给水排水管道系统设计与计算.共59页
给水排水管网系统设计计算
一、管网水力分析的前提(恒定流基本方程组必须可以求解) 必须已知各个管段的水力特性(管段流量与水头之间的关系)
i=1,2,3,……M 式中:hi-管段压降,(水流通过该管段所产生的能量损失),m。 qi-管段流量,m3/s。 si-管段阻力系数,反映管段对水流的阻力大小。 hei-管段扬程,即管段上的泵站提供给水流的总能量,就 等于泵站的静扬程,m。 n-管段阻力系数(与水头损失计算公式相一致) 公式中已经考虑了管段流量的正负值情况,管段水头损失的 方向与流量方向一致(当管段水流流向与管段设定方向不一致时, 管段流量为负值)。
* Fi * Ti * Fi * Ti
* i
i=1,2,3,…,M。
上式说明,如果R=0,则所有节点水头同时降低或者增加一个 相同的量,不会影响方程组的成立,方程组无确定的解。
所以,方程组有确定解的充分条件是R≧1。
二、恒定流基本方程组的线性变换
线性变换:a、方程等式两边同时乘一个不为零的常数; b、两个方程式相加或者相减。 1、节点流量连续性方程组的变换 将两个或者多个相邻的彼此关联的节点的流量方程相加, 得到新的流量连续性方程。(其工程意义在于:得到有多个 节点组成的大节点的流量连续性方程,可以大大地简化计 算)。 也可以通过对管网图割集取隔离体,运用质量守恒定律, 直接得到大节点的连续性流量方程。 树状管网中,每条管段均是一个割集,它们的连续性流 量方程组中,每个方程只包含一个管段流量,如果对应的节 点流量已知,则很容易求出各个管段流量。
此式为给水管网水力计算的基础方程。
§ 6.4 解环方程的水力分析
以环流量为未知量,求解环能量方程组(水力平差法) 。 一、 环能量方程组的线性化 1、 管段水力特性线性化
《给水排水管网系统》课程设计计算说明书
管段配水 管段沿线
节点设计流量计算(L/s)
长度(m) 流量(L/s) 集中流量 沿线流量 供水流量 节点流量
257
6.83
3.41
544.11 -540.70
997
4.17 4.76 5.15 -0.59 5.94 -0.98 6.71
4.17 4.76 4.92 -0.59 5.35 -0.75 5.96
4.16 4.76 4.77 -0.60 4.75 -0.61 5.35
4.17 4.76 4.70 -0.59 4.16 -0.53 4.82
4.17 4.76 4.62 -0.59 3.57 -0.45 4.37
不设水塔
(2) (3) (4) (2)(- 3) Σ (2)-(4) Σ
4.17 2.39 2.28 1.78 1.78 1.89
1.89
4.17 2.38 2.28 1.79 3.57 1.89
3.78
4.16 2.39 2.20 1.77 5.34 1.96
5.74
4.17 2.39 2.27 1.78 7.12 1.90
0.92 -0.66
22~23 4.17 4.76 3.51 -0.59 -1.77 0.66
-1.18
1.25 0.59
23~24 4.16 2.39 2.98 1.77 0.00 1.18
0.00 -0.59 0.00
累计 100 100 100 调节容积=10.68 调节容积=12.44 调节容积=4.17
7.64
4.17 2.38 2.31 1.79 8.91 1.86
9.50
4.16 4.76 3.39 -0.60 8.31 0.77 10.27
给排水污水管道设计计算.
2 污水管道设计计算2.1排水区域划分及管线布置2.1.1排水区域划分该地区所地区地面平坦,可按一个高度确定地面标高。
区域最北部为京杭大运河,沿河的东部和西部分别有一个污水处理厂。
根据以上条件划分排水区域为:以淮海路为分界线,划分成两个排水区域。
淮海路以西所排放的污水排入四季青污水处理厂,以东排入淮安第二污水处理厂。
2.1.2管线布置污水厂污水厂图1 污水管道布置图(初步设计)管线布置原则是充分利用地形、地势,就近排入水体,以减小管道埋深,降低工程造价。
该地区地势平坦,区域最北边为京杭大运河,因此干管自南向北采用截流式敷设。
截流式是正交式的改进,即沿河岸敷设主干管。
这种布置的优点是干管长度短,管径小,因而较经济,污水排出也比较迅速。
干管基本上汇集街道两边相邻街区的污水,若街区面积较小且最近街道未敷设干管,则可能利用支管将该街区污水输送进最近的干管。
具体如图1所示。
2.2 污水流量计算污水设计流量包括生活废水和工业废水两大类。
本设计中,工业废水水量不大,可直接汇入生活污水管道中一并送入污水处理厂。
已知各个功能区的排水量,并从所给地图中量出排水面积,即可求出污水的流量。
街区流量的计算公式[3]:1000243600A q Q(2-1)Q ——流量,L/sq ——污水指标,m 3/ha·d ,居住用地:55m 3/(ha·d );公共设施用地:40 m 3/(ha·d ); 仓储用地:20m 3/(ha·d ); 市政用地:15 m 3/(ha·d ); 其它污水为总污水量的10%。
A ——面积,ha ,在所给地区地形图上根据区域面积计算。
由于居住区生活污水定额是平均值,因此根据设计人口和生活污水定额计算所得的是污水平均流量。
而实际上流入污水管道的污水量时刻扣在变化。
这些变化包括季节变换,日间变换等等。
若要采用平均值计算流量,必须设定污水变化系数来修订水量。
给排水概述(PPT59页).pptx
械、系统、建筑等的总称。
02
给水排水系统的功能与组成
给水排水系统:是为人们的生活、生产和消防提供用水和 排除废水的设施总称。
重要性:人类文明进步和城市化聚集居住的产物 现代化城市最重要的基础设施之一 城市社会文明、经济发展和现代化建设的重要标志
也叫“压强”。
构筑物:就是不具备、不包含或不提供人类居住功能的人工建造物。如
水池、水塔。
常用概念、名词
管道附件:就是用于管道连接的配件、设备的总称 常用单位: 压力:1MPa=106Pa=106N/㎡
1标准大气压=76cmHg≈0.1MPa
长度:米(m)、毫米(mm) 管径:公称管径也叫通称管径,是英制单位(DN)
给水管 网系统
城市
给
给水
取 水 供 管网 水水处水
源设理泵
施
设 施
站
企业 给水
管网
自然降水
居民生活用水 公共设施用水 市政用水 城市消防用水
工业企业生产用水 工业企业生活用水 工业企业消防用水
城市 雨水 管网
废水 处理 系统
城市
城市 污水
污水 管网
处理 设施
受 纳
工业 废水
工业 废水
水 体
管网 处理
3)给水管网系统:包括输水管渠、配水管网、水压调节设
施(泵站、减压阀)和水量调节设施(清水池、水塔等)又称输 水与配水系统,简称输配水系统。
4)排水管网系统:包括污水与废水收集与输送管渠、水量
调节池、提升泵站及附属构筑物。
给水排水系统的功能与组成
5)废水处理系统:包括各种采用物理、化学、生物等方法
给水排水管网课程设计说明书及计算书
前言水是人类生活、工农业生产和社会经济发展的重要资源,科学用水和排水是人类社会发展史上最重要的社会活动和生产活动内容之一。
特别是在近代历史中,随着人类居住和生产的程式化进程,给水排水工程已经发展成为城市建设和工业生产的重要基础设施,成为人类生命健康安全和工农业科技与生产发展的基础保障。
给水排水系统是为人们的生活、生产、和消防提供用水和排除废水的设施的总称。
它是人类文明进步和城市化聚集居住的产物,是现代化城市最重要的基础设施之一,是城市社会文明、经济发展和现代化水平的重要标志。
尤其是在面临全球水资源极其缺乏的今天,给排水管网的作用显得尤为重要。
由于城市给排水系统在新的时期赋予了新的内涵,与人们的生产和生活息息相关。
看似平凡的规划设计却有着不平凡的现实意义,在满足规范和其它技术要求的条件下,根据城市的具体情况,科学规划设计城市给排水管网系统是一个非常重要的课题。
课程设计是学习计划的一个重要的实践性学习环节,是对前期所学基础理论、基本技能及专业知识的综合应用。
通过课程设计调动了我们学习的积极性和主动性,培养我们分析和解决实际问题的能力,为我们走向实际工作岗位,走向社会打下良好的基础。
本设计为玉树囊谦县香达镇给排水管道工程设计。
整个设计包括三大部分:给水管网设计、排水管网设计。
给水管网的设计主要包括管网的定线、流量的设计计算、清水池容积的确定、管网的水力计算、管网平差和消防校核。
排水管网设计主要包括排水管网定线、设计流量计算和设计水力计算。
目录第一章设计任务书 (4)第二章给水管网设计说明与计算 (6)2.1给水管网的设计说明 (6)2.1.1 给水系统的类型 (6)2.1.2 给水管网布置的影响因素 (6)2.1.3 管网系统布置原则 (7)2.1.4 配水管网布置 (7)2.2给水管网设计计算 (8)2.2.1 设计用水量的组成 (8)2.2.2 设计用水量的计算 (8)2.2.3 管网水力计算 (12)2.3二级泵站的设计 (20)2.3.1 水泵选型的原则 (20)2.3.2 二级泵站流量计算 (21)2.3.3二级泵站扬程的确定 (21)2.3.4 水泵校核 (22)第三章排水管网设计说明与计算 (23)3.1排水系统的体制及其选择 (23)3.2排水系统的布置形式 (24)3.3污水管网的布置 (24)3.4污水管道系统的设计 (24)3.4.1 污水管道的定线 (24)3.4.2 控制点的确定 (25)3.4.3 污水管道系统设计参数 (25)3.4.4 污水管道上的主要构筑物 (26)3.5污水管道系统水力计算 (27)3.5.1 污水流量的计算 (27)3.5.2 集中流量计算 (27)3.5.3 污水干管设计流量计算 (27)3.5.4 污水管道水力计算 (29)3.6管道平面图及剖面图的绘制 (31)3.6.1 管道平面图的绘制 (34)3.6.2 管道剖面图的绘制 (35)结论 (35)总结与体会 (36)参考文献 (37)第一章设计任务书一、设计题目囊谦县香达镇给水排水管网工程设计。
给水排水管道系统 雨水管网设计与计算
二、雨量管渠设计流量的确定(续1)
极限强度法
从流域上最远一点的雨水流至出口断面的时间称
为流域的集流时间或集水时间
F
t3
极限强度法,即承认降雨强度 D
随降雨历时的增长而减小的规律性,
t2
同时认为汇水面积的增长与降雨历 时呈正比,而且汇水面积的增长速
B t1
度更快,因此只有当降雨历时等于 集流时间时,全部面积参与径流, 产生最大径流量
式中: q——设计暴雨强度,L/s.公顷; P——设计重现期,年; t——降雨历时,min;
A1,c,b,n——地方参数,根据统计方法进行确定。
二、雨量管渠设计流量的确定
雨水管渠设计流量计算公式
Q qF
式中:Q——雨水设计流量,L/s; Ψ——径流系数,其数值小于1; F——汇水面积,公顷; q——设计暴雨强度,L/s.公顷。
雨量分析的要素
• 降雨面积:指降雨所笼罩的面积 • 汇水面积:指雨水管渠汇集雨水的面积
• 降雨的频率:是指等于或大于某值的暴雨强度出现的 次数m与观测资料总项数n之比的百分数
• 降雨的重现期:是指等于或大于某值的暴雨强度出现 一次的时间间隔
一、雨量分析与暴雨强度公式(续1)
暴雨强度公式
q 167 A1 (1 c lg P) (t b) n
三、雨量管渠系统的设计和计算(续4)
雨水管渠系统设计计算举例
已知某居住区平面图.地形西高东低,东面有一自南向 北流的河流,河流常年洪水位14m,常水位12m.该市的 暴雨强度公式给定. 要求布置雨水管道并进行干管的水力计算.
三、雨量管渠系统的设计和计算(续5)
立体交叉道路排水
设计时 注意问题
尽量缩小汇水面积,以减少设计流量 注意地下水的排除 排水设计标准高于一般道路 雨水口布设的位置要便于拦截径流
给水排水管道系统水力计算.doc
给水排水管道系统水力计算本章内容:1、水头损失计算2、无压圆管的水力计算3、水力等效简化本章难点:无压圆管的水力计算第一节基本概念一、管道内水流特征进行水力计算前首先要进行流态的判别。
判别流态的标准采用临界雷诺数Rek,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。
对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。
二、有压流与无压流水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。
水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。
从水流断面形式看,在给水排水管道中采用圆管最多三、恒定流与非恒定流给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。
四、均匀流与非均匀流液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。
从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。
对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。
均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。
对于非满管流或明渠流,只要长距离截面不变,也没有转弯或交汇时,也可以近似为均匀流,按沿程水头损失公式进行水力计算,对于短距离或特殊情况下的非均匀流动则运用水力学理论按缓流或急流计算。
给排水雨水管道设计计算
3雨水管道设计计算3.1雨水排水区域划分及管网布置3.1.1排水区域划分该区域最北端有京杭大运河,中部有明显分水线。
因此以明远路为分界线,明远路以北雨水排入大运河,以南地区雨水排入中部水体。
这样划分有利于减小雨水管线长度和管道,并且可以缩小管径,提高经济效益。
3.1.2管线布置根据该地区水体及地势特点,雨水管道为正交式布置,沿水体不设主干管,雨水通过干管直接排入水体。
一些距水体较近的街区的雨水直接以地表径流的方式直接流入水体。
明远路以北区域雨水干管的走向为自南向北;以南地区部分干管走向为自南向北,部分为自北向南,个别自南北汇入中间,具体流向根据水体所在位置确定。
具体如图3所示。
3.2雨水流量计算图3雨水管道平面布置(初步设计)3.2.1 雨量分析要素a)降雨量指一定时段降落在某一点或某一面积上的水层深度,其计量单位以mm计。
也可用单位面积上的具体及(L/ha)表示[9]。
b)降雨历时指一次连续降雨所经历的时间,可以指全部降雨时间,也可以指其中某个个别的连续时段,其计量以min或h计,可从自记雨量记录纸上读取。
c)暴雨强度指某一连续降雨时段内的平均降雨量,用i表示Hit=(3-1)式中,i——暴雨强度(mm/min);H——某一段时间内的降雨总量(mm);t——降雨时间(min)。
在工程上常用单位时间内单位面积上的降雨体积q表示。
d)降雨面积指降雨所笼罩的面积。
单位为公顷(ha)雨水管渠的收集并不是整个降雨面积上的雨水,雨水管渠汇集雨水的地面面积称为汇水面积。
每根管段的汇水面积如下表所示:表7 汇水面积计算表:管道编号管道长度(m)本段汇水面积编号本段汇水面积(ha)传输汇水面积(ha)总汇水面积(ha)5~4230.7656 6.670 6.67 4~3153.84578 6.6714.67 3~2230.7658、5918.6814.6733.35 2~1153.8466、691233.3545.35 6~7192.36511.86011.86 9~8230.76538.1508.15 8~7153.84549.788.1517.93 16~10230.7660(3)、61(3)8.1508.15 10~11115.3861(4) 5.938.1514.08 11~12153.8460(4)、6222.9714.0837.05 12~13192.350(2)、52(2)10.6237.0547.67 13~14230.7650(1)、50(2)10.6247.6758.29 14~15230.7646(2)21.3458.2979.63 17~18115.3861(1)、(2)11.86011.86 18~19269.2260(1)、(2) 4.4411.8616.3 19~20230.7647 5.1916.321.49 20~21230.7648、4914.2321.4935.72 21~22230.7645(2)10.2335.7245.9523~24192.331(2)、329.4909.4924~25153.8429、3011.129.4920.6125~26153.8426、2719.3420.6139.9526~27153.846(2.2)、7(2.2)9.6739.9549.6227~28173.076(2.1)、7(2.1)9.6749.6259.2928~29173.076(1.2)、7(1.2)9.6759.2968.9630~31192.324(2)、31(1)13.34013.3431~32230.7624(1)、2814.8213.3428.1632~33153.8422、2517.0428.1645.233~34153.844(4.2)、5(4)12.0645.257.2634~35153.844(4.1)、5(3)12.0657.2669.3235~36153.844(2.2)、5(2)12.0669.3281.3837~38230.7620、2331.42031.4238~39153.8418(2)、2128.2331.4259.6539~40153.843(2)、4(3.2)13.6459.6573.2940~41153.843(1)、4(3.1)13.6473.2986.9341~42153.842(2)、4(1.2)12.5386.9399.4643~44153.8418(1)12.45012.4544~45153.841(3)8.8612.4521.3145~4230.761(2)8.8621.3130.1747~48269.2237 1.480 1.4848~49192.335、3611.12 1.4812.649~50153.8433、347.4212.620.0250~51153.849(1.2)、9(2.2) 5.9320.0225.9551~52192.39(1.1) 2.9725.9528.9252~53134.619(2.1) 2.9728.9231.8953~54134.618(2) 4.6731.8936.5655~56153.8438、3948.91048.9156~57153.8411(2)、13(2)11.7848.9160.6957~58134.6111(1)、13(1)11.7860.6972.4758~59134.6110(2)、12(2)12.6772.4785.1460~61230.764022.23022.2361~62203.83841、4231.1322.2353.3662~63203.83815(3) 6.7253.3660.0863~64203.83815(2) 6.7260.0866.865~66203.83843、4449.06049.0666~67203.83816(3)、17(3)16.8549.0665.9167~68203.83816(2)、17(2)16.8565.9182.76e)暴雨强度频率和重现期指定暴雨强度出现的可能性一般不是预知的。
给水排水管道系统水力计算.doc
给水排水管道系统水力计算本章内容:1、水头损失计算2、无压圆管的水力计算3、水力等效简化本章难点:无压圆管的水力计算第一节基本概念一、管道内水流特征进行水力计算前首先要进行流态的判别。
判别流态的标准采用临界雷诺数Rek,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。
对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。
二、有压流与无压流水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。
水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。
从水流断面形式看,在给水排水管道中采用圆管最多三、恒定流与非恒定流给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。
四、均匀流与非均匀流液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。
从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。
对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。
均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。
对于非满管流或明渠流,只要长距离截面不变,也没有转弯或交汇时,也可以近似为均匀流,按沿程水头损失公式进行水力计算,对于短距离或特殊情况下的非均匀流动则运用水力学理论按缓流或急流计算。
设计计算说明书
设计计算说明书(总59页) -本页仅作为预览文档封面,使用时请删除本页-第一章建筑概况1.1工程概况本工程为苏州市某仪表厂空调设计,工厂共两层。
基本情况如下:(1)三班昼夜连续工作,每班人数60人,均为轻体力劳动。
(2)工艺设备:1kW设备4台;40kW设备20台;50kW设备20台,同期使用系数均为。
(3)照明:房间照明:日光灯5W/m2,局部照明15W/人。
1.2设计参数室内全年计算参数车间全年t n=24±1℃,φn=50±10%,工作区间平均流速v≤s。
苏州室外空气参数1.3建筑构造1.3.1墙体构造外墙:Ⅰ类, K= W/(m2•℃)砖墙 370mm泡沫混凝土 100mm木丝板 25mm白灰粉刷 20mm内墙:传热不予考虑1.3.2屋面构造Ⅰ型;K= W/(m2•℃);层高5米预制细石混凝土板25mm,表面喷白色水泥浆;通风层200mm;卷材防水层;水泥砂浆找平层20mm;保温层:水泥膨胀珍珠岩100mm;隔气层;找平层;预制钢筋混凝土板;内粉刷。
1.3.3地面构造距外墙2m传热系数为(m2•℃)第二章 负荷计算冷负荷计算屋面和外墙冷负荷计算在日射和室外气温综合情况下,外墙和屋面的逐时冷负荷可按下式计算:()(τ)R (τ)c c Q AK t t •=- (2-1)式中: (τ)c Q •------外墙和屋面瞬时传热引起的逐时冷负荷,W ; A ------外墙和屋面的面积,m 2;K ------外墙和屋面的传热系数,W/(m 2 •℃); c(τ)t ------外墙和屋面的冷负荷计算温度的逐时值,℃,见《暖通空调》附录2-4、2-5;R t ------室内计算温度,℃。
必须指出:(1)附录2-4和附录2-5中给出的各维护结构的冷负荷温度值都是以北京地区气象参数为依据计算出来的。
因此,对于不同的设计地点,对应c(τ)t 值修正为c(τ)t +Δd t 。
其地点修正值Δd t 可由附录2-6查得。
给排水系统计算图文PPT教案
第21页/共141页
1.2 管段设计流量及管径的计算 应用公式时应注意以下问题: 1 如计算值小于该管段上一个最大卫生器具给水额定流量时,应采用一个 最大的卫生器具给水额定流量作为设计秒流量; 2 大便器自闭式冲洗阀应单列计算,当单列计算值小于1.2L/s时,以1.2L /s计;大于1.2L/s时,以计算值计
第13页/共141页
1.1 用水量计算
(5)地下室生活水池容积: 根据《建规条,“贮水池(箱)的有效容积应按 进水量与用水量变化曲线经计算确定;当资料不足时,
宜按建筑物最高日用水量的20%~25%确定”
则80×20%=16m3
(6)地下室中水清水池容积:
120×20%=24m3
(7)屋顶生活水箱容积:
中途转输水箱
应按进水量与用水量变 化曲线经计算确定;当 资料不足时,宜按建筑
物最高日用水量的20 %~25%确定
不宜小于最大用水时水 量的50%
宜取转输水泵5min~ 10min的流量
第9页/共141页
1.1 用水量计算
案例1:某大型商业广场总建筑面积约371,800平方米,其中商业建筑面积约为221,900 平方米 (含52,000平方米餐饮面积),地下车库配建和设备用房面积约为149,900平方米, 空调循环冷却水补水量为170m3/h,室内生活用水都储存于地下室生活水池中,由生 活水泵房加压设备供水。请问生活水池需多大?(绿化及景观用水由中水提供,未预 见用水量按最高日用水量10%计) 解答: (1)商业用水: (221900-52000)m2×5L/m2=849.5m3/d (2)餐饮用水: 用餐人数:52000m2×0.8÷1.3×(1+20%)=38400人 用餐次数:2.5次 日用水量:38400人×2.5次×40L/人.d=3840m3/d
给水排水管道系统 雨水管网设计与计算共57页文档
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非