基坑变形监测技术方案设计
基坑变形监测工程方案
基坑变形监测工程方案一、监测的内容基坑变形监测的内容主要包括基坑周边的地表沉降、基坑支护结构的变形、地下水位的变化和基坑周边建筑物的变形等。
在监测时需要对这些内容进行全面的监测,以及对监测数据进行分析和评估,发现问题及时采取应对措施。
1. 地表沉降监测地表沉降可以通过水准仪、全站仪或GPS进行监测。
监测站点应根据基坑的布置情况,合理设置在基坑周边并延伸至一定范围的地表上。
监测的频次应根据基坑施工工况和地质情况进行调整,以保证监测的准确性和及时性。
2. 基坑支护结构的变形监测基坑支护结构主要包括钢支撑、深基坑墙、桩墙等结构,在施工过程中容易发生变形。
可以通过支撑位移仪、变形测斜仪、钢筋应变计等仪器设备进行监测。
3. 地下水位的变化监测地下水位的变化会直接影响基坑的稳定性,因此需要对地下水位进行监测。
监测可以采用水位计、水压计等仪器设备,实时监测地下水位的变化情况。
4. 基坑周边建筑物的变形监测基坑施工可能会对周边建筑物造成影响,因此需要对周边建筑物的变形进行监测。
可以使用倾斜仪、位移计等仪器设备进行监测。
二、监测方法基坑变形监测的方法主要包括传统监测方法和新技术监测方法。
传统监测方法主要包括水准测量、测斜测量、倾斜测量、测量等方法;新技术监测方法主要包括全站仪测量、GPS 监测、激光扫描监测、遥感监测等方法。
在实际监测中需要根据基坑的特点和地质情况选择合适的监测方法。
三、监测仪器设备基坑变形监测需要使用一系列仪器设备进行监测,包括水准仪、全站仪、GPS、支撑位移仪、变形测斜仪、水位计、水压计、倾斜仪、位移计等仪器设备。
在选用仪器设备时需要考虑其精度、稳定性和可靠性,并且需要对仪器设备进行定期校准和维护。
四、监测周期基坑变形监测的周期需要根据基坑的施工工况和地质情况进行合理设置。
一般来说,基坑变形监测的周期应该是连续不断的,并且需要根据监测数据的变化情况进行调整监测周期。
五、实施方案基坑变形监测的实施方案主要包括监测方案的制定、监测点的设置、监测数据的处理和分析以及监测报告的编制等内容。
基坑变形监测技术方案
基坑变形监测技术方案一、工程概况本工程由一幢门字形酒店、六幢不同高度公寓和整体地下车库组成,总占地面积约30000m2,总建筑面积约23万m2,地下建筑面积约8.7万m2。
本工程基坑总面积约29300m2,东西向长约300~400m,南北方向长约40~110m。
基坑总延长线为785m,地下室为三层,基坑开挖深度为-18.2m、-18.7m,管线分布复杂。
基坑北侧紧邻海河,南侧是车流量较大的公路,海河水位的变化及张自忠路面动荷载的干扰都将是某基坑监测的难点.基坑监测等级为一级,监测手段众多,监测内容、监测工作量及监测难度均较大.二、依据及原则1.《建筑变形测量规程》(JGJ/T8-97)2.《工程测量规范》(GB50026-93)3.《建筑基坑支护技术规程》JGJ120-994.《国家一、二等水准测量规范》(GB12897-93)5.《天津市建筑地基基础设计规范》(TBJ1—88)依据规范和天津市建设主管部门对建筑物基坑施工相关文件的要求,以及基坑设计的相关要求;为确保建筑物地下基坑施工及周边环境的安全性和可靠性,使在基坑开挖和施工期间的变形得到有效控制,保证其不对基坑自身及周边环境造成破坏性的影响,用科学的数据指导基坑信息化施工,保证施工安全。
三、基坑监测项目为了及时收集、反馈和分析周围环境要素在施工中的变形信息,实现信息化施工并确保施工安全,综合本工程周边环境状况及围护结构和支护体系的特点,遵照设计的相关要求,本工程共进行如下几项基坑监测工作:1、周边环境监测A、地下管线变形监测;B、基坑外道路变形监测;C、基坑外地下潜水水位监测;D、基坑外承压水水位监测;E、基坑外土体水平位移(测斜)监测;F、基坑外土体表面变形监测;G、海河堤岸变形(沉降、变形)监测;2、围护结构监测A、围护桩桩体水平位移(测斜)监测;B、围护桩桩顶变形(沉降、位移)监测;C、围护桩内、外侧水土压力监测;D、围护桩的竖向钢筋应力监测;3、支撑体系和立柱监测A、支撑轴力监测;B、钢格构柱及立柱角钢应力监测;C、立柱位移和沉降监测;4、其它监测A、基坑开挖过程中土体分层沉降监测;四、基坑监测点位布置1、周边环境监测A、地下管线、路面等的变形监测包括基坑周边的张自忠路、兴安路的地下管线、路面、海河堤岸的沉降监测点的布设。
基坑变形监测方案
基坑变形监测方案一、工程概况1.1 工程名称:XX项目基坑工程1.2 工程地点:XX项目现场1.3 工程简介:XX项目基坑工程是该项目的重要组成部分,主要包括基坑开挖、支护、排水等工程。
二、基坑变形监测目标2.1 总体目标:确保基坑施工过程中周边环境及基坑本身的稳定,及时发现并处理变形异常情况。
2.2 具体目标:(1)监测基坑的横向、纵向和斜向变形;(2)评估基坑支护结构的稳定性;(3)预警基坑周边建筑和道路的沉降情况。
三、基坑变形监测原则3.1 安全性:确保监测方案能有效反映基坑变形的真实情况,为施工安全提供保障。
3.2 准确性:监测数据应准确可靠,监测方法应科学合理。
3.3 及时性:监测工作应迅速响应,及时反馈变形信息。
四、基坑变形监测内容4.1 监测项目:包括基坑顶部、侧壁的横向、纵向和斜向变形,以及周边建筑和道路的沉降。
4.2 监测方法:采用变形杆、倾斜仪、水准仪、激光测距仪等监测设备。
4.3 监测频率:根据基坑开挖进度和支护结构稳定性,确定监测频率。
五、基坑变形监测实施与调整5.1 监测方案应在基坑施工前编制完成,并经相关部门审批。
5.2 监测工作应在基坑开挖过程中同步进行,确保监测数据的实时性。
5.3 监测数据应及时反馈至项目管理部门,对异常变形情况应迅速采取措施进行处理。
六、基坑变形监测总结6.1 工程结束后,对基坑变形监测数据进行整理分析,评估监测方案的有效性。
6.2 撰写基坑变形监测总结报告,为今后类似工程提供借鉴和改进方向。
本基坑变形监测方案旨在确保基坑施工过程中周边环境及基坑本身的稳定,及时发现并处理变形异常情况。
在实际运行过程中,应根据实际情况及时调整和优化基坑变形监测策略,以实现设计目标。
基坑工程变形监测方案
基坑工程变形监测方案1. 背景介绍基坑工程是指在建筑施工中,为了在地下建造高层建筑或者地下结构,需要在地面上开挖较深的坑,并按照设计图纸对坑下进行倒土处理,同时基坑周边的建筑、道路等都会受到一定的影响。
为了确保基坑工程的安全施工,避免对周边建筑物和地下设施造成不可挽回的损害,需要进行变形监测。
基坑工程变形监测是指在基坑开挖、支护、降水和地下室施工等过程中,从土壤内部和地面上一定深度位置等环境中,连续或定期监测基坑四周变形情况,以获取变形数据,从而判断基坑周围环境的稳定性和安全性。
合理地选择监测点位,对基坑工程进行变形监测,可以有效地监测基坑开挖过程中的变形情况,提前发现潜在危险,保障基坑施工的安全。
2. 变形监测方案变形监测的主要目的是为了监测基坑工程周围环境的变形情况,从而保障基坑工程施工的安全。
变形监测的方案包括:监测内容、监测方法、监测点位、监测频率和监测报告。
2.1 监测内容基坑工程变形监测的内容主要包括:地表变形监测、地下水位监测、支护结构变形监测、周边建筑物变形监测、基坑倒土变形监测等内容。
通过监测这些内容,可以全面掌握基坑工程周围环境的变形情况,提前发现潜在危险,保障施工的安全。
2.2 监测方法基坑工程变形监测的方法主要包括:GPS定位法、倾斜仪法、水准仪法、测斜仪法、位移传感器法等。
通过这些监测方法可以有效地监测基坑工程周围环境的变形情况,提供准确的监测数据,从而保障基坑工程的施工安全。
2.3 监测点位基坑工程变形监测的点位主要包括:地表监测点位、地下水位监测点位、支护结构监测点位、周边建筑物监测点位、倒土监测点位等。
通过合理选择监测点位,可以全面掌握基坑工程周围环境的变形情况,提前发现潜在危险,保障施工的安全。
2.4 监测频率基坑工程变形监测的频率主要包括:连续监测、定期监测。
通过连续或者定期监测,可以不断地获取基坑工程周围环境的变形数据,及时发现潜在危险,保障施工的安全。
2.5 监测报告基坑工程变形监测报告是通过监测数据的分析和处理,得出基坑工程周围环境的变形情况,并提供有效的监测报告。
工程基坑变形监测方案
工程基坑变形监测方案一、前言随着城市化进程的不断加快,大型建筑工程基坑的开挖和支护工程成为城市建设的重要组成部分。
而基坑变形监测作为工程施工的一项重要内容,在工程实施过程中具有重要的意义。
因此,本文将从工程基坑变形监测的重要性、监测内容及监测方法等方面展开介绍,以期为相关工程施工提供参考。
二、基坑变形监测的重要性基坑工程开挖及支护过程中,受到土体变形、地下水位变化、周边建筑物影响等因素的影响,往往容易引发基坑结构变形,因此对基坑变形进行监测可以及时发现并解决基坑的变形问题。
同时,基坑变形监测也可以为后续的支护施工提供实时的监测数据,确保施工过程安全可靠。
基坑变形监测的重要性主要包括以下几点:1. 可有效掌握基坑的变形情况,保障基坑支护施工的安全稳定;2. 可及时发现并解决基坑变形问题,避免引发安全事故;3. 可为后续支护工程提供实时监测数据,确保工程质量;4. 可为工程设计提供实际的变形数据,为相应的设计方式提供依据。
基于以上考虑,基坑变形监测方案的制定和实施显得尤为重要。
三、基坑变形监测内容基坑变形监测的内容主要包括:1. 水平变形监测:包括基坑的水平位移变形监测;2. 竖向变形监测:包括基坑内部各个深度处的沉降变形监测;3. 周边建筑物变形监测:包括周边建筑物的位移变形监测;4. 地下水位监测:包括基坑周围地下水位的变化监测。
通过对以上内容的监测,可以全面了解基坑的变形情况,为工程施工过程提供重要依据。
四、基坑变形监测方法1. 静力位移监测法通过在基坑周边设置一定数量的静力位移监测点,利用水平倾斜仪、水准仪等静力位移仪器进行定期的位移测量。
该方法操作简单、数据确切,能够有效地监测基坑的水平变形情况。
2. GPS监测法通过在基坑周边设置一定数量的GPS监测点,通过GPS定位技术获取基坑变形的信息。
该方法操作便捷、数据精确,适合进行基坑的大范围位移监测。
3. 沉降盘监测法通过在基坑内部设置一定数量的沉降盘,通过沉降盘的沉降变形情况来监测基坑的竖向变形。
基坑变形监测技术方案
基坑变形监测技术方案基坑变形监测是指对地下基坑在施工过程中或者使用过程中由于不均匀沉降、滑移、侧倾、地下水位变动等因素引起的变形进行实时、连续的监测和预警的技术手段。
基坑变形监测的目的是为了及时发现和评估基坑变形情况,为基坑的施工和使用提供科学依据。
1.监测点布置方案:根据基坑的形状、尺寸和地下结构的具体情况确定监测点的位置和数量。
一般来说,监测点应该均匀分布在基坑的不同位置以及周围的地表上,以保证监测结果的准确性和可靠性。
2.监测仪器选择方案:根据监测需求和具体情况选择合适的监测仪器设备。
常用的监测仪器包括测量仪器、位移传感器、应变传感器、倾斜传感器等。
这些仪器可以实时测量和记录基坑变形的各个参数,并将数据传输给监测系统进行分析和处理。
3.数据传输与处理方案:选择合适的数据传输方式和监测系统。
常见的数据传输方式包括有线传输和无线传输,可以根据具体情况选择合适的传输方式。
监测系统可以对传输过来的数据进行实时分析和处理,生成监测报告并进行预警处理。
4.监测报告与预警方案:根据监测结果生成监测报告,并根据预设的预警标准进行预警处理。
监测报告应包括基坑变形的具体情况、变形的趋势和可能的风险评估等内容,以便施工单位或者相关部门及时采取措施避免事故发生。
5.健全的管理与应急预案:建立健全的管理制度和应急预案,并进行培训和演练。
这样可以确保监测系统的正常运行和数据的准确性,同时也能够提高对基坑变形事故的应对能力和处理效率。
总之,基坑变形监测技术方案需要根据实际情况进行合理的选择和设计,并且要注重对监测结果进行分析和预警处理,以保证基坑的施工和使用的安全性和稳定性。
同时,还需要加强对相关技术人员的培训和管理,提高监测系统的使用效率和数据的可靠性。
基坑变形监测测技术方案
变形监测技术方案批准:审核:编制:目录一.工程概述1二.作业目的1三.作业依据及规范2四.工作内容2五.基坑及周边监测方案25.1 基准点的布设25.2护坡桩顶水平位移观测点的埋设25。
3护坡桩支护结构水平位移观测点的埋设35.4 变形监测点保护及意外情况处理45.5 基准点、监测点的观测方法及精度要求55.6 观测设备和人员投入55。
7 观测周期65。
8 成果处理6六.提交成果资料66.1 提交阶段成果76。
2 提交沉降观测技术报告书7七.补充说明7八.质量保证措施8九.附件8变形监测技术方案一.工程概述受..。
..的委托,。
.。
拟承担。
.。
.变形监测任务。
本项目位于。
....。
基坑深16-18米,南北长近100米,东西宽约60米。
开挖深度较大,周边不明管线复杂,采用—2米以下桩锚支护(2道锚杆),-2米以上组合柱砖墙支护形式。
二.作业目的本工程基坑挖掘较深,安全问题应引起高度的重视,通过监测及时分析反馈监测结果,掌握基坑围护结构及周边环境的情况,做到心中有数,确保基坑及周边环境的安全。
在基坑工程施工及地下结构施工期间,应对基坑围护结构受力和变形、周边重要道路等保护对象进行系统的监测,为避免基坑工程施工对工程周边环境及基坑围护本身的危害,采用先进、可靠的仪器及有效的监测方法,对基坑围护体系和周围环境的变形情况进行监控,通过监测,可以及时掌握基坑开挖及施工过程中围护结构的实际状态及周边环境的变化情况,做到及时预报,为基坑边坡和周围环境的安全与稳定提供监控数据,防患于未然,通过监测数据与设计参数的对比,可以分析设计的正确性与合理性,为工程动态化设计和信息化施工提供所需的数据,从而使工程处于受控状态,确保基坑及周边环境的安全。
三.作业依据及规范1、《建筑变形测量规范》(JGJ8-2007);2、《工程测量规范》(GB50026—2007);3、本工程设计图纸及施工方案。
四.工作内容1、测定护坡桩顶部水平位移,周边道路的沉降量、计算沉降差及沉降速率。
基坑变形监测方案
基坑变形监测方案
1、监测目的
本基坑工程按二级基坑要求监测,为确保基坑及周边建、构筑物的安全及保证本地下建筑物的顺利施工,及时掌握基坑施工、支护过程中的地基土及支护结构的应力应变信息,以确定基坑施工安全信息等,并作出安全预警报告,出现异常情况及时采取有效措施,故本工程应作原位监测工作;基坑监测应选择具同类场地监测经验的具独立资质的单位进行。
2、基坑监测内容
(1)围护结构施工和基坑开挖过程中应对围护结构、周边建筑物进行监测,监测数据须及时反馈,进行信息化施工。
(2)监测应由具有专业资质的单位实施,监测方案实施前应报设计单位审定确认后方可实施。
(3)监测内容及监测点布设:
1)沿支护结构顶部每隔15-20m左右布设一个水平位移监测点。
2)基坑周边建筑物布设沉降观测点。
3)沿基坑周边每隔50m左右布设一个深层土体位移观测点。
3、监测要求
(1)所有测试点、测试设备需加强保护,以防损坏。
(2)量测周期:基坑土方开挖到地下室侧壁回填。
(3)监测单位需及时向设计单位提供监测结果。
4、监测报警值
(1)支护结构:水平位移速率≤3mm/d,位移总量≤30mm。
(2)周围建筑物沉降速率≤2mm/d,差异沉降量≤0.2%。
(3)深层土体位移:位移速率≤3mm/d,位移总量≤50mm。
基坑工程变形监测方案设计
基坑工程变形监测方案设计1.引言基坑工程是指在建筑物或结构物施工过程中,在地下挖掘土方并施工的工程。
基坑工程变形监测是指对基坑工程挖掘、支护系统施工以及土体变形等施工过程中发生的变形情况进行实时监测和数据记录。
变形监测对于保障基坑工程安全和控制施工风险具有重要意义。
本文将从监测目标确定、监测技术与方案选择、监测指标及监测频率以及数据处理分析四个方面设计基坑工程变形监测方案。
2.监测目标确定基坑工程变形监测的目标是实时监测和记录基坑挖掘、支护系统施工和土体变形等施工过程中的变形情况,掌握基坑工程的运行状态,以便及时发现问题、采取措施,保障工程的施工安全和质量。
监测目标主要包括:(1)基坑开挖变形监测:监测基坑开挖的变形情况,包括地表沉降、基坑周边建筑物的倾斜情况以及支护结构的变形情况。
(2)支护系统施工变形监测:监测支护系统的施工变形情况,包括支护结构的受力情况、变形情况以及支护结构与土体的相互作用情况。
(3)土体变形监测:监测基坑土体的变形情况,包括土体的沉降、变形以及土体与支护结构之间的相互作用情况。
3.监测技术与方案选择基坑工程变形监测可以采用多种监测技术和方案,如全站仪法、GPS法、倾斜仪法、测量雷达法、地面位移监测仪法等。
在选择监测技术和方案时需要结合基坑工程的具体情况和监测目标进行综合考虑。
(1)全站仪法:全站仪是一种用于测量角度和距离的精密仪器,可以实现三维坐标的测量和监测。
全站仪可以用于监测基坑开挖、支护结构施工和土体变形等方面的监测,监测精度高。
(2)GPS法:GPS是一种用于测量地面物体位置和速度的卫星导航系统,可以实现地面位移监测。
GPS法可以用于监测基坑周边建筑物的倾斜情况以及土体的沉降等,监测范围广。
(3)倾斜仪法:倾斜仪是一种用于测量地面倾斜角度的仪器,可以实现建筑物倾斜监测。
倾斜仪法可以用于监测基坑周边建筑物的倾斜情况,监测精度较高。
(4)测量雷达法:测量雷达是一种通过微波辐射来实现测量物体距离的仪器,可以实现地面位移监测。
如何做建筑施工基坑监测方案设计
建筑施工基坑监测方案设计一、前言在建筑施工过程中,基坑是一个非常关键的环节,其安全性直接影响到建筑物的稳定性和施工工程的顺利进行。
因此,对基坑进行监测是非常重要的。
本文针对建筑施工基坑监测方案进行设计,包括监测的项目、监测仪器的选择、监测方案的制定等内容,以保障基坑施工的安全。
二、监测项目1. 基坑深度:监测基坑的深度,以确保基坑的开挖深度符合设计要求;2. 基坑周边建筑物和路基的变形情况:监测周边建筑物和路基的变形情况,避免基坑施工对周边建筑物和路基造成破坏;3. 基坑土体的围护结构变形情况:监测基坑土体的围护结构的变形情况,避免围护结构发生倒塌导致事故的发生;4. 基坑内部水位变化情况:监测基坑内部的水位变化情况,避免基坑内部积水导致基坑失稳。
三、监测仪器的选择1. 光纤光栅变形监测仪:用于监测基坑周边建筑物和路基的变形情况,具有高精度和长距离监测的优势;2. 岩土变形测量仪:用于监测基坑土体的围护结构的变形情况,可以实时监测土体的变形情况;3. 水位监测仪:用于监测基坑内部水位的变化情况,可以及时发现基坑内部水位的变化。
四、监测方案的制定1. 制定监测方案:根据监测项目和监测仪器的选择,设计监测方案,包括监测的频率、监测点的设置等内容;2. 确定监测点:根据基坑的施工情况和周边环境,确定监测点的位置,确保监测的全面性和有效性;3. 设置监测设备:根据监测方案的要求,设置监测设备,并进行校准和调试,确保监测数据的准确性;4. 定期监测和数据处理:按照监测方案的要求,定期进行监测,并对监测数据进行处理和分析,发现问题及时处理。
五、结论建筑施工基坑监测方案的设计是非常重要的,可以有效保障基坑施工的安全。
通过选择合适的监测项目和监测仪器,制定科学合理的监测方案,可以及时发现基坑施工中的问题,确保施工的顺利进行。
希望本文的内容对基坑监测方案的设计有所帮助,提高建筑施工的安全性。
基坑变形监测设计方案
基坑变形监测设计方案本项目基坑安全等级为一级,基坑护壁施工应进行支护结构的水平位移监测及地面沉降观测,以确保基坑安全,位移观测必须委托有资质的第三方进行。
本工程支护结构的位移监测点布置于基坑周边上,共布置49个水平及垂直位移监测点。
详见附件:基坑支护总平面图。
(1)监测项目包括支护结构的水平位移测量及地面沉降观测等。
(2)监测方法采用TC2000全站仪。
(3)测量精度要求测量精度为0∙ Imnu(4)监测点布置及监控周期支护结构的位移监测点布置于基坑周边上,共布置49个水平及垂直位移监测点。
详见附件:基坑支护总平面图。
各监测项目在基坑开挖前应测得一次初始值,各层土方开挖完成后各测一次。
基坑开挖到位后每周监测一次,连续测三次。
(5)监测管理及信息反馈设置专职测量员,由技术负责人管理。
各监测项目及各次监测均应在现场准确记录。
各次监测完毕后1日内应将监测结果反馈至项目部。
(6)信息化施工本工程的实施遵循“动态设计、信息法施工”的原则,在施工过程中,如发现地质情况与原勘察设计不符,应及时通知勘察、设计人员及有关单位协商,并及时调整设计、施工方案和参数,以避免工程事故的发生。
施工过程中应注意收集天气气象资料,根据气象资料对实施安排做出调整。
利用位移反馈法检查支护的合理性和安全性。
根据位移结果确定是否采取应急措施,确保施工人员及建筑物安全。
基坑边坡水平及垂直变形监控值为3. 0cm,报警值为连续三天基坑水平变形值23mm∕d,必须采取相应的应急措施。
(7)报警及抢险预案设计根据基坑监测设计,当监测值达到或超过监控值时,应加密观测次数,同时启动下列抢险预案:(1)暂停护壁及土方开挖施工,并快速查明监测值超过监控值的原因。
(2)针对基坑变形过大的具体原因及时采用增加锚杆、加内支撑、土方回填或卸荷等单项或综合措施进行抢险。
基坑变形监测技术方案
基坑变形监测技术方案1、工程概况长治市潞安鸿源房地产开发有限公司拟在长治市防爆巷西侧进行潞安府秀江南三期地下车库建设,拟建地下车库建筑面积约2.6万平方米,平面形状不规则,总体呈矩形,东西长约230米,宽约143米,基坑周长约700米,基坑深度自±0.000向下10米,开挖深度自现有自然地面向下约9.5米,按《建筑地基基础工程施工质量验收规范》GB50202-2002确定基坑工程类别为二级,按《建筑基坑支护技术规程》JGJ120-99划分基坑侧壁安全等级为二级。
潞安府秀江南三期地下车库基坑支护设计任务由太原市拓达岩土工程勘察检测有限公司承担完成,支护方式采用灌注桩加锚索、水泥土搅拌桩加土钉墙,土钉采用φ50t3.5mm的钢管,成孔以自上而下的顺序进行施工,土钉注浆采用42.5普通硅酸盐水泥,注浆没延米不小于25Kg/m,水灰比0.4—0.5,浆体抗压强度不小于20MPa。
面部结构采用100mm厚C20喷射混凝土,内设φ6.5@200的单层双向钢筋网片进行护面,加强筋采用φ14的螺纹钢;网片居中,加强筋在网片外侧,土钉头弯成L型,弯钩长度10d,并与加强筋可靠焊接。
灌注桩桩体、冠梁混凝土强度:C30,灌注桩主筋锚入冠梁750mm,桩顶嵌入冠梁100mm,灌注桩超浇高度为800mm;桩内主筋沿桩身均匀布置,主筋保护层厚度3m~5m。
在基坑内和周边设置观测井,做法和降水井做法一致。
具体支护方案详见附件1。
自支护施工开始到基础回填完成有效工期约4个月。
2、工程地质条件及周边环境2.1建筑场地工程地质条件本建筑场地位于长治盆地东部,现有地形较平坦,勘察期间孔口高程介于927.18-925.81米之间,地表下40米深度范围内地层以第四纪粉质粘土为主,共划分为6层:第①层,素填土(Q42M1):杂色,含煤屑、砖块、植物根、灰渣等,稍湿、稍密、欠固结。
实测标贯击数介于5~7击,平均5.7击。
静力触探侧壁阻力74.6KPa,锥尖阻力1.39MPa第②层,粉质粘土(Q4l a l+p l):褐黄色,含云母、氧化铁、氧化铝等,可塑,中等压缩性,无震摇反应,有光泽,干强度及韧性中等。
基坑支护变形监测方案设计
基坑支护变形监测方案设计基坑支护是指在建筑工程中为了保障基坑的稳定和安全,采取各种措施进行支护和加固的工作。
支护变形监测方案设计是基坑支护工程中的一个重要环节,它能够通过对支护变形的监测和控制,及时发现问题,并采取相应的措施,保障基坑施工的安全性和有效性。
支护变形监测方案设计的主要内容包括:目标及要求、监测指标、监测位置、监测方法、监测频率、数据采集及处理、监测结果分析、报告编制等。
首先,制定支护变形监测的目标和要求,明确监测的目的是为了掌握基坑支护状况,及时发现问题并采取措施。
要求监测结果准确可靠,监测过程和监测数据要有追溯性和可比性。
其次,确定监测指标,根据基坑支护的设计方案和工程特点,确定需要监测的变形指标,如土体位移、支撑结构内力等。
同时,要根据监测指标的变化范围和安全要求,确定相应的限值,以便及时判断支护状况是否符合要求。
然后,确定监测位置,根据基坑支护工程的结构特点和支撑位置,选择监测点位。
监测点位应覆盖整个基坑,并合理布置,可以反映整个基坑支护的变形情况。
接下来,确定监测方法,根据监测指标的不同,选择相应的监测方法。
常见的监测方法包括全站仪监测、测斜仪监测、应变计监测、压力传感器监测等。
根据实际情况选择合适的监测方法,并设计监测仪器的安装和固定方式。
然后,确定监测频率,根据工程的施工周期、支护结构的变形速度和变形范围等因素,确定监测的频率。
一般来说,监测频率要根据实际情况灵活调整,保证监测结果的准确性和可靠性。
接着,确定数据采集及处理的方法,选择合适的数据采集设备,并设计数据处理的算法和流程,确保监测数据的准确性和可比性。
同时,要做好数据的备份和存档工作,以备查验和分析。
然后,进行监测结果分析,根据监测数据和监测指标的限值,对监测结果进行分析和评价。
及时发现异常情况,判断支护状况是否符合要求,并根据情况采取相应的措施,保障基坑施工的安全和顺利进行。
最后,编制监测报告,将监测结果整理、分析和汇总,编制监测报告,提出相应的建议和措施,供施工单位和监理单位参考和执行。
基坑变形监测计划
基坑变形监测计划下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!Download Tip: This document has been carefully written by the editor. I hope that after you download, they can help you solve practical problems. After downloading, the document can be customized and modified. Please adjust and use it according to actual needs. Thank you!基坑变形监测计划如下:①前期准备:根据基坑设计与地质勘察报告,确定变形监测范围、监测点布置、监测频率及精度要求,选用合适监测仪器与技术。
②点位布置:在基坑周边、关键结构物及可能受影响的邻近建筑物设置监测点,包括水平位移点、沉降点等,确保监测全面覆盖。
③仪器安装与校准:安装自动化或半自动化的监测仪器,如全站仪、水准仪、倾斜计等,进行精确校准,确保数据准确性。
④初始值采集:在施工前,对所有监测点进行一次全面测量,记录初始数据,作为后续变形量计算的基准。
⑤制定监测周期:根据基坑开挖进度、地下水位变化及施工工况,灵活调整监测频率,如每日、每周或雨季加密监测。
⑥数据采集与分析:按计划周期进行数据采集,及时录入监测系统,采用专业软件分析数据趋势,评估基坑稳定性。
⑦预警响应:设定变形预警值,当监测数据接近或超过预警阈值时,立即通知项目各方,采取加固或调整施工措施。
⑧报告编制与提交:定期汇总监测数据,编写监测报告,分析变形原因,提出建议措施,提交给业主、设计及施工单位。
⑨监测调整与终止:根据基坑变形趋势及工程进展,适时调整监测方案,直至基坑施工完毕,稳定一段时间后,经评估可终止监测。
基坑变形监测方案设计
目录一、编制依据 (2)二、工程概况 (2)三、监测目的 (5)四、基坑监测项目 (5)五、基坑监测点布置及埋设 (7)5.1一般规定 (7)5.2坡顶及支护水平、竖向位移监测 (8)5.3周边建筑及道路沉降 (8)5.4地下水位监测 (8)5.5周边地面沉降监测 (9)5.6周边地表裂缝监测 (10)六、作业方法 (13)七、监测频率及报警值 (15)7.1监测频率 (15)7.2监测报警 (17)八、项目组织及资源配置 (21)九、质量安全及信息反馈体系 (22)十、安全文明措施 (24)十一、进度保障措施 (24)十二、监测成果报告编制 (25)一、编制依据1.1《建筑基坑工程监测技术规范》(GB50497-2009)1.2《工程测量规范》(GB50026-2016)1.3《建筑基坑支护技术规程》JGJ120-20121.4《国家一、二等水准测量规范》(GB12897-2006)1.5《天津市建筑地基基础设计规范》(TBJ1-88)1.6设计方提供的设计图纸依据规范和天津市建设主管部门对建筑物基坑施工相关文件的要求,以及基坑设计的相关要求;为确保建筑物地下基坑施工及周边环境的安全性和可靠性,使在基坑开挖和施工期间的变形得到有效控制,保证其不对基坑自身及周边环境造成破坏性的影响,用科学的数据指导基坑信息化施工,保证施工安全。
二、工程概况2.1该项目包括:1#~15#剪力墙住宅楼,配建1~6栋配套公建以及一座地下车库。
住宅楼:11#、15#住宅楼为8层,结构高度23.5m。
其余住宅楼为20~26层,结构高度58.3~75.7m。
配建2、4为两层框架结构配套用房,结构高度6.9~7.5m。
配建6(幼儿园)为三层框架结构,结构高度11.9m。
配建1、3、5为单层框架结构变电站。
地下车库为单层板柱剪力墙结构。
总建筑面积:182916.01m2,其中地上为145296.76m2,地下为37620.25m2。
基坑变形监测技术方案
XXXXXXXXXXXXXXX项目工艺厂工程工艺厂一标段基坑监测技术方案XXXXXXXXXXXXX有限公司2022年11月批准人: 审定人: 审核人: 项目负责人:技术负责人:XXXXXXXXX项目工艺厂工程工艺厂一标段基坑监测技术方案目录1、综合说明 (1)1.1工程概况 (1)1.2工程地质情况 (1)1.3基坑支护形式 (2)2、监测方案编制依据 (2)3、主要仪器设备及人员配置 (3)3.1仪器设备 (3)3.2人员配置 (3)4、监测目的 (4)5、监测要求 (4)5.1监测内容 (4)5.2监测频率 (5)5.3监测报警值 (6)5.4监测点布设 (6)6、主要技术指标要求 (6)7、基准网建立 (9)7.1原有测量资料 (9)7.2基准网建立 (9)8、监测方法 (10)8.1基坑水平位移监测 (10)8.2基坑竖向位移监测 (11)8.3巡视检查 (11)9、质量控制与检查 (11)10、技术保障 (12)11、监测资料要求 (12)12、监测数据处理及信息反馈 (12)13、安全文明生产 (13)14、质量/环境/职业健康安全管理体系 (13)14.1质量管理体系 (13)14.2 环境管理体系 (14)14.3 职业健康安全管理体系 (14)15、建议与说明 (15)16、提交成果 (16)16.1提交甲方资料 (16)16.2本公司存档资料 (16)17、附件 (16)1、综合说明1.1工程概况XXXXXXXXXXXXXX项目工艺厂工程位于XX省XX市XX县XXX开发区,本工程包括工艺海水管道管沟、高压泵基础等深基坑。
工艺海水管道管沟全长765m,宽10.8m,深度5.35m,其中包含5处止推墩,长18m,宽16.2m,深度5.75m,采取放坡开挖。
高压泵基础共计5处,长5.6m,宽4.3m,深度5.1m,采取放坡开挖。
为保证工艺海水管道管沟、高压泵基础等深基坑土方开挖安全顺利进行,需要对管沟和深基坑进行位移监测。
工程基坑变形监测方案怎么写
工程基坑变形监测方案怎么写1. 前言工程基坑是指在建筑、地下交通工程、地下综合管廊等工程建设过程中,由于需要进行地下开挖和施工,所以需要对地面进行挖掘使地下空间暴露于地表,形成一个类似坑的结构。
由于地下环境复杂,地下水位变化、土质情况不同等因素,地下开挖和工程施工过程中,会对周围的土体、建筑物和地下管线等产生一定的影响,可能引起基坑边坡稳定性问题、地表沉降等地质灾害。
因此,为了及早发现变形趋势和本体变形的速率,采取合理的变形监测手段来及时掌握变形信息,对于工程稳定性和安全性至关重要。
2. 监测目的工程基坑变形监测的目的是为了掌握地下开挖和工程施工过程中的基坑变形情况,及时发现并预警可能出现的地质灾害,保障工程建设的安全和稳定。
具体目的包括:(1) 及时监测和掌握基坑周边土体和建筑物的变形情况,预警土体失稳、建筑物沉降等地质灾害;(2) 了解地下水位变化对基坑周边土体和建筑物的影响,预测地下水对施工的影响;(3) 对地下管线、桥梁等基础设施进行监测,确保工程施工过程中对其无影响或最小影响,以保障其运行安全。
3. 监测内容工程基坑变形监测的内容包括:(1) 地表沉降监测:通过设置地面沉降监测点,利用水准仪等测量仪器,对地表进行周期性的沉降观测,以掌握地表沉降情况;(2) 边坡位移监测:通过设置边坡位移监测点,利用全站仪或位移传感器等仪器,对基坑周边边坡进行位移观测,以及时发现土体位移情况;(3) 建筑物变形监测:通过设置建筑物变形监测点,利用倾斜仪或变形传感器等仪器,对周边建筑物进行倾斜和变形观测,以及时掌握建筑物变形情况;(4) 地下水位监测:通过设置地下水位监测点,利用水位计等仪器,对基坑周边地下水位进行监测,以掌握地下水位变化情况;(5) 地下管线变形监测:通过设置地下管线变形监测点,利用应变计等仪器,对周边地下管线进行变形观测,以及时发现地下管线变形情况。
4. 监测技术工程基坑变形监测的技术主要包括传统测量技术和新型监测技术两大类。
基坑工程变形监测设计方案
基坑工程变形监测设计方案一、前言基坑工程是指在地下挖掘出土、种设建筑物等工作过程中形成的临时性大型深坑。
由于基坑工程的施工对周边环境和地下结构都有一定的影响,因此需要对基坑工程的变形进行监测和分析,以保证基坑工程的安全施工和周边建筑物的安全运行。
本文将从基坑工程变形监测的原因和意义、监测指标和方法、监测装置和方案设计等方面进行论述。
二、基坑工程变形监测的原因和意义1. 基坑工程的原因基坑工程由于其特殊性和复杂性,存在多种变形的原因,主要包括以下几个方面:(1)地下水位的影响:基坑工程所处地段的地下水位的变化会对基坑的变形造成不同程度的影响。
(2)土壤的力学性质:基坑工程所处地段的土壤类型和力学性质不同,对基坑的变形也会造成不同程度的影响。
(3)基坑的施工方式:基坑的开挖方式和支护结构的设计对基坑的变形也会有一定的影响。
2. 监测的意义基坑工程变形监测主要包括对基坑周边建筑物的变形、地下管线的变形和基坑自身的变形进行监测和分析。
监测的目的是为了:(1)提高基坑工程的安全性:及时发现并分析基坑工程的变形情况,可以及时采取措施,减小基坑工程对周边环境和地下结构造成的影响。
(2)保证基坑工程的质量:通过监测和分析基坑工程的变形情况,可以为进一步完善基坑工程的施工方案提供依据,提高基坑工程的施工质量。
(3)保护周边建筑物和地下管线的安全:通过对基坑工程周边建筑物的变形和地下管线的变形进行监测和分析,可以为保护周边建筑物和地下管线的安全提供依据。
三、监测指标和方法1. 监测指标基坑工程变形监测的主要指标包括:(1)基坑变形:包括基坑的立面水平位移、立面垂直位移、基坑的开挖和回填变形等。
(2)地下管线变形:包括地下管线的水平位移、垂直位移和变形等。
(3)周边建筑物的变形:包括周边建筑物的立面水平位移、立面垂直位移、建筑物的变形等。
2. 监测方法基坑工程变形监测的方法包括:(1)全站仪监测法:通过在基坑工程周边设置一定数量和位置的全站仪,对基坑、地下管线和周边建筑物的变形进行测量。
基坑工程变形检测方案设计
基坑工程变形检测方案设计一、引言基坑工程变形检测是指对于正在进行的基坑工程进行实时、连续的监测、记录、分析,以了解其变形情况,并及时发现问题,以确保基坑工程建设的安全、稳定和顺利进行。
随着基坑工程的规模和复杂程度的增加,变形监测变得尤为重要。
因此,设计一个科学合理、可行性强的基坑工程变形检测方案是至关重要的。
二、基坑工程变形检测的目的1、确保基坑工程的安全施工;2、准确掌握基坑工程现场变形情况;3、及时发现并处理异常情况;4、为设计和施工提供重要的参考数据。
三、基坑工程变形监测方法1、测量法:通过GPS、GNSS、测绘仪等测量设备,对基坑工程进行全方位、连续的变形监测;2、传感器监测:利用变形传感器、倾斜仪等现代化传感设备,对基坑工程进行实时监测;3、数学模型监测:通过计算机辅助设计与计算机辅助监测,创建基坑工程的数学模型,以实现变形的快速监测。
四、基坑工程变形监测方案设计1、监测点布设:根据基坑工程的各个关键部位、不同工程阶段的变形特点,科学合理地布设监测点;2、监测周期:设定不同时间间隔的监测周期,对变形进行连续监测;3、监测方式:采用多种监测方法,如测量法、传感器监测、数学模型监测等,相互协调;4、监测数据处理:对监测到的数据进行及时、准确的处理与分析,形成可靠的监测报告;5、异常处理机制:一旦发现异常情况,需要立即采取相应的措施进行处理。
五、基坑工程变形监测技术1、GPS/GNSS技术:通过全球卫星导航系统进行基坑工程的准确定位、变形监测;2、遥感技术:利用遥感技术获取基坑工程区域的地形、水文等信息,为变形监测提供数据支持;3、应力应变传感技术:通过应力应变传感器对基坑工程的变形进行实时监测;4、数学建模技术:通过有限元分析等数学建模技术对基坑工程进行变形监测和预测。
六、基坑工程变形监测设备1、GPS/GNSS设备:用于基坑工程的定位和变形监测;2、传感器监测设备:倾斜仪、应变传感器等,用于基坑工程变形的实时监测;3、测量设备:测量仪、测距仪等,用于基坑工程的实地测量。
基坑支护变形监测方案
1、编制依据基坑支护设计图纸《建筑基坑工程监测技术规范》(GB50497-2009)《工程测量规范》GB50026-20072、工程概况L形地库三个角高层建筑下,地下二层普遍深度-9.0m(地下二层底板标高),局部深度-13.8m(电梯井底板标高),基坑支护采用混凝土灌注桩、土钉墙喷锚系统,深基坑位置土方开挖至-4.0m左右,留出支护桩作业面,即进行支护桩及喷锚系统施工,同步进行深基坑支护系统监测。
3、监测目的施工中可能会出现基坑变形,为确保边坡的安全稳定和工程顺利进行,及时掌握基坑边坡变形动态,便于采取各种保护措施,我们在基坑施工过程中需对边坡进行水平位移、沉降等变形进行监测。
基坑工程施工前,应由建设方委托第三方对基坑工程实施现场监测。
监测单位应编制监测方案,监测方案应经建设、设计、监理等单位认可。
4、监测项目基坑边坡水平位移、沉降、裂逢;周边建筑物。
4.1 边坡水平位移监测4.1.1监测点设置深基坑每边设置3个稳定、可靠的点作为基准点。
在基坑四周冠梁上设置监测点,基坑各边每隔10-15m设置一个监测点,且每边中点、阳角必须有点,每边不少于3点,水平及竖向监测点为共用点。
基坑周边建筑物(4#楼及13#楼)、地下管线监测点布置:在基坑周围建筑物四角、拐角、管线井口设置一组监测点,监测其沉降。
4.1.2监测点制作施工灌注桩时将一根1m长的Ф18钢筋突出固定在冠梁与灌注桩交接处,要求钢筋端部平整并刻有十字丝,钢筋的端部突出冠梁上表面20cm。
4.1.3 监测点保护在施工过程中,加强对监测点的保护,不得随意破坏。
以保持监测数据的准确性和连续性。
5、仪器设备为确保本工程支护结构的安全,精确提供观测数据,本次监测主要采用监测仪器有:a、自动安平水准仪型号:DSA320 , 出厂编号:****。
b.全站仪型号: GTS-332W,出厂编号:托普康*****。
6、监测方法监测方法采用极坐标法。
监测项目初始值在深基坑土方开挖(-4.0m以下)之前测定,并取至少连续观测3次的稳定值的平均值作为初始值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基坑变形监测技术案一、工程概况本工程由一幢门字形酒店、六幢不同高度公寓和整体地下车库组成,总占地面积约30000m2,总建筑面积约23万m2,地下建筑面积约8.7万m2。
本工程基坑总面积约29300m2,东西向长约300~400m,南北向长约40~110m。
基坑总延长线为785m,地下室为三层,基坑开挖深度为-18.2m、-18.7m,管线分布复杂。
基坑北侧紧邻海河,南侧是车流量较大的公路,海河水位的变化及自忠路面动荷载的干扰都将是某基坑监测的难点。
基坑监测等级为一级,监测手段众多,监测容、监测工作量及监测难度均较大。
二、依据及原则1.《建筑变形测量规程》(JGJ/T8-97)2.《工程测量规》(GB50026-93)3.《建筑基坑支护技术规程》JGJ120-994.《一、二等水准测量规》(GB12897-93)5.《天津市建筑地基基础设计规》(TBJ1-88)依据规和天津市建设主管部门对建筑物基坑施工相关文件的要求,以及基坑设计的相关要求;为确保建筑物地下基坑施工及边环境的安全性和可靠性,使在基坑开挖和施工期间的变形得到有效控制,保证其不对基坑自身及边环境造成破坏性的影响,用科学的数据指导基坑信息化施工,保证施工安全。
三、基坑监测项目为了及时收集、反馈和分析围环境要素在施工中的变形信息,实现信息化施工并确保施工安全,综合本工程边环境状况及围护结构和支护体系的特点,遵照设计的相关要求,本工程共进行如下几项基坑监测工作:1、边环境监测A、地下管线变形监测;B、基坑外道路变形监测;C、基坑外地下潜水水位监测;D、基坑外承压水水位监测;E、基坑外土体水平位移(测斜)监测;F、基坑外土体表面变形监测;G、海河堤岸变形(沉降、变形)监测;2、围护结构监测A、围护桩桩体水平位移(测斜)监测;B、围护桩桩顶变形(沉降、位移)监测;C、围护桩、外侧水土压力监测;D、围护桩的竖向钢筋应力监测;3、支撑体系和立柱监测A、支撑轴力监测;B、钢格构柱及立柱角钢应力监测;C、立柱位移和沉降监测;4、其它监测A 、基坑开挖过程中土体分层沉降监测;四、基坑监测点位布置1、边环境监测A 、地下管线、路面等的变形监测包括基坑边的自忠路、兴安路的地下管线、路面、海河堤岸的沉降监测点的布设。
管线和路面每间隔30米布设一个监测断面,共约239个监测点。
其中海河堤岸监测点编号为HD1~HD10,而地面沉降监测点共105个,布点数量较多,最终编号以实地布设完点位后的编号为准(详细点位见附后“地面及海河堤岸监测点位示意图)。
供电管线沉降监测点编号为GD1~GD10;路灯管线沉降监测点编号为LD1~LD10;电信管线沉降监测点编号为DX1~DX25(电力管线监测点详细点位见附后“电力管线沉降监测点位示意图”)。
输水管线沉降监测点编号为SS1~SS15;污水管线沉降监测点编号为WS1~WS7;雨水管线沉降监测点编号为YS1~YS15(雨污水管线监测点详细点位见附后“输排水管线沉降监测点位示意图”)。
煤气管线沉降监测点编号为MQ1~MQ40(煤气管线监测点详细点位见附后“煤气管线沉降监测点位示意图”)。
剖面图图一俯视图沉降监测点的布设采用铆钉嵌入法布设(如图一),首先在设点处用电钻打出Φ12直径的圆,深度约10CM 左右,再将专用圆铆钉牢固地嵌入中,圆帽的下边缘与地面齐平。
圆铆钉的顶部圆帽适用于水准测量,顶部的强制归心适用于海河堤岸水平位移观测。
重要地下管线主要包括三条煤气管线,分别为DN529、DN325和DN219。
其监测点的布设首先用雷迪4000管线探测仪(如右图)测定出地下管线的平面位置和埋深,再用电钻在垂直于管线的路面上打,嵌入圆铆钉,其它管线利用“地下综合管线探测图”结合实地位置进行布点,埋设标志法同上。
在基坑边绿地或未硬化路面中有重要压力管线的,采取直接布点法,将观测标志设置在监测管线的管壁上。
B 、地下水位监测地下水位观测包括基坑外的潜水和承压水水位监测,水位观测井反映的是基坑开挖过程中基坑外侧的水位变化情况。
共计设置15口潜水水位观测井,编号SW01~SW15;设置9口承压水观测井,编号CY01~CY09(观测井的详细位置及编号见附图三承压水层PVC管后“基坑外水位监测井位置图”)。
根据《某岩土工程详细勘察报告》所述,某场地潜水含水岩组埋深约16米,初见水位埋深约3.1~4.3米,静止水位埋深约2.5~3.2米。
故水位观测井布设时首先用钻探机在设计位置钻Φ150mm的,深为15米。
将专用PVC水位管(左图)下端封堵好后,底端用电钻打上一些小,并填入粗砂或包上土工布用来渗水并防止泥浆的灌入。
往钻探中一边下水位管,一边用套管接头将PVC水位管一节节的连接上,同时用胶带密封。
全部水位管下完后在管中灌入清水,最后用细砂及回填土填满水位管外围的隙。
根据《某岩土工程详细勘察报告》所述,某场地承压含水岩组第一承压含水层为更新统第五组陆相冲积层上部粉土(力学分层号为7a),位置深约在大沽高-15~-21米之间,实际埋深约为18~25米。
为保证基坑止水工作的安全,防止承压水头外涌,在公寓A和公寓B附近各设置1口⑧b层承压水观测井,埋设深底为35米。
其它7口为⑦a层承压水观测井,埋设深度为22米。
水位管的埋设法同潜水水位监测井的图四基坑测斜管塑料套管埋设,但需对管体接口进行有效的密封。
C、基坑外土体变形监测土体变形监测包括土体表面的沉降监测以及深层土体水平位移(测斜)监测。
测点与围护体的水平位移监测点有所对应,坑外土体共设置14个监测点T01~T14(详细点位见附后“支护结构监测点位示意图”)。
其埋设法是在坑外土体中钻Φ150mm的钻探,考虑到测斜管的埋设深度应不会造成深层承压水与地下潜层水的连通,土体测斜管实际埋设深度为35米。
首先将测斜管下端封堵好后,一边往钻探中下一边将测斜管用套管接头一节节的连上,同时用胶带密封并灌入清水。
全部下入后用细砂及回填土填满管围的隙。
测斜管材料为PVC硬塑,有定向槽,管径70毫米(左图)。
测斜管顶部加套一米长的Φ80mm的硬塑管进行保护,并做醒目标志,防止施工过程中的意外破坏(如图四)。
2、围护结构的监测A、灌注桩桩身水平位移(测斜)硬件埋设依据设计图纸某基坑共计埋设灌注桩桩身倾斜监测25处,埋设深度图一基坑测斜管塑料套管灌注桩30米,其监测的布设法如图一所示。
在测斜管安装时应注意,对接两根管子时要对好管壁侧的导向槽,接头处用封口胶带和螺丝固定,外面缠上胶带,以防止污水或砂浆从管子接头处渗入。
管顶、管底用专用封堵帽,防止异物进入管道造成堵塞。
用铁丝将测斜管固定在钢筋笼背向基坑的一侧或中间部位,以防止基坑开挖后,平整围护桩壁时损坏管道,同时应保证测斜管导槽与基坑开挖面在水平向的垂直性。
当测斜管随同钢筋笼下入挖好的槽中后,应及时向管注入清水,以减轻测斜管承受的外界水压和混凝土的压力。
在砼浇筑时, 测斜管最上部一米围要加Φ150mm塑料保护套管,防止管壁在剔桩头作帽粱时被破坏。
B、灌注桩、外侧水土压力硬件埋设依据设计要求,在不同区域的灌注桩、外侧共计设置4组水土压力监测点,每组设置5个观测断面,每个断面皆进行水土压力监测,其中3个断面还要进行坑水土压力监测。
每个测点布置1个测试元件,即一组监测点包括8个水压力计和8个土压力计,4组共计64个监测元件。
本工程围护体隙水压力及土压力计的硬件埋设采用挂布法,挂布选用土工布,要求透水性能好,但不允渗透水泥浆。
预先在挂布上按设计要求深度固定好传感器,受压膜放在挂布向外直接面向土体的向,将挂布包裹在钢筋笼上,挂布接缝处搭边约20CM,并将接缝紧密连接固定。
在吊装安放时,现场安装人员应注意避免硬件和电缆与钻上边缘的刮碰,以免硬件的损坏,最上部一米围要加Φ150mm塑料保护套管保护电缆。
最后利用混凝土浇捣时的外挤力,将挂布及传感器受压膜紧贴于桩体外侧土面上,完成传感器的安装。
C、灌注桩、外侧竖向钢筋应力硬件埋设围护体的竖向钢筋应力监测可直接反映开挖过程中地下围护结构的受力情况,本工程共设置6组观测点,每组5个断面,每个断面共布置外侧测试元件各2个,即每组测点包括20个,共计120个钢筋应力计。
在安装前应按待测钢筋直径选配相应规格的钢筋计,并根据下件的埋深选择适当的电缆长度。
安装时将钢筋计并置在待测钢筋旁并用铁丝固定。
将电缆线捆绑在钢筋侧引出至围护桩顶外部不会被混凝土掩埋的地并加装Φ150mm塑料保护套管,防止破坏。
在捆绑完成后,随钢筋笼一起吊装即可。
3、支撑体系和立柱监测A、支撑轴力监测在支撑的主要受力杆件上布置轴力监测点,第一道支撑上设置测点24个(如右图),第二、三道支撑各设置42个测点,三道支撑共108个测点,实际轴力监测点位根据支撑的最终布设形式来确定。
编号式为“支撑层数+位置+钢筋计自身编号”,例如:第二道撑,3号位置处的钢筋计编号为C2-ZL3-****。
每一测点处在混凝土支撑钢筋茏子两侧的主筋上各安置一个钢筋应力计。
安置器件时左右两个钢筋计应尽量对称,监测时两侧钢筋计的数据才能够更好的进行对比和分析。
安装时根据器件的位置、埋深选择适当的电缆长度,将钢筋计并置在待测钢筋旁并用铁丝固定。
将电缆线捆绑在钢筋上并引出至支撑外部不会被混凝土掩埋的地并加装保护套管,防止破坏(详细位置见“支撑轴力测点位置示意图”)。
B、钢格构柱及立柱角钢应力监测在支撑竖向荷载比较大和典型的位置布设钢立柱角钢应力监测点,依据设计要求共设置11个钢格构柱表面应变计(如右图),测点编号为JY1~JY11(角钢应力监测详细点位图见附后“立柱桩及角钢应力监测点位示意图”),实际监测点位根据钢格柱及立柱桩的最终位置确定。
安装时将应变计两端直接焊在或用螺钉固定在监测部位,并将读数电缆线引至安全地点并加以保护。
C、钢立柱位移和沉降监测与钢立柱的角钢应力监测点有所对应,同时进行钢立柱的位移和沉降监测,测点数量为38个监测点,测点编号为LZ1~LZ38(立柱桩位移和沉降监测详细点位图见附后“立柱桩及角钢应力监测点位示意图”)。
由于立柱桩在基坑开挖后的状态是悬空的,所以测点处无法上人架设棱镜和水准标尺,所以位移监测采用坐标法,沉降监测采用三角高程法。
为了安全起见,点位标志设置的是全站仪贴片,该贴片是仿棱镜设计,有精确的高反光性,可以代替全站仪的专用反光棱镜。
在钢立柱出露并有布点条件时,将全站仪贴片用胶水沾在钢立柱表面设计位置即可。
5、其它监测A 、基坑开挖中土体分层沉降监测基坑开挖阶段对坑土体进行隆起监测,采用分层沉降标进行。
依据设计图纸共设置7个监测点,编号为LQ1~LQ7。
每个测点设置5个断面的分层沉降标,其中基底以上2个,分别位于第二道和第三道支撑标高下1m 的位置;基底以下3个,分别位于基底以下2m 、5m 、8米的位置。