七年级数学第二章整式知识点及练习
七年级数学上册第二单元《整式加减》-解答题专项知识点(含答案)
一、解答题1.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a 2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)解析:乙旅行社收费比甲旅行社贵0.2a 元.【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a )×90%-(a+a+12a ) =2.7a-2.5a=0.2a (元),则乙旅行社收费比甲旅行社贵0.2a 元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.2.已知22332A x y xy =+-,2222B xy y x =--.(1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.解析:(1)2212127x y xy +-;(2)114或99. 【分析】(1)把22332A x y xy =+-,2222B xy y x =--代入23A B -计算即可;(2)根据|23|1x -=,29y =,且||x y y x -=-求出x 和y 的值,然后代入(1)中化简的结果计算即可.【详解】解:(1)()()2222232332322A B x y xy xy y x -=+----2222664366x y xy xy y x =+--++2212127x y xy =+-;(2)由题意可知:231x -=±,3=±y ,∴2x =或1,3=±y ,由于||x y y x -=-,∴2x =,3y =或1x =,3y =.当2x =,3y =时,23114A B -=.当1x =,3y =时,2399A B -=.所以,23A B -的值为114或99.【点睛】本题考查了整式的加减运算,绝对值的意义,以及分类讨论的数学思想,熟练掌握整式的加减运算法则是解(1)的关键,分类讨论是解(2)的关键.3.如图,将面积为2a 的小正方形和面积为2b 的大正方形放在同一水平面上(0b a >>)(1)用a 、b 表示阴影部分的面积;(2)计算当3a =,5b =时,阴影部分的面积.解析:(1)22111222a ab b ++;(2)492 【分析】(1)阴影部分为两个直角三角形,根据面积公式即可计算得到答案;(2)将3a =,5b =代入求值即可.【详解】(1)()21122a ab b ⨯++, 22111222a ab b =++; (2)当3a =,5b =时, 原式221113355222=⨯+⨯⨯+⨯492=. 【点睛】 此题考察列式计算,根据图形边长正确列式表示图形的面积即可.4.某商店出售一种商品,其原价为m 元,现有如下两种调价方案:一种是先提价10%,在此基础上又降价10%;另一种是先降价10%,在此基础上又提价10%.(1)用这两种方案调价的结果是否一样?调价后的结果是不是都恢复了原价?(2)两种调价方案改为:一种是先提价20%,在此基础上又降价20%;另一种是先降价20%,在此基础上又提价20%,这时结果怎样?(3)你能总结出什么规律吗?解析:(1)这两种方案调价的结果一样,都没有恢复原价;(2)这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价..【分析】(1)先提价10%为110m%,再降价10%后价钱为99m%;先降价10%为90m%,再提价10%后价钱为99m%,据此可得答案;(2)先提价20%为120%m ,再降价20%后价钱为96%m ;先降价20%为80%m ,再提价20%后价钱为96%m ,据此可得答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)方案一:先提价10%价钱为()110%110%m m +=,再降价10%后价钱为()110%110%99%m m ⨯-=;方案二:先降价10%价钱为()110%90%m m -=,再提价10%后价钱为()90%110%99%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(2)方案一:先提价20%价钱为()120%120%m m +=,再降价20%后价钱为()120%120%96%m m ⨯-=;方案二:先降价20%价钱为()120%80%m m -=,再提价20%后价钱为()80%120%96%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价.【点睛】本题考查了列代数式的知识,解题的关键是能够表示出降价或涨价后的量,难度不大. 5.求多项式的值222232424a b ab a b ab --+-,其中1a =-,2b =-.解析:24a b --,-2.【分析】原式合并同类项后代入字母的值计算即可.【详解】解:原式24a b =--,当1a =-,2b =-时,原式2=-.【点睛】本题考查了整式的化简求值,正确的将原式合并同类项是解决此题的关键.6.已知,,a b c 在数轴上的位置如图所示,解答下列问题.(1)化简:||||||a b c b b a +--+-;(2)若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,求2()a b c a b c -++-+-的值.解析:(1)2a b c -+;(2)-9【分析】(1)由数轴上的位置,先判断0,0,0+>-<-<a b c b b a ,再根据绝对值的意义进行化简,即可得到答案.(2)由绝对值的意义,倒数的定义,平方根的定义,先求出a 、b 、c 的值,再代入计算,即可得到答案.【详解】解:(1)由数轴可得:0c b a <<<,∴0,0,0+>-<-<a b c b b a ,∴原式2a b c b b a a b c =++--+=-+.(2)由题意,∵若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,∴2,1,2a b c ==-=-,∴2()2a b c a b c a b c a b c -++-+-=-++--+=224149a b c -++=---=-.【点睛】本题考查了数轴的定义,绝对值的意义,倒数的定义,平方根的定义等知识,解题的关键是利用数轴正确判断0c b a <<<,从而进行解题.7.观察由“※”组成的图案和算式,解答问题(1)请猜想1+3+5+7+9+…+19= ;(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)= ;(3)请用上述计算103+105+107+…+2015+2017的值.解析:(1)102;(2)()22n + ;(3)1015480.【分析】(1)由等式可知左边是连续奇数的和,右边是数的个数的平方,由此规律解答即可,此题中一共有10个连续奇数相加,所以结果应为102;(2)一共有(n+2)个连续奇数相加,所以结果应为n 2;(3)让从1加到2005这些连续奇数的和,减去从1加到101这些连续奇数的和即可.【详解】(1)由图片知:第1个图案所代表的算式为:1=21;第2个图案所代表的算式为:1+3=4=22;第3个图案所代表的算式为:1+3+5=9=23;…依次类推:第n个图案所代表的算式为:1+3+5+…+(2n-1)=2n;1+3+5+…+19的个数为:191102+=,∴1+3+5+…+19=210;故答案为:210;(2)1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)的个数为:23122nn++=+,∴1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=()22n+,故答案为:()22n+;(3)103+105+107+…+2015+2017=(1+3+…+2015+2017)-(1+3+…+99+101)=21009-251=1015480.【点睛】本题考查了数字的变化规律的应用;判断出有几个奇数相加是解决本题的易错点;得到从1开始连续奇数的和的规律是解决本题的关键.8.用代数式表示:某厂的产量每年增长15%,如果第一年的产量是a,那么第二年的产量是多少?解析:15a【分析】设第一年的产量为a,以15%的速度增长,表示在m的基础上增长a的15%.【详解】解:根据题意,得设第一年的产量为a,以15%的速度增长,∴第二年的产量为a(1+15%)=1.15a.【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找到所求的量的等量关系.9.将一个长方形纸片连续对折,对折的次数越多,折痕的条数也就越多,如第一次对折后,有1条折痕,第2次对折后,共有3条折痕.(1)第3次对折后共有多少条折痕?第4次对折后呢?(2)对折多少次后折痕会超过100条?(3)请找出折痕条数与对折次数的对应规律,写出对折n次后,折痕有多少条?解析:(1)第3次对折后共有7条折痕,第4次对折后有15条折痕;(2)对折7次后折痕会超过100条;(3)对折n次后,折痕有21n-条.【分析】(1)动手操作即可得出第3次、第4次对折后的折痕条数;(2)在(1)的基础上,归纳类推出一般规律,再结合67264,2128==即可得出答案; (3)由题(2)已求得.【详解】(1)动手操作可知,第3次对折后的折痕条数为7条,第4次对折后的折痕条数为15条;(2)观察可知,第1次对折后的折痕条数为1121=-条,第2次对折后的折痕条数为2321=-条,第3次对折后的折痕条数为3721=-条,第4次对折后的折痕条数为41521=-条,归纳类推得:第n 次对折后的折痕条数为21n -条,因为67264,2128==,所以对折7次后折痕会超过100条;(3)由(2)已得:对折n 次后的折痕条数为21n -条.【点睛】本题考查了有理数乘方的应用,依据题意,根据前4次对折后的结果,正确归纳类推出一般规律是解题关键.10.某学生在写作业时,不慎将一滴墨水滴在了数轴上,如下图所示,而此时他要化简并求代数式()()2222352xy x x xy x xy ⎡⎤-----+⎢⎥⎣⎦的值.结果同学告诉他:x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数.请你帮助这位同学化简并求值.解析:xy ,1-【分析】先把原式进行化简,得到最简代数式,结合x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数,得到x 、y 的值,然后代入计算,即可得到答案.【详解】解:()()2222352xy xx xy x xy ⎡⎤-----+⎢⎥⎣⎦ =22226552xy x x xy x xy ⎡⎤-+--++⎣⎦=22226552xy x x xy x xy -+-+--=xy ; ∵74-<被盖住的数2<, ∴x 的值是墨迹遮盖住的最大整数,∴1x =,∵y 的值是墨迹遮盖住的最小整数,∴1y =-,∴原式=1(1)1⨯-=-.【点睛】本题考查了整式的化简求值,以及利用数轴比较有理数的大小,解题的关键是正确求出x 、y 的值,以及掌握整式的混合运算.11.数学课上,老师出示了这样一道题目:“当1,22a b ==-时,求多项式3233233733631061a a b a a b a b a a b +++----的值”.解完这道题后,张恒同学指出:“1,22a b ==-是多余的条件”师生讨论后,一致认为这种说法是正确的,老师及时给予表扬,同学们对张恒同学敢于提出自己的见解投去了赞赏的目光.(1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目,“无论x 取任何值,多项式2233x mx nx x -++-+的值都不变,求系数m 、n 的值”.请你解决这个问题. 解析:(1)见解析;(2)3n =,1m =.【分析】(1)将原式进行合并同类项,然后进一步证明即可;(2)将原式进行合并同类项,根据“无论x 取任何值,多项式值不变”进一步求解即可.【详解】(1)3233233733631061a a b a a b a b a a b +++----=3332233731033661a a a a b a b a b a b +-+-+--=1-,∴该多项式的值与a 、b 的取值无关, ∴1,22a b ==-是多余的条件. (2)2233x mx nx x -++-+=2233x nx mx x -++-+=2(3n)(1)3x m x -++-+∵无论x 取任何值,多项式值不变,∴30n -+=,10m -=,∴3n =,1m =.【点睛】本题主要考查了多项式运算中的无关类问题,熟练掌握相关方法是解题关键.12.已知多项式234212553x x x x ++-- (1)把这个多项式按x 的降冥重新排列; (2)请指出该多项式的次数,并写出它的二次项和常规项.解析:(1)432215253x x x x -+++-;(2)该多项式的次数为4,二次项是22x ,常数项是13-.【分析】(1)按照x 的指数从大到小的顺序把各项重新排列即可;(2)根据多项式的次数的定义找出次数最高的项即是该多项式的次数,再找出次数是2的项和不含字母的项即可得二次项和常数项.【详解】(1)按的降幂排列为原式432215253x x x x -+++-. (2)∵234212553x x x x ++--中次数最高的项是-5x 4, ∴该多项式的次数为4,它的二次项是22x ,常数项是13-. 【点睛】 本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键.13.如图,某市有一块长为(3a+b )米,宽为(2a+b )米的长方形地块,中间是边长为(a+b )米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化,(1)绿化的面积是多少平方米?(用含字母a 、b 的式子表示)(2)求出当a =20,b =12时的绿化面积.解析:(1)(5a 2+3ab )平方米;(2)2720平方米【分析】(1)根据割补法,用含有a,b 的式子表示出整个长方形的面积,然后用含有a,b 的式子表示出中间空白处正方形的面积,然后两者相减,即可求出绿化部分的面积.(2)将a =20,b =12分别代入(1)问中求出的关系式即可解决.【详解】解:(1)(3a+b )(2a+b )﹣(a+b )2=6a 2+3ab+2ab+b 2﹣(a 2+2ab+b 2)=6a 2+3ab+2ab+b 2﹣a 2﹣2ab ﹣b 2=5a 2+3ab ,答:绿化的面积是(5a 2+3ab )平方米;(2)当a =20,b =12时5a 2+3ab =5×202+3×20×12=2000+720=2720,答:当a =20,b =12时的绿化面积是2720平方米.【点睛】(1)本题考查了割补法,多项式乘多项式和完全平方式的运算法则,解决本题的关键是正确理解题意,能够熟练掌握多项式乘多项式的运算法则.(2)本题考查了整式的化简求值,解决本题的关键是熟练掌握整式的运算法则和步骤.14.给定一列分式:3x y ,52x y -,73x y ,94x y-,…(其中0x ≠). (1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式和第8个分式.解析:(1)任意一个分式除以前面一个分式,都得2x y -.(2)第7个分式为157x y,第8个分式为178x y-. 【分析】(1)分别算出第二个与第一个,第三个与第二个,第四个与第三个分式的除法结果,即可发现规律;(2)根据题中所给的式子找出分子、分母的指数变化规律、再找出符号的正负交替变化规律,根据规律写出所求的式子.【详解】解:(1)5352223x x x y x y y y x y, 757223235x x x y x y y y x y , 979324347x x x y x y y y x y , …… ∴任意一个分式除以前面一个分式,都得2x y-. (2)∵由式子3579234x x x x y y y y,-,,- …,发现分母上是y 1,y 2,y 3,y 4,……所以第7个式子分母上是y 7,第8个分母上是y 8;分子上是x 3,x 5,x 7,x 9,……所以第7个式子分子上是x 15,第8个分子上是x 17,再观察符号发现,第偶数个为负,第奇数个为正,∴第7个分式为157x y,第8个分式为178x y -. 【点睛】本题考查式子的规律,根据题意分别找出分子和分母及符号的变化规律是解答此题的关键. 15.观察下列单项式:﹣x ,2x 2,﹣3x 3,…,﹣9x 9,10x 10,…从中我们可以发现:(1)系数的规律有两条:系数的符号规律是系数的绝对值规律是(2)次数的规律是(3)根据上面的归纳,可以猜想出第n 个单项式是 .解析:(1)奇数项为负,偶数项为正;与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx -【分析】通过观察题意可得:奇数项的系数为负,偶数项的系数为正,且系数的绝对值与自然数序号相同,次数也与与自然数序号相同.由此可解出本题.【详解】(1)奇数项为负,偶数项为正,与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx -.【点睛】本题考查了单项式的有关概念.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.16.已知A=3a 2b ﹣2ab 2+abc ,小明同学错将“2A ﹣B”看成“2A+B”,算得结果为4a 2b ﹣3ab 2+4abc .(1)计算B 的表达式;(2)求出2A ﹣B 的结果;(3)小强同学说(2)中的结果的大小与c 的取值无关,对吗?若a=18,b=15,求(2)中式子的值.解析:(1)﹣2a 2b+ab 2+2abc ;(2) 8a 2b ﹣5ab 2;(3)对,0.【分析】(1)根据B =4a 2b ﹣3ab 2+4abc -2A 列出关系式,去括号合并即可得到B ;(2)把A 与B 代入2A-B 中,去括号合并即可得到结果;(3)把a 与b 的值代入计算即可求出值.【详解】解:(1)∵2A +B =4a 2b ﹣3ab 2+4abc ,∴B =4a 2b ﹣3ab 2+4abc -2A=4a 2b -3ab 2+4abc -2(3a 2b -2ab 2+abc)=4a 2b -3ab 2+4abc -6a 2b +4ab 2-2abc=-2a 2b +ab 2+2abc ;(2)2A -B =2(3a 2b -2ab 2+abc)-(-2a 2b +ab 2+2abc)=6a 2b -4ab 2+2abc +2a 2b -ab 2-2abc=8a 2b -5ab 2;(3)对,由(2)化简的结果可知与c 无关,将a =18,b =15代入,得 8a 2b -5ab 2=8×218⎛⎫ ⎪⎝⎭×15-5×18×21()5=0. 【点睛】本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.17.已知a+b =2,ab =2,求32231122a b a b ab ++的值. 解析:4【分析】 根据因式分解,首先将整式提取公因式12ab ,在采用完全平方公式合,在代入计算即可. 【详解】 解:原式=12a 3b +a 2b 2+12ab 3 =12ab (a 2+2ab +b 2) =12ab (a +b )2, ∵a +b =2,ab =2, ∴原式=12×2×4=4. 【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解.18.已知多项式﹣3x 2+mx+nx 2﹣x+3的值与x 无关,求(2m ﹣n )2017的值.解析:-1【分析】先把多项式进行合并同类项得(n-3)x 2+(m-1)x+3,由于关于字母x 的二次多项式-3x 2+mx+nx 2-x+3的值与x 无关,即不含x 的项,所以n-3=0,m-1=0,然后解出m 、n ,代入计算(2m-n )2017的值即可.【详解】合并同类项得(n ﹣3)x 2+(m ﹣1)x+3,根据题意得n ﹣3=0,m ﹣1=0,解得m=1,n=3,所以(2m ﹣n )2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数. 19.观察下列单项式:x -,23x ,35x -,47x ,…1937x -,2039x ,…写出第n 个单项式,为了解这个问题,特提供下面的解题思路.()1这组单项式的系数的符号,绝对值规律是什么?()2这组单项式的次数的规律是什么?()3根据上面的归纳,你可以猜想出第n 个单项式是什么?()4请你根据猜想,请写出第2014个,第2015个单项式.解析:()1 (1)n -(或:负号正号依次出现;),21n -(或:从1开始的连续奇数);()2从1开始的连续自然数;()3第n 个单项式是:()(1)21n n n x --;()4?2014个单项式是20144027x ;第2015个单项式是20154029x -.【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)和(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】()1数字为1-,3,5-,7,9-,11,…,为奇数且奇次项为负数,可得规律:()(1)21n n --;故单项式的系数的符号是:(1)n-(或:负号正号依次出现;),绝对值规律是:21n -(或:从1开始的连续奇数); ()2字母因数为:x ,2x ,3x ,4x ,5x ,6x ,…,可得规律:n x ,这组单项式的次数的规律是从1开始的连续自然数.()3第n 个单项式是:()(1)21n n n x --.()4把2014n =、2015n =直接代入解析式即可得到:第2014个单项式是20144027x ;第2015个单项式是20154029x -.【点睛】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.20.若1+2+3+…+n=m ,求(ab n )•(a 2b n ﹣1)…(a n ﹣1b 2)•(a n b )的值.解析:a m b m【解析】试题分析:根据单项式的乘法法则,同底数幂相乘,底数不变,指数相加的性质,(ab n )•(a 2b n ﹣1)…(a n ﹣1b 2)•(a n b )=a 1+2+…n b n+n ﹣1+…+1=a m b m .解:∵1+2+3+…+n=m ,∴(ab n )•(a 2b n ﹣1)…(a n ﹣1b 2)•(a n b ),=a 1+2+...n b n+n ﹣1+ (1)考点:单项式乘单项式;同底数幂的乘法.点评:本题考查单项式的乘法法则和同底数幂的乘法的性质.21.已知230x y ++-=,求152423x y xy --+的值. 解析:-24.【分析】首先根据绝对值的非负性求出x ,y ,然后代入代数式求值.【详解】解:∵230x y ++-=,∴x+2=0,y-3=0,∴x=-2,y=3, ∴152423x y xy --+ ()()552342323=-⨯--⨯+⨯-⨯ ()5524=-+-24=-.【点睛】本题考查了代数式求值,利用非负数的和为零得出x 、y 的值是解题关键.22.已知31A B x ,且3223A x x ,求代数式B .解析:2322x x -++【分析】将A 代入A-B=x 3+1中计算即可求出B .【详解】解:∵A-B=x 3+1,且A=-2x 3+2x+3,∴B=A-(x 3+1)=-2x 3+2x+3-x 3-1=-3x 3+2x+2.【点睛】本题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解题的关键.23.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y . 解析:132【解析】试题分析:原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.原式222222244442x xy x y x xy y x y =-+--+-=-,当12,2x y =-=-时,原式174.22=-= 24.观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式:①1=12;②1+3=22;③1+3+5=32;④_____________;⑤_____________;….(2)通过猜想写出与第n 个点阵图相对应的等式.解析:(1) 1+3+5+7=42; 1+3+5+7+9=52;(2)1+3+5+…+(2n -1)=n 2.【分析】根据图示和数据可知规律是:等式左边是连续的奇数和,等式右边是等式左边的首数与末数的平均数的平方,据此进行解答即可.【详解】(1)由图①知黑点个数为1个,由图②知在图①的基础上增加3个,由图③知在图②基础上增加5个,则可推知图④应为在图③基础上增加7个即有1+3+5+7=42,图⑤应为1+3+5+7+9=52,故答案为④1+3+5+7=42;⑤1+3+5+7+9=52;(2)由(1)中推理可知第n 个图形黑点个数为1+3+5+…+(2n -1)=n 2.【点睛】本题考查了规律型——数字的变化类,解答此类问题的关键是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.25.设A =2x 2+x ,B =kx 2-(3x 2-x+1).(1)当x= -1时,求A 的值;(2)小明认为不论k 取何值,A-B 的值都无法确定.小红认为k 可以找到适当的数,使代数式A-B 的值是常数.你认为谁的说法正确?请说明理由.解析:(1)A =1;(2)小红的说法正确,理由见解析.【解析】试题分析:(1)把x=-1代入A 进行计算即可得;(2)先计算出A-B ,根据结题即可得.试题(1)当x=-1时,A=2x 2+x=2×(-1)2+(-1)=2-1=1;(2)小红的说法正确,理由如下:A-B=(2x2+x)-[kx2-(3x2-x+1)]=(5-k)x2+1,所以当k=5时,A-B=1,所以小红的说法是正确的.26.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A,B是数轴上的点,请参照下图并思考,完成下列各题.(1)如果点A表示数-3,将A点向右移动7个单位长度,那么终点B表示的数是,A,B两点间的距离为.(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A,B两点间的距离为.,将A点向右移动168个单位长度,再向左移动256个单位长(3)如果点A表示数4度,那么终点B表示的数是,A,B两点间的距离是.(4)一般地,如果A点表示数为m,将A点向右移动n个单位长度,再向左移动P个单位长度,那么,请你猜想终点B表示什么数?A,B两点间的距离为多少?解析:(1)4,7;(2) 1,2;(3) -92,88;(4)m+n-p,|n-p|【分析】(1)根据数轴上的点向右平移加,向左平移减,可得B点表示的数为-3+7=4,根据数轴上两点间的距离是大数减小数,可得答案;(2)根据数轴上的点向右平移加,向左平移减,可得B点表示的数3-7+5=1,根据数轴上两点间的距离是大数减小数,可得答案;(3)根据数轴上的点向右平移加,向左平移减,可得B点表示的数-4+168-256=-92,根据数轴上两点间的距离是大数减小数,可得答案;(4)按照(1)(2)(3)中的方法讨论更加一般的情况即可求解.【详解】解:(1)∵点A表示数-3,∴将A点向右移动7个单位长度,那么终点B表示的数是-3+7=4,A,B两点间的距离为4-(-3)=7,故答案为:4,7;(2)∵点A表示数3,∴将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是3-7+5=1,A,B两点间的距离为3-1=2,故答案为:1,2;(3)∵点A表示数-4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是-4+168-256=-92,A,B两点间的距离是-4-(-92)=88,故答案为:-92,88;(4)∵A点表示的数为m,∴将A点向右移动n个单位长度,再向左移动p个单位长度,那么点B表示的数为m+n-p,A,B两点间的距离为|m-(m+n-p)|=|n-p|.故答案为:m+n-p,|n-p|.【点睛】本题考查的是数轴上点的平移规律及数轴上两点之间的距离公式,点在数轴上平移遵循“左减右加”原则;注意数轴上两点之间的距离为大数减小数,当不确定谁大谁小时记得加绝对值符号;正确利用数形结合分析是解题关键.27.在数学活动课上,李老师设计了一个游戏活动,四名同学分别代表一种运算,四名同学可以任意排列,每次排列代表一种运算顺序,剩余同学中,一名学生负责说一个数,其他同学负责运算,运算结果既对又快者获胜,可以得到一个奖品.下面我们用四个卡片代表四名同学(如下):(1)列式,并计算:①3-经过A ,B ,C ,D 的顺序运算后,结果是多少?②5经过B ,C ,A ,D 的顺序运算后,结果是多少?(2)探究:数a 经过D ,C ,A ,B 的顺序运算后,结果是45,a 是多少? 解析:(1)①7;②206;(2)256a =或256a =-【分析】(1)把-3和5经过A ,B ,C ,D 的运算顺序计算即可;(2)根据已知条件列列出关于a 的方程计算即可;【详解】(1)①2[(3)2(5)]67-⨯--+=;②2[5(5)]26206--⨯+=;(2)()()226545a +--=,()2620a +=, 解得256a =或256a =-.【点睛】本题主要考查了规律型数字变化类,一元二次方程的求解,准确计算是解题的关键. 28.计算:(1)()()312⨯-+-(2)2235223x x x x -+-+-解析:(1)5-;(2)241x x --【分析】(1)直接根据有理数的混合运算法则即可求解.(2)直接根据整式的加减混合运算法则即可求解.【详解】解:(1)原式(3)(2)=-+- 5=-;(2)原式2(32)(51)(23)x x =---+-241x x =--.【点睛】此题主要考查有理数的加减运算和整式的加减运算,熟练掌握运算法则是解题关键. 29.定义:若2m n +=,则称m 与n 是关于1的平衡数.(1)3与______是关于1的平衡数,5x -与______(用含x 的整式表示)是关于1的平衡数;(2)若()22234a x x x =-++,()22342b x x x x ⎡⎤=--+-⎣⎦,判断a 与b 是否是关于1的平衡数,并说明理由.解析:(1)1-,3x -;(2)不是,理由见解析【分析】(1)由平衡数的定义求解即可达到答案;(2)计算a+b 是否等于1即可;【详解】解:(1)1-,3x -;(2)a 与b 不是关于1的平衡数.理由如下:因为()22234a x x x =-++,()22342b x x x x ⎡⎤=--+-⎣⎦,所以()()2222342342a b x x x x x x x ⎡⎤+=-+++--+-⎣⎦, 22223342342x x x x x x x =--++-+++,62=≠,所以a 与b 不是关于1的平衡数.【点睛】本题主要考查了整式的加减,准确分析计算是解题的关键.30.让我们规定一种运算a bad cb c d =-, 如232534245=⨯-⨯=-. 再如14224x x =-. 按照这种运算规定,请解答下列问题,(1)计算60.5142= ;-3-245= ;2-335xx =-(2)当x=-1时,求223212232x x x x -++-+---的值(要求写出计算过程). 解析:(1)1;-7;-x ;(2)-7【分析】(1)根据新运算的定义式,代入数据求出结果即可;(2)根据新运算的定义式将原式化简为-x-8,代入x=-1即可得出结论.【详解】解:(1)60.5160.543211242=⨯-⨯=-=; -3-23524158745=-⨯--⨯=---=-()(); 2-3253310935x x x x x x x=⨯---⨯=---=--()()(). 故答案为:1;-7;-x .(2)原式=(-3x 2+2x+1)×(-2)-(-2x 2+x-2)×(-3),=(6x 2-4x-2)-(6x 2-3x+6),=-x-8,当x=-1时,原式=-x-8=-(-1)-8=-7.∴当x=-1时,223212232x x x x -++-+---的值为-7. 【点睛】本题考查了整式的化简求值以及有理数的混合运算,读懂题意掌握新运算并能用其将整式进行化简是解题的关键.。
《常考题》初中七年级数学上册第二章《整式的加减》知识点复习(含答案解析)
1.某养殖场2018年年底的生猪出栏价格是每千克a元.受市场影响,2019年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克()A.(1-15%)(1+20%)a元B.(1-15%)20%a元C.(1+15%)(1-20%)a 元D.(1+20%)15%a元A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1-15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1-15%)(1+20%)a元.故选:A.【点睛】本题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.2.由于受H7N9禽流感的影响,某市城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/kg.则3月份鸡的价格为()A.24(1-a%-b%)元/kg B.24(1-a%)b% 元/kgC.(24-a%-b% )元/kg D.24(1-a%)(1-b%)元/kg D解析:D【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格.【详解】∵今年2月份鸡的价格比1月份下降a%,1月份鸡的价格为24元/kg,∴2月份鸡的价格为24(1-a%)元/kg,∵3月份比2月份下降b%,∴三月份鸡的价格为24(1-a%)(1-b%)元/kg.故选:D.【点睛】本题主要考查了列代数式,解题的关键是掌握每个月份的数量增长关系.3.代数式x2﹣1y的正确解释是()A.x与y的倒数的差的平方B.x的平方与y的倒数的差C.x的平方与y的差的倒数D.x与y的差的平方的倒数B 解析:B【分析】根据代数式的意义,可得答案.【详解】解:代数式x 2﹣1y的正确解释是x 的平方与y 的倒数的差, 故选:B . 【点睛】本题考查了代数式,理解题意(代数式的意义)是解题关键. 4.下列去括号正确的是( ) A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ D解析:D 【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确; 故答案为:D . 【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 5.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( )A .14B .14-C .4D .-4B解析:B 【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案. 【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩则()()5711n m +-=14-故答案选B. 【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.6.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b cA .1,6,15a b c ===B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c === B解析:B 【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可. 【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=. 故选:B . 【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键. 7.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2 B .3C .4D .5B解析:B 【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值. 【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4, 解得,n=3, 故选:B.【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同. 8.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( ) A .2- B .13C .23D .32A 解析:A 【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值. 【详解】∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期 ∵2020÷3=673⋯⋯1,∴202012a a ==- 故选:A. 【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况. 9.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17B .67C .-67D .0B解析:B 【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题. 【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项, ∴6﹣7m =0,解得m =67. 故选:B . 【点睛】本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 10.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数 C .a 的平方与b 的差的倒数 D .a 的平方与b 的倒数的差D解析:D 【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果. 【详解】 解:代数式21a b-的正确解释是a 的平方与b 的倒数的差. 故选:D. 【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.11.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ). A .0 B .-2C .0或-2D .任意有理数A解析:A 【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值.【详解】∵a ,b 互为相反数, ∴0a b +=, ∵c ,d 互为倒数, ∴cd =1,∵m 的绝对值等于1, ∴m =±1, ∴原式=0110-+= 故选:A. 【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.12.下列各对单项式中,属于同类项的是( ) A .ab -与4abc B .213x y 与212xy C .0与3-D .3与a C解析:C 【分析】根据同类项的定义逐个判断即可. 【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项; D .3与a 不是同类项. 故选C . 【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键.13.小明乘公共汽车到白鹿原玩,小明上车时,发现车上已有(6a ﹣2b )人,车到中途时,有一半人下车,但又上来若干人,这时车上共有(10a ﹣6b )人,则中途上车的人数为( ) A .16a ﹣8b B .7a ﹣5bC .4a ﹣4bD .7a ﹣7b B解析:B 【分析】根据题意表示出途中下车的人数,再根据车上总人数即可求得中途上车的人数. 【详解】由题意可得:(10a ﹣6b )﹣[(6a ﹣2b )﹣(3a ﹣b )] =10a ﹣6b ﹣6a +2b +3a ﹣b =7a ﹣5b . 故选B . 【点睛】本题考查了整式加减的应用,根据题意正确列出算式是解决问题的关键. 14.下列说法错误的是( ) A .23-2x y 的系数是32-B .数字0也是单项式C .-x π是二次单项式D .23xy π的系数是23πC 解析:C 【分析】根据单项式的有关定义逐个进行判断即可.【详解】A. 23-2x y 的系数是32-,故不符合题意;B. 数字0也是单项式 故不符合题意;C. -x π是一次单项式 ,故原选项错误D.23xy π的系数是23π,故不符合题意. 故选C . 【点睛】本题考查对单项式有关定义的应用,能熟记单项式的有关定义是解此题关键. 15.如果m ,n 都是正整数,那么多项式x m +y n +3m+n 的次数是( ) A .2m +2nB .mC .m +nD .m ,n 中的较大数D解析:D 【解析】 【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 的次数是m ,n 中的较大数是该多项式的次数. 【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 中次数最高的多项式的次数,即m ,n 中的较大数是该多项式的次数. 故选D. 【点睛】此题考查多项式,解题关键在于掌握其定义.1.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数 1 2 3 4 … n 正三角形个数471013…a n3n+1【解析】试题分析:从表格中的数据不难发现:多剪一次多3个三角形即剪n 次时共有4+3(n-1)=3n+1试题解析:3n+1. 【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n 次时,共有4+3(n-1)=3n+1. 试题故剪n 次时,共有4+3(n-1)=3n+1. 考点:规律型:图形的变化类.2.单项式2335x yz -的系数是___________,次数是___________.六【分析】根据单项式系数次数的定义来求解单项式中数字因数叫做单项式的系数所有字母的指数和叫做这个单项式的次数【详解】的系数是次数是6故答案为六【点睛】本题考查了单项式的次数和系数确定单项式的系数和次解析:35六 【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数. 【详解】2335x yz -的系数是35-,次数是6, 故答案为35-,六. 【点睛】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.3.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n 个图形有6n+2根火柴棒解析:6n+2. 【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒, 第2个图形有14=6×1+8根火柴棒, 第3个图形有20=6×2+8根火柴棒, ……,第n 个图形有6n+2根火柴棒.4.如图,是由一些点组成的图形,按此规律,在第n 个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n 个图形中小圆的个数为3+3+5+7+…+(2解析:n 2+2 【详解】解:第1个图形中点的个数为3; 第2个图形中点的个数为3+3; 第3个图形中点的个数为3+3+5; 第4个图形中点的个数为3+3+5+7; …第n 个图形中小圆的个数为3+3+5+7+…+(2n ﹣1)=n 2+2. 故答案为:n 2+2. 【点睛】本题考查规律型:图形的变化类.5.22223124,4135-=-=225146-=,……221012m m -=+m =_____________9【分析】根据观察可知:将代入即可得出答案【详解】解:……故答案为:【点睛】主要考查了学生的分析总结归纳能力规律型的习题一般是从所给的数据和运算方法进行分析从特殊值的规律上总结出一般性的规律解析:9 【分析】 ()22113n n n +-++=,将210n +=代入即可得出答案.【详解】 解:22223124,4135--=225146-=……,()22113n n n +-++=210n+=∴=n8∴=+=19m n故答案为:9.【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.6.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…,即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+3×209=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律.---,…,按如图所示的规律有序排列.根据图中排列规律可7.将一列数1,2,3,4,5,6知,“峰1”中峰顶位置(C的位置)是4,那么“峰206”中C的位置的有理数是______.-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝对值为以此进行分析即可【详解】解:由图可知每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝解析:-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,以此进行分析即可.【详解】解:由图可知,每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,当206n =时,52061103011029⨯-=-=,因为1029是奇数,所以“峰206”中C 的位置的有理数是1029-.故答案为:1029-.【点睛】本题考查图形的数字规律,熟练掌握根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -是解题的关键.8.计算7a 2b ﹣5ba 2=_____.2a2b 【分析】根据合并同类项法则化简即可【详解】故答案为:【点睛】本题考查了合并同类项解题的关键是熟练运用合并同类项的法则本题属于基础题型解析:2a 2b【分析】根据合并同类项法则化简即可.【详解】()22227a b 5ba =75a b=2a b ﹣﹣.故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型. 9.已知|a|=-a ,bb =-1,|c|=c ,化简 |a+b| + |a-c| - |b-c| = _________.-2a 【分析】由已知可以判断出ab 及c 的正负进而确定出a+ba-c 与b-c 的正负利用绝对值的代数意义化简即可得到结果【详解】解:∵|a|=-a=-1|c|=c ∴∴则|a+b|+|a-c|-|b-c| 解析:-2a【分析】由已知可以判断出a, b 及c 的正负,进而确定出a+b ,a-c 与b-c 的正负,利用绝对值的代数意义化简,即可得到结果.【详解】解:∵|a|=-a ,bb=-1,|c|=c∴00, 0,a b c ≤<≥, ∴000,a b a c b c +<-≤-<,,则|a+b| + |a-c| - |b-c| =-+2a b a c b c a --+-=- .故答案为: -2a.【点睛】此题考查了整式的加减, 涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.10.已知22 251,34A x ax y B x x by =+-+=+--,且对于任意有理数,x y ,代数式 2A B - 的值不变,则12()(2)33a Ab B ---的值是_______.-2【分析】先根据代数式为定值求出ab 的值及的值然后对所求代数式进行变形然后代入计算即可【详解】∵对于任意有理数代数式的值不变∴∵∴原式=故答案为:-2【点睛】本题主要考查代数式的求值能够对代数式进解析:-2【分析】先根据代数式 2A B -为定值求出a,b 的值及 2A B -的值,然后对所求代数式进行变形,然后代入计算即可.【详解】222(251)2(34)A B x ax y x x by -=+-+-+--222512628x ax y x x by =+-+--++(6)(25)9a x b y =-+-+∵对于任意有理数 ,x y ,代数式 2A B - 的值不变∴60,250a b -=-=,29A B -=56,2a b ∴== ∵121()(2)2(2)333a Ab B a b A B ---=--- ∴原式=51629653223-⨯-⨯=--=- 故答案为:-2【点睛】 本题主要考查代数式的求值,能够对代数式进行化简,变形是解题的关键.11.为了鼓励节约用电,某地对用户用电收费标准作如下规定:如果每户用电不超过50度,那么每度电按a 元收费,如果超过50度,那么超过部分按每度()0.5a +元收费,某居民在一个月内用电98度,他这个月应缴纳电费______元.【分析】98度超过了50度应分两段进行计费第一段50每度收费a 元第二段(98-50)度每度收费(a+05)元据此计算即可【详解】解:由题意可得:(元)故答案为:(98a+24)【点睛】本题考查了列代解析:()9824a +【分析】98度超过了50度,应分两段进行计费,第一段50,每度收费a 元,第二段(98-50)度,每度收费(a +0.5)元,据此计算即可.【详解】解:由题意可得:()()5098500.59824a a a +-+=+(元).故答案为:(98a +24).【点睛】本题考查了列代数式,根据题意,列出代数式是解决此题的关键.1.已知有理数a 和b 满足多项式A ,且A=(a ﹣1)x 5+x |b+2|﹣2x 2+bx+b (b≠﹣2)是关于x 的二次三项式,求(a ﹣b )2的值.解析:16或25【解析】试题分析:根据有理数a 和b 满足多项式A .A =(a ﹣1)x 5+x |b +2|﹣2x 2+bx +b 是关于x 的二次三项式,求得a 、b 的值,然后分别代入计算可得.试题解:∵有理数a 和b 满足多项式A .A =(a ﹣1)x 5+x |b +2|﹣2x 2+bx +b 是关于x 的二次三项式,∴a ﹣1=0,解得:a =1.(1)当|b +2|=2时,解得:b =0或b =4.①当b =0时,此时A 不是二次三项式;②当b =﹣4时,此时A 是关于x 的二次三项式.(2)当|b +2|=1时,解得:b =﹣1(舍)或b =﹣3.(3)当|b +2|=0时,解得:b =﹣2(舍)∴a =1,b =﹣4或a =1,b =﹣3.当a =1,b =﹣4时,(a ﹣b )2=25;当a =1,b =﹣3时,(a ﹣b )2=16.点睛:本题考查了多项式的知识,解题的关键是根据题意求得a 、b 的值,题目中重点渗透了分类讨论思想.2.奇奇同学发现按下面的步骤进行运算,所得结果一定能被9整除.请你用我们学过的整式的知识解释这一现象.解析:见解析.【分析】设原来的两位数十位数字为a ,个位数字为b ,表示出原来两位数与新的两位数,相减得到结果,即可得出结果.【详解】解:设原来的两位数十位数字为a ,个位数字为b ,则原来两位数为10a+b ,交换后的新两位数为10b+a ,(10a+b )-(10b+a )=10a+b-10b-a=9a-9b=9(a-b ),则这个结果一定是被9整除.【点睛】此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键. 3.化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键. 4.求多项式的值222232424a b ab a b ab --+-,其中1a =-,2b =-.解析:24a b --,-2.【分析】原式合并同类项后代入字母的值计算即可.【详解】解:原式24a b =--, 当1a =-,2b =-时, 原式2=-.【点睛】本题考查了整式的化简求值,正确的将原式合并同类项是解决此题的关键.。
七年级数学上册第二单元《整式加减》-解答题专项知识点总结(含解析)
一、解答题1.已知多项式﹣3x 2+mx+nx 2﹣x+3的值与x 无关,求(2m ﹣n )2017的值. 解析:-1 【分析】先把多项式进行合并同类项得(n-3)x 2+(m-1)x+3,由于关于字母x 的二次多项式-3x 2+mx+nx 2-x+3的值与x 无关,即不含x 的项,所以n-3=0,m-1=0,然后解出m 、n ,代入计算(2m-n )2017的值即可. 【详解】合并同类项得(n ﹣3)x 2+(m ﹣1)x+3, 根据题意得n ﹣3=0,m ﹣1=0, 解得m=1,n=3,所以(2m ﹣n )2017=(﹣1)2017=﹣1. 【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数. 2.如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD . (1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDEACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABD a b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABDb a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简. 3.给定一列分式:3x y ,52x y -,73x y ,94x y-,…(其中0x ≠).(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式和第8个分式.解析:(1)任意一个分式除以前面一个分式,都得2x y -.(2)第7个分式为157x y ,第8个分式为178x y-.【分析】(1)分别算出第二个与第一个,第三个与第二个,第四个与第三个分式的除法结果,即可发现规律;(2)根据题中所给的式子找出分子、分母的指数变化规律、再找出符号的正负交替变化规律,根据规律写出所求的式子. 【详解】解:(1)5352223x x x y x y y y x y, 757223235x x x y x y y y x y , 979324347x x x y x y y y x y, ……∴任意一个分式除以前面一个分式,都得2x y-.(2)∵由式子3579234x x x x y y y y,-,,- …,发现分母上是y 1,y 2,y 3,y 4,……所以第7个式子分母上是y 7,第8个分母上是y 8;分子上是x 3,x 5,x 7,x 9,……所以第7个式子分子上是x 15,第8个分子上是x 17,再观察符号发现,第偶数个为负,第奇数个为正,∴第7个分式为157x y,第8个分式为178x y -.【点睛】本题考查式子的规律,根据题意分别找出分子和分母及符号的变化规律是解答此题的关键. 4.化简并求值:已知2232A a b ab abc =-+,小明错将“2A B -”看成“2A B +”,算得结果22434C a b ab abc =-+.(1)计算B 的表达式;(2)小强说正确结果的大小与c 的取值无关,对吗?请说明理由. (3)若18a =,15b = ,求正确结果的代数式的值. 解析:(1)2222a b ab abc -++;(2)小强的说法对,正确结果的取值与c 无关,理由见解析;(3)0. 【分析】(1)由2A+B=C 得B=C-2A ,将C 、A 代入根据整式的乘法计算可得B ;(2)将A 、B 代入2A-B ,根据整式的加减运算法则进行化简,由化简后的代数式中无字母c 可知其值与c 无关;(3)将a 、b 的值代入计算即可. 【详解】解:(1)∵2A B C +=,∴2B C A =-. B 22224342(32)a b ab abc a b ab abc =-+--+2222434642a b ab abc a b ab abc =-+-+- 2222a b ab abc =-++;(2)222222(32)(22)A B a b ab abc a b ab abc -=-+--++222264222a b ab abc a b ab abc =-++-- 2285a b ab =-.因正确结果中不含c ,所以小强的说法对,正确结果的取值与c 无关; (3)将18a =, 15b =代入(2)中的代数式,得: 22221111858()5()8585a b ab -=⨯⨯-⨯⨯0= .【点睛】本题主要考查整式的乘法,熟练掌握整式的乘法法则是解题的关键. 5.求多项式的值222232424a b ab a b ab --+-,其中1a =-,2b =-. 解析:24a b --,-2. 【分析】原式合并同类项后代入字母的值计算即可. 【详解】解:原式24a b =--, 当1a =-,2b =-时, 原式2=-. 【点睛】本题考查了整式的化简求值,正确的将原式合并同类项是解决此题的关键.6.有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.解析:3a b c --+【分析】首先判断出a c -,b b a b a -+,,的正负,再去掉绝对值符号,然后合并同类项即可. 【详解】由题意可知0a c -<,0b >,0b a ->,0b a +<,||||||||a c b b a b a ----++3a c b b a b a a b c =-+--+--=--+. 故答案为:3a b c --+. 【点睛】本题主要考查了整式的化简求值,数轴,绝对值,熟练掌握运算法则以及数轴上右边的数总比左边的数大是解答本题的关键.7.如图,观察下列图形,可得它们是按一定规律排列的,依照此规律,解决下列问题.(1)第5个图形有_______颗五角星,第6个图形有_______颗五角星; (2)第2020个图形有_______颗五角星,第n 个图形有_______颗五角星. 解析:(1)16,19;(2)6061,31n +. 【分析】(1)将每一个图案分成两部分,最下面位置处的一个不变,其它的分三条线,每一条线上后一个图形比前一个图形多一个,根据此规律找出第5、6个图形中★的个数;(2)利用(1)中所得规律可得. 【详解】解:(1)观察发现,第1个图形★的颗数是134+=, 第2个图形★的颗数是1327+⨯=, 第3个图形★的颗数是13310+⨯=, 第4个图形★的颗数是13413+⨯=, 所以第5个图形★的颗数是13516+⨯=, 第6个图形★的颗数是13619+⨯=. 故答案为:16,19.(2)由(1)知,第2020个图形★的颗数是1320206061+⨯=, 第n 个图形★的颗数是31n +. 故答案为:6061,31n +. 【点睛】本题考查了图形变化规律的问题,把★分成两部分进行考虑,并找出第n 个图形★的个数的表达式是解题的关键. 8.先化简,再求值:()22323(2)x xy x y xy y --+-+,其中1,32x y =-=.解析:8xy -,12 【分析】根据题意,对原式利用整式的混合运算法则进行化简,然后将x ,y 的值代入求解即可. 【详解】解:原式2236328x xy x y xy y xy =--+--=-, 当1,32x y =-=时,原式183122⎛⎫=-⨯-⨯= ⎪⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.9.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值.解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可. 【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --,当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.10.用代数式表示:某厂的产量每年增长15%,如果第一年的产量是a ,那么第二年的产量是多少? 解析:15a 【分析】设第一年的产量为a ,以15%的速度增长,表示在m 的基础上增长a 的15%. 【详解】 解:根据题意,得设第一年的产量为a ,以15%的速度增长, ∴第二年的产量为a (1+15%)=1.15a . 【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找到所求的量的等量关系. 11.将一个长方形纸片连续对折,对折的次数越多,折痕的条数也就越多,如第一次对折后,有1条折痕,第2次对折后,共有3条折痕. (1)第3次对折后共有多少条折痕?第4次对折后呢? (2)对折多少次后折痕会超过100条?(3)请找出折痕条数与对折次数的对应规律,写出对折n 次后,折痕有多少条? 解析:(1)第3次对折后共有7条折痕,第4次对折后有15条折痕;(2)对折7次后折痕会超过100条;(3)对折n 次后,折痕有21n -条. 【分析】(1)动手操作即可得出第3次、第4次对折后的折痕条数;(2)在(1)的基础上,归纳类推出一般规律,再结合67264,2128==即可得出答案;(3)由题(2)已求得. 【详解】(1)动手操作可知,第3次对折后的折痕条数为7条, 第4次对折后的折痕条数为15条;(2)观察可知,第1次对折后的折痕条数为1121=-条, 第2次对折后的折痕条数为2321=-条, 第3次对折后的折痕条数为3721=-条, 第4次对折后的折痕条数为41521=-条, 归纳类推得:第n 次对折后的折痕条数为21n -条, 因为67264,2128==,所以对折7次后折痕会超过100条;(3)由(2)已得:对折n 次后的折痕条数为21n -条.【点睛】本题考查了有理数乘方的应用,依据题意,根据前4次对折后的结果,正确归纳类推出一般规律是解题关键.12.用代数式表示:(1)比x的平方的5倍少2的数;(2)x的相反数与y的倒数的和;(3)x与y的差的平方;(4)某商品的原价是a元,提价15%后的价格;(5)有一个三位数,个位数字比十位数字少4,百位数字是个位数字的2倍,设x表示十位上的数字,用代数式表示这个三位数.解析:(1)5x2-2;(2)-x+1y;(3)(x-y)2;(4)(1+15%)a;(5)200(x-4)+10x+(x-4).【分析】(1)明确是x的平方的5倍与2的差;(2)先求出x的相反数与y的倒数,然后相加即可;(3)注意是先做差后平方;(4)注意是提价后的价格而非所提的价格;(5)注意正确表示百位,十位,个位上的数.【详解】(1)5x2-2;(2)-x+1y;(3)(x-y)2;(4)(1+15%)a;(5)200(x-4)+10x+(x-4) .【点睛】本题考查了列代数式,能够根据运算顺序正确书写,同时注意数位的意义,注意“多,少,积,差”等关键字的把握.13.图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.(1)图②有个三角形;图③有个三角形;(2)按上面的方法继续下去,第n个图形中有多少个三角形(用n的代数式表示结论).解析:(1)5,9 ;(2)43n - 【分析】(1)由图形即可数得答案;(2)发现每个图形都比起前一个图形多4个,所以第n 个图形中有14(1)43n n +⨯-=-个三角形. 【详解】解:(1)根据图形可得:5,9; (2)发现每个图形都比起前一个图形多 4 个,∴第n 个图形中有14(1)43n n +⨯-=-个三角形. 【点睛】本题考查图形的特征,根据图形的特征找出规律,属于一般题型. 14.化简与求值:(1)若1a =-,则式子21a -的值为______; (2)若1a b +=,则式子12a b++的值为______; (3)若534a b +=-,请你仿照以上求式子值的方法求出()()2422a b a b +++-的值. 解析:(1)0;(2)32;(3)-10. 【分析】(1)把a 的值代入计算即可; (2)把a+b 的值代入计算即可;(3)原式去括号转化为含有(5a+3b)的式子,然后代入5a+3b 的值计算即可. 【详解】解:(1)()221110a -=--=; (2)1311222a b ++=+=; (3)()()()()24221062253224210a b a b a b a b +++-=+-=+-=⨯--=-. 【点睛】本题考查的是整式的化简求值和整体代换的思想.只要原式化简出含有已知的式子,再代入求值即可.15.已知多项式234212553x x x x ++-- (1)把这个多项式按x 的降冥重新排列;(2)请指出该多项式的次数,并写出它的二次项和常规项.解析:(1)432215253x x x x -+++-;(2)该多项式的次数为4,二次项是22x ,常数项是13-. 【分析】(1)按照x 的指数从大到小的顺序把各项重新排列即可;(2)根据多项式的次数的定义找出次数最高的项即是该多项式的次数,再找出次数是2的项和不含字母的项即可得二次项和常数项. 【详解】(1)按的降幂排列为原式432215253x x x x -+++-. (2)∵234212553x x x x ++--中次数最高的项是-5x 4, ∴该多项式的次数为4,它的二次项是22x ,常数项是13-.【点睛】本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键. 16.计算: (1)()()312⨯-+-(2)2235223x x x x -+-+- 解析:(1)5-;(2)241x x -- 【分析】(1)直接根据有理数的混合运算法则即可求解. (2)直接根据整式的加减混合运算法则即可求解. 【详解】解:(1)原式(3)(2)=-+-5=-;(2)原式2(32)(51)(23)x x =---+-241x x =--.【点睛】此题主要考查有理数的加减运算和整式的加减运算,熟练掌握运算法则是解题关键. 17.已知单项式﹣2x 2y 的系数和次数分别是a ,b . (1)求a b ﹣ab 的值;(2)若|m|+m=0,求|b ﹣m|﹣|a+m|的值. 解析:(1)﹣2;(2)1. 【分析】(1)根据单项式的系数是数字因数,次数是字母指数的和,可得a 、b 的值,根据代数式求值,可得答案;(2)非正数的绝对值是它的相反数,可得m 的取值范围,根据差的绝对值是大数减小数,可得答案. 【详解】 解:由题意,得 a=﹣2,b=2+1=3.a b ﹣ab=(﹣2)3﹣(﹣2)×3=﹣8+6=﹣2; (2)由|m|+m=0,得m≤0.|b ﹣m|﹣|a+m|=b ﹣m+(a+m )=b+a=3+(﹣2)=1; 【点睛】本题考查了单项式的系数和次数的性质,掌握单项式中数字因数叫做单项式的系数,所有的字母的指数之和为次数是解决本题的关键. 18.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2; 13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2; ∴13+23+33+43+53=(______ )2= ______ . 根据以上规律填空:(1)13+23+33+…+n 3=(______ )2=[ ______ ]2. (2)猜想:113+123+133+143+153= ______ . 解析:1+2+3+4+5;225;1+2+…+n ;()n n 12+;11375【解析】分析:观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空;(1)、根据上述规律填空,然后把1+2+…+n 变为2n个(n+1)相乘,即可化简;(2)、对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值. 详解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225 (1)、∵1+2+…+n=(1+n )+[2+(n-1)]+…+[n 2+(n-n2+1)]=()n n 12+, ∴13+23+33+…+n 3=(1+2+…+n )2=[()n n 12+]2;(2)、113+123+133+143+153=13+23+33+…+153-(13+23+33+…+103) =(1+2+…+15)2-(1+2+…+10)2 =1202-552=11375.点睛:此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.19.小马虎在计算一个多项式减去225a a +-的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减去后面两项没有变号,结果得到的差是231a a +-.()1求这个多项式;()2算出此题的正确的结果.解析:(1)2324a a ++;(2)2 9a a ++. 【分析】(1)根据题意可以求得相应的多项式;(2)根据(1)中的结果可以求得正确的结果.【详解】解:(1)由题意可得:这个多项式是:a 2+3a ﹣1+2a 2﹣a +5=3a 2+2a +4,即这个多项式是3a 2+2a +4;(2)由(1)可得:3a 2+2a +4﹣(2a 2+a ﹣5)=3a 2+2a +4﹣2a 2﹣a +5=a 2+a +9即此题的正确的结果是a 2+a +9.【点睛】本题考查了整式的加减,解答本题的关键是明确整式的加减的计算方法,求出相应的多项式.20.学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当2a =-,2018b =,求222221(324)2(23)2()12a b ab a a b a ab a b -+--++-的值”.小明做完后对同桌说:“老师给的条件2018b =是多余的,这道题不给b 的值,照样可以求出结果来”.同桌不相信他的话.亲爱的同学们,你相信小明的说法吗?解析:-21【分析】首先化简代数式,通过去括号、合并同类项,得出结论即含有b 的代数式相加为0,即可说明.【详解】解()()222221324223212a b ab a a b a ab a b ⎛⎫-+--++- ⎪⎝⎭=222223244621a b ab a a b a ab a b -+-+++-=101a -当2a =-时原式=()1021⨯--=-21.【点睛】考查整式的化简求值,熟练掌握去括号法则以及合并同类项法则是解题的关键. 21.已知多项式22622452x mxyy xy x 中不含xy 项,求代数式32322125m m m m m m 的值.解析:-14【分析】先合并已知多项式中的同类项,然后根据合并后的式子中不含xy 项即可求出m 的值,再把所求式子合并同类项后代入m 的值计算即可.【详解】解:2222622452=6+42252x mxy y xy x x m xy y x , 由题意,得4-2m =0,所以m =2; 所以32322125m m m m m m =3226m m .当m =2时,原式= 322226 =14 . 【点睛】本题考查了整式的加减,属于基本题型,正确理解题意、熟练掌握合并同类项的法则是解题的关键.22.已知:A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3. (1)求3A ﹣(4A ﹣2B )的值;(2)当x 取任意数值,A ﹣2B 的值是一个定值时,求(a+314A )﹣(2b+37B )的值. 解析:(1)(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)﹣312. 【分析】(1)先化简原式,再分别代入A 和B 的表达式,去括号并合并类项即可;(2)先代入A 和B 的表达式并去括号并合并类项,由题意可令x 和x 2项的系数为零,求解出a 和b 的数值,再化简原式后代入相关数值即可求解.【详解】解:(1)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴原式=3A ﹣4A+2B=﹣A+2B=﹣2x 2﹣ax+5y ﹣b+2bx 2﹣3x ﹣5y ﹣6=(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴A ﹣2B=2x 2+ax ﹣5y+b ﹣2bx 2+3x+5y+6=(2﹣2b )x 2+(a+3)x+(b+6),由x 取任意数值时,A ﹣2B 的值是一个定值,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=a ﹣2b+314(A ﹣2B )=﹣3﹣2+32=﹣312. 【点睛】理解本题中x 取任意数值时A ﹣2B 的值均是一个定值的意思是整式化简后的x 和x 2项的系数均为零是解题关键.23.观察下列各式:(1)-a +b =-(a -b);(2)2-3x =-(3x -2);(3)5x +30=5(x +6);(4)-x -6=-(x +6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a 2+b 2=5,1-b =-2,求-1+a 2+b +b 2的值.解析:见解析,7.试题分析:注意观察等号两边的变化,等号右边添加了括号,然后观察符号的变化即可;根据已知条件将要求的式子通过添括号进行变形,然后再代入求值即可.试题添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.∵a 2+b 2=5,1-b =-2,∴-1+a 2+b +b 2=(a 2+b 2)-(1-b)=5-(-2)=7.【点睛】本题是阅读理解题,主要是通过阅读发现添括号时符号的变化规律,解题的关键是要注意符号的变化问题.24.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y . 解析:132【解析】试题分析:原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.试题原式222222244442x xy x y x xy y x y =-+--+-=-, 当12,2x y =-=-时,原式174.22=-= 25.我们将不大于2020的正整数随机分为两组.第一组按照升序排列得到121010a a a <<<,第二组按照降序排列得到121010b b b >>>, 求112210101010a b a b a b -+-++-的所有可能值.解析:1020100【分析】 由题意知,对于代数式的任何一项:|a k -b k |(k=1,2,…1010),较大的数一定大于1010,较小的数一定不大于1010,即可得出结论.【详解】解:(1)若a k ≤1010,且b k ≤1010,则a 1<a 2<…<a k ≤1010,1010≥b k >b k+1>…>b 1010,则a 1,a 2,…a k ,b k ,……,b 1010,共1011个数,不大于1010不可能;(2)若a k >1010,且b k >1010,则a 1010>a 1009>…>a k+1>a k >1010及b 1>b 2>…>b k >1010,则b 1,……,b k ,a k ……a 1010共1011个数都大于100,也不可能;∴|a 1-b 1|,……,|a 1010-b 1010|中一个数大于1010,一个数不大于1010,∴|a 1-b 1|+|a 2-b 2|+…+|a 1010-b 1010|=1020100.【点睛】本题考查数字问题,考查学生的计算能力,属于中档题.26.已知22134,2313P x mx y Q x y nx =+-+=-+-, (1)关于,x y 的式子2P Q -的取值与字母x 的取值无关,求式子(3)(3)m n m n +--的值;(2)当0x ≠且0y ≠时,若135333P Q -=恒成立,求,m n 的值。
人教版-七年级上册-数学-第二章-整式-的加减知识点-例题-练习题-(含答案)
七年级上册第二章整式知识点例题(含答案)第一部分:知识点与例题一.整式1.单项式:都是数字或者字母的积(单独一个数字或字母也是单项式)①单项式中的数字因数叫做这个单项式的系数②一个单项式中,所有字母的指数的和叫做这个单项式的指数。
如:10x2y3z4的指数为9,叫做九次单项式2.多项式:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,不含字母的叫做常数项;多项式里最高项的次数叫做这个多项式的项。
(这个要与单项式区分开)如:x2+x+3这个多项式有三个项,分别为x2,x和常数项3,最高次是2,所以它是一个二次三项式。
3.单项式与多项式统称整数、二.整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项,如2xy2与3 xy2是同类项练习:2xy n-2与4x m+3y2是同类项,则n=,m=2.把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
3.去括号后要注意的点:①如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同②如果括号外面的因数是负数,去括号后原括号内各项的符号与原来的符号相反4.一般地,几个整式相加减,如果有括号的要先去括号,然后再合并同类项例:(1)合并下面各式的同类项① x+y-4(x-y)② 5ab+3a2-4b2-(6b2+a2-3ab)(2)①求多项式(-x2+5+4x)-(5x-4+2x2)的值,其中x=3②求多项式13x-4(x2-12y2)+(-23x+y2)的值,其中x=-1,y=125. 设方程解决问题:(重点,难点)(1)一条河流的水流速度是2.5km/h,如果已知船在静水中的速度,则船在这条河流中顺水行驶和逆水行驶的速度分别要怎么表示?如果甲,乙两船在静水中的速度分别为20 km/h和35 km/h时,则它们在这条河流中顺水的速度和逆水的速度分别是多少km/h?练习:一种商品每件成本a元,按成本增加20%定出价格,每件售价多少元?后来因库存积压减价,按原价的85%出售,现售价多少钱?每件还能盈利多少元?(2)某村小麦种植的面积是a公顷,水稻种植面积是小麦种植面积的3倍,玉米种植面积比小麦种植面积少5公顷,列式表示水稻,玉米种植面积,并计算水稻种植面积比玉米种植面积大多少?(3)一架飞机无风时的航速为a km/h,风速为20 km/h,从甲地飞到乙地用了3小时,从乙地飞往甲地用了4小时,求飞机的航速a?(4)礼堂第一排有a个座位,后面每排都比前一排多一个座位,第二排有多少个座位?第三排呢?用m表示n排的座位数,m是多少?当a=20,n=19时,m是多少?第二部分:练习题教师用卷:一、精心选一选1、如果与823x y 是同类项,则代数式的值为(C )A 、0B 、-1C 、+1D 、±12、如果2222324,45M x xy y N x xy y =--=+-,则2281315x xy y --等于(D )A 、2M-NB 、2M-3NC 、3M-2ND 、4M-N3、如果22x x -+的值为7,则的值为(A )A 、52B 、32C 、152D 、答案不惟一4、如果2a b -=,3c a -=,则()()234b c b c ---+的值为(C )A 、14B 、2C 、44D 、不能确定5、的值是(C )A 、±3B 、±1C 、±1或±3D 、不能确定6、商场七月份售出一种新款书包a 只,每只b 元,营业额c 元,八月份采取促销活动,优惠广大学子,售出该款书包3a 只,每只打八折,则八月份该款书包的营业额比七月份增加(B )A 、1.4c 元B 、2.4c 元C 、3.4c 元D 、4.4c 元7、一件工作,甲单独做x 天完成,乙单独做y 天完成。
数学七年级上册第二章整式知识点题型总结及练习题
整式一、基本概念:1、用字母表示数:⑴用字母或者含有字母的式子表示一定的数量关系,而不是用复杂的语言进行描述,更易于理解。
⑴用字母表示的数,字母和数一样可以参与运算。
一个问题中相同的字母表示的数相同、意义相同,一个问题中不同的字母表示的数不相同意义不同。
⑴规范书写要求:①字母和字母、数字和字母相乘是乘号可以写作“·”或者省略不写,数字通常写在字母前。
数字和数字相乘必须写乘号。
如a×2写作2a ,3×5不可写成3·5或3 5,a×b 写作a·b 或ab②带分数和字母相乘时,要把带分数写成假分数。
如165×a 写作611a ③除法通常写成分数的形式,如5a÷4b 写作b 4a 5 ④如果这个代数式是一个带有单位的,那么一定要把整个代数式用括号括起来,将单位写在括号外。
⑤字母系数和次数是1时不写,如1a 1是错误的写法,应该写作a2、单项式⑴定义:数或字母的积,表示的式子叫做单项式。
单独的数字、字母,数字和字母的乘积都是单项式。
例5、a、4b等都是单项式(单项式中不含有加减运算,只包含乘法、乘方和分母为数字的除法)⑴单项式的系数:单项式中的数字因数叫做这个单项式的系数。
例33a的系数是33。
ab的系数是1,-xy的系数是-1(字母乘积的形式没有数字,通常看做系数为1.如果前边有负号但没有数字,看做系数是-1)⑴单项式的次数:一个单项式中,所有字母的指数得和叫做这个单项式的次数。
例33a中字母a的指数是1,33a的次数是1.ab中字母a、b的指数都是1,和是2所以ab的次数是2,a3b2中字母a的指数是3,b的指数是2,指数和是5所以a3b2的次数是5.3、多项式:⑴定义:几个单项式的和叫做多项式。
其中每个单项式叫做多项式的项,不含字母的项叫做常数项。
例多项式a+5b-5中含有a、5b、-5三个项(注意每项的正负号)其中-5为常数项。
七年级上册的数学第二章“整式的加减”主要知识点
七年级上册的数学第二章“整式的加减”主要知识点1. 整式的概念-单项式:由数与字母的积组成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
-系数:单项式中的数字因数叫做单项式的系数。
-次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
-多项式:几个单项式的和叫做多项式。
其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。
多项式里次数最高项的次数,叫做这个多项式的次数。
2. 整式的加减法则-同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
-合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项时,把同类项的系数相加,字母和字母的指数不变。
3. 去括号与添括号-去括号法则:如果括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;如果括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变。
-添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都要变号。
4. 整式的加减运算步骤1. 去括号:根据去括号法则去掉括号。
2. 识别同类项:找出所有同类项。
3. 合并同类项:利用合并同类项法则进行合并。
4. 整理结果:按照一定顺序(如降幂或升幂)写出最终的整式。
5. 应用题-整式的加减运算还经常出现在应用题中,如求解面积、体积、距离等问题,需要学生将实际问题抽象为整式的加减运算。
6. 注意事项-在进行整式加减时,要仔细识别同类项,避免漏项或重复计算。
-注意系数的符号,特别是负号的作用。
-运算后要进行必要的化简,使结果更加简洁明了。
人教版 七年级数学上册 第二章 整式的加减 知识点+易错题
七年级数学上册期末复习整式的加减知识点+易错题整式的加减知识点整式知识点1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:错误!未找到引用源。
.6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.11. 列代数式列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等.抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了.12.代数式的值根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系计算,所得的结果是代数式的值.13. 列代数式要注意①数字与字母、字母与字母相乘,要把乘号省略;②数字与字母、字母与字母相除,要把它写成分数的形式;③如果字母前面的数字是带分数,要把它写成假分数。
人教版初中七年级数学上册第二章《整式的加减》知识点总结(含答案解析)(1)
一、选择题1.(0分)如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A —B —C 为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为 ( )A .5次B .6次C .7次D .8次C解析:C【分析】 首先观察图形,得出一个完整的动作过后电子跳骚升高2个格,根据起始点为-5,终点为9,即可得出它需要跳的次数.【详解】解:由图形可得,一个完整的动作过后电子跳骚升高2个格,如果电子跳骚落到9的位置,则需要跳9(5)72--=次. 故选C .此题考查数字的规律变化,关键是仔细观察图形,得出一个完整的动作过后电子跳骚升高2个格,难度一般.2.(0分)下列对代数式1a b -的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C解析:C【分析】根据代数式的意义逐项判断即可.【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误;B. a 与b 的差的倒数:1a b-,该选项错误;C. a与b的倒数的差:1ab-;该选项正确;D. a的相反数与b的差的倒数:1a b--,该选项错误.故选:C.【点睛】此题主要考查列代数式,注意掌握代数式的意义.3.(0分)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.64 B.77 C.80 D.85D解析:D【分析】观察图形特点,从中找出规律,小圆圈的个数分别是3+12,6+22,10+32,15+42,…,总结出其规律为()()122n n+++n2,根据规律求解.【详解】通过观察,得到小圆圈的个数分别是:第一个图形为:()1222+⨯+12=4,第二个图形为:()1332+⨯+22=10,第三个图形为:()1442+⨯+32=19,第四个图形为:()1552+⨯+42=31,…,所以第n个图形为:()()122n n+++n2,当n=7时,()()72712+++72=85,故选D.【点睛】此题主要考查了学生分析问题、观察总结规律的能力.关键是通过观察分析得出规律.4.(0分)化简2a-[3b-5a-(2a-7b)]的值为()A.9a-10b B.5a+4bC.-a-4b D.-7a+10b A解析:A【解析】2a-[3b-5a-(2a-7b)]=2a-(3b-5a-2a+7b)=2a-(10b-7a)=2a-10b+7a=9a-10b,故选A.【点睛】本题考查去括号,合并同类项,解题的关键是按运算的顺序先去括号,然后再进行合并同类项.5.(0分)设a是最小的非负数,b是最小的正整数,c,d分别是单项式﹣x3y的系数和次数,则a,b,c,d四个数的和是()A.1 B.2 C.3 D.4D解析:D【分析】根据题意求得a,b,c,d的值,代入求值即可.【详解】∵a是最小的非负数,b是最小的正整数,c,d分别是单项式-x3y的系数和次数,∴a=0,b=1,c=-1,d=4,∴a,b,c,d四个数的和是4,故选:D.【点睛】本题考查了有理数、整式的加减以及单项式的系数和次数,,认真掌握有理数的分类是本题的关键;注意整数、0、正数之间的区别,0既不是正数也不是负数,但是整数.6.(0分)我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a实际意义的例子中不正确的是()A.若葡萄的价格是3 元/kg,则3a表示买a kg葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.某款运动鞋进价为a元,若这款运动鞋盈利50%,则销售两双的销售额为3a元D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数D解析:D【分析】根据单价×数量=总价,等边三角形周长=边长×3,售价=进价+利润,两位数的表示=十位数字×10+个位数字进行分析即可.【详解】A、根据“单价×数量=总价”可知3a表示买a kg葡萄的金额,此选项不符合题意;B、由等边三角形周长公式可得3a表示这个等边三角形的周长,此选项不符合题意;C、由“售价=进价+利润”得售价为1.5a元,则2×1.5a=3a(元),此选项不符合题意;D、由题可知,这个两位数用字母表示为10×3+a=30+a,此选项符合题意.故选:D.【点睛】本题主要考查了列代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.7.(0分)下列判断中错误的个数有( )(1)23a bc 与2bca -不是同类项; (2)25m n 不是整式; (3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个B解析:B【分析】 根据同类项概念和单项式的系数以及多项式的次数的概念分析判断.【详解】解:(1)23a bc 与2bca -是同类项,故错误;(2)25m n 是整式,故错; (3)单项式-x 3y 2的系数是-1,正确;(4)3x 2-y+5xy 2是3次3项式,故错误.故选:B .【点睛】本题主要考查了整式的有关概念.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法.8.(0分)在3a ,x+1,-2,3b -,0.72xy ,2π,314x -中单项式的个数有( ) A .2个B .8个C .4个D .5个C解析:C【分析】根据单项式的定义逐一判断即可.【详解】 3a中,分母含未知数,是分式,不是单项式, x+1是多项式,不是单项式,-2是单项式,3b -是单项式, 0.72xy 是单项式,2π是单项式, 314x -=3144x -,是多项式,∴单项式有-2、3b -、0.72xy 、2π,共4个, 故选C.【点睛】 本题考查单项式的定义,熟练掌握定义是解题关键.9.(0分)﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.10.(0分)根据图中数字的规律,则x y +的值是( )A .729B .593C .528D .738B解析:B【分析】观察题中的数据发现,表格内左下角的数值是上面数的平方加一,右下角的数值是:上面的数×左下角的数+上面的数=右下角的数.【详解】根据题中的数据可知:左下角的数=上面的数的平方+1∴28165x =+=右下角的值=上面的数×左下角的数+上面的数∴888658528y x =+=⨯+=∴65528593x y +=+=故选:B.【点睛】本题主要考查数字的变化规律,关键是找出规律,列出通式. 二、填空题11.(0分)观察下列顺序排列的等式:9×0+1 = 1,9×1+2 = 11,9×2+3=21, 9×3+4=31, 9×4+5=41,……,猜想:第n 个等式(n 为正整数)用n 表示,可表示成_________.【分析】根据数据所显示的规律可知:第一数列都是9第2数列开始有顺序且都是所对序号的数减去1加号后的数据有顺序且与所在的序号项吻合等号右端是的规律所以第n 个等式(n 为正整数)应为【详解】根据分析:即第解析:109n -【分析】根据数据所显示的规律可知:第一数列都是9,第2数列开始有顺序且都是所对序号的数减去1,加号后的数据有顺序且与所在的序号项吻合,等号右端是()10?11n -+的规律,所以第n 个等式(n 为正整数)应为()()9110?11n n n -+=-+.【详解】根据分析:即第n 个式子是()()9110?11109n n n n -+=-+=-.故答案为:109n -.【点睛】本题主要考查了数字类规律探索题.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解. 12.(0分)数字解密:第一个数是3=2+1,第二个数5=3+2,第三个数是9=5+4,第四个数17=9+8,……,观察并猜想第六个数是_______.65【分析】设该数列中第n 个数为an (n 为正整数)根据给定数列中的前几个数之间的关系可找出变换规律an=2an ﹣1﹣1依此规律即可得出结论【详解】解:设该数列中第n 个数为an (n 为正整数)观察发现规解析:65【分析】设该数列中第n 个数为a n (n 为正整数),根据给定数列中的前几个数之间的关系可找出变换规律“a n =2a n ﹣1﹣1”,依此规律即可得出结论.【详解】解:设该数列中第n 个数为a n (n 为正整数),观察,发现规律:a 1=3=2+1,a 2=5=2a 1﹣1,a 3=9=2a 2﹣1,a 4=17=2a 3﹣1,…,a n =2a n ﹣1﹣1.∴a 6=2a 5﹣1=2×(2a 4﹣1)﹣1=2×(2×17﹣1)﹣1=65.故答案为65.13.(0分)合并同类项(1)21123x x x --=____________________;(按字母x 升幂排列)(2)3222232223x y x y y x x y --+=_____________________;(按字母x 降幂排列) (3)222234256a b ab a b =_____________________;(按字母b 降幂排列)【分析】(1)先合并同类项再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项再将多项式按照字母b 的次数由大到小重新排解析:256x x -+ 32222x y x y -- 221022b ab a -- 【分析】 (1)先合并同类项,再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项,再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项,再将多项式按照字母b 的次数由大到小重新排列即可.【详解】解:(1)2222111155232366x x x x x x x x x x ⎛⎫--=-+=-=-+ ⎪⎝⎭; 故答案为:256x x -+; (2)解:322223223222232x y x y y x x y x y x y --+=--; 故答案为:32222x y x y --;(3)解:222222223425621021022a b ab a b a b ab b ab a +--+=-+-=--; 故答案为:221022b ab a --.【点睛】此题考查整式的降幂及升幂排列,合并同类项法则,将多项式按照某个字母重新排列时注意该项的次数及符号,利用交换律将多项式重新排列.14.(0分)如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A 则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+解析:2234m m +-【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果.【详解】解:设这个多项式为A,则A=(3m 2+m-1)-(m 2-2m+3)=3m 2+m-1-m 2+2m-3=2m 2+3m-4,故答案为2m 2+3m-4.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.15.(0分)将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到________条折痕.31【分析】根据题意找出折叠次的折痕条数的函数解析式再将代入求解即可【详解】折叠次的折痕为;折叠次的折痕为;折叠次的折痕为;……故折叠次的折痕应该为;折叠次将代入折痕为故答案为:31【点睛】本题考查解析:31【分析】根据题意找出折叠n 次的折痕条数的函数解析式,再将5n =代入求解即可.【详解】折叠1次的折痕为1,1121=-;折叠2次的折痕为3,2321=-;折叠3次的折痕为7,3721=-;……故折叠n 次的折痕应该为21n -;折叠5次,将5n =代入,折痕为52131-=故答案为:31.【点睛】本题考查了图形类的规律题,找出折叠n 次的折痕条数的函数解析式是解题的关键. 16.(0分)已知5a b -=,3c d +=,则()()b c a d +--的值等于______.-2【分析】把原式去括号转化为含有(a-b)和(c+d)的式子然后代入求值即可【详解】故答案为:-2【点睛】本题考查了整式的化简求值把原式转化为含有(a-b)和(c+d)的式子是解决此题的关键解析:-2【分析】把原式去括号转化为含有(a -b )和(c +d )的式子,然后代入求值即可.【详解】()()()()532b c a d b c a d b a c d +--=+-+=-++=-+=-.故答案为:-2.【点睛】本题考查了整式的化简求值,把原式转化为含有(a -b )和(c +d )的式子是解决此题的关键. 17.(0分)在x y +,0,21>,2a b -,210x +=中,代数式有______个.3【分析】代数式是指把数或表示数的字母用+-×÷连接起来的式子而对于带有=><等数量关系的式子则不是代数式【详解】解:是不等式不是代数式;是方程不是代数式;0是代数式共3个故答案是:3【点睛】本题考解析:3【分析】代数式是指把数或表示数的字母用+、-、×、÷连接起来的式子,而对于带有=、>、<等数量关系的式子则不是代数式.【详解】解:21>是不等式,不是代数式;210x +=是方程,不是代数式;x y +,0,,2a b -,是代数式,共3个.故答案是:3.【点睛】本题考查了代数式的定义,理解定义是关键.18.(0分)求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键.19.(0分)观察单项式:x -,22x ,33x -,44x ,…,1919x -,2020x , …,则第2019个单项式为______.【分析】根据题目内容找到单项是的系数规律和字母的指数规律从而求解【详解】解:由题意可知:第一个单项式为;第二个单项式为;第三个单项式为…∴第n 个单项式为即第2019个单项式为故答案为:【点睛】本题考解析:20192019x -【分析】根据题目内容找到单项是的系数规律和字母的指数规律,从而求解.【详解】解:由题意可知:第一个单项式为11(1)1x -⨯⨯;第二个单项式为22(1)2x -⨯⨯;第三个单项式为33(1)3x -⨯⨯… ∴第n 个单项式为(1)n n n x -⨯⨯即第2019个单项式为201920192019(1)20192019x x -⨯⨯=-故答案为:20192019x -【点睛】本题考查数的规律探索,找到单项式的系数规律和字母指数规律是本题的解题关键. 20.(0分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m +n+p =_________; 4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.三、解答题21.(0分)定义:若2m n +=,则称m 与n 是关于1的平衡数.(1)3与______是关于1的平衡数,5x -与______(用含x 的整式表示)是关于1的平衡数;(2)若()22234a x x x =-++,()22342b x x x x ⎡⎤=--+-⎣⎦,判断a 与b 是否是关于1的平衡数,并说明理由.解析:(1)1-,3x -;(2)不是,理由见解析【分析】(1)由平衡数的定义求解即可达到答案;(2)计算a+b 是否等于1即可;【详解】解:(1)1-,3x -;(2)a 与b 不是关于1的平衡数.理由如下:因为()22234a x x x =-++,()22342b x x x x ⎡⎤=--+-⎣⎦,所以()()2222342342a b x x x x x x x ⎡⎤+=-+++--+-⎣⎦, 22223342342x x x x x x x =--++-+++,62=≠,所以a 与b 不是关于1的平衡数.【点睛】本题主要考查了整式的加减,准确分析计算是解题的关键.22.(0分)国庆期间,王老师计划组织朋友去晋西北游览两日.经了解,现有甲、乙两家旅行社针对组团两日游的游客报价均为每人500元,且提供的服务完全相同.甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按八折收费.假设组团参加甲、乙两家旅行社两日游的人数均为x 人. (1)请列式表示甲、乙两家旅行社收取组团两日游的总费用;(2)若王老师组团参加两日游的人数共有30人,请你通过计算,在甲、乙两家旅行社中,帮助王老师选择收取总费用较少的一家.解析:(1)甲旅行社收取组团两日游的总费用为425x 元;若人数不超过20人时,乙旅行社收取组团两日游的总费用为450x 元;若人数超过20人时,乙旅行社收取组团两日游的总费用为(4001000x +)元;(2)王老师应选择甲旅行社.【分析】(1)根据总费用等于人数乘以打折后的单价,易得甲旅行社的费用=500 x×0.85,对于乙家旅行社的总费用,应分类讨论:当0≤x≤20时,乙旅行社的费用=500 x×0.9;当x >20时,乙旅行社的费用=500×20×0.9+500(x-20)×0.8;(2)把x=30分别代入(1)中对应关系计算甲旅行社的费用和乙旅行社的费用的值,然后比较大小即可.【详解】(1)甲旅行社收取组团两日游的总费用为:5000.85425x x ⨯=元若人数不超过20人时,乙旅行社收取组团两日游的总费用为:5000.9450x x ⨯=元 若人数超过20人时,乙旅行社收取组团两日游的总费用为:()500(20)0.8500200.94001000-⨯+⨯⨯=+x x 元(2)因为王老师组团参加两日游的人数共有30人,所以甲旅行社收取组团两日游的总费用为:4253012750⨯=元乙旅行社收取组团两日游的总费用为40030100013000⨯+=元1275013000<,王老师应选择甲旅行社.【点睛】本题考查了代数式,能根据具体情境列代数式并求代数式的值是关键.23.(0分)已知单项式﹣2x 2y 的系数和次数分别是a ,b .(1)求a b ﹣ab 的值;(2)若|m|+m=0,求|b ﹣m|﹣|a+m|的值.解析:(1)﹣2;(2)1.【分析】(1)根据单项式的系数是数字因数,次数是字母指数的和,可得a 、b 的值,根据代数式求值,可得答案;(2)非正数的绝对值是它的相反数,可得m 的取值范围,根据差的绝对值是大数减小数,可得答案.【详解】解:由题意,得a=﹣2,b=2+1=3.a b ﹣ab=(﹣2)3﹣(﹣2)×3=﹣8+6=﹣2;(2)由|m|+m=0,得m≤0.|b ﹣m|﹣|a+m|=b ﹣m+(a+m )=b+a=3+(﹣2)=1;【点睛】本题考查了单项式的系数和次数的性质,掌握单项式中数字因数叫做单项式的系数,所有的字母的指数之和为次数是解决本题的关键.24.(0分)将一个长方形纸片连续对折,对折的次数越多,折痕的条数也就越多,如第一次对折后,有1条折痕,第2次对折后,共有3条折痕.(1)第3次对折后共有多少条折痕?第4次对折后呢?(2)对折多少次后折痕会超过100条?(3)请找出折痕条数与对折次数的对应规律,写出对折n 次后,折痕有多少条?解析:(1)第3次对折后共有7条折痕,第4次对折后有15条折痕;(2)对折7次后折痕会超过100条;(3)对折n 次后,折痕有21n -条.【分析】(1)动手操作即可得出第3次、第4次对折后的折痕条数;(2)在(1)的基础上,归纳类推出一般规律,再结合67264,2128==即可得出答案;(3)由题(2)已求得.【详解】(1)动手操作可知,第3次对折后的折痕条数为7条,第4次对折后的折痕条数为15条;(2)观察可知,第1次对折后的折痕条数为1121=-条,第2次对折后的折痕条数为2321=-条,第3次对折后的折痕条数为3721=-条,第4次对折后的折痕条数为41521=-条,归纳类推得:第n 次对折后的折痕条数为21n -条,因为67264,2128==,所以对折7次后折痕会超过100条;(3)由(2)已得:对折n 次后的折痕条数为21n -条.【点睛】本题考查了有理数乘方的应用,依据题意,根据前4次对折后的结果,正确归纳类推出一般规律是解题关键.25.(0分)某校利用二维码进行学生学号统一编排.黑色小正方形表示1,白色小正方形表示0,将每一行数字从左到右依次记为a ,b ,c ,d ,那么利用公式321222a b c d ⨯+⨯+⨯+计算出每一行的数据.第一行表示年级,第二行表示班级,第三行表示班级学号的十位数,第四行表示班级学号的个位数.如图1所示,第一行数字从左往右依次是1,0,0,1,则表示的数据为1×23+0×22+0×21+1=9,计作09,第二行数字从左往右依次是1,0,1,0,则表示的数据为1×23+0×22+1×21=10,计作10,以此类推,图1代表的统一学号为091034,表示9年级10班34号.小明所对应的二维码如图2所示,则他的统一学号为________.解析:070629【分析】利用公式求出图2中每行表示的数据,将其组合起来即可得出结论.【详解】解:∵第一行:0×23+1×22+1×21+1=7,计作07,第二行:0×23+1×22+1×21+0=6,计作06,第三行:0×23+0×22+1×21+0=2,计作2,第四行:1×23+0×22+0×21+1=9,计作9,∴他的统一学号为070629.故答案为:070629.【点睛】本题考查了规律型:图形的变化类以及尾数特征,读懂题意,利用公式求出图2中每行表示的数据是解题的关键.26.(0分)(规律探究题)用计算器计算下列各式,将结果填写在横线上.99999×11=__________;99999×12=__________;99999×13=__________;99999×14=__________.(1)你发现了什么?(2)不用计算器,你能直接写出99999×19的结果吗?解析:1099989;1199988;1299987;1399986;(1)如果n 是11,12,13,…,20中的任何一个数,则:99999×n =(n -1)9998(20-n ),其中(n -1)9998(20-n )是1个7位数,前2位是n -1,个位是20-n ,中间4个数字总是9998;(2)99999×19=1899981【分析】用计算器分别进行计算,再根据结果找出规律,最后根据规律即可直接写出99999×19的结果.【详解】解:99999×11=1099989;99999×12=1199988;99999×13=1299987;99999×14=1399986.故答案为:1099989;1199988;1299987;1399986.(1)通过计算观察可发现以下规律:如果n 是11,12,13,…,20中的任何一个数,则:99999×n =(n -1)9998(20-n ),其中(n -1)9998(20-n )是1个7位数,前2位是n -1,个位是20-n ,中间4个数字总是9998.(2)根据以上规律可直接写出:99999×19=1899981.【点睛】此题考查了计算器−有理数,解题的关键是通过用计算器计算,找出规律,通过规律进行解答.27.(0分)列出下列代数式:(1)a 、b 两数差的平方;(2)a 、b 两数平方的差;(3)a 、b 两数的和与a 、b 两数的差的积;(4)a 的相反数与b 的平方的和.解析:(1)2()a b -;(2)22a b -;(3)()()a b a b +-;(4)2a b -+【分析】(1)根据题意先列出a ,b 的差,再表示差的平方,即可得出答案;(2)根据题意先表示出a ,b 平方,再列出差,即可得出答案 ;(3)根据题意先表示出a 与b 两数的和以及这两数的差,再列出它们的积,即可得出答案;(4)利用相反数以及平方的定义得出答案.【详解】(1)根据题意可得:2()a b -;(2)根据题意可得:22a b -;(3)根据题意可得:()()a b a b +-;(4)根据题意可得:2a b -+.【点睛】本题考查了列代数式,关键是能够正确运用数学语言,即代数式来表示题意. 28.(0分)已知一个多项式加上223x y xy -得222x y xy -,求这个多项式. 佳佳的解题过程如下:解:222223x y xy x y xy ---①224x y xy =-②请问佳佳的解题过程是从哪一步开始出错的?并写出正确的解题过程. 解析:是从第①步开始出错的,见解析【分析】根据多项式的加减运算法则进行运算即可求解.【详解】解:佳佳是从第①步开始出错的,正确的解题过程如下:根据题意,得:()()222223x y xy x y xy ---222223x y xy x y xy =--+222x y xy =+,∴这个多项式为222x y xy +.故答案为222x y xy +.【点睛】本题考查了多项式的加减混合运算,注意:只有同类项才能进行加减运算.。
新人教版七年级数学上册第二章题型总结
新人教版七年级数学上册第二章整式的加减知识点和典型例题I 基本题型一、列单项式、多项式1.某次旅游分甲、乙两组,已知甲组a 名队员,平均门票m 元,乙组有b 名队员,平均门票n 元,则共要付门票___元. 2.某公司职员,月工资a 元,增加10%后达到________元.3.如果一个两位数,十位上数字为x ,个位上数字为y ,则这个两位数为________.4.甲车的速度为每小时x 千米,乙车的速度为每小时y 千米.若甲、乙两车由两地同时出发,相向而行,t 小时后相遇,则两地距离为________千米.若两车同时分别从两地出发,同向而行,t 小时甲车追上乙车,则两地距离为_____千米.5.有一棵树苗,刚栽下去时,树高2.1米,以后每年长0.3米,则n 年后树高________米.6.含盐20%的盐水x 千克,其中含盐________千克,含水________千克.7.某项工程甲独干a 天完成,乙独干b 天完成,则甲、乙合作每天完成工程的_____ 8.一种小麦磨成面粉后,重量减轻15%,要得到m 千克面粉,需要小麦______千克。
9.一辆汽车从A 地出发,先行驶了s 米之后,又以υ米/秒的速度行驶了t 秒.汽车行驶的全部路程等于 米 10.电影院第一排有a 个座位,后面每排都比前一排多一个座位,若第n 排有m 个座位,那么m=11.用含有字母的式子填空:(1)a 与b 的143倍的差是_.(2)某商品原价为a 元,提高了20%后的价格 . 12.已知三角形的第一边长是2a b +,第二边比第一边长(2)b -,第三边比第二边小5。
则三角形的周长为 。
13.某公园一块草坪的形状如图所示(阴影部分),用代数式表示它的面积为二、判断区分单项式、多项式、整式 1.在代数式21215,5,,,,,233x y z x y a x y xyz y π+---+-中有 ( )A .5个整式B .4个单项,3个多项式C .6个整式,4个单项式D .6个整式,单项式与多项式个数相同2.在代数式ba b a b a x a m +-+-,,2,31,0,21π中,整式有( )A 、3个 B 、4个 C 、5个 D 、6个 3.下列代数式中,是单项式的有 .①-15; ②32a ; ③π1x 2y; ④ abc32; ⑤3a+2b; ⑥0; ⑦ 7m4.单项式22ab 2c 的系数是 ,次数是 .5.πR 2是次单项式,-32是次单项式.6.把下列代数式分别填在相应的括号里:a 2b,,43,3,2,1ab y x x ---x 2-x-1 单项式:{ }多项式:{ }整 式:{ }7.整式21,3x -y 2,23x 2y ,a ,πx +21y ,522a π,x +1中,单项式有: 多项式有:8.在,中,单项式有: 。
七年级数学第二章整式的加减全章知识点总结
第二章 整式的加减知识点1、单项式的概念式子x 3,m t xy a ---,6.2,,32它们都是数或字母的积,象这样的式子叫做单项式,单独的一个数或一个字母也是单项式.注意:单项式是一种特殊的式子,它包含一种运算、三种类型。
一种运算是指数与字母、字母与字母之间只能是乘法的一种运算,不能有加、减、除等运算符号;三种类型是指:一是数字与字母相乘组成的式子,如ab 2;二是字母与字母组成的式子,如3xy ;三是单独的一个数或字母,如m a ,2-,。
知识点2、单项式的系数单项式中的数字因数叫做这个单项式的系数.注意:(1)单项式的系数可以是整数,也可能是分数或小数.如42x的系数是2;3ab 的系数是31,2.7m 的系数是2。
7。
(2)单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,如-()xy 2的系数是-2(3)对于只含有字母因素的单项式,其系数是1或-1,不能认为是0,如-2xy 的系数是-1;2xy 的系数是1. (4)表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母.如2πxy 的系数就是2π知识点3、单项式的次数一个单项式中,所有字母的指数和叫做这个单项式的次数。
注意:(1)计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况.如单项式z y x342的次数是字母z y x,,的指数和,即4+3+1=8,而不是7次,应注意字母Z的指数是1而不是0.(2)单项式是一个单独字母时,它的指数是1,如单项式m的指数是1,单项式是单独的一个常数时,一般不讨论它的次数。
(3)单项式的指数只和字母的指数有关,与系数的指数无关。
如单项式-43242z y x的次数是2+3+4=9而不是13次。
(4)单项式通常根据实验室的次数进行命名。
如x6是一次单项式,xyz2是三次单项式。
知识点4、多项式的有关概念(1)多项式:几个单项式的和叫做多项式。
人教版初中七年级数学上册第二章《整式的加减》知识点(含答案解析)
一、选择题1.(0分)若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.2.(0分)单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-4B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩ 则()()5711n m +-=14- 故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.3.(0分)如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n个“金鱼”需用火柴棒的根数为()A.2+6n B.8+6n C.4+4n D.8n A解析:A【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答.【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8;第二个“金鱼”需用火柴棒的根数为6×2+2=14;第三个“金鱼”需用火柴棒的根数为6×3+2=20;……;第n个“金鱼”需用火柴棒的根数为6n+2.故选:A.【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键.4.(0分)下列说法正确的是()A.单项式34xy-的系数是﹣3 B.单项式2πa3的次数是4C.多项式x2y2﹣2x2+3是四次三项式D.多项式x2﹣2x+6的项分别是x2、2x、6C 解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A、单项式34xy-的系数是34-,此选项错误;B、单项式2πa3的次数是3,此选项错误;C、多项式x2y2﹣2x2+3是四次三项式,此选项正确;D、多项式x2﹣2x+6的项分别是x2、﹣2x、6,此选项错误;故选:C.【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.5.(0分)如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上C解析:C【分析】 由图可观察出负数在OC 或OD 射线上,在OC 射线上的数为-4的奇数倍,在OD 射线上的数为-4的偶数倍,即可得出答案.【详解】解:∵由图可观察出负数在OC 或OD 射线上,排除选项A,B ,∵在射线OC 上的数符合:44112432045-=-⨯-=-⨯-=-⨯,,┈在射线OD 上的数符合:84216442446-=-⨯-=-⨯-=-⨯,,┈∵20204505-=-⨯,505为奇数,因此标记为“-2020”的点在射线OC 上.故答案为:C.【点睛】本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律.6.(0分)下列各式中,去括号正确的是( )A .2(1)21x y x y +-=+-B .2(1)22x y x y --=++C .2(1)22x y x y --=-+D .2(1)22x y x y --=-- C解析:C【分析】各式去括号得到结果,即可作出判断.【详解】解:2(1)22x y x y +-=+-,故A 错误; 2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C .【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.7.(0分)古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+31C 解析:C【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n (n+1)和12(n+1)(n+2),所以由正方形数可以推得n 的值,然后求得三角形数的值.【详解】∵A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和. 故选:C .【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.8.(0分)已知多项式()210m xm x +--是二次三项式,m 为常数,则m 的值为( ) A .2-B .2C .2±D .3± A 解析:A【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可.【详解】解:因为多项式()210m x m x +--是二次三项式,∴m-2≠0,|m|=2,解得m=-2,故选:A.【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键. 9.(0分)根据图中数字的规律,则x y +的值是( )A .729B .593C .528D .738B解析:B【分析】观察题中的数据发现,表格内左下角的数值是上面数的平方加一,右下角的数值是:上面的数×左下角的数+上面的数=右下角的数.【详解】根据题中的数据可知:左下角的数=上面的数的平方+1∴28165x =+=右下角的值=上面的数×左下角的数+上面的数∴888658528y x =+=⨯+=∴65528593x y +=+=故选:B.【点睛】本题主要考查数字的变化规律,关键是找出规律,列出通式.10.(0分)如图是按照一定规律画出的“树形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”……照此规律,图A 6比图A 2多出“树枝”( )A .32个B .56个C .60个D .64个C解析:C【分析】根据所给图形得到后面图形比前面图形多的“树枝”的个数用底数为2的幂表示的形式,代入求值即可.【详解】∵图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”,…,∴图形从第2个开始后一个与前一个的差依次是:2, 22,…, 12n -.∴第5个树枝为15+42=31,第6个树枝为:31+52=63,∴第(6)个图比第(2)个图多63−3=60个故答案为C【点睛】此题考查图形的变化类,解题关键在于找出其规律型. 二、填空题11.(0分)多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______.【分析】根据不含xy 项即xy 项的系数为0求出k 的值【详解】解:原式∵不舍项∴故答案为【点睛】本题考查了多项式要求多项式中不含有那一项应让这一项的系数为0解析:19【分析】根据不含xy 项即xy 项的系数为0求出k 的值.【详解】 解:原式2213383x k xy y ⎛⎫=+--+ ⎪⎝⎭,∵不舍xy 项,∴1303k -=,19k =, 故答案为19. 【点睛】 本题考查了多项式,要求多项式中不含有那一项,应让这一项的系数为0.12.(0分)化简:226334x x x x _________.【分析】先去括号再根据合并同类项法则进行计算即可【详解】解:=故答案为:【点睛】此题考查整式的加减运算去括号法则合并同类项法则正确去括号是解题的关键解析:2106x x -+【分析】先去括号,再根据合并同类项法则进行计算即可.【详解】解:226334x x x x 226334xx x x 2(64)(33)x x=2106x x -+,故答案为:2106x x -+.【点睛】此题考查整式的加减运算、去括号法则、合并同类项法则,正确去括号是解题的关键. 13.(0分)合并同类项(1)21123x x x --=____________________;(按字母x 升幂排列)(2)3222232223x y x y y x x y --+=_____________________;(按字母x 降幂排列) (3)222234256a b ab a b =_____________________;(按字母b 降幂排列)【分析】(1)先合并同类项再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项再将多项式按照字母b 的次数由大到小重新排 解析:256x x -+ 32222x y x y -- 221022b ab a -- 【分析】(1)先合并同类项,再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项,再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项,再将多项式按照字母b 的次数由大到小重新排列即可.【详解】解:(1)2222111155232366x x x x x x x x x x ⎛⎫--=-+=-=-+ ⎪⎝⎭; 故答案为:256x x -+; (2)解:322223223222232x y x y y x x y x y x y --+=--; 故答案为:32222x y x y --;(3)解:222222223425621021022a b ab a b a b ab b ab a +--+=-+-=--; 故答案为:221022b ab a --.【点睛】此题考查整式的降幂及升幂排列,合并同类项法则,将多项式按照某个字母重新排列时注意该项的次数及符号,利用交换律将多项式重新排列.14.(0分)m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________.0【解析】由题意m+n=0所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同解析:0【解析】由题意m+n=0,所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0.【点睛】本题考查相反数、去括号法则等,解题的关键是根据题意得出m+n=0,然后再对所求的式子进行去括号,合并同类项,整体代入数值即可.15.(0分)为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n 个图形有6n+2根火柴棒解析:6n+2.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第2个图形有14=6×1+8根火柴棒,第3个图形有20=6×2+8根火柴棒,……,第n 个图形有6n+2根火柴棒.16.(0分)某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案.【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌,A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7.【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.17.(0分)将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a 的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b 3+3ab 2+4a 2b+a 3.【分析】找出a 的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.18.(0分)将一列数1,2,3,4,5,6---,…,按如图所示的规律有序排列.根据图中排列规律可知,“峰1”中峰顶位置(C 的位置)是4,那么“峰206”中C 的位置的有理数是______.-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝对值为以此进行分析即可【详解】解:由图可知每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝解析:-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,以此进行分析即可.【详解】解:由图可知,每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,当206n =时,52061103011029⨯-=-=,因为1029是奇数,所以“峰206”中C 的位置的有理数是1029-.故答案为:1029-.【点睛】本题考查图形的数字规律,熟练掌握根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -是解题的关键.19.(0分)王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____.32【分析】根据用看错的数字减35发现差恰好就是原正确数字的2倍利用有理数的加减混合运算即可求解【详解】∵100以内的含两位小数的数看错了根据归纳猜想得:原数为1432看错的两位数为32143214解析:32.【分析】根据用看错的数字减3.5,发现差恰好就是原正确数字的2倍,利用有理数的加减混合运算即可求解.【详解】∵100以内的含两位小数的数看错了,根据归纳猜想得:原数为14.32,看错的两位数为32.14,32.14﹣3.5=28.64,14.32×2=28.64.∴32.14﹣3.5=2×14.32.故答案为14.32.【点睛】本题考查有理数的加减混合运算,解题的关键是利用探究猜想的方法进行计算. 20.(0分)两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍.设第一堆原有a 个棋子,第二堆原有______个棋子.【分析】根据题意可得第二堆现在的棋子数是2(a-2)因此原来的棋子数为2(a-2)-2【详解】解:由题意可得:现在第二堆有2(a-2)个棋子因此原来第二堆有2(a-2)-2=2a-6个棋子故答案为:解析:()26a -【分析】根据题意可得第二堆现在的棋子数是2(a -2),因此原来的棋子数为2(a -2)-2.【详解】解:由题意可得:现在第二堆有2(a -2)个棋子,因此原来第二堆有2(a -2)-2=2a -6个棋子.故答案为:(2a -6).【点睛】本题考查了整式加减的应用,根据题意列出代数式是解决此题的关键.三、解答题21.(0分)观察下列式子:0×2+1=12……①1×3+1=22……②2×4+1=32……③3×5+1=42……④……(1)第⑤个式子____,第⑩个式子_____;(2)请用含n(n 为正整数)的式子表示上述的规律,并证明.解析:(1)4×6+1=52,9×11+1=102;(2)(n ﹣1)(n+1)+1=n 2;证明见解析.【分析】(1)根据已知等式中的规律即可得;(2)根据整数的平方等于前一个整数与后一个整数乘积与1的和可得,利用整理的运算法则即可验证.【详解】(1)第⑤个式子为4×6+1=52,第⑩个式子9×11+1=102;故答案为4×6+1=52,9×11+1=102;(2)第n 个式子为(n ﹣1)(n+1)+1=n 2,证明:左边=n 2﹣1+1=n 2,右边=n 2,∴左边=右边,即(n ﹣1)(n+1)+1=n 2.【点睛】本题主要考查数字的变化规律,解题的关键是根据已知等式得出(n ﹣1)(n+1)+1=n 2的规律,并熟练加以运用.22.(0分)先化简,再求值(1)()223421332a a a a -+-+-,其中23a =- (2)()()22352542m mn mn m -+--+,其中22m mn -=解析:(1)原式=23362a a --+;256;(2)原式()2111m mn =-+;23. 【分析】(1)根据整式的运算法则,先将整式进行化简,再将字母的值代入计算求值即可.(2)根据整式的运算法则,去括号合并同类项,将整式化成最简,然后将字母的值代入计算即可.【详解】解(1)原式=22333-4233222a a a a ⨯-⨯++-=22363332a a a a --++-=23362a a --+ 将23a =-代入得:222336332⎛⎫⎛⎫-⨯--⨯-+ ⎪ ⎪⎝⎭⎝⎭=256; (2)原式=()()2222352542351084m mn mn m m mn mn m -+--+=+-+-- ()2111m mn =-+将22m mn -=代入得:11×2+1=23【点睛】本题考查了整式的化简求值,解决本题的挂件是正确理解题意,熟练掌握整式的运算法则,将整式正确进行化简.23.(0分)观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(______ )2= ______ .根据以上规律填空:(1)13+23+33+…+n 3=(______ )2=[ ______ ]2.(2)猜想:113+123+133+143+153= ______ .解析:1+2+3+4+5;225;1+2+…+n ;()n n 12+;11375【解析】分析:观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空;(1)、根据上述规律填空,然后把1+2+…+n 变为2n 个(n+1)相乘,即可化简;(2)、对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.详解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)、∵1+2+…+n=(1+n )+[2+(n-1)]+…+[n 2+(n-n 2+1)]=()n n 12+, ∴13+23+33+…+n 3=(1+2+…+n )2=[()n n 12+]2; (2)、113+123+133+143+153=13+23+33+...+153-(13+23+33+ (103)=(1+2+…+15)2-(1+2+…+10)2 =1202-552=11375.点睛:此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.24.(0分)已知多项式﹣3x 2+mx+nx 2﹣x+3的值与x 无关,求(2m ﹣n )2017的值. 解析:-1【分析】先把多项式进行合并同类项得(n-3)x 2+(m-1)x+3,由于关于字母x 的二次多项式-3x 2+mx+nx 2-x+3的值与x 无关,即不含x 的项,所以n-3=0,m-1=0,然后解出m 、n ,代入计算(2m-n )2017的值即可.【详解】合并同类项得(n ﹣3)x 2+(m ﹣1)x+3,根据题意得n ﹣3=0,m ﹣1=0,解得m=1,n=3,所以(2m ﹣n )2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数. 25.(0分)已知有理数a 和b 满足多项式A ,且A=(a ﹣1)x 5+x |b+2|﹣2x 2+bx+b (b≠﹣2)是关于x 的二次三项式,求(a ﹣b )2的值.解析:16或25【解析】试题分析:根据有理数a 和b 满足多项式A .A =(a ﹣1)x 5+x |b +2|﹣2x 2+bx +b 是关于x 的二次三项式,求得a 、b 的值,然后分别代入计算可得.试题解:∵有理数a 和b 满足多项式A .A =(a ﹣1)x 5+x |b +2|﹣2x 2+bx +b 是关于x 的二次三项式,∴a ﹣1=0,解得:a =1.(1)当|b +2|=2时,解得:b =0或b =4.①当b =0时,此时A 不是二次三项式;②当b =﹣4时,此时A 是关于x 的二次三项式.(2)当|b +2|=1时,解得:b =﹣1(舍)或b =﹣3.(3)当|b +2|=0时,解得:b =﹣2(舍)∴a =1,b =﹣4或a =1,b =﹣3.当a =1,b =﹣4时,(a ﹣b )2=25;当a =1,b =﹣3时,(a ﹣b )2=16.点睛:本题考查了多项式的知识,解题的关键是根据题意求得a 、b 的值,题目中重点渗透了分类讨论思想.26.(0分)数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.解析:0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案.【详解】解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++-0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.27.(0分)某校利用二维码进行学生学号统一编排.黑色小正方形表示1,白色小正方形表示0,将每一行数字从左到右依次记为a ,b ,c ,d ,那么利用公式321222a b c d ⨯+⨯+⨯+计算出每一行的数据.第一行表示年级,第二行表示班级,第三行表示班级学号的十位数,第四行表示班级学号的个位数.如图1所示,第一行数字从左往右依次是1,0,0,1,则表示的数据为1×23+0×22+0×21+1=9,计作09,第二行数字从左往右依次是1,0,1,0,则表示的数据为1×23+0×22+1×21=10,计作10,以此类推,图1代表的统一学号为091034,表示9年级10班34号.小明所对应的二维码如图2所示,则他的统一学号为________.解析:070629【分析】利用公式求出图2中每行表示的数据,将其组合起来即可得出结论.【详解】解:∵第一行:0×23+1×22+1×21+1=7,计作07,第二行:0×23+1×22+1×21+0=6,计作06,第三行:0×23+0×22+1×21+0=2,计作2,第四行:1×23+0×22+0×21+1=9,计作9,∴他的统一学号为070629.故答案为:070629.【点睛】本题考查了规律型:图形的变化类以及尾数特征,读懂题意,利用公式求出图2中每行表示的数据是解题的关键.28.(0分)已知22332A x y xy =+-,2222B xy y x =--.(1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.解析:(1)2212127x y xy +-;(2)114或99.【分析】(1)把22332A x y xy =+-,2222B xy y x =--代入23A B -计算即可;(2)根据|23|1x -=,29y =,且||x y y x -=-求出x 和y 的值,然后代入(1)中化简的结果计算即可.【详解】解:(1)()()2222232332322A B x y xy xy y x -=+----2222664366x y xy xy y x =+--++2212127x y xy =+-;(2)由题意可知:231x -=±,3=±y ,∴2x =或1,3=±y ,由于||x y y x -=-,∴2x =,3y =或1x =,3y =.当2x =,3y =时,23114A B -=.当1x =,3y =时,2399A B -=.所以,23A B -的值为114或99.【点睛】本题考查了整式的加减运算,绝对值的意义,以及分类讨论的数学思想,熟练掌握整式的加减运算法则是解(1)的关键,分类讨论是解(2)的关键.。
《常考题》初中七年级数学上册第二章《整式的加减》知识点总结(含答案解析)
《常考题》初中七年级数学上册第二章《整式的加减》知识点总结(含答案解析)一、选择题1.(0分)在代数式a 2+1,﹣3,x 2﹣2x ,π,1x中,是整式的有( )A .2个B .3个C .4个D .5个C解析:C 【分析】单项式和多项式统称为整式,分母中含有字母的不是整式. 【详解】解:a 2+1和 x 2﹣2x 是多项式,-3和π是单项式,1x不是整式,∵单项式和多项式统称为整式,∴整式有4个. 故选择C. 【点睛】本题考查了整式的定义.2.(0分)点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且 32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004- C解析:C 【分析】先找到特殊点,根据特殊点的下标与数值的关系找到规律,数较大时,利用规律解答. 【详解】解:根据题意分析可得:点A₁, A₂,A₃, .. A n 表示的数为-1,1,-2,2,-3,3,...依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧,且为下标加1除以2的相反数;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2; 即:当n 为奇数时,n 1A 2n +=-, 当n 为偶数时,2n n A =所以点A 2008表示的数为: 2008÷2= 1004 A 2009表示的数为:- (2009+1) ÷2=-1005 故选: C . 【点睛】本题考查探索与表达规律.这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后找到规律.3.(0分)与(-b)-(-a)相等的式子是( )A.(+b)-(-a) B.(-b)+aC.(-b)+(-a) D.(-b)-(+a)B解析:B【分析】将各选项去括号,然后与所给代数式比较即可﹒【详解】解: (-b)-(-a)=-b+aA. (+b)-(-a)=b+a;B. (-b)+a=-b+a;C. (-b)+(-a)=-b-a;D. (-b)-(+a)=-b-a;故与(-b)-(-a)相等的式子是:(-b)+a﹒故选:B﹒【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒4.(0分)把有理数a代入|a+4|﹣10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…,若a=23,经过第2020次操作后得到的是()A.﹣7 B.﹣1 C.5 D.11A解析:A【分析】先确定第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;第7次操作,a7=|-7+4|-10=-7;…第2020次操作,a2020=|-7+4|-10=-7.故选:A.【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.5.(0分)一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1 B .5y 3-3y 2-2y -6C .5y 3+3y 2-2y -1D .5y 3-3y 2-2y -1D解析:D 【分析】根据已知和与一个加数,则另一个加数=和-一个加数,然后计算即可. 【详解】解:∵5y 3-4y -6-(3y 2-2y -5)= 5y 3-4y -6-3y 2+2y+5= 5y 3-3y 2-2y -1. 故答案为D . 【点睛】本题考查了整式的加减运算,掌握去括号、合并同类项是解答本题的关键. 6.(0分)下面去括号正确的是( ) A .2()2y x y y x y +--=+- B .2(35)610a a a a --=-+ C .()y x y y x y ---=+- D .222()2x x y x x y +-+=-+ B解析:B 【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则. 【详解】A. 2()2y x y y x y +--=--,故错误;B. 2(35)610a a a a --=-+,故正确;C. ()y x y y x y ---=++,故错误;D. 222()22x x y x x y +-+=-+,故错误; 故选:B 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘;括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“一”,去括号后,括号里的各项都改变符号.7.(0分)下列去括号运算正确的是( ) A .()x y z x y z --+=--- B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++ D 解析:D 【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则. 【详解】A. ()x y z x y z --+=-+-,故错误;B. ()x y z x y z --=-+,故错误;C. ()222x x y x x y -+=--,故错误;D. ()()a b c d a b c d -----=-+++,正确. 故选:D 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.8.(0分)若252A x x =-+,256B x x =--,则A 与B 的大小关系是( ) A .A B > B .A B =C .A B <D .无法确定A解析:A 【分析】作差进行比较即可. 【详解】解:因为A -B =(x 2-5x +2)-( x 2-5x -6) =x 2-5x +2- x 2+5x +6 =8>0, 所以A >B . 故选A . 【点睛】本题考查了整式的加减和作差比较法,若A -B >0,则A >B ,若A -B <0,则A <B ,若A -B =0,则A =B .9.(0分)某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元 A .(115%)(120%)a ++ B .(115%)20%a + C .(115%)(120%)a +- D .(120%)15%a + A解析:A 【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可. 【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元. 故选A . 【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.10.(0分)一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64B .31,32,33C .31,62,63D .31,45,46C解析:C 【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数. 【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63. 故选:C . 【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题11.(0分)与22m m +-的和是22m m -的多项式为__________.【分析】直接利用整式的加减运算法则计算得出答案【详解】设多项式A 与多项式的和等于∴A=-()故答案为:【点睛】本题主要考查了整式的加减正确去括号和合并同类项是解题关键 解析:32m -+【分析】直接利用整式的加减运算法则计算得出答案. 【详解】设多项式A 与多项式22m m +-的和等于22m m -, ∴A=22m m --(22m m +-)2222m m m m =---+32m =-+.故答案为:32m -+. 【点睛】本题主要考查了整式的加减,正确去括号和合并同类项是解题关键. 12.(0分)请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, … 则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101【解析】试题1111++++ 133********⨯⨯⨯⨯=11111111111 1)()()() 23235257299101 -+-+-++-(=11111111 1++) 23355799101 ---++-(=11 1) 2101-(=1100 2101⨯=50 101.13.(0分)将连续正整数按以下规律排列,则位于第7行第7列的数x是________________.?136********259142027?48131926??7121825??111724??1623??22?????x?【分析】先根据第一行的第一列的数以及第二行的第二列的数第三行的第三列数第四行的第四列数进而得出变化规律由此得出结果【详解】第一行的第一列的数是1;第二行的第二列的数是5=1+4;第三行的第三列的数是解析:85【分析】先根据第一行的第一列的数,以及第二行的第二列的数,第三行的第三列数,第四行的第四列数,进而得出变化规律,由此得出结果.【详解】第一行的第一列的数是 1;第二行的第二列的数是 5=1+4; 第三行的第三列的数是 13=1+4+8; 第四行的第四列的数是 25=1+4+8+12; ......第n 行的第n 列的数是1+4+8+12+...+4(n-1)=1+4[1+2+3+...+(n+1)]=1+2n(n-1); ∴第七行的第七列的数是1+2×7×(7-1)=85; 故答案为:85. 【点睛】本题考查数字的变化规律,学生通过观察、分析、归纳发现其中的规律,从而利用规律解决问题.14.(0分)当x =1时,ax +b +1=﹣3,则(a +b ﹣1)(1﹣a ﹣b )的值为_____.-25【分析】由x =1时代数式ax+b+1的值是﹣3求出a+b 的值将所得的值整体代入所求的代数式中进行计算即可得解【详解】解:∵当x =1时ax+b+1的值为﹣3∴a+b+1=﹣3∴a+b =﹣4∴(a解析:-25. 【分析】由x =1时,代数式ax +b +1的值是﹣3,求出a +b 的值,将所得的值整体代入所求的代数式中进行计算即可得解. 【详解】解:∵当x =1时,ax +b +1的值为﹣3, ∴a +b +1=﹣3, ∴a +b =﹣4,∴(a +b ﹣1)(1﹣a ﹣b )=(a +b ﹣1)[1﹣(a +b )]=(﹣4﹣1)×(1+4)=﹣25. 故答案为:﹣25. 【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键. 15.(0分)在括号内填上恰当的项:22222x xy y -+-=-(_____________________).【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去 解析:222x xy y -+【分析】根据添括号的法则解答. 【详解】解:222222(2)x xy y x xy y -+-=--+. 故答案是:222x xy y -+.本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.16.(0分)如图:矩形花园ABCD 中,,AB a AD b ==,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK .若LM RS c ==,则花园中可绿化部分的面积为______.【分析】由长方形的面积减去PQLM 与RKTS 的面积再加上重叠部分面积即可得到结果【详解】S 矩形ABCD=AB•AD=abS 道路面积=ca+cb-c2所以可绿化面积=S 矩形ABCD-S 道路面积=ab- 解析:2ab bc ac c --+【分析】由长方形的面积减去PQLM 与RKTS 的面积,再加上重叠部分面积即可得到结果. 【详解】S 矩形ABCD =AB•AD=ab , S 道路面积=ca+cb-c 2,所以可绿化面积=S 矩形ABCD -S 道路面积 =ab-(ca+cb-c 2), =ab-ca-cb+c 2. 故答案为:ab-bc-ac+c 2. 【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.17.(0分)已知5a b -=,3c d +=,则()()b c a d +--的值等于______.-2【分析】把原式去括号转化为含有(a-b)和(c+d)的式子然后代入求值即可【详解】故答案为:-2【点睛】本题考查了整式的化简求值把原式转化为含有(a-b)和(c+d)的式子是解决此题的关键解析:-2 【分析】把原式去括号转化为含有(a -b )和(c +d )的式子,然后代入求值即可. 【详解】()()()()532b c a d b c a d b a c d +--=+-+=-++=-+=-.故答案为:-2.本题考查了整式的化简求值,把原式转化为含有(a -b )和(c +d )的式子是解决此题的关键. 18.(0分)为了鼓励节约用电,某地对用户用电收费标准作如下规定:如果每户用电不超过50度,那么每度电按a 元收费,如果超过50度,那么超过部分按每度()0.5a +元收费,某居民在一个月内用电98度,他这个月应缴纳电费______元.【分析】98度超过了50度应分两段进行计费第一段50每度收费a 元第二段(98-50)度每度收费(a+05)元据此计算即可【详解】解:由题意可得:(元)故答案为:(98a+24)【点睛】本题考查了列代 解析:()9824a +【分析】98度超过了50度,应分两段进行计费,第一段50,每度收费a 元,第二段(98-50)度,每度收费(a +0.5)元,据此计算即可. 【详解】解:由题意可得:()()5098500.59824a a a +-+=+(元). 故答案为:(98a +24). 【点睛】本题考查了列代数式,根据题意,列出代数式是解决此题的关键.19.(0分)用棋子按下列方式摆图形,依照此规律,第n 个图形比第()1n -个图形多______枚棋子.…第1个 第2个 第3个【分析】归纳总结找出第n 个图形与第(n-1)个图形中的棋子数相减即可得到结果【详解】解:第1个图形棋子的个数:1;第2个图形1+4;第3个图形1+4+7;第4个图形1+4+7+10;…第n 个图形1+ 解析:32n -【分析】归纳总结找出第n 个图形与第(n-1)个图形中的棋子数,相减即可得到结果. 【详解】解:第1个图形棋子的个数:1; 第2个图形,1+4; 第3个图形,1+4+7; 第4个图形,1+4+7+10; …第n 个图形,1+4+7+…+(3n -2);则第n 个图形比第(n-1)个图形多(3n-2)枚棋子. 故答案为:3n-2 【点睛】此题主要考查了图形的变化类问题,同时还考查了学生通过特例分析从而归纳总结出一般结论的能力.20.(0分)图中阴影部分的面积为______.【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积进行计算即可【详解】解:【点睛】本题考查圆的面积计算公式熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积 解析:21π4R【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积,进行计算即可. 【详解】 解:2221=()224R R S R πππ-=阴影 【点睛】本题考查圆的面积计算公式,熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积是解题关键.三、解答题21.(0分)如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A ,B 是数轴上的点,请参照下图并思考,完成下列各题.(1)如果点A 表示数-3,将A 点向右移动7个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离为 .(2)如果点A 表示数3,将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离为 .(3)如果点A 表示数4-,将A 点向右移动168个单位长度,再向左移动256个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离是 .(4)一般地,如果A 点表示数为m ,将A 点向右移动n 个单位长度,再向左移动P 个单位长度,那么,请你猜想终点B 表示什么数?A ,B 两点间的距离为多少?解析:(1)4,7;(2) 1,2;(3) -92,88;(4)m+n-p,|n-p|【分析】(1)根据数轴上的点向右平移加,向左平移减,可得B点表示的数为-3+7=4,根据数轴上两点间的距离是大数减小数,可得答案;(2)根据数轴上的点向右平移加,向左平移减,可得B点表示的数3-7+5=1,根据数轴上两点间的距离是大数减小数,可得答案;(3)根据数轴上的点向右平移加,向左平移减,可得B点表示的数-4+168-256=-92,根据数轴上两点间的距离是大数减小数,可得答案;(4)按照(1)(2)(3)中的方法讨论更加一般的情况即可求解.【详解】解:(1)∵点A表示数-3,∴将A点向右移动7个单位长度,那么终点B表示的数是-3+7=4,A,B两点间的距离为4-(-3)=7,故答案为:4,7;(2)∵点A表示数3,∴将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是3-7+5=1,A,B两点间的距离为3-1=2,故答案为:1,2;(3)∵点A表示数-4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是-4+168-256=-92,A,B两点间的距离是-4-(-92)=88,故答案为:-92,88;(4)∵A点表示的数为m,∴将A点向右移动n个单位长度,再向左移动p个单位长度,那么点B表示的数为m+n-p,A,B两点间的距离为|m-(m+n-p)|=|n-p|.故答案为:m+n-p,|n-p|.【点睛】本题考查的是数轴上点的平移规律及数轴上两点之间的距离公式,点在数轴上平移遵循“左减右加”原则;注意数轴上两点之间的距离为大数减小数,当不确定谁大谁小时记得加绝对值符号;正确利用数形结合分析是解题关键.22.(0分)有一长方体形状的物体,它的长,宽,高分别为a,b,c(a>b>c),有三种不同的捆扎方式(如图所示的虚线).哪种方式用绳最少?哪种方式用绳最多?说明理由.解析:方式甲用绳最少,方式丙用绳最多.【解析】试题分析:根据长方形的对称性分别得到三种方式所需要的绳子的长度,然后将这三个代数式进行作差比较大小.试题方式甲所用绳长为4a+4b+8c,方式乙所用绳长为4a+6b+6c,方式丙所用绳长为6a+6b+4c,因为a>b>c ,所以方式乙比方式甲多用绳(4a +6b +6c)-(4a +4b +8c)=2b -2c ,方式丙比方式乙多用绳(6a +6b +4c)-(4a +6b +6c)=2a -2c.因此,方式甲用绳最少,方式丙用绳最多.23.(0分)已知:A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3. (1)求3A ﹣(4A ﹣2B )的值;(2)当x 取任意数值,A ﹣2B 的值是一个定值时,求(a+314A )﹣(2b+37B )的值. 解析:(1)(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)﹣312. 【分析】(1)先化简原式,再分别代入A 和B 的表达式,去括号并合并类项即可;(2)先代入A 和B 的表达式并去括号并合并类项,由题意可令x 和x 2项的系数为零,求解出a 和b 的数值,再化简原式后代入相关数值即可求解.【详解】解:(1)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴原式=3A ﹣4A+2B=﹣A+2B=﹣2x 2﹣ax+5y ﹣b+2bx 2﹣3x ﹣5y ﹣6=(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴A ﹣2B=2x 2+ax ﹣5y+b ﹣2bx 2+3x+5y+6=(2﹣2b )x 2+(a+3)x+(b+6),由x 取任意数值时,A ﹣2B 的值是一个定值,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=a ﹣2b+314(A ﹣2B )=﹣3﹣2+32=﹣312. 【点睛】理解本题中x 取任意数值时A ﹣2B 的值均是一个定值的意思是整式化简后的x 和x 2项的系数均为零是解题关键.24.(0分)已知31A B x ,且3223A x x ,求代数式B .解析:2322x x -++【分析】将A 代入A-B=x 3+1中计算即可求出B .【详解】解:∵A-B=x 3+1,且A=-2x 3+2x+3,∴B=A-(x 3+1)=-2x 3+2x+3-x 3-1=-3x 3+2x+2.【点睛】本题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解题的关键.25.(0分)用代数式表示:(1)a的5倍与b的平方的差;(2)m的平方与n的平方的和;(3)x,y两数的平方和减去它们积的2倍.解析:(1)5a-b2(2)m2+n2(3)x2+y2-2xy【分析】(1)a的5倍表示为5a,b的平方表示为b2,然后把它们相减即可;(2)m与n平方的和表示为m2+n2;(3)x、y两数的平方和表示为x2+y2,它们积的2倍表示为2xy,然后把两者相减即可;【详解】解:(1)a的5倍与b的平方的差可表示为:5a-b2;(2)m的平方与n的平方的和可表示为:m2+n2;(3)x,y两数的平方和减去它们积的2倍可表示为:x2+y2-2xy.【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;分清数量关系;规范地书写.26.(0分)(规律探究题)用计算器计算下列各式,将结果填写在横线上.99999×11=__________;99999×12=__________;99999×13=__________;99999×14=__________.(1)你发现了什么?(2)不用计算器,你能直接写出99999×19的结果吗?解析:1099989;1199988;1299987;1399986;(1)如果n是11,12,13,…,20中的任何一个数,则:99999×n=(n-1)9998(20-n),其中(n-1)9998(20-n)是1个7位数,前2位是n-1,个位是20-n,中间4个数字总是9998;(2)99999×19=1899981【分析】用计算器分别进行计算,再根据结果找出规律,最后根据规律即可直接写出99999×19的结果.【详解】解:99999×11=1099989;99999×12=1199988;99999×13=1299987;99999×14=1399986.故答案为:1099989;1199988;1299987;1399986.(1)通过计算观察可发现以下规律:如果n 是11,12,13,…,20中的任何一个数,则:99999×n =(n -1)9998(20-n ),其中(n -1)9998(20-n )是1个7位数,前2位是n -1,个位是20-n ,中间4个数字总是9998.(2)根据以上规律可直接写出:99999×19=1899981.【点睛】此题考查了计算器−有理数,解题的关键是通过用计算器计算,找出规律,通过规律进行解答.27.(0分)有这样一道题“求多项式3323323763363101a a b a b a a b a b a -+++--+的值,其中99.01,123.89a b ==-”,有一位同学把99.01a =抄成99.01,123.89a b =-=-抄成123.89b =,结果也正确,为什么?解析:见解析【分析】原式合并同类项得到最简结果为常数1,这个多项式的值与a 、b 的值无关,故a ,b 的值抄错后,答案仍然是1【详解】解:∵3323323763363101a a b a b a a b a b a -+++--+()()()33333227310663311a a a a b a b a b a b =+-+-++-+=;∴这个多项式的值与,a b 的值无关,故,a b 的值抄错后结果也正确.【点睛】此题考查了整式的加减——化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.28.(0分)为鼓励居民节约用电,某市采用价格调控手段达到省电目的,该市电费收费标准如下表(按月结算):(2)设某月的用电量为x 度(0300x <≤),试写出不同电量区间应缴交的电费.解析:(1)该居民12月份应缴电费94.5元;(2)0.5,01500.6522.5,1502500.860,250300x x x x x x <≤⎧⎪-<≤⎨⎪-<≤⎩【分析】(1)根据用电量类型分别进行计算即可;(2)分三种情况进行讨论,当x 不超过150度时,x 超过150度,但不超过时250度时和x超过250度时,再分别代入计算即可.【详解】解:(1)由题意,得150×0.50+(180-150)×0.65=94.5(元)答:该居民12月应缴交电费94.5元;(2)若某户的用电量为x度,则当x≤150时,应付电费:0.50x元;当150<x≤250时,应付电费:0.65(x-150)+75=0.65x22.5-(元);当250<x<300,应付电费:0.80(x-250)+140=0.8x60-(元).∴不同电量区间应缴交的电费为:0.5,01500.6522.5,150250 0.860,250300x xx xx x<≤⎧⎪-<≤⎨⎪-<≤⎩.【点睛】本题考查了列代数式,读懂题目信息,理解阶梯电价的收费方法和电费的计算方法是解题的关键.。
初一数学第二章整式的加减知识点归纳+练习
2021-2022学年度 秋季 七年级上学期 人教版数学第二章 整式的加减 知识点归纳2.1.1 单项式由 与 的积组成的式子叫做单项式。
单独一个数字或字母.......也是单项式,如5-,y 等。
(注意:分母中出现字母的,就不再是单项式。
如:x1) 系数:单项式中的 因数叫做这个单项式的系数。
(★:π属于数字,不是字母) 次数:单项式所有字母的 之和叫做这个单项式的次数。
注意:①数字次数是0;②系数和次数是1时,1通常省略不写;③若单项式中出现“-”号,则“-”号是系数的性质符号。
例:指出下列各单项式的系数和次数:(1)xy 5, (2)a 21-, (3)5a , (4)42bc a , (5)732y x π【练习】下列式子中,哪些是单项式?指出这些单项式的系数和次数。
x ,ab 21-,x1,b a +2,y x 25-,20-,2mn -2.1.2 多项式多项式:几个 的和.叫做多项式。
(注意:分母中出现字母的,就不是多项式。
如:a x+1) 多项式的项:多项式中的每个单项式,叫做多项式的 。
如b a +2中,a 2,b 都是项。
多项式的次数:多项式中,次数最高的项的 ,叫做这个多项式的次数。
(★最高次项是指多项式中次数最高的项,如:122+-a a 中最高次项是:2a ) 常数项:多项式中,不含 的项称为常数项。
例1:多项式232+-+-y x xy xπ的项分别是 ,次数是 ;最高次项是 ;常数项是 。
多项式的命名:多项式可以由项数及次数确定为 次 项式。
如:122+-a a ,共 项,次数为 ,故称为 次 项式。
例2:给下列多项式命名。
①6524252--+y y y : 次 项式 ②345567x x x +-: 次 项式多项式的排序:多项式可以按各项次数的高低进行排列,若从低到高为升幂排列;若从高到低,则为降幂排列。
如:122+-a a 为 排列;221a a +-为 排列。
七年级数学上册整式的加减知识点及题型总结
第二单元(整式的加减)【考点一】用字母表示数(1)用字母表示数时,数字与字母,字母与字母相乘,中间的( )可以忽略不写,或用( )表示。
(2)数字与字母相乘时,数字应写在( )前(3)系数是带分数时,带分数要化成( )(4)出现除式时,用( )表示(5)结果含加减运算的,单位前加( )例1:下列各式:①x 411; ②2•3 ; ③20%x ; ④c b a ÷-; ⑤3n m - ;⑥5-x 千克 其中符合书写要求的有( )A. 5个B. 4个C. 3个D. 2个 例2:用式子表示:a 的2倍与3的和,下列表示正确的是( )A.32-aB. 32+aC. )3(2-aD. )3(2+a例3:某种苹果的单价是x 元/ kg(x <10),用50元买5kg 这种苹果,应找回 元. 例4:用不同的方法表示出阴影部分的面积。
(至少写出两种)【考点二】单项式(1)单个数,单个字母,数和字母的乘积,字母和字母的乘积,都是单项式,数与字母相乘通常把数写在前面。
例如:1,a ,a 4,ab 都是单项式(2)单项式的系数:单项式的数字因数叫做这个单项式的系数,例如:单项式ab 100的系数是100,a 的是1(3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数,例如a 100次数为1,b a 2100次数为3例题1:判断下列代数式是否为单项式,如果是,请写出它的系数和次数,0 ,1- xy -, 3a , x -3, x 1, 21x -, ab π31, 22yz x -, b例题2:如果15--m xy 为四次单项式,则=m ( ) 例题3:当21-=x ,2=y 时,求y x 42-的值。
例3:已知单项式426y x 与2231+-m z y 的次数相同,求m 的值.【考点三】多项式(1)几个单项式的和叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,在多项式里,次数最高项的次数,叫做这个多项式的次数。
人教版初一七年级数学第二单元知识点及练习题
第二章整式的加减一.知识框架二.知识概念1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
通过本章学习,应使学生达到以下学习目标:1. 理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
2. 理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。
在准确判断、正确合并同类项的基础上,进行整式的加减运算。
3. 理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
【2.1.1列代数式】一.选择题1.某种商品进价为a元/件,在销售旺季,商品售价较进价高30%;销售旺季过后,商品又以7折(即原售价的70%)的价格开展促销活动,这时一件该商品的售价为()A.a元 B.0.7a元 C.0.91a元D.1.03a元2.一个两位数x,还有一个两位数y,若把两位数x放在y前面,组成一个四位数,则这个四位数为()A.10x+y B.xy C.100x+y D.1000x+y3.购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()A.(a+b)元B.3(a+b)元 C.(3a+b)元 D.(a+3b)元4.某商品原价每件x元,后来店主将每件增加10元,再降价25%,则现在的单价(元)是()A.25%x+10 B.(1-25%)x+10 C.25%(x+10)D.(1-25%)(x+10)月份的产值是()A.(1-10%)(1+15%)x万元B.(1-10%+15%)x万元C.(x-10%)(x+15%)万元D.(1+10%-15%)x万元6.如图,表示阴影部分面积的代数式是()A.ab+bc B.ad+c(b-d)C.c(b-d)+d(a-c) D.ab-cd二.填空题7.某机关单位2015年3月的三公经费为a万元,为响应省委提倡节俭的号召,开始减少三公经费,a的式子表示).10.某市出租车收费标准为:起步价10元,3千米后每千米价1.8元.则某人乘坐出租车x(x>3)三.解答题11.列代数式:(1)比a的一半大3的数(2)a与b的差的c倍(3)a的一半与b的平方的差.(4)王明同学买2本练习册花n元,那么买m本练习册要花多少元?(5)正方体的棱长为a,那么它的表面积是多少?体积呢?【2.1.2单项式】一.选择题A.3个 B.4个C.5个D.6个A.系数是-35,次数是2 B.系数是35,次数是2C.系数是-3,次数是3 D.系数是-35,次数是3A.49,7 B.49π,6 C.4π,6 D.49π,4A.2 B.3 C.5 D.65.已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.-2xy2B.3x2C.2xy3D.2x36.下列说法中正确的是()A.-13 xy2是单项式B.xy2没有系数C.x-1是单项式D.0不是单项式二.填空题三.解答题12.若(a-4)x3y b+2是关于x,y的四次单项式,求a,b应满足的条件.【2.1.3多项式】一.选择题A.2个B.3个C.4个D.5个2.多项式1-2xy+xy3的次数是()A.1 B.2 C.3 D.4A.三次四项式B.三次三项式 C.四次四项式 D.二次四项式A.1个B.2个C.3个D.4个5.多项式1+xy-xy2的次数及最高次项的系数分别是()A.2,1 B.2,-1 C.3,-1 D.5,-16.当x=1时,代数式4-3x的值是()A.1 B.2 C.3 D.4二.填空题三.解答题12.若a,b互为相反数,c,d互为倒数,x的绝对值为4,求代数式a+b-cd+x2的值.【2.2.1合并同类项】一.选择题1.下列各式中,是3a2b的同类项的是()A.2x2y B.-2ab2C.a2b D.3ab2.如果2x2y3与x2y n+1是同类项,那么n的值是()A.1 B.2 C.3 D.43.计算-a2+3a2的结果为()A.-2a2B.2a2C.4a2D.-4a24.下列计算正确的是()A.3a2-2a2=1 B.5-2x3=3x3C.3x2+2x3=5x5D.a3+a3=2a35.当a=-5时,多项式a2+2a-2a2-a+a2-1的值为()A.29 B.-6 C.14 D.246.如果x2+xy=2,xy+y2=1,则x2+2xy+y2的值是()A.0 B.1 C.2 D.3二.填空题三.解答题11.合并同类项(1)4a2+3b2-2ab-3a2-5b2;(2)3xy2-5xy+0.5x2y-3xy2-4.5x2y;(3)3x3+x3;(4)xy2;(5)4a2+3b2+2ab−4a2−4b2.13.先化简,再求值:2x+7+3x-2,其中x=2.【2.2.2去括号合并同类项】一.选择题1.化简-16(x-0.5)的结果是()A.-16x-0.5 B.-16x+0.5 C.16x-8 D.-16x+82.学习了去括号后,李欣、曹敏、李犇和朱晓洋同学在,去括号:-(-a+b-1)时分别得到下面的,其中正确的是()A.-a+b-1 B.a+b+1 C.a-b+1 D.-a+b+13.下列各题去括号所得结果正确的是()A.x2-(x-y+2z)=x2-x+y+2z B.x-[-y+(-3x+1)]=x+y+3x-1C.3x-[5x-(x-1)]=3x-5x-x+1 D.(x-1)-(x2-2)=x-1-x2-24.下列等式成立的是()A.-(3m-1)=-3m-1 B.3x-(2x-1)=3x-2x+1C.5(a-b)=5a-b D.7-(x+4y)=7-x+4y5.已知a-b=-3,c+d=2,则(b+c)-(a-d)的值为()A.1 B.5 C.-5 D.-16.若(a+1)2+|b-2|=0,化简a(x2y+xy2)-b(x2y-xy2)的结果为()A.3x2y B.-3x2y+xy2.-3x2y+3xy2D.3x2y-xy2二.填空题9.去括号,合并同类项得:3b-2c-[-4a+(c+3b)]+c= .三.解答题11.先去括号,再合并同类项(1)2(2b-3a)+3(2a-3b)(2)4a2+2(3ab-2a2)-(7ab-1)12.先化简,再求值:【2.2.3整式的加减】一.选择题1.化简(2x-3y)-3(4x-2y)结果为()A.-10x-3y B.-10x+3y C.10x-9y D.10x+9y2.ab减去a2-ab+b2等于()A.a2+2ab+b2B.-a2-2ab+b2C.-a2+2ab-b2D.-a2+2ab+b23.李老师做了个长方形教具,其中一边长为2a+b,另一边为a-b,则该长方形周长为()A.6a+b B.6a C.3a D.10a-b4.若多项式3x2-2xy-y2减去多项式M所得的差是-5x2+xy-2y2,则多项式M是()A.-2x2-xy-3y2B.2x2+xy+3y2C.8x2-3xy+y2D.-8x2+3xy-y2[5.若代数式2x3-8x2+x-1与代数式3x3+2mx2-5x+3的和不含x2项,则m等于()A.2 B.-2 C.4 D.-46.若A和B都是五次多项式,则A+B一定是()A.十次多项式B.五次多项式C.数次不高于5的整式D.次数不低于5次的多项式二.填空题9.三个小队植树,第一队种x棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比10.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:三.解答题11.已知A=3a2b-2ab2+abc,小明错将“2A-B”看成“2A+B”,算得结果C=4a2b-3ab2+4abc.(1)计算B的表达式;值.12.已知A=2x2+3xy-2x-1,B=-x2+xy-1:(1)求3A+6B;(2)若3A+6B的值与x无关,求y的值。
七年级上册数学第二章整式的加法重点题型及重要知识点的整理
七年级上册数学第二章整式的加法重点题型及重要知识点的整理单选题1、多项式a-(b-c)去括号的结果是()A.a-b-cB.a+b-cC.a+b+cD.a-b+c答案:D解析:根据去括号的法则:括号前是“-”时,把括号和它前面的“-”去掉,原括号里的各项都改变符号,进行计算即可.a−(b−c)=a−b+c,故选:D.小提示:本题主要考查去括号,掌握去括号的法则是解题的关键.2、下列说法正确的是()A.3x2−2x+5的项是3x2,2x,5B.x3−y3与2x2−2xy−5都是多项式C.多项式−2x2+4xy的次数是3D.一个多项式的次数是6,则这个多项式中只有一项的次数是6 答案:B解析:根据多项式的项数、次数和多项式定义,即几个单项式的和叫做多项式判断即可;解:A.3x2−2x+5的项是3x2,−2x,5,故错误;B.x3−y3与2x2−2xy−5都是多项式,故正确;C.多项式−2x2+4xy的次数是2,故错误;D.一个多项式的次数是6,则这个多项式中不一定只有一项的次数是6,如2a6+a3b3−1,故错误.故选B.小提示:本题主要考查了多项式的定义、项数、次数,准确分析判断是解题的关键.3、下列计算正确的是()A.3a+2b=5abB.5a2-2a2=3C.7a+a=7a2D.2a2b-4a2b=-2a2b答案:D解析:直接利用合并同类项法则分别分析得出答案.A、3a+2b,无法计算,故此选项错误;B、5a2-2a2=3a2,故此选项错误;C、7a+a=8a,故此选项错误;D、2a2b-4a2b=-2a2b,正确.故选D.小提示:此题主要考查了合并同类项,正确掌握运算法则是解题关键.的描述,正确的是()4、下列对代数式a−1bA.a与b的相反数的差B.a与b的差的倒数C.a与b的倒数的差D.a的相反数与b的差的倒数答案:C解析:根据代数式的意义逐项判断即可.解:A. a与b的相反数的差:a−(−b),该选项错误;,该选项错误;B. a与b的差的倒数:1a−b;该选项正确;C. a与b的倒数的差:a−1b,该选项错误.D. a的相反数与b的差的倒数:1−a−b故选:C.小提示:此题主要考查列代数式,注意掌握代数式的意义.5、若M=x3−3x2y+2xy2+3y3,N=x3−2x2y+xy2−5y3,则2x3−7x2y+5xy2+14y3的值为().A.M+N B.M−N C.3M−N D.3N−M答案:C解析:分别计算:M+N,M−N,3M−N,3N−M化简后可得答案.解:M+N=2x3−5x2y+3xy2−2y3,故A不符合题意;M−N=−x2y+xy2+8y3,故B不符合题意;3M−N=3x3−9x2y+6xy2+9y3−x3+2x2y−xy2+5y3=2x3−7x2y+5xy2+14y3,故C符合题意;3N−M=3x3−6x2y+3xy2−15y3−x3+3x2y−2xy2−3y3=2x3−3x2y+xy2−18y3,故D不符合题意;故选:C.小提示:本题考查的是整式的加减运算,掌握合并同类项的法则与去括号的法则是解题的关键.填空题6、如果a,b互为倒数,c,d互为相反数,且m=-1,则代数式2ab-(c+d)+m=_______.答案:1解析:利用倒数,相反数及绝对值的定义求出ab,c+d,以及m的值,代入原式计算即可得到结果.解:由题意得:ab=1,c+d=0,m= -1,∴2ab-(c+d)+m=2-0-1=1.故答案为1.小提示:此题考查了有理数的混合运算,代数式求值,相反数,熟练掌握各自的性质是解本题的关键.的值是______.7、若(a−1)2+|b+2|=0,则a+ba−b答案:13解析:根据平方的非负性和绝对值的非负性确定a,b的值,再求式子的值.∵(a−1)2+|b+2|=0∴a−1=0,b+2=0即a =1,b =−2,∴a +b a −b =1−21+2=13 所以答案是:13小提示:本题考查了平方的非负性和绝对值的非负性,代数式求值,求得字母的值是解题的关键.8、单项式−2×105πx 3y 7的系数是__________,次数是______________;答案: −2×105π7 4解析:直接利用单项式的次数与系数确定方法分析得出答案.解:单项式−2×105πx 3y 7的系数是:−2×105π7,次数是:4.故答案为−2×105π7,4.小提示:本题考查了单项式,正确把握单项式的次数与系数确定方法是解题的关键.9、一个三位数的十位为m ,个位数比十位数的3倍多2,百位数比个位数少3,则这个三位数可表示为________.答案:313m −98解析:根据题意先表示个位数为:3m +2,再表示百位数为:3m −1,从而可得答案.解:∵ 一个三位数的十位为m ,个位数比十位数的3倍多2,百位数比个位数少3,∴ 个位数为:3m +2, 百位数为:3m +2−3=3m −1,所以这个三位数为:100(3m−1)+10m+3m+2=313m−98.所以答案是:313m−98小提示:本题考查的是列代数式,整式的加减运算,一个三位数的百位,十位,个位为分别为a,b,c,则这个三位数表示为:100a+10b+c,掌握列式的方法是解题的关键.10、若a-2b=1,则3-2a+4b的值是__.答案:1解析:先把代数式3﹣2a+4b化为3﹣2(a﹣2b),再把已知条件整体代入计算即可.根据题意可得:3﹣2a+4b=3﹣2(a﹣2b)=3﹣2=1.所以答案是:1.小提示:本题考查了代数式求值.注意此题要用整体思想.解答题11、化简:(4x+2);(3)3(2x2−y2)−2(3y2−2x2).(1)2(x−1);(2)−12答案:(1)2x−2;(2)−2x−1;(3)10x2−9y2解析:(1)根据去括号法则去括号;(2)根据去括号法则去括号,注意符号变化;(3)先去括号再合并同类项化简,注意符号的变化.解:(1)2(x−1)=2x−2;(4x+2)=−(2x+1)=−2x−1;(2)−12(3)3(2x2−y2)−2(3y2−2x2)=6x2−3y2−6y2+4x2=(6x2+4x2)+(−3y2−6y2)=10x2−9y2.小提示:本题主要考查了去括号法则:括号前面是加号时,去掉括号,括号内的算式不变。
人教版初中七年级数学上册第二章《整式的加减》知识点(含答案解析)
1.与(-b)-(-a)相等的式子是( ) A .(+b)-(-a) B .(-b)+a C .(-b)+(-a) D .(-b)-(+a)B解析:B 【分析】将各选项去括号,然后与所给代数式比较即可﹒ 【详解】解: (-b)-(-a)=-b+a A. (+b)-(-a)=b+a ; B. (-b)+a=-b+a ; C. (-b)+(-a)=-b-a ; D. (-b)-(+a)=-b-a ;故与(-b)-(-a)相等的式子是:(-b)+a ﹒ 故选:B ﹒ 【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒ 2.若2312a b x y +与653a bx y -的和是单项式,则+a b =( ) A .3- B .0C .3D .6C解析:C 【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值. 【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==,所以303a b +=+=, 故选:C . 【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键. 3.下列计算正确的是( ) A .﹣1﹣1=0 B .2(a ﹣3b )=2a ﹣3b C .a 3﹣a=a 2D .﹣32=﹣9D解析:D 【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答. 【详解】解:A .﹣1﹣1=﹣2,故本选项错误; B .2(a ﹣3b )=2a ﹣6b ,故本选项错误; C .a 3÷a =a 2,故本选项错误; D .﹣32=﹣9,正确; 故选:D . 【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 4.下列去括号正确的是( ) A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ D解析:D 【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确; 故答案为:D . 【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 5.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( ) A .2n n x B .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- B解析:B 【分析】要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n . 【详解】因为第一个单项式是1112(1)2x x -=-⨯; 第二个单项式是222222(1)2x x =-⨯; 第三个单项式是333332(1)2x x -=-⨯, …,所以第n 个单项式是(1)2nnnx -. 故选:B . 【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键. 6.下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个 B .3个 C .4个 D .5个A解析:A 【分析】几个单项式的和叫做多项式,结合各式进行判断即可. 【详解】22a b ,3,2ab,4,m -都是单项式; 2x yzx+分母含有字母,不是整式,不是多项式; 根据多项式的定义,232ab cxy y π--,是多项式,共有2个.故选:A . 【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.7.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C 【分析】本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积. 【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-. 故选:C . 【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.8.设a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式﹣x 3y 的系数和次数,则a ,b ,c ,d 四个数的和是( ) A .1 B .2 C .3 D .4D解析:D 【分析】根据题意求得a ,b ,c ,d 的值,代入求值即可. 【详解】∵a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式-x 3y 的系数和次数, ∴a=0,b=1,c=-1,d=4, ∴a ,b ,c ,d 四个数的和是4, 故选:D . 【点睛】本题考查了有理数、整式的加减以及单项式的系数和次数,,认真掌握有理数的分类是本题的关键;注意整数、0、正数之间的区别,0既不是正数也不是负数,但是整数. 9.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( ) A .2 B .﹣2 C .3 D .﹣3D解析:D 【分析】先将多项式合并同类型,由不含x 的二次项可列 【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项, ∴6+2m=0, 解得m =﹣3, 故选:D . 【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值. 10.下列去括号正确的是( ) A .221135135122x y x x y y ⎛⎫--+=-++⎪⎝⎭B .()8347831221a ab b a ab b --+=---C .()()222353261063x y x x y x+--=+-+D .()()223423422x y x x y x--+=--+ C解析:C 【分析】依据去括号法则计算即可判断正误. 【详解】 A. 221135135122x y x x y x ⎛⎫--+=-+-⎪⎝⎭,故此选项错误;B. ()8347831221a ab b a ab b --+=-+-,故此选项错误;C. ()()222353261063x y x x y x+--=+-+,此选项正确;D. ()()223423422x y x x y x--+=---,故此选项错误;故选:C. 【点睛】此题考查整式的化简,注意去括号法则.11.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( ) A .m B .n C .m n + D .m ,n 中较大者D解析:D 【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项. 【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,mnx x 中指数大的,即m ,n 中较大的,故答案选D. 【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项.12.多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( ) A .2和8 B .4和8-C .6和8D .2-和8- D解析:D 【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,以及单项式系数、常数项的定义来解答. 【详解】多项式6a-2a 3x 3y-8+4x 5中,最高次项的系数和常数项分别为-2,-8. 故选D . 【点睛】本题考查了同学们对多项式的项和次数定义的掌握情况.在处理此类题目时,经常用到以(1)单项式中的数字因数叫做这个单项式的系数; (2)多项式中不含字母的项叫常数项;(3)多项式里次数最高项的次数,叫做这个多项式的次数.13.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( ) A .A B > B .A B =C .A B <D .无法确定A解析:A 【分析】作差进行比较即可. 【详解】解:因为A -B =(x 2-5x +2)-( x 2-5x -6) =x 2-5x +2- x 2+5x +6 =8>0, 所以A >B . 故选A . 【点睛】本题考查了整式的加减和作差比较法,若A -B >0,则A >B ,若A -B <0,则A <B ,若A -B =0,则A =B . 14.式子5x x-是( ). A .一次二项式 B .二次二项式C .代数式D .都不是C解析:C 【分析】根据代数式以及整式的定义即可作出判断. 【详解】式子5x x -分母中含有未知数,因而不是整式,故A 、B 错误,是代数式,故C 正确. 故选:C . 【点睛】本题考查了代数式的定义,就是利用运算符号把数或字母连接而成的式子,单独的数或字母都是代数式.15.﹣(a ﹣b +c )变形后的结果是( ) A .﹣a +b +c B .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B解析:B 【分析】根据去括号法则解题即可. 【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c 故选B .本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.1.填在各正方形中的四个数字之间具有相同的规律,根据这种规律,m的值应是_______.184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积且左上左下右上三个数是相邻的奇数据此解答【详解】由前面数字关系:135;357;579可得最后一个三个数分别为:11解析:184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积,且左上,左下,右上三个数是相邻的奇数.据此解答.【详解】由前面数字关系:1,3,5;3,5,7;5,7,9,可得最后一个三个数分别为:11,13,15,3×5-1=14;5×7-3=32;7×9-5=58;由于左上的数是11,则左下角的是13,右上角的是15,∴m=13×15-11=184.故答案为:184.【点睛】本题考查了数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出m的值.2.数字解密:第一个数是3=2+1,第二个数5=3+2,第三个数是9=5+4,第四个数17=9+8,……,观察并猜想第六个数是_______.65【分析】设该数列中第n个数为an (n为正整数)根据给定数列中的前几个数之间的关系可找出变换规律an=2an ﹣1﹣1依此规律即可得出结论【详解】解:设该数列中第n个数为an(n为正整数)观察发现规解析:65【分析】设该数列中第n个数为a n(n为正整数),根据给定数列中的前几个数之间的关系可找出变换规律“a n=2a n﹣1﹣1”,依此规律即可得出结论.【详解】解:设该数列中第n个数为a n(n为正整数),观察,发现规律:a1=3=2+1,a2=5=2a1﹣1,a3=9=2a2﹣1,a4=17=2a3﹣1,…,a n=2a n﹣1﹣1.∴a 6=2a 5﹣1=2×(2a 4﹣1)﹣1=2×(2×17﹣1)﹣1=65. 故答案为65.3.观察下面的一列单项式:2342,4,8,16,,x x x x --根据你发现的规律,第n 个单项式为__________.【分析】分别从单项式的系数与次数两方面总结即可得出规律进而可得答案【详解】解:由已知单项式的排列规律可得第n 个单项式为:故答案为:【点睛】本题考查了单项式的规律探求通过所给的单项式找到规律并能准确的 解析:(2)n n x -【分析】分别从单项式的系数与次数两方面总结即可得出规律,进而可得答案. 【详解】解:由已知单项式的排列规律可得第n 个单项式为:(2)nnx -. 故答案为:(2)nnx -. 【点睛】本题考查了单项式的规律探求,通过所给的单项式找到规律,并能准确的用代数式表示是解题的关键.4.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数 1 2 3 4 … n 正三角形个数471013…a n3n+1【解析】试题分析:从表格中的数据不难发现:多剪一次多3个三角形即剪n 次时共有4+3(n-1)=3n+1试题解析:3n+1. 【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n 次时,共有4+3(n-1)=3n+1. 试题故剪n 次时,共有4+3(n-1)=3n+1. 考点:规律型:图形的变化类.5.化简:226334xx x x_________.【分析】先去括号再根据合并同类项法则进行计算即可【详解】解:=故答案为:【点睛】此题考查整式的加减运算去括号法则合并同类项法则正确去括号是解题的关键 解析:2106x x -+【分析】先去括号,再根据合并同类项法则进行计算即可. 【详解】 解:226334xx x x226334xx x x2(64)(33)xx=2106x x -+, 故答案为:2106x x -+. 【点睛】此题考查整式的加减运算、去括号法则、合并同类项法则,正确去括号是解题的关键. 6.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为__元.08a 【解析】试题分析:根据题意得:a•(1+20)×90=108a ;故答案为108a 考点:列代数式解析:08a 【解析】试题分析:根据题意得:a•(1+20%)×90%=1.08a ;故答案为1.08a . 考点:列代数式.7.计算7a 2b ﹣5ba 2=_____.2a2b 【分析】根据合并同类项法则化简即可【详解】故答案为:【点睛】本题考查了合并同类项解题的关键是熟练运用合并同类项的法则本题属于基础题型解析:2a 2b 【分析】根据合并同类项法则化简即可. 【详解】()22227a b 5ba =75a b=2a b ﹣﹣.故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型. 8.如图:矩形花园ABCD 中,,AB a AD b ==,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK .若LM RS c ==,则花园中可绿化部分的面积为______.【分析】由长方形的面积减去PQLM 与RKTS 的面积再加上重叠部分面积即可得到结果【详解】S 矩形ABCD=AB•AD=abS 道路面积=ca+cb-c2所以可绿化面积=S 矩形ABCD-S 道路面积=ab- 解析:2ab bc ac c --+【分析】由长方形的面积减去PQLM 与RKTS 的面积,再加上重叠部分面积即可得到结果. 【详解】S 矩形ABCD =AB•AD=ab , S 道路面积=ca+cb-c 2,所以可绿化面积=S 矩形ABCD -S 道路面积 =ab-(ca+cb-c 2), =ab-ca-cb+c 2. 故答案为:ab-bc-ac+c 2. 【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.9.已知()11nn a =-+,当1n =时,10a =;当2n =时,22a =;当3n =时,30a =;…;则123a a a ++456a a a +++的值为______.【分析】利用乘方符号的规律当n 为奇数时(-1)n=-1;当n 为偶数时(-1)n=1找到此规律就不难得到答案6【详解】∵当n 为奇数时此时;当n 为偶数时(-1)n=1此时∴故填:6【点睛】本题乘方符号的解析:【分析】利用乘方符号的规律,当n 为奇数时,(-1)n =-1;当n 为偶数时,(-1)n =1.找到此规律就不难得到答案6. 【详解】∵当n 为奇数时,(1)1n -=-,此时110n a =-+=;当n 为偶数时,(-1)n =1,此时112n a =+=.∴1234560202026a a a a a a +++++=+++++=.故填:6.【点睛】本题乘方符号的规律,解题的关键是找出(1)n -的符号规律.10.观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找 解析:()()()2212121n n n -+=-【分析】观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案.【详解】根据题意可得:当n≥1时,可归纳出()()()2212121n n n -+=-故答案为:()()()2212121n n n -+=-.【点睛】本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的.11.关于a ,b 的多项式-7ab-5a 4b+2ab 3+9为______次_______项式.其次数最高项的系数是__________.五四-5【分析】多项式共有四项其最高次项的次数为5次系数为-5由此可以确定多项式的项数次数及次数最高项的系数【详解】∵该多项式共有四项其最高次项是为5次∴该多项式为五次四项式∵次数最高项为∴它的系数 解析:五 四 -5【分析】多项式共有四项437,5,2,9ab a b ab --,其最高次项45a b -的次数为5次,系数为-5,由此可以确定多项式的项数、次数及次数最高项的系数.【详解】∵该多项式共有四项437,5,2,9ab a b ab --,其最高次项是45a b -,为5次∴该多项式为五次四项式∵次数最高项为45a b -∴它的系数为-5故填:五,四,-5.【点睛】本题考查了多项式的项数,次数和系数的求解.多项式中含有单项式的个数即为多项式的项数,包含的单项式中未知数的次数总和的最大值即为多项式的次数.1.数学课上,老师出示了这样一道题目:“当1,22a b ==-时,求多项式3233233733631061a a b a a b a b a a b +++----的值”.解完这道题后,张恒同学指出:“1,22a b ==-是多余的条件”师生讨论后,一致认为这种说法是正确的,老师及时给予表扬,同学们对张恒同学敢于提出自己的见解投去了赞赏的目光.(1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目,“无论x 取任何值,多项式2233x mx nx x -++-+的值都不变,求系数m 、n 的值”.请你解决这个问题. 解析:(1)见解析;(2)3n =,1m =.【分析】(1)将原式进行合并同类项,然后进一步证明即可;(2)将原式进行合并同类项,根据“无论x 取任何值,多项式值不变”进一步求解即可.【详解】(1)3233233733631061a a b a a b a b a a b +++----=3332233731033661a a a a b a b a b a b +-+-+--=1-,∴该多项式的值与a 、b 的取值无关, ∴1,22a b ==-是多余的条件. (2)2233x mx nx x -++-+=2233x nx mx x -++-+=2(3n)(1)3x m x -++-+∵无论x 取任何值,多项式值不变,∴30n -+=,10m -=,∴3n =,1m =.【点睛】本题主要考查了多项式运算中的无关类问题,熟练掌握相关方法是解题关键.2.某校利用二维码进行学生学号统一编排.黑色小正方形表示1,白色小正方形表示0,将每一行数字从左到右依次记为a ,b ,c ,d ,那么利用公式 321222a b c d ⨯+⨯+⨯+计算出每一行的数据.第一行表示年级,第二行表示班级,第三行表示班级学号的十位数,第四行表示班级学号的个位数.如图1所示,第一行数字从左往右依次是1,0,0,1,则表示的数据为1×23+0×22+0×21+1=9,计作09,第二行数字从左往右依次是1,0,1,0,则表示的数据为1×23+0×22+1×21=10,计作10,以此类推,图1代表的统一学号为091034,表示9年级10班34号.小明所对应的二维码如图2所示,则他的统一学号为________.解析:070629【分析】利用公式求出图2中每行表示的数据,将其组合起来即可得出结论.【详解】解:∵第一行:0×23+1×22+1×21+1=7,计作07,第二行:0×23+1×22+1×21+0=6,计作06,第三行:0×23+0×22+1×21+0=2,计作2,第四行:1×23+0×22+0×21+1=9,计作9,∴他的统一学号为070629.故答案为:070629.【点睛】本题考查了规律型:图形的变化类以及尾数特征,读懂题意,利用公式求出图2中每行表示的数据是解题的关键.3.有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.解析:3a b c --+【分析】首先判断出a c -,b b a b a -+,,的正负,再去掉绝对值符号,然后合并同类项即可.【详解】由题意可知0a c -<,0b >,0b a ->,0b a +<,||||||||a c b b a b a ----++3a c b b a b a a b c =-+--+--=--+.故答案为:3a b c --+.【点睛】本题主要考查了整式的化简求值,数轴,绝对值,熟练掌握运算法则以及数轴上右边的数总比左边的数大是解答本题的关键.4.计算:(1)()223537a ab a ab -+-++;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭. 解析:(1)62ab --;(2)2321a a --+【分析】先去括号,然后合并同类项即可.【详解】解:(1)()223537a ab a ab -+-++ 223537a ab a ab =-+--- 2ab =-6-;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭ 2222261a a a a =+--+ 2321a a =--+.【点睛】本题考查了整式的加减运算,熟记去括号法则和合并同类项的法则是解决此题的关键.。
初中七年级数学(上册)第二章知识点及习题
第二章整式的加减知识点总结:一、单项式、多项式、整式的概念单项式:由数与字母的乘积组成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
多项式:几个单项式的和叫做多项式。
整式:单项式与多项式统称整式。
二、单项式的系数和次数1、单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。
如果一个单项式,只含有数字因数,是正数的单项式系数为1,是负数的单项式系数为—1。
2、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
3、单项式的表示形式:(1)数与字母的乘积这样的代数式叫做单项式(2)单个字母也是单项式。
(3)单个的数是单项式(4)字母与字母相乘成为单项式(5)数与数相乘称为单项式三、多项式的项、常数项、次数在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项,多项式中次数最高项的次数,就是这个多项式的次数。
一个多项式有几项就叫做几项式。
多项式中的符号,看作各项的性质符号。
一元N次多项式最多N+1项。
四、多项式的排列:1、把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
2、把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
由于多项式是几个单项式的和,所以可以用加法的运算定律,来交换各项的位置,而保持原多项式的值不变。
为了便于多项式的计算,通常总是把一个多项式,按照一定的顺序,整理成整洁简单的形式,这就是多项式的排列。
※在做多项式的排列的题时注意:(1) 由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
(2) 有两个或两个以上字母的多项式,排列时,要注意:a、先确认按照哪个字母的指数来排列。
b、确定按这个字母向里排列,还是向外排列。
五、同类项的概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项,所有常数项都是同类项。
※掌握同类项的概念时注意:1.判断几个单项式或项,是否是同类项,就要掌握两个条件:①所含字母相同;②相同字母的次数也相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《七年级上数学第二章·整式的加减》知识点1:单项式、多项式、整式的概念及它们的联系和区别单项式:由 与 的乘积组成的式子叫做 ,单独一个数或一个字母也是 。
如:ab 21,2m ,y x 3-,5,a 。
多项式:几个 的和叫 。
如:222y xy x -+、22b a -。
整式: 和 统称整式。
·小练笔:指出下列各式哪些是单项式打“√”哪些是多项式打“ ”y x 2,b a -21,522-+y x ,2x ,x2-,29-1-xy ,m -, 3zy x ++, x 2+x+x 1,0,x x 212-,―×105。
知识点2: 单项式的系数和次数单项式的系数是指单项式中的 。
(注意:包括 );单项式的次数是指单项式中 。
如:-b a 231的系数是-31,次数是3。
注意:(1)圆周率π是常数,2πR 系数是2π)(2)当一个单项式的系数是1或-1,1通常省略不写,如:32,m a -。
(3)232a 中系数是32,次数是 。
·小练笔:指出下列单项式的系数、次数:a b ,―x 2,53xy 5,353z y x-。
知识点3 :多项式的项、常数项、次数在多项式中,每个 叫做多项式的项。
其中不含字母的项叫 。
多项式的次数就是多项式中 的次数,如多项式12324++-n n n ,它的项有43n ,22n -,n , 1 。
其中1不含字母是常数项,43n 这一项次数为4,这个多项式就是四次四项式。
注意:(1)多项式的每一项都包括它前面的符号。
如:26x x 2-7-包含的项是 , , 。
(2)多项式的次数不是所有项的次数之和。
小练笔:1) 指出多项式a 3―a 2b ―a b 2+b 3―1是几次几项式,最高次项、常数项各是什么2) 多项式x 2y -21x 2y 2+5x 3-y 3的最高次项系数是 。
3) 多项式2321-3ab a b 4a 2的项是 ,最高次项是 ,最高次项的系数是 ,常数项是 ,它是 次 项式。
4) 已知代数式3x n -(m -1)x +1是关于x 的三次二项式,求m 、n 的条件。
5) 19、已知n 是自然数,多项式1332ny x x 是三次三项式,那么n 可以是哪些数知识点4: 同类项同类项:所含 相同,并且相同字母的 也分别相等的项,另外所有的常数项都是 。
例如:n m 2-与n m 23是同类项;32y x 与232x y 是同类项。
注意:同类项与系数大小无关,与字母的排列顺序无关。
知识点5:合并同类项法则合并同类项法则:把同类项的 相加,所得结果作为系数,字母和字母的指数 。
如:23232323)23(23n m n m n m n m =-=-。
小练笔:3、若m y x 35和219y x n +-是同类项,则m=_________,n=___________。
4、已知单项式32b a m 与-3214-n b a 的和是单项式,那么m = ,n = . 5、多项式25(2)3m x y m xy x .(1)如果的次数为4次,则m 为多少(2)如果多项式只有二项,则m 为多少知识点6: 括号与添括号法则去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里的各项都不变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里的各项都改变符号。
如:c b a c b a -+=-++)(, c b a c b a +--=-+-)(小练笔:例1、()2222323xy xy y x y x +-- 例2、()()3223321212x x x x x x -+-++--例3、()()()⎥⎦⎤⎢⎣⎡-++-+-5312611322a a a a 例4、()[]22223232ab b a ab ab b a +---知识点7: 升幂排列与降幂排列为便于多项式的运算,可以用加法交换律将多项式各项的位置按某个字母的指数大小顺序重新排列。
若按某个字母的指数从大到小的顺序排列,叫做这个多项式按这个字母降幂排列。
若按某个字母的指数从小到大的顺序排列,叫做这个多项式按这个字母升幂排列。
如:多项式121322233-+-+-a a b b a ab b a 按字母a 升幂排列为:b a b a ab a b a 323223211++--+-。
·小练笔:把多项式5x 2n +43x 2n-1-32x 2n-2-x 2n+1+2按字母x 降幂排列(n 为自然数).并说出最高次项、常数项.注意:(1)重新排列后还是多项式的形式,各项的位置发生变化,其他都不变。
(2)各项移动时要连同它前面的符号。
(3)某项前的符号是“+”,在第一项位置时,正号“+”可省略,其他位置不能省,排列时注意添加或省略。
知识点8:整式加减的一般步骤(1)如果有括号,那么先去括号。
有多重括号时,先小括号,再中括号,最后大括号。
(2)如果有同类项,再合并同类项。
小练笔:(1)()()();43845222222b a b a ab ab b a ab +-+--+-+(2)()();2322222b ab a b a ab -+--+(3)()()22222.45.16.05.05.75.0y x xy y x xy +----.(4)()()]a 3a a 2a 5a [a 52222---+(5)()()()x a x a x a +-+-+215(6).3431323532323+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-++--x x x x(7)()[]{}.4325222b a ab abc b a abc ----(8)()()[]{}22223432a a a a a a a -+-----(9)()[]().1421434222----+-a a a a a(10)两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,•两船在静水中的速度都是50千米/时,水流速度是a 千米/时.(1)2小时后两船相距多远(2)2小时后甲船比乙船多航行多少千米七年级(上)整式的加减作业一、选择题(每小题3分,共15分):1.原产量n 吨,增产30%之后的产量应为( )(A )(1-30%)n 吨. (B )(1+30%)n 吨.(C )n+30%吨. (D )30%n 吨.2.下列说法正确的是( )(A )31∏2x 的系数为31. (B )221xy 的系数为x 21. (C )25x -的系数为5. (D )23x 的系数为3.3.下列计算正确的是( )(A )4x-9x+6x=-x. (B )02121=-a a . (C )x x x =-23. (D )xy xy xy 32=-.4.买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要 ( )元.(A )4m+7n. (B )28mn. (C )7m+4n. (D )11mn.5.计算:3562+-a a 与1252-+a a 的差,结果正确的是( )(A )432+-a a (B )232+-a a (C )272+-a a (D )472+-a a .二、填空题(每小题4分,共24分):6.列示表示:p 的3倍的41是 . 7.34.0xy 的次数为 .8.多项式154122--+ab ab b 的次数为 . 9.写出235y x -的一个同类项 .10.三个连续奇数,中间一个是n ,则这三个数的和为 .三、计算题(每小题5分,共30分):12.计算(每小题5分,共15分) (1)6321+-st st ; (2)67482323---++-a a a a a a ;(3)355264733---+++xy xy x xy xy ; 13. 计算(每小题6分,共12分)(1)2(2a-3b )+3(2b-3a );(2))]2([2)32(3)(222222y xy x x xy x xy x +------.14.先化间,再求值(每小题8分,共16分)(1))23(31423223x x x x x x -+--+,其中x=-3;(2))43()3(5212222c a ac b a c a ac b a -+---,其中a=-1,b=2,c=-2.测试题答案 6.p 43. 8.3. 9.22y x (答案不唯一). 11.12)1(22-=--n n n .12.(1) 625+-st ; (2)633-+a a ; (3)162533+++x xy xy . 13.(1)-5a ; (2)23252y xy x ++-.14.(1)原式= x x x 3310423+-,-147; (2)原式=ac c a b a 272322--,13。
15.(1))-平方米;(2)(100 000-400∏)平方米.(2rab∏16.10a+10b. +5xz.18.(1)(1+20%)(1-20%)a=0.96a;(2)(1-20%)(1+20%)a=0.96a;(3)(1+15%)(1-15%)a=0.9775a.前两种方案调价结果一样.这三种方案最后的价格与原价不一致.。