滤波算法程序(详述十种滤波方法,附源代码)

合集下载

(整理)11种滤波方法+范例代码.

(整理)11种滤波方法+范例代码.

软件滤波算法(转载)这几天做一个流量检测的东西,其中用到了对数据的处理部分,试了很多种方法,从网上找到这些个滤波算法,贴出来记下需要注意的是如果用到求平均值的话,注意总和变量是否有溢出,程序没必要照搬,主要学习这些方法,相信做东西的时候都能用得上1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制那种周期性的干扰平滑度差2、中位值滤波法A、方法:连续采样N次(N取奇数)把N次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4B、优点:适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C、缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2个数据的算术平均值N值的选取:3~14B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM6、限幅平均滤波法A、方法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:比较浪费RAM7、一阶滞后滤波法A、方法:取a=0~1本次滤波结果=(1-a)*本次采样值+a*上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C、缺点:相位滞后,灵敏度低滞后程度取决于a值大小不能消除滤波频率高于采样频率的1/2的干扰信号8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。

10种软件滤波方法及示例程序

10种软件滤波方法及示例程序

10种软件滤波方法及示例程序滤波是数字信号处理中常用的一种方法,用于去除信号中的噪声或者改变信号的频率响应。

软件滤波是指使用计算机软件来实现滤波功能。

本文将介绍10种常用的软件滤波方法,并附上相应的示例程序。

1.均值滤波:将信号中的每个样本点都替换为其邻近样本点的平均值。

这种方法适用于去除高频噪声,但会导致信号的模糊化。

示例程序:```pythonimport numpy as npdef mean_filter(signal, window_size):filtered_signal = []for i in range(len(signal)):start = max(0, i - window_size//2)end = min(len(signal), i + window_size//2)filtered_signal.append(np.mean(signal[start:end]))return filtered_signal#使用示例signal = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]window_size = 3filtered_signal = mean_filter(signal, window_size)print(filtered_signal)```2.中值滤波:将信号中每个样本点都替换为邻近样本点的中值。

这种方法适用于去除椒盐噪声等随机噪声,但不适用于平滑信号。

示例程序:```pythonimport numpy as npdef median_filter(signal, window_size):filtered_signal = []for i in range(len(signal)):start = max(0, i - window_size//2)end = min(len(signal), i + window_size//2)filtered_signal.append(np.median(signal[start:end]))return filtered_signal#使用示例signal = [1, 3, 5, 7, 9, 8, 6, 4, 2]window_size = 3filtered_signal = median_filter(signal, window_size)print(filtered_signal)```3.高斯滤波:使用一维/二维高斯函数作为滤波器,加权平均信号的邻近样本点。

C语言滤波算法实现

C语言滤波算法实现

C语言滤波算法实现滤波算法是信号处理领域中一种常见的技术,用于去除信号中的噪声或不需要的部分,以提取出我们感兴趣的特征。

在C语言中,实现滤波算法可以有效地处理信号,提高信号质量和可靠性。

本文将介绍C语言中一些常见的滤波算法及其实现方法。

一、均值滤波算法均值滤波算法是一种简单而常用的滤波算法,它通过计算信号中一定窗口内像素值的平均值,替代该窗口内的每个像素值,从而达到去除噪声的目的。

下面是C语言中实现均值滤波算法的示例代码:```c#include <stdio.h>#define SIZE 5void meanFilter(int data[], int length) {int result[length];int sum = 0;for (int i = 0; i < length; i++) {sum = 0;for (int j = i - SIZE / 2; j <= i + SIZE / 2; j++) {if (j >= 0 && j < length) {sum += data[j];}}result[i] = sum / SIZE;}for (int i = 0; i < length; i++) {printf("%d ", result[i]);}}int main() {int data[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};int length = sizeof(data) / sizeof(data[0]);meanFilter(data, length);return 0;}```在上述代码中,我们定义了一个`meanFilter`函数来实现均值滤波。

该函数接受一个整型数组`data`和数组长度`length`作为参数。

在函数内部,我们使用一个大小为5的滑动窗口,对每个像素进行均值计算,并将结果存储在一个新的数组`result`中。

十大滤波算法精修订

十大滤波算法精修订
40.for(i =0; i < FILTER_N; i++){
41.filter_sum += Get_AD();
42.delay(1);
43.}
44.return(int)(filter_sum / FILTER_N);
45.}
4、递推平均滤波法(又称滑动平均滤波法)
ARDUINO 代码
1./*
44.else
45.returnNewValue;
46.}
2、中位值滤波法
ARDUINO 代码
1./*
2.A、名称:中位值滤波法
3.B、方法:
4.连续采样N次(N取奇数),把N次采样值按大小排列,
5.取中间值为本次有效值。
6.C、优点:
7.能有效克服因偶然因素引起的波动干扰;
8.对温度、液位的变化缓慢的被测参数有良好的滤波效果。
46.filter_temp = filter_buf[i];
47.filter_buf[i]= filter_buf[i +1];
48.filter_buf[i +1]= filter_temp;
49.}
50.}
51.}
52.returnfilter_buf[(FILTER_N -1)/2];
53.}
2.A、名称:递推平均滤波法(又称滑动平均滤波法)
3.B、方法:
4.把连续取得的N个采样值看成一个队列,队列的长度固定为N,
5.每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据(先进先出原则),
6.把队列中的N个数据进行算术平均运算,获得新的滤波结果。
7.N值的选取:流量,N=12;压力,N=4;液面,N=4-12;温度,N=1-4。

十种经典的软件滤波方法+程序

十种经典的软件滤波方法+程序

十种经典的软件滤波方法+程序十种经典的软件滤波方法+程序1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制周期性的干扰平滑度差/* A值可根据实际情况调整, value为有效值,new_value为当前采样值,滤波程序返回有效的实际值*/#define A 10char value;char filter(){char new_value;new_value = get_ad();if ( ( new_value - value > A ) || ( value - new_value > A )return value;return new_value;}2、中位值滤波法A、方法:连续采样N次(N取奇数)把N次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜#define N 11 //N值可根据实际情况调整char filter(){char value_buf[N];char count,i,j,temp;for (count=0;count<N;count++){value_buf[count]=get_ad(); //获取采样值delay();}for (j=0;j<N-1;j++) //采样值由小到大排列,排序采用冒泡法{for (i=0;i<N-j;i++){if(value_buf[i]>value_buf[i+1]){temp=value_buf[i];value_buf[i]=value_buf[i+1];value_buf[i+1]=temp;}}}return value_buf[(N-1)/2]; //取中间值}3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4B、优点:适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM#define N 12char filter(){int sum = 0;for ( count=0;count<N;count++){sum + = get_ad();delay();}return (char)(sum/N);}4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C、缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM#define N 12char value_buf[N];char i=0;char filter(){char count;int sum=0;value_buf[i++] = get_ad();if ( i == N ) i = 0;for ( count=0;count<N,count++)sum += value_buf[count];return (char)(sum/N);}5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2个数据的算术平均值N值的选取:3~14B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM#define N 12char filter(){char count,i,j;char value_buf[N];int sum=0;for (count=0;count<N;count++){value_buf[count] = get_ad();delay();}for (j=0;j<N-1;j++){for (i=0;i<N-j;i++){if ( value_buf[i]>value_buf[i+1] ){temp = value_buf[i];value_buf[i] = value_buf[i+1];value_buf[i+1] = temp;}}}for(count=1;count<N-1;count++)sum += value[count];return (char)(sum/(N-2));}6、限幅平均滤波法A、方法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:比较浪费RAM参考子程序1、37、一阶滞后滤波法A、方法:取a=0~1本次滤波结果=(1-a)*本次采样值+a*上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C、缺点:相位滞后,灵敏度低滞后程度取决于a值大小不能消除滤波频率高于采样频率的1/2的干扰信号/* 为加快程序处理速度假定基数为100,a=0~100 */#define a 50char value;char filter(){char new_value;new_value = get_ad();return (100-a)*value + a*new_value;}8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。

11种滤波算法及程序

11种滤波算法及程序

11种滤波算法及程序十一种滤波算法及程序1 概述数字滤波方法有很多种,每种方法有其不同的特点和使用范围。

从大的范围可分为3 类。

1.1 克服大脉冲干扰的数字滤波法克服由仪器外部环境偶然因素引起的突变性扰动或仪器内部不稳定引起误码等造成的尖脉冲干扰,是仪器数据处理的第一步。

通常采用简单的非线性滤波法。

㈠.限幅滤波法㈡.中值滤波法1.2 抑制小幅度高频噪声的平均滤波法小幅度高频电子噪声:电子器件热噪声、A/D 量化噪声等。

通常采用具有低通特性的线性滤波器:算数平均滤波法、加权平均滤波法、滑动加权平均滤波法一阶滞后滤波法等。

㈠.算数平均㈡.滑动平均㈢.加权滑动平均㈣一阶滞后滤波法1.3 复合滤波法在实际应用中,有时既要消除大幅度的脉冲干扰,有要做到数据平滑。

因此常把前面介绍的两种以上的方法结合起来使用,形成复合滤波。

去极值平均滤波算法:先用中值滤波算法滤除采样值中的脉冲性干扰,然后把剩余的各采样值进行平均滤波。

连续采样N 次,剔除其最大值和最小值,再求余下N-2 个采样的平均值。

显然,这种方法既能抑制随机干扰,又能滤除明显的脉冲干扰。

2 十一种通用滤波算法2.1 限幅滤波法(又称程序判断滤波法)根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制那种周期性的干扰平滑度差2.2 中位值滤波法A、方法:连续采样N 次(N 取奇数)把N 次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜2.3 算术平均滤波法A、方法:连续取N 个采样值进行算术平均运算N 值较大时:信号平滑度较高,但灵敏度较低N 值较小时:信号平滑度较低,但灵敏度较高N 值的选取:一般流量,N=12;压力:N=4B、优点:适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM2.4 递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N 个采样值看成一个队列队列的长度固定为N每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)把队列中的N 个数据进行算术平均运算,就可获得新的滤波结果N 值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C、缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM2.5 中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法” +“算术平均滤波法”连续采样N 个数据,去掉一个最大值和一个最小值然后计算N-2 个数据的算术平均值N 值的选取:3~14B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM2.6 限幅平均滤波法A、方法:相当于“限幅滤波法” +“递推平均滤波法”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:比较浪费RAM2.7 一阶滞后滤波法A、方法:取a=0~1本次滤波结果=(1-a)*本次采样值+a*上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C、缺点:相位滞后,灵敏度低滞后程度取决于a 值大小不能消除滤波频率高于采样频率的1/2 的干扰信号2.8 加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。

C语言十大滤波算法

C语言十大滤波算法

C语言十大滤波算法Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998十大滤波算法程序大全(精心整理版)(转自网络)11、限幅滤波法*************************************************** *函数名称:AmplitudeLimiterFilter()-限幅滤波法*优点:能有效克服因偶然因素引起的脉冲干扰*缺点:无法抑制那种周期性的干扰,且平滑度差*说明:1、调用函数GetAD(),该函数用来取得当前值2、变量说明Value:最近一次有效采样的值,该变量为全局变量NewValue:当前采样的值ReturnValue:返回值3、常量说明A:两次采样的最大误差值,该值需要使用者根据实际情况设置*入口:Value,上一次有效的采样值,在主程序里赋值*出口:ReturnValue,返回值,本次滤波结果****************************************************/#defineA10unsignedcharValueunsignedcharAmplitudeLimiterFilter(){unsignedcharNewValue;unsignedcharReturnValue;NewValue=GatAD();if(((NewValue-Value)>A))||((Value-NewValue)>A)))ReturnValue=Value;elseReturnValue=NewValue;return(ReturnValue);}2、中位值滤波法/*****************************************************函数名称:MiddlevalueFilter()-中位值滤波法*优点:能有效克服因偶然因素引起的波动干扰;对温度、液位等变化缓慢的被测参数有良好的滤波效果*缺点:对流量,速度等快速变化的参数不宜*说明:1、调用函数GetAD(),该函数用来取得当前值Delay(),基本延时函数2、变量说明ArrDataBuffer[N]:用来存放一次性采集的N组数据Temp:完成冒泡法试用的临时寄存器i,j,k:循环试用的参数值3、常量说明N:数组长度*入口:*出口:value_buf[(N-1)/2],返回值,本次滤波结果*****************************************************/ #defineN11unsignedcharMiddlevalueFilter(){unsignedcharvalue_buf[N];unsignedchari,j,k,temp;for(i=0;i<N;i++){value_buf[i]=get_ad();delay();}for(j=0;j<N-1;j++){for(k=0;k<N-j;k++){if(value_buf[k]>value_buf[k+1]){temp=value_buf[k];value_buf[k]=value_buf[k+1];value_buf[k+1]=temp;}}}returnvalue_buf[(N-1)/2];}3、算术平均滤波法/*********************************************************说明:连续取N个采样值进行算术平均运算优点:试用于对一般具有随机干扰的信号进行滤波。

[整理]11种滤波方法+范例代码

[整理]11种滤波方法+范例代码

软件滤波算法(转载)这几天做一个流量检测的东西,其中用到了对数据的处理部分,试了很多种方法,从网上找到这些个滤波算法,贴出来记下需要注意的是如果用到求平均值的话,注意总和变量是否有溢出,程序没必要照搬,主要学习这些方法,相信做东西的时候都能用得上1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制那种周期性的干扰平滑度差2、中位值滤波法A、方法:连续采样N次(N取奇数)把N次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4B、优点:适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C、缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2个数据的算术平均值N值的选取:3~14B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM6、限幅平均滤波法A、方法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:比较浪费RAM7、一阶滞后滤波法A、方法:取a=0~1本次滤波结果=(1-a)*本次采样值+a*上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C、缺点:相位滞后,灵敏度低滞后程度取决于a值大小不能消除滤波频率高于采样频率的1/2的干扰信号8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。

C语言十大滤波算法

C语言十大滤波算法

C语言十大滤波算法C语言是一种广泛应用于嵌入式系统、图形界面、游戏开发等领域的编程语言。

在信号处理和图像处理等领域,滤波算法是一种重要的处理方式。

滤波算法可以对信号进行去噪、平滑、边缘检测等操作,从而提高信号的质量和准确度。

在C语言中,有许多优秀的滤波算法被广泛应用。

下面将介绍C语言中的十大滤波算法,并讨论它们的原理和应用领域。

1.均值滤波算法:均值滤波是一种简单有效的滤波算法,通过计算像素周围若干个邻域像素的平均值作为滤波结果。

均值滤波适用于去除高频噪声,但会造成图像细节的模糊。

2.中值滤波算法:中值滤波算法通过计算像素周围若干个邻域像素的中值作为滤波结果。

中值滤波可以有效去除椒盐噪声,但不能处理高斯噪声。

3.高斯滤波算法:高斯滤波算法利用高斯函数对图像进行滤波,以平滑图像并去除噪声。

高斯滤波在保持图像边缘信息的同时,能够有效降低噪声。

4.自适应中值滤波算法:自适应中值滤波算法根据像素邻域内像素的不同情况选择中值滤波器的大小,对不同噪声情况进行适应性处理。

5.双边滤波算法:双边滤波算法是一种非线性滤波算法,通过同时考虑空间信息和灰度差异信息,可在去噪的同时保持图像的边缘信息。

6.快速傅里叶变换(FFT)滤波算法:FFT滤波是一种频域滤波算法,通过将信号从时域转换到频域,对频谱进行滤波后再进行逆变换,能够有效去除周期性噪声。

7.小波变换滤波算法:小波变换是一种时频联合分析方法,将信号分解为不同频率的子带,通过阈值处理可以实现去噪。

8.自适应滤波算法:自适应滤波算法根据图像中的纹理复杂度自动选择合适的滤波器,能够在保持图像细节的同时去除噪声。

9.协同滤波算法:协同滤波算法是一种基于用户行为数据的推荐算法,通过分析用户的历史数据和相似用户群体的数据,对用户进行个性化推荐。

10.卡尔曼滤波算法:卡尔曼滤波算法是一种利用动态模型对状态进行推断的滤波算法,适用于系统状态估计、信号恢复等应用。

以上是C语言中的十大滤波算法,它们在不同领域的应用有所差异,但都能够有效地处理信号和数据,提高数据质量和准确度。

10种简单的数字滤波算法(C++源程序)

10种简单的数字滤波算法(C++源程序)

10种简单的数字滤波算法(C++源程序)以下是10种简单的数字滤波算法C++实现示例:1. 均值滤波均值滤波是数字滤波算法的一种常见形式,它可以通过计算一定范围内像素值的平均值来平滑图像。

其C++实现如下:#include <iostream>#include <opencv2/opencv.hpp>using namespace std;using namespace cv;// Function to implement mean filtervoid meanBlur(Mat& img, Mat& result, int k_size){int img_rows = img.rows;int img_cols = img.cols;// Create a same sized blank imageresult.create(img_rows, img_cols, img.type());for(int r=0; r<img_rows; r++){for(int c=0; c<img_cols; c++){// Define the window of radius k_sizeint r_min = max(0, r-k_size/2);int r_max = min(img_rows-1, r+k_size/2);int c_min = max(0, c-k_size/2);int c_max = min(img_cols-1, c+k_size/2);// Calculate the mean valueint sum = 0;int count = 0;for (int i=r_min; i<=r_max; i++){for (int j=c_min; j<=c_max; j++){sum += img.at<uchar>(i,j);count++;}}result.at<uchar>(r,c) = (uchar) (sum/count);}}}int main(int argc, char** argv){// Load the imageMat img = imread("image.jpg", 0);// Check if image is loaded properlyif(!img.data){cout << "Failed to load image" << endl;return -1;}// Define the kernel sizeint k_size = 3;// Apply mean filterMat result;meanBlur(img, result, k_size);// Display the resultnamedWindow("Original Image", WINDOW_NORMAL);namedWindow("Mean Filtered Image", WINDOW_NORMAL);imshow("Original Image", img);imshow("Mean Filtered Image", result);waitKey(0);return 0;}在上述代码中,`meanBlur()` 函数接收一个输入图像`img` 和一个输出图像`result`,以及一个整数参数`k_size`,该参数指定滤波器的大小,即窗口的半径。

10种软件滤波方法的示例程序

10种软件滤波方法的示例程序
return (char)(sum/sum_coe);
}
9、消抖滤波法
#define N 12
char filter()
{
char count=0;
char new_value;
new_value = get_ad();
序如下:副表2.
3.算术平均值滤波算法
算术平均滤波法就是连续取N次采样值进行算术平均,其数学表达式是:
Y=∑yi
N
~y=1/N ∑ yi
i=1
式中 ~y——N个采样值的算术平均值;
Yi ——第i个采样值;
return value;
return new_value;
}
2、中位值滤波法
/* N值可根据实际情况调整
排序采用冒泡法*/
#define N 11
char filter()
{
char value_buf[N];
char count,i,j,temp;
for ( count=0;count&lt;N;count++)
|yn - yn-1|≤△Y,则yn有效,
|yn -yn-1|>△Y,则yn-1有效。
式中 yn ——第n次采样的值;
Yn-1——第(n-1)次采样的值;
;△Y——相邻两次采样值允许的最大偏差。
设R1和R2为内部RAM单元,分别存放yn-1和yn,滤波值也存放在R2单元,采用MCS-51单片机指令编写的程序判断法子程序如下:付表1.
采用数字滤波算法克服随机干搅引入的误差具有以下几个优点:
(1) 数字滤波无须硬件,只用一个计算过程,可靠性高,不存在阻抗匹配问题,尤其是数字滤波可以对频率很高或很低的信号进行滤波,这是模拟滤波器做不到的。

十一种滤波方法及C语言程序

十一种滤波方法及C语言程序

一. 十一种通用滤波算法(转)1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A, 则本次值有效如果本次值与上次值之差>A, 则本次值无效, 放弃本次值, 用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C缺点无法抑制那种周期性的干扰平滑度差2、中位值滤波法A、方法:连续采样N次(N取奇数)把N 次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C缺点:对流量、速度等快速变化的参数不宜3、算术平均滤波法A、方法:连续取N 个采样值进行算术平均运算N 值较大时:信号平滑度较高,但灵敏度较低N 值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4B、优点:适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N 每次采样到一个新数据放入队尾, 并扔掉原来队首的一次数据.(先进先出原则)把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=4〜12;温度,N=1〜4 B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法” +“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2 个数据的算术平均值N 值的选取:3〜14B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM6、限幅平均滤波法A、方法:相当于“限幅滤波法” +“递推平均滤波法” 每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C缺点:比较浪费RAM7、一阶滞后滤波法A、方法:取a=0〜1本次滤波结果=(1-a)*本次采样值+a*上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C缺点:相位滞后,灵敏度低滞后程度取决于 a 值大小不能消除滤波频率高于采样频率的1/2 的干扰信号8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。

滤波算法程序(详述十种滤波方法,附源代码)

滤波算法程序(详述十种滤波方法,附源代码)

1、限幅滤波法/****************************************************函数名称:AmplitudeLimiterFilter()-限幅滤波法*优点:能有效克服因偶然因素引起的脉冲干扰*缺点:无法抑制那种周期性的干扰,且平滑度差*说明:1、调用函数GetAD(),该函数用来取得当前值2、变量说明Value:最近一次有效采样的值,该变量为全局变量NewValue:当前采样的值ReturnValue:返回值3、常量说明A:两次采样的最大误差值,该值需要使用者根据实际情况设置*入口:Value,上一次有效的采样值,在主程序里赋值*出口:ReturnValue,返回值,本次滤波结果****************************************************/#define A 10unsigned char Valueunsigned char AmplitudeLimiterFilter(){unsigned char NewValue;unsigned char ReturnValue;NewValue=GatAD();if(((NewValue-Value)>A))||((Value-NewValue)>A)))ReturnValue=Value;else ReturnValue=NewValue;return(ReturnValue);}2、中位值滤波法/*****************************************************函数名称:MiddlevalueFilter()-中位值滤波法*优点:能有效克服因偶然因素引起的波动干扰;对温度、液位等变化缓慢的被测参数有良好的滤波效果*缺点:对流量,速度等快速变化的参数不宜*说明:1、调用函数GetAD(),该函数用来取得当前值Delay(),基本延时函数2、变量说明ArrDataBuffer[N]:用来存放一次性采集的N组数据Temp:完成冒泡法试用的临时寄存器i,j,k:循环试用的参数值3、常量说明N:数组长度*入口:*出口:value_buf[(N-1)/2],返回值,本次滤波结果*****************************************************/#define N 11unsigned char MiddlevalueFilter(){unsigned char value_buf[N];unsigned char i,j,k,temp;for(i=0;i<N;i++){value_buf[i] = get_ad();delay();}for (j=0;j<N-1;j++){for (k=0;k<N-j;k++){if(value_buf[k]>value_buf[k+1]){temp = value_buf[k];value_buf[k] = value_buf[k+1];value_buf[k+1] = temp;}}}return value_buf[(N-1)/2];}3、算术平均滤波法/*********************************************************说明:连续取N个采样值进行算术平均运算优点:试用于对一般具有随机干扰的信号进行滤波。

十大滤波算法程序大全(精心整理版)教学教材

十大滤波算法程序大全(精心整理版)教学教材

十大滤波算法程序大全(精心整理版)十大滤波算法程序大全(精心整理版)1、限幅滤波法*函数名称:AmplitudeLimiterFilter()-限幅滤波法*优点:能有效克服因偶然因素引起的脉冲干扰*缺点:无法抑制那种周期性的干扰,且平滑度差*说明:1、调用函数GetAD(),该函数用来取得当前值2、变量说明Value:最近一次有效采样的值,该变量为全局变量NewValue:当前采样的值ReturnValue:返回值3、常量说明A:两次采样的最大误差值,该值需要使用者根据实际情况设置*入口:Value,上一次有效的采样值,在主程序里赋值*出口:ReturnValue,返回值,本次滤波结果****************************************************/#define A 10unsigned char Valueunsigned char AmplitudeLimiterFilter(){unsigned char NewValue;unsigned char ReturnValue;NewValue=GatAD();if(((NewValue-Value)>A))||((Value-NewValue)>A)))ReturnValue=Value;else ReturnValue=NewValue;return(ReturnValue);}2、中位值滤波法/*****************************************************函数名称:MiddlevalueFilter()-中位值滤波法*优点:能有效克服因偶然因素引起的波动干扰;对温度、液位等变化缓慢的被测参数有良好的滤波效果*缺点:对流量,速度等快速变化的参数不宜*说明:1、调用函数GetAD(),该函数用来取得当前值Delay(),基本延时函数2、变量说明ArrDataBuffer[N]:用来存放一次性采集的N组数据Temp:完成冒泡法试用的临时寄存器i,j,k:循环试用的参数值3、常量说明N:数组长度*入口:*出口:value_buf[(N-1)/2],返回值,本次滤波结果*****************************************************/ #define N 11unsigned char MiddlevalueFilter(){unsigned char value_buf[N];unsigned char i,j,k,temp;for(i=0;i<N;i++){value_buf[i] = get_ad();delay();}for (j=0;j<N-1;j++){for (k=0;k<N-j;k++){if(value_buf[k]>value_buf[k+1]){temp = value_buf[k];value_buf[k] = value_buf[k+1];value_buf[k+1] = temp;}}}return value_buf[(N-1)/2];}3、算术平均滤波法/********************************************************* 说明:连续取N个采样值进行算术平均运算优点:试用于对一般具有随机干扰的信号进行滤波。

十种数据采集滤波的方法和编程实例.doc

十种数据采集滤波的方法和编程实例.doc

十种数据采集滤波的方法和编程实例..理论上讲单片机从A/D芯片上采集的信号就是需要的量化信号,但是由于存在电路的相互干扰、电源噪声干扰和电磁干扰,在A/D芯片的模拟输入信号上会叠加周期或者非周期的干扰信号,并会被附加到量化值中,给信号带来一定的恶化。

考虑到数据采集的实时性和安全性,有时需要对采集的数据进行软处理,一尽量减小干扰信号的影响,这一过程称为数据采集滤波。

以下介绍十种数据采集滤波的方法和编程实例。

这10种方法针对不同的噪声和采样信号具有不同的性能,为不同场合的应用提供了较广的选择空间。

选择这些方法时,必须了解电路种存在的主要噪声类型,主要包括一下方面:* 噪声是突发随机噪声还是周期性噪声* 噪声频率的高低* 采样信号的类型是块变信号还是慢变信号* 另外还要考虑系统可供使用的资源等通过对噪声和采样性能分析,选用最合适的方法以及确定合理的参数,才能达到良好的效果。

目前用于数据采集滤波的主要方法有以下10种,这10种方法都是在时域上进行处理的,相对于从频域角度设计的IIR或者FIR滤波器,其实现简单,运算量小,而性能可以满足绝大部分的场合的应用要求1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制那种周期性的干扰平滑度差1、限副滤波/* A值可根据实际情况调整value为有效值,new_value为当前采样值滤波程序返回有效的实际值*/#define A 10char value;char filter(){ char new_value; new_value = get_ad(); if ( ( new_value -考虑到数据采集的实时性和安全性,有时需要对采集的数据进行软处理,一尽量减小干扰信号的影响,这一过程称为数据采集滤波。

基本C语言滤波算法

基本C语言滤波算法

基本C语言滤波算法11种软件滤波方法的示例程序假定从8位AD中读取数据(如果是更高位的AD可定义数据类型为int),子程序为get_ad();1、限副滤波/* A值可根据实际情况调整value为有效值,new_value为当前采样值滤波程序返回有效的实际值 */#define A 10char value;char filter(){char new_value;new_value = get_ad();if ( ( new_value - value > A ) || ( value - new_value > A )return value;return new_value;}2、中位值滤波法/* N值可根据实际情况调整排序采用冒泡法*/#define N 11char filter(){char value_buf[N];char count,i,j,temp;for ( count=0;count<N;count++) {value_buf[count] = get_ad(); delay();}for (j=0;j<N-1;j++){for (i=0;i<N-j;i++){if ( value_buf>value_buf[i+1] ) {temp = value_buf;value_buf = value_buf[i+1]; value_buf[i+1] = temp;}}}return value_buf[(N-1)/2];}3、算术平均滤波法/**/#define N 12char filter(){int sum = 0;for ( count=0;count<N;count++){sum + = get_ad();delay();}return (char)(sum/N);}4、递推平均滤波法(又称滑动平均滤波法)/**/#define N 12char value_buf[N];char i=0;char filter(){char count;int sum=0;value_buf[i++] = get_ad();if ( i == N ) i = 0;for ( count=0;count<N,count++)sum = value_buf[count];return (char)(sum/N);}5、中位值平均滤波法(又称防脉冲干扰平均滤波法)/**/#define N 12char filter(){char count,i,j;char value_buf[N];int sum=0;for (count=0;count<N;count++) {value_buf[count] = get_ad(); delay();}for (j=0;j<N-1;j++){for (i=0;i<N-j;i++){if ( value_buf>value_buf[i+1] ) {temp = value_buf;value_buf = value_buf[i+1]; value_buf[i+1] = temp;}}}for(count=1;count<N-1;count++) sum += value[count];return (char)(sum/(N-2));}6、限幅平均滤波法/**/略参考子程序1、37、一阶滞后滤波法/* 为加快程序处理速度假定基数为100,a=0~100 */#define a 50char value;char filter(){char new_value;new_value = get_ad();return (100-a)*value + a*new_value;}8、加权递推平均滤波法/* coe数组为加权系数表,存在程序存储区。

种滤波算法程序大全(含源代码分享)

种滤波算法程序大全(含源代码分享)

种滤波算法程序大全(含源代码分享)一、均值滤波1.1包络滤波其原理是将每个像素值替换为周围像素点的加权平均值,即取该点的邻域像素点的均值作为替换像素点的值,通过提高平均灰度和减少椒盐噪声作用。

//源代码// 函数名:meanFilte//功能:均值滤波// 输入:srcImg:源图像; meanImg:均值flied后的图像// 返回:voidvoid meanFilter(Mat srcImg, Mat meanImg)int m=srcImg.rows;int n=srcImg.cols;//掩模矩阵int mask_i, mask_j;int i, j;int sum;int mask_size=3;//maskSize=3时,卷积核为3*3的矩阵,mask_i代表卷积核中行,mask_j代表列for (mask_i = -mask_size/2;mask_i<=mask_size/2;mask_i++)for (mask_j = -mask_size/2;mask_j<=mask_size/2;mask_j++)//遍历源图像的每个像素点for (i=0;i<m;i++)for (j=0;j<n;j++)if ((mask_i+i>=0) && (mask_i+i<m) &&(mask_j+j>=0) && (mask_j+j<n))sum+=srcImg.at<uchar>(mask_i+i,mask_j+j);meanImg.at<uchar>(i,j)=sum/9;}}}1.2高斯滤波其原理是将每个像素值替换为其周围像素点与其距离的加权平均值,通过减小噪声频率,降低噪声增强图像边缘的作用。

//源代码// 函数名:gaussianFilte//功能:高斯滤波// 输入:srcImg:源图像; gausImg:高斯滤波后的图像// 返回:voidvoid gaussianFilter(Mat srcImg, Mat gausImg)int m=srcImg.rows;int n=srcImg.cols;//掩模矩阵int mask_i, mask_j;int i, j;int sum;。

单片机C语言程序--十种软件滤波方法

单片机C语言程序--十种软件滤波方法
if ( value_buf[i]>value_buf[i+1] ) {
temp = value_buf[i]; value_buf[i] = value_buf[i+1]; value_buf[i+1] = temp; } } } return value_buf[(N‐1)/2]; }
3、算术平均滤波法 A、方法: 连续取 N 个采样值进行算术平均运算 N 值较大时:信号平滑度较高,但灵敏度较低 N 值较小时:信号平滑度较低,但灵敏度较高 N 值的选取:一般流量,N=12;压力:N=4 B、优点: 适用于对一般具有随机干扰的信号进行滤波 这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动 C、缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用 比较浪费 RAM
10、限幅消抖滤波法 A、方法: 相当于“限幅滤波法”+“消抖滤波法” 先限幅,后消抖 B、优点: 继承了“限幅”和“消抖”的优点 改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统 C、缺点: 对于快速变化的参数不宜
参考子程序 1、9 /bbs/bbs_content.jsp?bbs_sn=3226367&bbs_id=9999
if ( value_buf[i]>value_buf[i+1] ) {
temp = value_buf[i]; value_buf[i] = value_buf[i+1]; value_buf[i+1] = temp; } } } for(count=1;count<N‐1;count++) sum += value[count]; return (char)(sum/(N‐2)); }
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、限幅滤波法/****************************************************函数名称:AmplitudeLimiterFilter()-限幅滤波法*优点:能有效克服因偶然因素引起的脉冲干扰*缺点:无法抑制那种周期性的干扰,且平滑度差*说明:1、调用函数GetAD(),该函数用来取得当前值2、变量说明Value:最近一次有效采样的值,该变量为全局变量NewValue:当前采样的值ReturnValue:返回值3、常量说明A:两次采样的最大误差值,该值需要使用者根据实际情况设置*入口:Value,上一次有效的采样值,在主程序里赋值*出口:ReturnValue,返回值,本次滤波结果****************************************************/#define A 10unsigned char Valueunsigned char AmplitudeLimiterFilter(){unsigned char NewValue;unsigned char ReturnValue;NewValue=GatAD();if(((NewValue-Value)>A))||((Value-NewValue)>A)))ReturnValue=Value;else ReturnValue=NewValue;return(ReturnValue);}2、中位值滤波法/*****************************************************函数名称:MiddlevalueFilter()-中位值滤波法*优点:能有效克服因偶然因素引起的波动干扰;对温度、液位等变化缓慢的被测参数有良好的滤波效果*缺点:对流量,速度等快速变化的参数不宜*说明:1、调用函数GetAD(),该函数用来取得当前值Delay(),基本延时函数2、变量说明ArrDataBuffer[N]:用来存放一次性采集的N组数据Temp:完成冒泡法试用的临时寄存器i,j,k:循环试用的参数值3、常量说明N:数组长度*入口:*出口:value_buf[(N-1)/2],返回值,本次滤波结果*****************************************************/#define N 11unsigned char MiddlevalueFilter(){unsigned char value_buf[N];unsigned char i,j,k,temp;for(i=0;i<N;i++){value_buf[i] = get_ad();delay();}for (j=0;j<N-1;j++){for (k=0;k<N-j;k++){if(value_buf[k]>value_buf[k+1]){temp = value_buf[k];value_buf[k] = value_buf[k+1];value_buf[k+1] = temp;}}}return value_buf[(N-1)/2];}3、算术平均滤波法/*********************************************************说明:连续取N个采样值进行算术平均运算优点:试用于对一般具有随机干扰的信号进行滤波。

这种信号的特点是有一个平均值,信号在某一数值范围附近上下波动。

缺点:对于测量速度较慢或要求数据计算较快的实时控制不适用。

**********************************************************/#define N 12char filter(){unsigned int sum = 0;unsigned char i;for (i=0;i<N;i++){sum + = get_ad();delay();}return(char)(sum/N);}4、递推平均滤波法(又称滑动平均滤波法)/***************************************************说明:把连续N个采样值看成一个队列,队列长度固定为N。

每次采样到一个新数据放入队尾,并扔掉队首的一次数据。

把队列中的N各数据进行平均运算,既获得新的滤波结果。

优点:对周期性干扰有良好的抑制作用,平滑度高;试用于高频振荡的系统缺点:灵敏度低;对偶然出现的脉冲性干扰的抑制作用较差,不适于脉冲干扰较严重的场合****************************************************/#define N 12unsigned char value_buf[N];unsigned char filter(){unsigned char i;unsigned char value;int sum=0;value_buf[i++] = get_ad(); //采集到的数据放入最高位for(i=0;i<N;i++){value_buf[i]=value_buf[i+1]; //所有数据左移,低位扔掉sum += value_buf[i];}value = sum/N;return(value);}5、中位值平均滤波法(又称防脉冲干扰平均滤波法)/********************************************说明:采一组队列去掉最大值和最小值优点:融合了两种滤波的优点。

对于偶然出现的脉冲性干扰,可消除有其引起的采样值偏差。

对周期干扰有良好的抑制作用,平滑度高,适于高频振荡的系统。

缺点:测量速度慢*********************************************/#define N 12uchar filter(){unsigned char i,j,k,l;unsigned char temp,sum=0,value;unsigned char value_buf[N],;for(i=0;i<N;i++){value_buf[i] = get_ad();delay();}//采样值从小到大排列(冒泡法)for(j=0;j<N-1;j++){for(i=0;i<N-j;i++){if(value_buf[i]>value_buf[i+1]){temp = value_buf[i];value_buf[i] = value_buf[i+1];value_buf[i+1] = temp;}}}for(i=1;i<N-1;i++)sum += value_buf[i];value = sum/(N-2);return(value);}6、递推中位值滤波法/************************************************优点:对于偶然出现的脉冲性干扰,可消除由其引起的采样值偏差。

对周期性干扰有良好的抑制作用,平滑度高;试用于高频振荡的系统缺点:测量速度慢*************************************************/char filter(char new_data,char queue[],char n){char max,min;char sum;char i;queue[0]=new_data;max=queue[0];min=queue[0];sum=queue[0];for(i=n-1;i>0;i--){if(queue[i]>max)max=queue[i];else if (queue[i]<min)min=queue[i];sum=sum+queue[i];queue[i]=queue[i-1];}i=n-2;sum=sum-max-min+i/2; //说明:+i/2的目的是为了四舍五入sum=sum/i;return(sum);}7、限幅平均滤波法/************************************************优点:对于偶然出现的脉冲性干扰,可消除有其引起的采样值偏差。

*************************************************/#define A 10#define N 12unsigned char data[];unsigned char filter(data[]){unsigned char i;unsigned char value,sum;data[N]=GetAD();if(((data[N]-data[N-1])>A||((data[N-1]-data[N])>A))data[N]=data[N-1];//else data[N]=NewValue;for(i=0;i<N;i++){data[i]=data[i+1];sum+=data[i];}value=sum/N;return(value);}8、一阶滞后滤波法/*****************************************************函数名称:filter()-一阶滞后滤波法*说明:1、调用函数GetAD(),该函数用来取得当前值Delay(),基本延时函数2、变量说明Or_data[N]:采集的数据Dr0_flag、Dr1_flag:前一次比较与当前比较的方向位coeff:滤波系数F_count:滤波计数器3、常量说明N:数组长度Thre_value:比较门槛值*入口:*出口:*****************************************************/#define Thre_value 10#define N 50float Or_data[N];unsigned char Dr0_flag=0,Dr1_flag=0;void abs(float first,float second){float abs;if(first>second){abs=first-second;Dr1_flag=0;}else{abs=second-first;Dr1_flag=1;}return(abs);}void filter(void){uchar i=0,F_count=0,coeff=0;float Abs=0.00;//确定一阶滤波系数for(i=1;i<N;i++){Abs=abs(Or_data[i-1],Or_data[i]);if(!(Dr1_flag^Dr0_flag)) //前后数据变化方向一致{F_count++;if(Abs>=Thre_value){F_count++;F_count++;}if(F_count>=12)F_count=12;coeff=20*F_count;}else //去抖动coeff=5;//一阶滤波算法if(Dr1_flag==0) //当前值小于前一个值Or_data[i]=Or_data[i-1]-coeff*(Or_data[i-1]-Or_data[i])/256;elseOr_data[i]=Or_data[i-1]+coeff*(Or_data[i]-Or_data[i-1])/256;F_count=0; //滤波计数器清零Dr0_flag=Dr1_flag;}}9、加权递推平均滤波法/************************************************************ coe:数组为加权系数表,存在程序存储区。

相关文档
最新文档