舶结构设计中的一个重要环节,对于保证船舶的安全性和稳定性起着至关重要的作用。
通过结构强度分析,能够体现船舶结构的载荷能力,并根据分析结果对原有设计进行改进,以实现船舶承载性能的优化。
现代的数值分析方法为船舶的结构强度分析提供了较多的解决思路,而有限元分析是应用较为广泛的一种。
在有限元分析中,将复杂的船舶外形与结构划分为大量的网格单元,并将所受到的载荷离散化到网格单元中,实现对结构强度的计算。
其中载荷离散化是整个计算分析的一个重要步骤,往往需要花费较长的时间与计算资源,所以需要较为合理的载荷离散化方法,在保证计算精度的同时,提高结构强度分析的效率。
1有限元分析技术概述有限元法是当今工程界应用最广泛的数值模拟方法。
它的基本思想可以概括为:“先分后合”或“化整为零又积零为整”,有限元法适应性强,运用非常广泛,能够灵活的解决许多具有复杂的工况和边界条件的问题。
目前著名的有限元分析软件主要有ANSYS、ALGOR、ADINA、NASTRAN、ADAMS等。
船体结构有限元分析专题
目录
• 船体结构有限元分析概述 • 船体结构的离散化 • 船体结构的网格生成 • 船体结构的边界条件和载荷处理 • 船体结构的刚度和强度分析 • 船体结构的振动和稳定性分析 • 船体结构有限元分析的软件和应用实例
01 船体结构有限元分析概述
船体结构有限元分析的定义
船体结构有限元分析是一种基于数学和物理原理的数值分析方 法,通过将船体结构离散化为有限个小的单元(或称为“有限 元”),并建立相应的数学模型,对船体结构的静态、动态特 性以及承受外载荷的能力进行分析和评估。
边界条件和载荷的准确性和可靠性
准确性
边界条件和载荷的准确性直接影响到有限元 分析结果的可靠性。为了获得准确的边界条 件和载荷,需要充分了解结构的实际工作状 态,并进行详细的实验测试和验证。
可靠性
在有限元分析中,可靠的边界条件和载荷处 理是获得可靠分析结果的前提。为了提高分 析的可靠性,可以采用多种边界条件和载荷 处理方法进行对比和分析,并对结果进行校 核和验证。
将几何模型离散化为有限 个小的单元,形成有限元 网格。根据船体结构的复 杂程度和精度要求,可以 选择不同的网格类型和大 小。
根据船体结构所使用的材 料特性,定义材料的弹性 模量、泊松比、密度等参 数。同时,还需定义边界 条件,如固定约束、载荷 条件等。
根据力学原理和有限元方 法,建立相应的数学模型 ,包括平衡方程、几何方 程和本构方程等。然后, 采用适当的数值求解方法 (如直接求解法、迭代法 等)求解这些方程。
船体结构有限元分析的未来发展
高性能计算的应用
随着计算能力的提升,未来将更 多地利用高性能计算资源进行大 规模、高精度的船体结构有限元
分析。
多物理场耦合分析
有限元分析在船舶结构设计中的应用
有限元分析在船舶结构设计中的应用随着船舶工业的不断发展,船舶结构的设计也日益复杂和严谨。
而有限元分析作为一种有效的工具,已经成为了船舶结构设计中不可或缺的一部分。
在此,本文将介绍有限元分析在船舶结构设计中的应用,以及其带来的好处和挑战。
1. 有限元分析简介有限元分析(Finite Element Analysis, FEA)是一种数学模拟分析方法。
它通过分割连续的物体为有限个离散子元,求解每个子元的节点,进而得出整体物体的内部受力、应变等物理特性。
有限元分析应用范围广泛,可以用于船舶、航空航天、建筑等领域的结构设计和分析。
在船舶结构设计中,有限元分析可以对船体结构进行静力计算、动力计算、疲劳及强度分析等方面的计算。
2. 有限元分析在船舶强度计算中的应用在船舶结构设计中,强度计算是至关重要的一部分。
有限元分析可以帮助船舶设计师对船体结构进行静力和动力分析、疲劳分析和强度分析等计算。
通过有限元分析的计算,可以准确预测船舶在航行过程中的受力情况,从而为优化船舶结构提供依据。
例如,某船舶的舵机荷载在使用过程中达到了一个比较高的峰值,这是由于船舶舵机设计参数不足或强度不够所导致的。
在这种情况下,有限元分析可以对舵机进行疲劳分析,预测出舵机在航行过程中可能出现的强度问题,并为进一步优化舵机设计提供支持。
3. 有限元分析在船舶设计优化中的应用有限元分析可以为船舶结构优化提供依据。
通过有限元分析的计算,船舶设计师可以对船体结构进行预测和比较,以评估船体结构的优劣。
例如,在设计某型号船舶的船头结构时,设计师可能会面临着一个问题:如何在保证船头稳定性的前提下,尽可能减小船头的阻力。
有限元分析可以对船头结构进行优化设计,通过对船头结构的静力计算、动力计算、疲劳及强度分析等方面的计算,为设计师提供优化方案,以达到降低阻力的目的。
4. 有限元分析在船舶结构安全性评估中的应用船舶结构的安全性评估是船舶设计中不可避免的一个环节。
9有限元法在船体结构设计中的应用
9有限元法在船体结构设计中的应用有限元法(Finite Element Method, FEM)是一种计算机辅助的工程分析方法,广泛应用于船体结构设计中。
它通过将连续物体分割成许多小的有限元素,再对每个元素进行分析计算,最后整合得到对整个结构的应力、应变和位移等分布情况。
本文将探讨有限元法在船体结构设计中的应用。
首先,有限元法在船体结构疲劳分析中的应用非常重要。
船体疲劳是指船舶在长时间航行或大风大浪环境下,由于受到交变载荷作用而累积的应力引起的结构破坏或失效。
通过有限元法进行疲劳分析可以准确预测结构的疲劳寿命,找到结构中可能出现疲劳破坏的位置和影响因素,从而合理设计结构以提高其疲劳寿命。
其次,有限元法在船体结构优化设计中也有广泛应用。
通过有限元法建立的结构模型,可以对不同设计方案进行模拟计算,从而比较各种方案在强度、刚度、稳定性和航行性能等方面的差异。
通过这种方法,船舶设计师可以在设计过程中尽早发现问题,改进和优化设计方案,以确保结构在满足强度和稳定性要求的同时,尽可能地减轻结构重量,提高航行性能。
此外,有限元法还可以在船体结构可靠性评估中发挥重要作用。
船舶作为一种运输工具,必须保证其在各种复杂环境下的可靠性和安全性。
通过有限元法,可以对船体结构进行应力、应变、位移等参数的分析计算,并考虑材料特性、负载、边界条件等因素,从而对结构的可靠性进行评估。
此外,当结构发生局部破坏或失效时,还可以通过有限元法进行损伤诊断,及时采取修复措施,延缓结构的失效进程。
最后,有限元法在船体结构振动分析中也有广泛应用。
船舶在航行时会受到各种激振载荷的作用,如引擎震动、波浪载荷等。
振动分析可以帮助设计师确定结构的固有频率和振动模态,以及结构在不同频率下的响应情况。
通过有限元法进行振动分析,可以预测结构在不同激振载荷下的振动响应,从而设计合适的结构降低振动幅值,提高舒适性和结构的可靠性。
综上所述,有限元法在船体结构设计中的应用非常广泛,包括疲劳分析、优化设计、可靠性评估和振动分析等方面。
船舶结构强度分析及设计优化
船舶结构强度分析及设计优化首先,对于船舶结构的强度分析,可以采用有限元法来进行模拟计算。
有限元法是一种将复杂结构分割成若干有限单元,并在每个单元内进行力学分析的方法。
通过数值计算,可以得到每个单元的应力、应变及变形等结果,从而进一步得到整个船体结构的强度情况。
在进行有限元分析时,需要考虑各种工况下的载荷作用,包括静态荷载、动态荷载、水流荷载以及海浪荷载等。
同时,还需考虑材料的强度和疲劳寿命等因素,以保证船舶结构在使用寿命内不会发生破坏。
其次,船舶结构的设计优化是指在满足强度要求的前提下,通过优化设计,使船舶的结构更加轻量化和高效化。
优化设计可以采用多目标优化方法,将结构的重量和成本等指标作为目标函数,建立优化模型。
通过改变结构的几何形状、材料的选择、构件的布局等,来寻求最佳的设计方案。
在进行优化设计时,需要考虑多种约束条件,如强度、稳定性、可靠性、制造工艺等,以及几何形状的限制等。
通过不断的迭代计算和优化过程,最终得到满足要求的最优设计方案。
船舶结构强度分析及设计优化的好处是多方面的。
首先,通过强度分析,可以确保船舶在各种工况下具有足够的强度和稳定性,从而提高船舶的安全性和可靠性。
其次,通过设计优化,可以降低船舶的结构重量和成本,提高船舶的经济性和运营效益。
此外,强度分析和设计优化还可以为后续的船舶改进和性能提升提供基础。
总之,船舶结构强度分析及设计优化是一项重要且复杂的工作,它需要运用数值模拟和优化方法来对船舶结构进行分析和设计,以满足强度要求、提高经济性和安全性。
这是一个综合性的工程,需要考虑多个因素和约束条件,并进行多方面的优化和验证。
只有通过系统的、科学的分析和设计,才能够使船舶结构更加安全、经济和可靠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
船舶结构强度有限元计算分析中的技巧
陈有芳、章伟星
中国船级社北京科研所
船舶结构强度有限元计算分析中的技巧
Skills of Ship Structural Strength Analysis By FEM
陈有芳、章伟星
(中国船级社北京科研所)
摘要:在对船舶结构进行有限元计算分析和评估中,一般采用的是舱段板梁模型,不可避免要面临应力的选取问题。
对于弯曲板单元,有限元计算输出的应力包括上下表面的应力,我们在评估中一般采用中面应力作为工作应力,中面应力应该是上下表面应力的平均,如果在实际操作中采用上下表面应力的平均的方法来得到中面应力,将比较麻烦,也不直观。
本文对在船舶结构有限元分析评估中采用中面应力作为工作应力的原理、方法以及如何在MSC.Patran中如何得到中面应力的技巧做一介绍,供船舶结构分析工程师参考使用。
并做了一些测试和分析。
关键词:船舶结构有限元强度中面应力 MSC.Patran
Abstract: In analyzing and evaluating of ship structures by FEM, a plate-beam FE model within holds is generally used and it is unavoidable to solve how to select the stress used. For bending plate, the output stresses include the stresses of up-surface and lower-surface, but in ship structure strength analysis, the mid-surface stress is used as applied stress in general. As we know, the mid-surface stress is the average value of up-surface stress and the lower-surface stress. It is discommodious to obtain the mid-surface stress by the up-surface stress and lower-surface stress in practice. The paper introduces the theory and method of using the mid-surface stress as the applying stress in ship structure strength analysis, and the skills about how to obtain the mid-surface stress in MSC/PATRAN. Some tests and analysis have also been carried in this paper.
Keys:Ship Structure Finite Element Strength Mid-surface Stress MSC.patran
1 概述
一般来讲,对承受面外压力的板进行强度校核时,应对板的上下表面应力进行校核,相应的强度标准也是对应的上下表面应力,这些均应该建立在能对板的应力精确计算的基础上。
在工程应用上,强度标准建立在相对假设的基础上的,即所谓的相对强度标准,所采用的强度标准也应该根据所采用的强度理论和采用的有限元模型简化程度来选取对应的应力。
在船体结构强度评估中,习惯将船体构件按照其受力特点,分为四类,相应的板格应力分为四种应力成分。
i. 只计算总纵弯曲应力σ1,用简单梁理论[1σσ≤=
W
M
] 即可。
ii. 只计算板架弯曲应力σ2,可采用膜单元或板单元来模拟船体板,网格大小可取为肋板
和纵桁间距,应力取膜元的应力或板元的中面应力,σ2≤[σ2]。
iii. 需计算纵骨的弯曲所引起的应力,可采用膜单元或板单元来模拟船体板,网格大小可
取为肋板间距的1/4和纵骨间距,应力取膜元的应力或板元的中面应力,σ3≤[σ3] iv. 需计算板本身的弯曲所引起的应力,只能采用板单元来模拟船体板,网格的大小可取
为肋骨和纵骨间距的1/4,应力取板元的上下表面应力,σ4≤[σ4]
在船舶结构强度计算中,由于σ3,σ4相对来说较小,只需要校核σ1≤[σ1],σ2≤[σ2] 和σ1+σ2≤[σ1+σ2]。
2 船舶结构有限元模型
对于散货船、油船这类方型系数较大,中间平行总体较长的船舶,一般关心的是0.4L 范围内货舱结构的强度。
考虑到计算成本以及计算精度,有限元模型一般采用如下规则: A 模型范围一般取在船中货舱区域的舱段部分。
B 船体结构有限元网格大小沿船体横向按纵骨间距划分,纵向按肋骨间距或参照纵骨间距
大小划分,舷侧也参照该尺寸划分。
C 一般来讲,船体的各类板、壳结构,强框架、纵桁、平面舱壁的桁材、肋骨等的高腹板
以及槽型舱壁和壁凳用弯曲板壳单元模拟。
D 对于承受水压力和货物压力的甲板、内外壳板、内外底板、顶底边舱斜板上的纵骨、舱
壁的扶强材等用梁单元模拟,并考虑偏心的影响。
根据上述规定的建模准则,船体板本身的弯曲应力σ4也是不能计算出来的。
所以所采用的工作应力应为板单元的中面应力,并且用单元的中面应力比较稳定。
下图为一典型的散货船有限元模型。
3 应力测试
为了说明根据根据上述建模准则,不能计算出来板本身的弯曲应力σ4,本测试采用三种载荷施加方式来说明。
模型采用如图所示的加筋板,板的尺寸:长×宽=17200×17200mm ,纵横加强筋的间距为860mm ,粗网格单元尺寸860×860mm ,细网格单元尺寸215×215mm ,材料:E=210000N/mm 2,υ=0.33,ρ=7.8×10-5N/mm 3,板厚:22mm ,梁:400×150×12。
边界采用纵向两端简支。
载荷及其说明:
工况1:在整个平面加平均面压,压力大小为0.21N/mm 2;对于细网格,板是受压的; 工况2:在所有纵向梁上加均布线压,压力大小为180.6 N/mm ;对于细网格,板不承受局部载荷;
工况3:在两端加弯矩。
弯矩大小为6.68×108N ・mm
说明:工况1&2在上述定义的粗网格模型中计算的结果(包括中面和上下表面应力)应该相当,而在上述定义的细网格模型中计算的应力(纵向)在中面处应该相当,而在上下表面处应该相差一个局部板弯曲的应力量级。
工况3是一个纯弯曲的模型,其在中面处的应力应该为0。
粗网格模型 细网格模型
结果比较和分析:
均匀分布的梁的板格,其对应网格点(都分布在梁元端)的中面应力应力σx (N/mm 2): 对于这种纵横都布置了和表面应力由于网格划分的粗细而引起的变化不大,但在所选区域的单元应力却与网格划分的粗细有关,且其差别正验证了前面所述的粗网格不能计算板本身的局部弯曲应力σ4而细网格能计算出的结论。
分析如下:
对于工况1,所选区域的单元的纵向粗网格:最大中面应力:-336.77
最大表面应力:-502.42
表面与中面应力之差:165.65 (板弯曲应力) 00.0 (板弯曲应力) 当) 5 (板本身局部弯曲应力) /mm 2,υ=0.33,ρ=7.8×10-5N 为44.1N/mm 2。
与有限元计算值表明,在船体结构有限元分析建模中采用加强筋的间距划分网格,是不能计算出板4 中面应力的提取
的用户都知道,在MSC.Patran 后处理中显示的在表面z1、z2的应力义为0,则该表面为中面。
见下图:细网格:最大中面应力:-341.97 最大表面应力:-541.97
表面与中面应力之差:2粗细网格中面应力之差:7.2 (与表格中的节点应力之差相粗细网格表面应力之差:39.55
粗细网格板弯曲应力之差:44.3对于如下模型:
板的尺寸:长×宽=17200×17200mm ,材料:
E=210000N /mm 3,板厚:22mm 。
四周刚固。
面压 0.21N/mm 2。
该模型板的局部弯曲应力,即常说的σ4,理论计算值近似相符。
上述分析的局部板弯曲应力的,其应力应该取中面应力。
对于熟悉MSC.Patran ,中面应力应该是这两者应力的平均。
如果用人工去平均来得到中面应力,将比较麻烦,在后处理图形显示中也不好实现。
实际上在MSC.Patran 前处理中可以先定义哪个表面为中面,这样在后处理中很方便输出和提取。
具体做法如下:
在定义板单元的属性时,可以将板单元的Fiber Dis 定
在
后处理中只要选中z1表面的应力,就是想得到的中面应力,当然也可以输出报告。
5 结论
(1) 运用MSC.Patran 的前后处理功能很方便的解决船舶结构计算中的应力提取问题; 船舶结构有限元分析中,按照骨材间距划分网格没有σx 的应力成分,所采用的
6 考文献
[1] MSC.Patran User ’s Manual
体强度与结构设计.国防工业出版社
[3] 张祥孝译.O.F. Hughes . SHIP STRUCTURAL DESIGN .华南理工大学出版社 [4] 中国船级社. 散货船结构强度直接计算指南.人民交通出版社
(2) 在应力应为板单元的中面应力;
(3) 采用中面应力做为评估的工作应力,比较稳定,受人为因素影响较小。
参[2]杨代盛. 船。