最新学案27平面向量的数量积及其应用

合集下载

平面向量的数量积与平面向量应用举例_图文_图文

平面向量的数量积与平面向量应用举例_图文_图文

三、向量数量积的性质
1.如果e是单位向量,则a·e=e·a. 2.a⊥b⇔ a·b=0 .
|a|2
4.cos θ=
.(θ为a与b的夹角)
5.|a·b| ≤ |a||b|.
四、数量积的运算律
1.交换律:a·b= b·a . 2.分配律:(a+b)·c= a·c+b·c . 3.对λ∈R,λ(a·b)= (λa)·b= a·(λb.) 五、数量积的坐标运算
∴a与c的夹角为90°. (2)∵a与b是不共线的单位向量,∴|a|=|b|=1. 又ka-b与a+b垂直,∴(a+b)·(ka-b)=0, 即ka2+ka·b-a·b-b2=0. ∴k-1+ka·b-a·b=0. 即k-1+kcos θ-cos θ=0(θ为a与b的夹角). ∴(k-1)(1+cos θ)=0.又a与b不共线, ∴cos θ≠-1.∴k=1. [答案] (1)B (2)1
解析:(1) a=(x-1,1),a-b=(x-1,1)-(-x+1,3)= (2x-2,-2),故a⊥(a-b)⇔2(x-1)2-2=0⇔x=0或2 ,故x=2是a⊥(a-b)的一个充分不必要条件.
答案: (1)B (2)D
平面向量的模 [答案] B
[答案] D
[典例总结]
利用数量积求长度问题是数量积的重要应用,要掌 握此类问题的处理方法:
[巩固练习]
2.(1)设向量a=(x-1,1),b=(-x+1,3),则a⊥(a-b)
的一个充分不必要条件是
()
A.x=0或2
B.x=2
C.x=1
D.x=±2
(2)已知向量a=(1,0),b=(0,1),c=a+λb(λ∈R),
向量d如图所示,则
()
A.存在λ>0,使得向量c与向量d垂直 B.存在λ>0,使得向量c与向量d夹角为60° C.存在λ<0,使得向量c与向量d夹角为30° D.存在λ>0,使得向量c与向量d共线

(教案)校级公开课--平面向量的数量积及应用(教案)

(教案)校级公开课--平面向量的数量积及应用(教案)

课题:平面向量的数量积及其应用授课班级:高三(1) 教学目标 1、知识与能力:复习平面向量的数量积及其性质,掌握两向量数量积定义式与坐标式运算,两向量夹角及两向量垂直的充要条件和向量数量积的简单应用. 2、过程与方法:通过对知识归纳整理与回顾,使学生形成知识网络。

通过设置问题,学生参予问题探究,教师引导、点评,师生互动方法实现课堂教学目标的完成。

3、情感态度与价值观通过问题探究,培养学生学习的主动性和合作交流的学习习惯。

树立积极的学习态度,提高学习的自我效能感。

教学重点: 平面向量的数量积及应用。

教学难点:如何灵活运用平面向量的数量积性质解决问题。

教学模式:问题教学法 教学过程:一、知识归纳(1)向量数量积定义式a ·b =︱a ︱·︱b ︱cos θ叫做a 与b 的数量积(或内积)。

(2)向量数量积坐标运算式已知两个向量1122(,),(,)a x y b x y ==,则a ·b =1212x x y y +。

(3)向量b 在a 方向上的投影:︱b ︱cos θ=||a ba ⋅ (4)数量积的几何意义: a ·b 等于a 的长度与b 在a 方向上的投影的乘积。

(5)两向量的夹角范围0︒≤θ≤180︒。

(6)向量数量积的性质①向量的模与平方的关系:22||a a a a ⋅==。

②乘法公式成立()()2222a b a b a b a b +⋅-=-=-; ()2222a b a a b b±=±⋅+222a a b b =±⋅+;③平面向量数量积的运算律交换律成立:a b b a ⋅=⋅;对实数的结合律成立:()()()()a b a b a b R λλλλ⋅=⋅=⋅∈; 分配律成立:()a b c a c b c ±⋅=⋅±⋅()c a b =⋅±。

④向量的夹角:cos θ=cos ,a b a b a b•<>=•=222221212121y x y x y y x x +⋅++。

平面向量的数量积与向量积的应用的应用

平面向量的数量积与向量积的应用的应用

平面向量的数量积与向量积的应用的应用平面向量的数量积与向量积的应用平面向量是解决平面几何问题的重要工具,其数量积与向量积是常用的运算符号。

本文将探讨平面向量的数量积与向量积的应用,并运用相应的公式进行详细计算和论证。

一、平面向量的数量积的应用平面向量的数量积,也称为点积或内积,是两个向量之间的一种运算,表示了向量之间的夹角关系。

数量积的应用广泛,包括计算向量的模长、求解向量的夹角、判定向量是否垂直或平行等。

1. 求解向量的模长对于平面向量a,其模长可以通过数量积求解。

设a = (a₁, a₂),则a的模长|a| = √(a₁² + a₂²)。

2. 求解向量的夹角对于平面向量a和b,它们的夹角θ可以通过数量积求解。

设a = (a₁, a₂)和b = (b₁, b₂),则a与b的夹角θ的余弦值可以表示为cosθ = (a·b) / (|a|·|b|)。

通过求解cosθ,我们可以进一步求解夹角θ。

3. 判定向量是否垂直或平行若两个向量a和b的数量积等于0,即a·b = 0,则a与b垂直。

若数量积不等于0,即a·b ≠ 0,则a与b不垂直。

另外,如果两个向量的数量积等于a和b的模长之积,即a·b = |a|·|b|,则a与b平行。

二、平面向量的向量积的应用平面向量的向量积,也称为叉积或外积,是两个向量之间的一种运算,表示了向量之间的方向关系。

向量积的应用主要涉及到平行四边形面积、垂直判定以及向量的混合积的计算。

1. 平行四边形面积对于平面向量a和b,它们的向量积a×b的模长等于a和b所构成的平行四边形的面积。

即|a×b| = |a|·|b|·sinθ,在计算时取正值即可。

2. 垂直判定若两个向量a和b的向量积等于0,即a×b = 0,则a与b平行或共线。

若向量积不等于0,即a×b ≠ 0,则a与b垂直。

初中数学教案平面向量的数量积与向量积的几何应用

初中数学教案平面向量的数量积与向量积的几何应用

初中数学教案平面向量的数量积与向量积的几何应用初中数学教案:平面向量的数量积与向量积的几何应用一、引言在初中数学中,平面向量的数量积与向量积是非常重要的概念。

它们不仅在数学中具有重要的应用,而且在日常生活和实际问题中也有广泛的运用。

本教案将从理论与实践的角度,详细探讨平面向量的数量积与向量积在几何中的应用。

二、平面向量的数量积1. 定义平面向量的数量积,也称为点乘或内积,表示为A·B,是两个向量的数量乘积与两个向量夹角的余弦值的乘积。

具体地,若向量A=(x1,y1)和B=(x2,y2),则其数量积为A·B=x1x2+y1y2。

2. 性质与公式平面向量的数量积具有以下性质和公式:- 对于任意向量A、B、C和实数k,有(A+B)·C=A·C+B·C (分配律)- 对于任意向量A和实数k,有(kA)·B=A·(kB)=k(A·B) (数乘结合律)- 若两个向量的数量积为0,则它们垂直(正交)3. 几何解释平面向量的数量积可以用几何方法解释。

若A和B为两个向量,它们的数量积A·B等于A在B方向上的投影长度与B的模长的乘积。

三、平面向量的向量积1. 定义平面向量的向量积,也称为叉乘或外积,表示为A×B,是两个向量的数量乘积与它们夹角的正弦值的乘积。

具体地,若向量A=(x1,y1)和B=(x2,y2),则其向量积为A×B=x1y2-x2y1。

2. 性质与公式平面向量的向量积具有以下性质和公式:- 对于任意向量A、B、C和实数k,有(A+B)×C=A×C+B×C (分配律)- 对于任意向量A和实数k,有(kA)×B=A×(kB)=k(A×B) (数乘结合律)- 向量A×B垂直于向量A和B所在的平面3. 几何解释平面向量的向量积可以用几何方法解释。

教案标题平面向量的数量积与应用

教案标题平面向量的数量积与应用
2.计算方法
当给定向量的坐标表示时,可以通过坐标推导计算数量积。若向量a的坐标表示为(a₁,a₂),向量b的坐标表示为(b₁,b₂),则a·b = a₁b₁ + a₂b₂。
3.性质
-数量积满足交换律ቤተ መጻሕፍቲ ባይዱ即a·b = b·a。
-数量积与向量的模长有关,当其中一个向量为零向量时,其数量积为0。
-若两个向量的数量积为0,则它们垂直。
教案标题平面向量的数量积与应用
教案标题:平面向量的数量积与应用
一、引言
平面向量是解决几何问题的重要工具之一,其中数量积是一个常见而重要的概念。本教案将介绍平面向量的数量积以及其应用。
二、平面向量的数量积
1.定义与表示
平面向量的数量积,也称点乘或内积,用符号"·"表示,对于平面上的两个向量a和b,其数量积定义为a·b = |a||b|cosθ,其中|a|和|b|分别表示向量a和b的模长,θ表示这两个向量的夹角。
a = (1, 2, -1),b = (2, -1, 3)
2.根据给定条件,判断两个向量的夹角:
a = (1, 2),b = (-3, 4)
a = (2, -1, 3),b = (3, -2, 1)
3.计算向量a在向量b上的投影:
a = (4, -1),b = (-2, 3)
4.利用数量积的性质,判断以下三角形的形状:
三角形ABC,AB = (3, 1),BC = (-2, 4),CA = (5, -5)
五、总结
本教案介绍了平面向量的数量积以及其应用。数量积可以用于判断两个向量的夹角,判断三角形形状,计算向量投影等。学生可以通过练习题来巩固所学的知识,并应用到实际问题中。通过本课的学习,学生将能够更好地理解平面向量的数量积及其应用。

平面向量的数量积与应用

平面向量的数量积与应用

向量夹角计算
添加 标题
定义:两个非零向量的夹角是指它们所在的直线之间的夹角,取值范围为$[0^{\circ},180^{\circ}]$
添加 标题
计算公式:$\cos\theta = \frac{\overset{\longrightarrow}{u} \cdot \overset{\longrightarrow}{v}}{|\overset{\longrightarrow}{u}| \cdot |\overset{\longrightarrow}{v}|}$,其中 $\overset{\longrightarrow}{u}$和$\overset{\longrightarrow}{v}$是两个非零向量,$\theta$是它们的夹角
平面向量的数量积 与应用
单击此处添加副标题
汇报人:XX
目录
平面向量的数量积概念 平面向量的数量积的应用
平面向量的数量积运算
平面向量的数量积的扩展 应用
01
平面向量的数量积 概念
定义与性质
定义:平面向量的数量积是 两个向量之间的点积,表示 为a·b,等于它们的模长和 夹角的余弦值的乘积。
性质:数量积满足交换律和 分配律,即a·b=b·a和 (a+b)·c=a·c+b·c。
几何意义
平面向量的数量积表示向量在 平面上的投影长度
等于两个向量在垂直方向上的 投影的乘积
表示两个向量在平面上的夹角 大小
等于两个向量在水平方向上的 投影的乘积
运算性质
交换律:a · b = b · a 分配律:(a+b) · c = a · c + b · c 数乘性质:k(a · b) = (ka) · b = a · (kb) 向量数量积的性质:|a · b| ≤ |a| |b|

平面向量的数量积学案

平面向量的数量积学案

平面向量的数量积学案一、学案背景平面向量的数量积是数学中的一个重要概念,通过数量积可以研究向量之间的夹角关系、向量的投影以及向量的模长等问题。

掌握了平面向量的数量积的性质和应用,可以帮助我们更好地理解和解决实际问题。

二、学习目标1. 了解平面向量的数量积的定义。

2. 掌握平面向量的数量积的计算方法和性质。

3. 理解平面向量的数量积与向量的夹角、投影和模长之间的关系。

4. 能够应用平面向量的数量积解决实际问题。

三、学习内容1. 平面向量的数量积的定义:平面向量a = (x1, y1) 和 b = (x2, y2) 的数量积(又称点积、内积)定义为 a · b = x1 * x2 + y1 * y2。

2. 平面向量的数量积的性质:a. a · b = b · a(数量积的交换律)。

b. a · (b + c) = a · b + a · c(数量积的分配律)。

c. k(a · b) = (ka) · b = a · (kb) = k(a · b)(数量积的结合律,其中k为实数)。

3. 平面向量的数量积与向量的夹角的关系:a. 如果 a · b = 0,则向量a和b垂直(夹角为90°)。

b. 如果 a · b > 0,则向量a和b夹角锐角。

c. 如果 a · b < 0,则向量a和b夹角钝角。

4. 平面向量的数量积与向量的投影的关系:a. 向量a在向量b上的投影p的长度为 |p| = |a| * cosθ,其中θ为a和b的夹角。

b. a · b = |a| * |b| * cosθ。

5. 平面向量的数量积与向量的模长的关系:a. a · a = |a|^2,其中|a|表示向量a的模长。

b. |a| = √(a · a)。

四、学习方法1. 技巧讲解与练习:通过教师的讲解,学习平面向量的数量积的定义、计算方法和性质。

平面向量的数量积与应用教案

平面向量的数量积与应用教案

平面向量的数量积与应用教案一、引言平面向量是数学中重要的概念之一,它在几何、物理等领域具有广泛的应用。

其中,数量积作为平面向量的一种运算方式,被广泛运用于解决多种实际问题。

本教案旨在通过介绍平面向量的数量积及其应用,帮助学生掌握相关的概念和运算方法。

二、数量积的定义数量积,也称为点积或内积,是两个向量之间进行的一种运算。

对于两个平面向量a 和 b,它们的数量积可以表示为a·b,即:a·b = |a| |b| cosθ其中,|a| 和 |b| 分别表示向量 a 和 b 的模,θ表示向量 a 和 b 之间的夹角。

三、数量积的运算性质1. 交换律:a·b = b·a2. 分配律:(a+b)·c = a·c + b·c3. 数量积为零的条件:若 a·b = 0,则 a 和 b 两向量垂直。

四、数量积的几何意义数量积有着重要的几何意义。

当两个向量的数量积为正时,表示它们的方向较为接近;当数量积为负时,表示它们的方向较为背离;当数量积为零时,表示它们垂直。

五、数量积的应用数量积在几何、物理等领域有着广泛的应用。

以下是其中几个常见的应用场景:1. 判断两个向量的关系:通过计算两个向量的数量积,可以判断它们的夹角大小,从而了解两个向量之间的关系,比如是否垂直或平行。

2. 求向量在某一方向上的投影:通过数量积的计算,可以求得一个向量在另一个向量上的投影长度,从而进一步计算出向量在某一方向上的投影。

3. 计算力的功:在物理学中,力的功可以通过计算力和位移之间的数量积得到。

功等于力乘以移动的距离和夹角的余弦值。

4. 计算三角形的面积:数量积还可以用来计算三角形的面积。

当给定两条边和它们之间的夹角时,可以通过数量积公式计算出三角形的面积。

六、教学活动为了帮助学生更好地理解和应用数量积,以下是一些教学活动的建议:1. 理论讲解:教师可以通过简洁明了的语言,结合实际例子,向学生讲解数量积的定义、运算性质和几何意义。

平面向量的数量积及其应用

平面向量的数量积及其应用

解析 解法一:∵|a+b|+|a-b|≥|(a+b)+(a-b)|=2|a|=2,且|a+b|+|a-b|≥|(a+b)(a-b)|=2|b|=4, ∴|a+b|+|a-b|≥4,当且仅当a+b与a-b反向时取等号,此时|a+b|+|a-b|取最 小值4.
| a b |2 | a b |2 | a b| | a b| ∵ ≤ = a 2 b 2 = 5 , 2 2
2 2 x12 y12 ,|b|= x2 y2 (2)|a|= .
平面向量的长度问题
( x1 x2 ) 2 ( y1 y2 ) 2 . 2.若A(x1,y1),B(x2,y2),则| AB |=

考点三
平面向量的夹角、两向量垂直及数量积的应用
x1 x2 y1 y2
已知a=(x1,y1),b=(x2,y2). (1)若a与b的夹角为θ,则cos θ= . 2 (2)a⊥b⇔x1x2+y1y2=0.
∴|a+b|+|a-b|≤2 5 . 当且仅当|a+b|=|a-b|时取等号,此时a· b=0.
故当a⊥b时,|a+b|+|a-b|有最大值2 5 .
解法二:设x=|a+b|,由||a|-|b||≤|a+b|≤|a|+|b|, 得1≤x≤3.
设y=|a-b|,同理,1≤y≤3. 而x2+y2=2a2+2b2=10, 故可设x= 10 cos θ, ≤cos θ≤ , y= 10 sin θ, ≤sin θ≤ . 设α1,α2为锐角,且sin α1= ,sin α2= ,
方法 2 求向量夹角问题的方法

专题26 平面向量的数量积及平面向量的应用教学案-2018

专题26 平面向量的数量积及平面向量的应用教学案-2018

1.理解平面向量数量积的含义及其物理意义.了解平面向量的数量积与向量投影的关系.2.掌握数量积的坐标表达式,会进行平面向量数量积的运算.3.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.4.会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题.1.平面向量的数量积(1)定义:已知两个非零向量a与b,它们的夹角为θ,则数量|a||b|cos__θ叫作a与b的数量积(或内积),记作a·b,即a·b=|a||b|cos__θ,规定零向量与任一向量的数量积为0,即0·a=0.(2)几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos__θ的乘积.2.平面向量数量积的性质及其坐标表示设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角.(1)数量积:a·b=|a||b|cos θ=x1x2+y1y2.(2)模:|a|=a·a=x21+y21.(3)夹角:cos θ=a·b|a||b|=x1x2+y1y2x21+y21·x22+y22.(4)两非零向量a⊥b的充要条件:a·b=0⇔x1x2+y1y2=0.(5)|a·b|≤|a||b|(当且仅当a∥b时等号成立)⇔|x1x2+y1y2|≤x21+y21·x22+y22. 3.平面向量数量积的运算律(1)a·b=b·a(交换律).(2)λa·b=λ(a·b)=a·(λb)(结合律).(3)(a+b)·c=a·c+b·c(分配律).4.向量在平面几何中的应用向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角等问题.(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:a ∥b (b ≠0)⇔a =λb ⇔x 1y 2-x 2y 1=0.(2)证明垂直问题,常用数量积的运算性质a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0(a ,b 均为非零向量). (3)求夹角问题,利用夹角公式cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22(θ为a 与b 的夹角). 5.向量在三角函数中的应用与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点题型.解答此类问题,除了要熟练掌握向量数量积的坐标运算公式、向量模、向量夹角的坐标运算公式外,还应掌握三角恒等变换的相关知识. 6.向量在解析几何中的应用向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述.它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体.高频考点一 平面向量数量积的运算例1、(1)设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于( ) A .20 B.15 C .9 D .6(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.答案 (1)C (2)1 1故选C.(2)方法一 以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设当E 运动到B 点时,DE →在DC →方向上的投影最大即为DC =1, ∴(DE →·DC →)max =|DC →|·1=1.【感悟提升】(1)求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.(2)解决涉及几何图形的向量数量积运算问题时,可先利用向量的加、减运算或数量积的运算律化简再运算,但一定要注意向量的夹角与已知平面角的关系是相等还是互补.【变式探究】(1)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →=________.(2)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 答案 (1)22 (2)2解析 (1)由CP →=3PD →,得DP →=14DC →=14AB →,AP →=AD →+DP →=AD →+14AB →,BP →=AP →-AB →=AD →+14AB →-AB →=AD →-34AB →.因为AP →·BP →=2,所以(AD →+14AB →)·(AD →-34AB →)=2,即AD →2-12AD →·AB →-316AB →2=2.又因为AD →2=25,AB →2=64,所以AB →·AD →=22. (2)由题意知:AE →·BD →=(AD →+DE →)·(AD →-AB →) =(AD →+12AB →)·(AD →-AB →)=AD →2-12AD →·AB →-12AB →2=4-0-2=2. 高频考点二 用数量积求向量的模、夹角例2、(1)(2016·全国Ⅱ卷)已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =( ) A.-8 B.-6 C.6D.8(2)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.答案 (1)D (2)⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3 【方法规律】(1)根据平面向量数量积的性质:若a ,b 为非零向量,cos θ=a ·b|a ||b |(夹角公式),a ⊥b ⇔a ·b =0等,可知平面向量的数量积可以用来解决有关角度、垂直问题.(2)数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.【变式探究】 (1)(2016·全国Ⅲ卷)已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A.30°B.45°C.60°D.120°(2)(2016·全国Ⅰ卷)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. 解析 (1)|BA →|=1,|BC →|=1, cos ∠ABC =BA sup 6(→)·BC →|BA →|·|BC →|=32.由〈BA →,BC →〉∈[0°,180°],得∠ABC =30°. (2)由|a +b |2=|a |2+|b |2,得a ⊥b , 所以m ×1+1×2=0,得m =-2. 答案 (1)A (2)-2【感悟提升】(1)根据平面向量数量积的定义,可以求向量的模、夹角,解决垂直、夹角问题;两向量夹角θ为锐角的充要条件是cos θ>0且两向量不共线;(2)求向量模的最值(范围)的方法:①代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;②几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.【举一反三】(1)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.(2)在△ABC 中,若A =120°,AB →·AC →=-1,则|BC →|的最小值是( ) A. 2 B .2 C. 6D .6答案 (1)223 (2)C(2)∵AB →·AC →=-1,∴|AB →|·|AC →|·cos120°=-1, 即|AB →|·|AC →|=2,∴|BC →|2=|AC →-AB →|2=AC →2-2AB →·AC →+AB →2 ≥2|AB →|·|AC →|-2AB →·AC →=6, ∴|BC →|min = 6.高频考点三 平面向量与三角函数例3、在平面直角坐标系xOy 中,已知向量m =⎝ ⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2.(1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值. 解 (1)因为m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),m ⊥n . 所以m ·n =0,即22sin x -22cos x =0, 所以sin x =cos x ,所以tan x =1.(2)因为|m |=|n |=1,所以m ·n =cos π3=12, 即22sin x -22cos x =12,所以sin ⎝⎛⎭⎫x -π4=12,因为0<x <π2,所以-π4<x -π4<π4,所以x -π4=π6,即x =5π12.【感悟提升】平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.【变式探究】已知O 为坐标原点,向量OA →=(3sin α,cos α),OB →=(2sin α,5sin α-4cos α),α∈⎝⎛⎭⎫3π2,2π,且OA →⊥OB →,则tan α的值为( ) A .-43 B .-45 C.45 D.34答案 A高频考点四 向量在平面几何中的应用例4、已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( ) A .内心 B .外心 C .重心 D .垂心答案 C解析 由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心.【感悟提升】解决向量与平面几何综合问题,可先利用基向量或坐标系建立向量与平面图形的联系,然后通过向量运算研究几何元素之间的关系.【变式探究】(1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB =________.(2)平面四边形ABCD 中,AB →+CD →=0,(AB →-AD →)·AC →=0,则四边形ABCD 是( )A .矩形B .梯形C .正方形D .菱形答案 (1)12 (2)D解析 (1)在平行四边形ABCD 中,取AB 的中点F ,则BE →=FD →,∴BE →=FD →=AD →-12AB →,(2)AB →+CD →=0⇒AB →=-CD →=DC →⇒平面四边形ABCD 是平行四边形,(AB →-AD →)·AC →=DB →·AC →=0⇒DB →⊥AC →,所以平行四边形ABCD 是菱形. 高频考点五、 向量在解析几何中的应用例5、(1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A 、B 、C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________.(2)设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则yx =______.答案 (1)2x +y -3=0 (2)± 3 解析 (1)∵AB →=OB →-OA →=(4-k ,-7), BC →=OC →-OB →=(6,k -5),且AB →∥BC →, ∴(4-k )(k -5)+6×7=0, 解得k =-2或k =11.由k <0可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.(2)∵OM →·CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx , 由|2k |1+k 2=3,得k =±3,即yx =± 3. 【感悟提升】向量在解析几何中的作用:(1)载体作用,向量在解析几何问题中出现,多用于“包装”,解决此类问题关键是利用向量的意义、运算,脱去“向量外衣”;(2)工具作用,利用a ⊥b ⇔a ·b =0;a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题.【变式探究】已知圆C :(x -2)2+y 2=4,圆M :(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R ),过圆M 上任意一点P 作圆C 的两条切线PE ,PF ,切点分别为E ,F ,则PE →·PF →的最小值是( ) A .5 B .6 C .10 D .12答案 BHE →·HF →=|HE →|·|HF →|cos ∠EHF =23×23×12=6,故选B.高频考点六 向量的综合应用例6、(1)已知x ,y 满足⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x ≥a ,若OA →=(x,1),OB →=(2,y ),且OA →·OB →的最大值是最小值的8倍,则实数a 的值是( ) A .1B.13C.14D.18(2)函数y =sin(ωx +φ)在一个周期内的图象如图所示,M 、N 分别是最高点、最低点,O 为坐标原点,且OM →·ON →=0,则函数f (x )的最小正周期是________.答案 (1)D (2)3(2)由图象可知,M ⎝⎛⎭⎫12,1,N ()x N ,-1,所以OM →·ON →=⎝⎛⎭⎫12,1·(x N ,-1)=12x N -1=0,解得x N =2,所以函数f (x )的最小正周期是2×⎝⎛⎭⎫2-12=3.【感悟提升】利用向量的载体作用,可以将向量与三角函数、不等式结合起来,解题时通过定义或坐标运算进行转化,使问题的条件结论明晰化.【变式探究】在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }所表示的区域面积是( ) A .2 2 B .2 3 C .4 2 D .4 3答案 D解析 由|OA →|=|OB →|=OA →·OB →=2, 知〈OA →,OB →〉=π3.当λ≥0,μ≥0,λ+μ=1时,在△OAB 中,取OC →=λOA →,过点C 作CD ∥OB 交AB 于点D ,作DE ∥OA 交OB 于点E ,显然OD→=λOA →+CD →.由于CD OB =AC AO ,CD OB =2-2λ2,∴CD →=(1-λ)OB →, ∴OD →=λOA →+(1-λ)OB →=λOA →+μOB →=OP →, ∴λ+μ=1时,点P 在线段AB 上,∴λ≥0,μ≥0,λ+μ≤1时,点P 必在△OAB 内(包括边界).考虑|λ|+|μ|≤1的其他情形,点P 构成的集合恰好是以AB 为一边,以OA ,OB 为对角线一半的矩形,其面积为S =4S △OAB =4×12×2×2sin π3=4 3.1.【2016高考江苏卷】如图,在ABC ∆中,D 是BC 的中点,,E F 是,A D 上的两个三等分点,4BC CA ⋅=,1BF CF ⋅=- ,则BE CE ⋅ 的值是 ▲ .【答案】78【2015高考山东,理4】已知菱形ABCD 的边长为,60ABC ∠= ,则BD CD ⋅=( )(A )232a - (B )234a - (C ) 234a 错误!未找到引用源。

平面向量的数量积与向量积的应用

平面向量的数量积与向量积的应用

平面向量的数量积与向量积的应用简介:平面向量是解决平面几何问题的重要工具之一。

其数量积和向量积是平面向量运算中常用的两种运算方式。

本文将探讨平面向量的数量积和向量积在几何问题中的应用。

一、平面向量的数量积平面向量的数量积,又称为点积或内积,表示两个向量之间的夹角关系。

其计算公式为:A ·B = |A| × |B| × cosθ其中,A和B为两个平面向量,|A|和|B|分别表示A和B的模长,θ表示A和B的夹角。

应用一:空间点的投影平面向量的数量积可以应用于求空间点在某个向量上的投影。

设空间点P(x, y, z)在向量A(a, b, c)上的投影为点Q,利用数量积的定义可以得到:PQ = OP · u其中,OP表示向量OP的数量积,u表示向量A的单位向量。

应用二:判断向量正交与共线根据平面向量的数量积,我们可以判断两个向量是否正交或共线。

若两个向量的数量积为0,则它们垂直或正交;若两个向量的数量积等于它们的模长乘积,则它们共线。

应用三:求角的余弦值在解决几何问题时,常常需要求夹角的余弦值。

利用平面向量的数量积可以得到两个向量夹角的余弦值。

根据数量积的定义,可以求出两个向量的模长并代入计算公式中,进而得到夹角的余弦值。

二、平面向量的向量积平面向量的向量积,又称为叉积或外积,表示两个向量之间的叉乘关系。

其计算公式为:A ×B = |A| × |B| × sinθ × n其中,A和B为两个平面向量,|A|和|B|分别表示A和B的模长,θ表示A和B的夹角,n为法向量,其方向满足右手法则。

应用一:求平行四边形面积利用平面向量的向量积,可以求解平行四边形的面积。

设平行四边形的两条边向量分别为A和B,根据向量积的定义可以得到平行四边形的面积为:S = |A × B|应用二:判断三角形形状平面向量的向量积可以用于判断三角形的形状。

平面向量的数量积与向量积的应用

平面向量的数量积与向量积的应用

平面向量的数量积与向量积的应用一、引言平面向量是解决几何问题中常用的工具之一,其中数量积和向量积是平面向量的两种重要运算。

本文将重点探讨平面向量的数量积和向量积的应用。

二、数量积的应用数量积又称为点积或内积,其运算结果是一个数值。

下面将介绍数量积在平面向量的几个应用方面。

1. 计算两向量夹角数量积可以通过余弦函数的定义,计算两个向量的夹角。

设有两向量A、B,它们的数量积为AB。

根据数量积的定义,有AB =|A||B|cosθ,其中θ为A与B的夹角。

通过这个关系式,可以计算出任意两个向量的夹角,而不需要通过求解三角函数。

2. 判断两向量的垂直与平行关系若两个非零向量A、B的数量积为0,即AB = 0,则A与B垂直。

这是因为根据数量积的定义,若θ为0°或180°,则cosθ为0,从而使得AB = 0。

同样,若AB ≠ 0,则可以判断A与B不垂直。

3. 计算向量在某一方向上的投影长度向量的投影长度是向量在某一方向上的长度,可以通过数量积来计算。

设向量A在向量B方向上的投影长度为h,则h = |A|cosθ,其中θ为A与B的夹角。

通过这个公式可以计算出向量在某一方向上的投影长度,进而进行相关的几何问题求解。

三、向量积的应用向量积又称为叉积或外积,它的运算结果是一个向量。

下面将介绍向量积在平面向量的几个应用方面。

1. 求解平行四边形面积若平行四边形的两条边分别为向量A、B,那么平行四边形的面积可以通过向量积的模长来求解。

设向量积A×B的模长为S,则S即为平行四边形的面积。

这是因为向量积的模长表示向量所张成的面积。

2. 判断向量的方向向量积可以根据右手定则来判断新向量的方向。

设有两个向量A、B,它们的向量积为C(C = A×B),则以右手四指从A旋转到B的方向,拇指所指的方向即为C的方向。

3. 计算平面向量的面积若平面上三个非零向量A、B、C的起点相同,可以通过向量积来计算三角形ABC所在平面的面积。

平面向量的数量积与应用

平面向量的数量积与应用

平面向量的数量积与应用平面向量是在平面上有特定大小和方向的线段。

通过研究平面向量的数量积,我们可以探索向量的内在关系,并且在实际问题中找到应用。

一、平面向量的数量积的定义与性质平面向量的数量积又称为内积、点积或标量积,表示为A·B。

数量积的定义如下:设A(x₁, y₁)和B(x₂, y₂)为平面上的两个向量,其数量积A·B= x₁x₂ + y₁y₂。

平面向量的数量积具有以下性质:1. 交换律:A·B = B·A2. 结合律:(A + B)·C = A·C + B·C3. 数量积与向量模的关系:A·A = |A|²4. 正交定理:若A·B = 0,则向量A与向量B垂直(即A⊥B)。

5. 角的余弦公式:cosθ = (A·B) /(|A||B|),其中θ为向量A与向量B 之间的夹角。

二、平面向量的数量积的应用平面向量的数量积具有广泛的应用,其中包括以下几个方面:1. 判断向量的垂直性由正交定理可知,若两个向量的数量积为零,则它们垂直。

在实际问题中,可以利用这一性质判断两个向量是否垂直,从而解决相关的几何或物理问题。

2. 计算向量的模根据数量积与向量模的关系,可以通过计算向量的数量积来求解向量的模。

这在计算向量的长度、速度等实际问题中尤为重要。

3. 计算向量之间的夹角根据角的余弦公式,可以通过计算向量的数量积和向量模的乘积,来求解向量之间的夹角。

这在导航、图形学等领域中具有广泛的应用。

4. 解决几何问题平面向量的数量积在解决几何问题中发挥着重要作用。

例如,在计算多边形的面积、判断三角形的形状以及求解射影等问题中,都可以利用数量积求解。

5. 解决物理问题物理学中也广泛运用平面向量的数量积。

例如,在力学中,根据力的大小和方向的定义,我们可以利用数量积计算物体所受的合力及相关问题。

综上所述,平面向量的数量积在数学和物理等领域中都具有重要的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学案27平面向量的数量积及其应用学案27 平面向量的数量积及其应用导学目标: 1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量方法解决某些简单的平面几何问题.6.会用向量方法解决简单的力学问题与其他一些实际问题.自主梳理1.向量数量积的定义(1)向量数量积的定义:____________________________________________,其中|a |cos 〈a ,b 〉叫做向量a 在b 方向上的投影.(2)向量数量积的性质: ①如果e 是单位向量,则a·e =e·a =__________________; ②非零向量a ,b ,a ⊥b ⇔________________; ③a·a =________________或|a |=________________; ④cos 〈a ,b 〉=________; ⑤|a·b |____|a||b |.2.向量数量积的运算律 (1)交换律:a·b =________; (2)分配律:(a +b )·c =________________; (3)数乘向量结合律:(λa )·b =________________. 3.向量数量积的坐标运算与度量公式(1)两个向量的数量积等于它们对应坐标乘积的和,即若a =(a 1,a 2),b =(b 1,b 2),则a·b =________________________;(2)设a =(a 1,a 2),b =(b 1,b 2),则a ⊥b ⇔________________________; (3)设向量a =(a 1,a 2),b =(b 1,b 2),则|a |=________________,cos 〈a ,b 〉=____________________________.(4)若A (x 1,y 1),B (x 2,y 2),则|AB →=________________________,所以|AB →|=_____________________.自我检测1.(2010·湖南)在Rt △ABC 中,∠C =90°,AC =4,则AB →·AC →等于 ( ) A .-16 B .-8 C .8 D .162.(2010·重庆)已知向量a ,b 满足a·b =0,|a |=1,|b |=2,则|2a -b |= ( ) A .0 B .2 2 C .4 D .83.(2011·福州月考)已知a =(1,0),b =(1,1),(a +λb )⊥b ,则λ等于 ( )A .-2B .2 C.12D .-124.平面上有三个点A (-2,y ),B (0,«Skip Record If...»),C (x ,y ),若A B →⊥BC →,则动点C 的轨迹方程为________________.5.(2009·天津)若等边△ABC 的边长为2«Skip Record If...»,平面内一点M 满足CM →=16CB →+23CA →,则MA →·MB →=________.探究点一 向量的模及夹角问题 例1 (2011·马鞍山月考)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.变式迁移1 (1)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是 ( )A .1B .2C. 2D.22(2)已知i ,j 为互相垂直的单位向量,a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,实数λ的取值范围为________.探究点二 两向量的平行与垂直问题例2 已知a =(cos α,sin α),b =(cos β,sin β),且k a +b 的长度是a -k b 的长度的3倍(k >0).(1)求证:a +b 与a -b 垂直; (2)用k 表示a ·b ; (3)求a ·b 的最小值以及此时a 与b 的夹角θ.变式迁移2 (2009·江苏)设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β).(1)若a 与b -2c 垂直,求tan(α+β)的值; (2)求|b +c |的最大值;(3)若tan αtan β=16,求证:a ∥b .探究点三 向量的数量积在三角函数中的应用例3 已知向量a =⎝⎛⎭⎫cos 32x ,sin 32x , b =⎝⎛⎭⎫cos x 2,-sin x 2,且x ∈⎣⎡⎦⎤-π3,π4. (1)求a·b 及|a +b |; (2)若f (x )=a·b -|a +b |,求f (x )的最大值和最小值.变式迁移3 (2010·四川)已知△ABC 的面积S =«Skip Record If...»AB →·AC →·=3,且cos B =35,求cos C .1.一些常见的错误结论:(1)若|a |=|b |,则a =b ;(2)若a 2=b 2,则a =b ;(3)若a ∥b ,b ∥c ,则a ∥c ;(4)若a·b =0,则a =0或b =0;(5)|a·b |=|a |·|b |;(6)(a·b )c =a (b·c );(7)若a·b =a·c ,则b =c .以上结论都是错误的,应用时要注意.2.平面向量的坐标表示与向量表示的比较:1,y 1),b =(x 2,y 2),θ是向量a 与b 的夹角.向量表示 坐标表示向量a 的模 |a |=a·a =a 2 |a |=x 21+y 21a 与b 的数量积 a·b =|a||b |cos θ a·b =x 1x 2+y 1y 2 a 与b 共线的充要条件 A ∥b (b ≠0)⇔a =λb a ∥b ⇔x 1y 2-x 2y 1=0 非零向量a ,b 垂直的充要条件a ⊥b ⇔a·b =0 a ⊥b ⇔x 1x 2+y 1y 2=0向量a 与b 的夹角 cos θ=a·b|a||b|cos θ=x 1x 2+y 1y 2x 21+y 21 x 22+y 22(1)要证AB =CD ,可转化证明AB →2=CD →2或|AB →|=|CD →|.(2)要证两线段AB ∥CD ,只要证存在唯一实数«Skip Record If...»≠0,使等式AB →=λCD →成立即可.(3)要证两线段AB ⊥CD ,只需证AB →·CD →=0.(满分:75分)一、选择题(每小题5分,共25分) 1.(2010·重庆)若向量a =(3,m ),b =(2,-1),a·b =0,则实数m 的值为 ( )A .-32 B.32C .2D .62.已知非零向量a ,b ,若|a |=|b |=1,且a ⊥b ,又知(2a +3b )⊥(k a -4b ),则实数k 的值为 ( )A .-6B .-3C .3D .63.已知△ABC 中,AB →=a ,AC →=b ,a·b <0,S △ABC =154,|a |=3,|b |=5,则∠BAC 等于( )A .30°B .-150°C .150°D .30°或150°4.(2010·湖南)若非零向量a ,b 满足|a |=|b |,(2a +b )·b =0,则a 与b 的夹角为 ( ) A .30° B .60° C .120° D .150° 5.已知a =(2,3),b =(-4,7),则a 在b 上的投影为 ( )A.135B.655C.65 D.136.(2010·湖南长沙一中月考)设a =(cos 2α,sin α),b =(1,2sin α-1),α∈⎝⎛⎭⎫π2,π,若a·b =25,则sin α=________.7.(2010·广东金山中学高三第二次月考)若|a |=1,|b |=2,c =a +b ,且c ⊥a ,则向量a 与b 的夹角为________.8.已知向量m =(1,1),向量n 与向量m 夹角为3π4,且m·n =-1,则向量n =__________________.三、解答题(共38分)9.(12分)已知OA →=(2,5),OB →=(3,1),OC →=(6,3),在线段OC 上是否存在点M ,使MA →⊥MB →,若存在,求出点M 的坐标;若不存在,请说明理由.10.(12分)(2011·杭州调研)已知向量a =(cos(-θ),sin(-θ)),b =(cos ⎝⎛⎭⎫π2-θ,sin ⎝⎛⎭⎫π2-θ).(1)求证:a ⊥b ;(2)若存在不等于0的实数k 和t ,使x =a +(t 2+3)b ,y =-k a +t b ,满足x ⊥y ,试求此时k +t 2t 的最小值.11.(14分)(2011·济南模拟)已知a =(1,2sin x ),b =⎝⎛⎭⎫2cos ⎝⎛⎭⎫x +π6,1,函数f (x )=a·b (x ∈R ).(1)求函数f (x )的单调递减区间;(2)若f (x )=85,求cos ⎝⎛⎭⎫2x -π3的值.答案 自主梳理1.(1)a·b =|a ||b |cos 〈a ,b 〉 (2)①|a |cos 〈a ,e 〉 ②a·b =0 ③|a |2 a·a ④a·b|a||b |⑤≤ 2.(1)b·a(2)a·c +b·c (3)λ(a ·b ) 3.(1)a 1b 1+a 2b 2 (2)a 1b 1+a 2b 2=0 (3)a 21+a 22a 1b 1+a 2b 2a 21+a 22b 21+b 22(4)(x 2-x 1,y 2-y 1) (x 2-x 1)2+(y 2-y 1)2自我检测2.B [|2a -b |=(2a -b )2=4a 2-4a·b +b 2=8=2 2.] 3.D [由(a +λb )·b =0得a·b +λ|b |2=0,∴1+2λ=0,∴λ=-12.]4.y 2=8x (x ≠0)解析 由题意得AB →=⎝⎛⎭⎫2,-y 2, BC →=⎝⎛⎭⎫x ,y 2,又AB →⊥BC →,∴AB →·BC →=0, 即⎝⎛⎭⎫2,-y 2·⎝⎛⎭⎫x ,y 2=0,化简得y 2=8x (x ≠0). 5.-2解析 合理建立直角坐标系,因为三角形是正三角形,故设C (0,0),A (23,0),B (3,3),这样利用向量关系式,求得MA →=⎝⎛⎭⎫32,-12,MB →=⎝⎛⎭⎫32,-12,MB →=⎝⎛⎭⎫-32,52,所以MA →·MB →=-2.课堂活动区例1 解 (1)∵(2a -3b )·(2a +b )=61, ∴4|a |2-4a·b -3|b |2=61. 又|a |=4,|b |=3,∴64-4a·b -27=61, ∴a·b =-6.∴cos θ=a·b|a||b |=-64×3=-12.又0≤θ≤π,∴θ=2π3.(2)|a +b |=(a +b )2 =|a |2+2a·b +|b |2=16+2×(-6)+9=13.(3)∵AB →与BC →的夹角θ=2π3,∴∠ABC =π-2π3=π3.又|AB →|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC=12×4×3×32=3 3. 变式迁移1 (1)C [∵|a |=|b |=1,a·b =0, 展开(a -c )·(b -c )=0⇒|c |2=c·(a +b ) =|c |·|a +b |cos θ,∴|c |=|a +b |cos θ=2cos θ, ∴|c |的最大值是 2.](2)λ<12且λ≠-2解析 ∵〈a ,b 〉∈(0,π2),∴a ·b >0且a ·b 不同向.即|i |2-2λ|j |2>0,∴λ<12.当a ·b 同向时,由a =k b (k >0)得λ=-2.∴λ<12且λ≠-2.例2 解题导引 1.非零向量a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.2.当向量a 与b 是非坐标形式时,要把a 、b 用已知的不共线的向量表示.但要注意运算技巧,有时把向量都用坐标表示,并不一定都能够简化运算,要因题而异.解 (1)由题意得,|a |=|b |=1, ∴(a +b )·(a -b )=a 2-b 2=0, ∴a +b 与a -b 垂直. (2)|k a +b |2=k 2a 2+2k a ·b +b 2=k 2+2k a ·b +1, (3|a -k b |)2=3(1+k 2)-6k a ·b .由条件知,k 2+2k a ·b +1=3(1+k 2)-6k a ·b ,从而有,a ·b =1+k24k(k >0).(3)由(2)知a ·b =1+k 24k =14(k +1k )≥12,当k =1k时,等号成立,即k =±1.∵k >0,∴k =1.此时cos θ=a ·b |a ||b |=12,而θ∈[0,π],∴θ=π3.故a ·b 的最小值为12,此时θ=π3.变式迁移2 (1)解 因为a 与b -2c 垂直, 所以a ·(b -2c )=4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β =4sin(α+β)-8cos(α+β)=0. 因此tan(α+β)=2.(2)解 由b +c =(sin β+cos β,4cos β-4sin β), 得|b +c |=(sin β+cos β)2+(4cos β-4sin β)2 =17-15sin 2β≤4 2.又当β=-π4时,等号成立,所以|b +c |的最大值为4 2.(3)证明 由tan αtan β=16得4cos αsin β=sin α4cos β,所以a ∥b .例3 解题导引 与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点题型.解答此类问题,除了要熟练掌握向量数量积的坐标运算公式,向量模、夹角的坐标运算公式外,还应掌握三角恒等变换的相关知识.解 (1)a·b =cos 32x cos x 2-sin 32x sin x2=cos 2x ,|a +b |=⎝⎛⎭⎫cos 32x +cos x 22+⎝⎛⎭⎫sin 32x -sin x 22 =2+2cos 2x =2|cos x |,∵x ∈⎣⎡⎦⎤-π3,π4,∴cos x >0, ∴|a +b |=2cos x .(2)f (x )=cos 2x -2cos x =2cos 2x -2cos x -1=2⎝⎛⎭⎫cos x -122-32.∵x ∈⎣⎡⎦⎤-π3,π4,∴12≤cos x ≤1, ∴当cos x =12时,f (x )取得最小值-32;当cos x =1时,f (x )取得最大值-1.变式迁移3 解 由题意,设△ABC 的角B 、C 的对边分别为b 、c ,则S =12bc sin A =12.AB →·AC →=bc cos A =3>0,∴A ∈⎝⎛⎭⎫0,π2,cos A =3sin A . 又sin 2A +cos 2A =1,∴sin A =1010,cos A =31010.由题意cos B =35,得sin B =45.∴cos(A +B )=cos A cos B -sin A sin B =1010.∴cos C =cos [π-(A +B )]=-1010.课后练习区 1.D [因为a·b =6-m =0,所以m =6.] 2.D [由(2a +3b )·(k a -4b )=0得2k -12=0,∴k =6.]3.C [∵S △ABC =12|a ||b |sin ∠BAC =154,∴sin ∠BAC =12.又a·b <0,∴∠BAC 为钝角.∴∠BAC =150°.] 4.C [由(2a +b )·b =0,得2a·b =-|b |2.cos 〈a ,b 〉=a·b|a||b |=-12|b |2|b |2=-12. ∵〈a ,b 〉∈[0°,180°],∴〈a ,b 〉=120°.] 5.B [因为a·b =|a|·|b |·cos 〈a ,b 〉, 所以,a 在b 上的投影为|a |·cos 〈a ,b 〉=a·b |b |=21-842+72=1365=655.] 6.35解析 ∵a·b =cos 2α+2sin 2α-sin α=25,∴1-2sin 2α+2sin 2α-sin α=25,∴sin α=35.7.120°解析 设a 与b 的夹角为θ,∵c =a +b ,c ⊥a , ∴c·a =0,即(a +b )·a =0.∴a 2+a·b =0. 又|a |=1,|b |=2,∴1+2cos θ=0.∴cos θ=-12,θ∈[0°,180°]即θ=120°.8.(-1,0)或(0,-1)解析 设n =(x ,y ),由m·n =-1, 有x +y =-1.①由m 与n 夹角为3π4,有m·n =|m|·|n |cos 3π4,∴|n |=1,则x 2+y 2=1.②由①②解得⎩⎪⎨⎪⎧ x =-1y =0或⎩⎪⎨⎪⎧x =0y =-1, ∴n =(-1,0)或n =(0,-1).9.解 设存在点M ,且OM →=λOC →=(6λ,3λ) (0≤λ≤1), MA →=(2-6λ,5-3λ),MB →=(3-6λ,1-3λ).…………………………………………(4分) ∵MA →⊥MB →,∴(2-6λ)(3-6λ)+(5-3λ)(1-3λ)=0,………………………………………………(8分)即45λ2-48λ+11=0,解得λ=13或λ=1115.∴M 点坐标为(2,1)或⎝⎛⎭⎫225,115.故在线段OC 上存在点M ,使MA →⊥MB →,且点M 的坐标为(2,1)或(225,115).………(12分)10.(1)证明 ∵a·b =cos(-θ)·cos ⎝⎛⎭⎫π2-θ+sin ()-θ·sin ⎝⎛⎭⎫π2-θ =sin θcos θ-sin θcos θ=0.∴a ⊥b .……………………………………………………(4分)(2)解 由x ⊥y 得,x·y =0,即[a +(t 2+3)b ]·(-k a +t b )=0, ∴-k a 2+(t 3+3t )b 2+[t -k (t 2+3)]a·b =0,∴-k |a |2+(t 3+3t )|b |2=0.………………………………………………………………(6分) 又|a |2=1,|b |2=1,∴-k +t 3+3t =0,∴k =t 3+3t .…………………………………………………………(8分) ∴k +t 2t =t 3+t 2+3t t =t 2+t +3=⎝⎛⎭⎫t +122+114.……………………………………………………………………………(10分) 故当t =-12时,k +t 2t 有最小值114.………………………………………………………(12分)11.解 (1)f (x )=a·b =2cos ⎝⎛⎭⎫x +π6+2sin x =2cos x cos π6-2sin x sin π6+2sin x=3cos x +sin x =2sin ⎝⎛⎭⎫x +π3.…………………………………………………………(5分) 由π2+2k π≤x +π3≤3π2+2k π,k ∈Z , 得π6+2k π≤x ≤7π6+2k π,k ∈Z . 所以f (x )的单调递减区间是⎣⎡⎦⎤π6+2k π,7π6+2k π (k ∈Z ).……………………………………………………………(8分)(2)由(1)知f (x )=2sin ⎝⎛⎭⎫x +π3. 又因为2sin ⎝⎛⎭⎫x +π3=85,所以sin ⎝⎛⎭⎫x +π3=45,……………………………………………………………………(11分) 即sin ⎝⎛⎭⎫x +π3=cos ⎝⎛⎭⎫π6-x =cos ⎝⎛⎭⎫x -π6=45. 所以cos ⎝⎛⎭⎫2x -π3=2cos 2⎝⎛⎭⎫x -π6-1=725.………………………………………………(14分)。

相关文档
最新文档