高等数学公式、定理 最全版
全部高等数学计算公式
全部高等数学计算公式高等数学是数学的一个分支,包括微积分、线性代数、数理方程、概率论、复分析等多个内容。
每个分支都有大量的计算公式,下面将分别介绍这些分支中一些经典的计算公式。
一、微积分公式1.极限公式:(1)函数极限公式:$lim(f(x)±g(x))=limf(x)±limg(x)$$lim(f(x)g(x))=limf(x)·limg(x)$$lim\frac{{f(x)}}{{g(x)}}=\frac{{limf(x)}}{{limg(x)}}$(2)常见函数极限:$lim\frac{{sinx}}{{x}}=1$$lim(1+\frac{1}{{n}})^n=e$$lim(1+\frac{1}{{n}})^{n(p-q)}=e^{(p-q)}$2.导数公式:(1)基本导数公式:$(c)'=0$$(x^n)'=nx^{n-1}$$(e^x)'=e^x$$(a^x)'=a^xlna$$(lnx)'=\frac{1}{{x}}$$(sinx)'=cosx$$(cosx)'=-sinx$$(tanx)'=sec^2x$(2)导数的四则运算:$(f(x)\pm g(x))'=f'(x)\pm g'(x)$$(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)$$(\frac{{f(x)}}{{g(x)}})'=\frac{{f'(x)g(x)-f(x)g'(x)}}{{g^2(x)}}$(3)链式法则:$(f(g(x)))'=f'(g(x))g'(x)$3.积分公式:(1)基本积分公式:$\int{cx^n}dx=\frac{{cx^{n+1}}}{{n+1}}+C$$\int{e^x}dx=e^x+C$$\int{a^x}dx=\frac{{a^x}}{{lna}}+C$$\int{\frac{{1}}{{x}}}dx=ln,x,+C$$\int{sinx}dx=-cosx+C$$\int{cosx}dx=sinx+C$$\int{sec^2x}dx=tanx+C$(2)常用积分公式:$\int{u}dv=uv-\int{v}du$$\int{sin^2x}dx=\frac{{x}}{2}-\frac{{sin2x}}{4}+C$$\int{cos^2x}dx=\frac{{x}}{2}+\frac{{sin2x}}{4}+C$4.泰勒展开公式:$f(x)=f(a)+f'(a)(x-a)+\frac{{f''(a)}}{{2!}}(x-a)^2+...+\frac{{f^{(n)}}}{{n!}}(x-a)^n+R_n(x)$二、线性代数公式1.行列式公式:(1)二阶行列式:$D=\begin{vmatrix}a&b\\c&d\end{vmatrix}=ad-bc$(2)三阶行列式:$D=\begin{vmatrix}a&b&c\\d&e&f\\g&h&i\end{vmatrix}=aei+bfg+c dh-ceg-afh-bdi$2.矩阵运算公式:(1)两个矩阵的和:$A+B=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix }+\begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}=\begin{bmatrix}a_{11}+b_{11}&a_{12}+b_{12}\\a_{21}+b_{21}&a_{22}+b_{2 2}\end{bmatrix}$(2)两个矩阵的乘积:$AB=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix} \begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}=\begin{ bmatrix}a_{11}b_{11}+a_{12}b_{21}&a_{11}b_{12}+a_{12}b_{22}\\a_{ 21}b_{11}+a_{22}b_{21}&a_{21}b_{12}+a_{22}b_{22}\end{bmatrix}$3.特征值与特征向量公式:$A-\lambda I=0$其中,A为矩阵,$\lambda$为特征值,I为单位矩阵。
高等数学公式、定理 最全版
高等数学公式导数公式:基本积分表:三角函数的有理式积分:一些初等函数: 两个重要极限:三角函数公式:·诱导公式:函数sin cos tg ctg角A-α-sinαcosα-tgα-ctgα90°-αcosαsinαctgαtgα90°+αcosα-sinα-ctgα-tgα180°-αsinα-cosα-tgα-ctgα180°+α-sinα-cosαtgαctgα270°-α-cosα-sinαctgαtgα270°+α-cosαsinα-ctgα-tgα360°-α-sinαcosα-tgα-ctgα360°+αsinαcosαtgαctgα·和差角公式: ·和差化积公式:·倍角公式:·半角公式:·正弦定理:·余弦定理:·反三角函数性质:高阶导数公式——莱布尼兹(Leibniz)公式:中值定理与导数应用:曲率:定积分的近似计算:定积分应用相关公式:空间解析几何和向量代数:多元函数微分法及应用微分法在几何上的应用:方向导数与梯度:多元函数的极值及其求法:重积分及其应用:柱面坐标和球面坐标:曲线积分:曲面积分:高斯公式:斯托克斯公式——曲线积分与曲面积分的关系:常数项级数:级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数:一些函数展开成幂级数:欧拉公式:三角级数:傅立叶级数:周期为的周期函数的傅立叶级数:微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:(*)式的通解两个不相等实根两个相等实根一对共轭复根高等数学定理大全第一章 函数与极限 1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。
函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。
(完整版)高数公式大全(费了好大的劲),推荐文档
lim[ f ( x) g ( x)]
两个重要极限
lim
sin
x
1, lim
sin
x
0; lim(1
1)x
e
lim(1
1
x) x
x0 x
x x
x
x
x0
常用等价无穷小:
1 cos x ~ 1 x2; x ~ sin x ~ arcsin x ~ arctan x; n 1 x 1 ~ 1 x;
lim n0
n i 1
f(i)1 nn
F (b) F (a) F (x)
b a
,
(F(x) f (x))
连续可积; 有界+有限个间断点可积; 可积有界; 连续原函数存在
(x) x f (t)dt (x) f (x) a
d (x) f (t)dt f [(x)](x) f [ (x)] (x)
1 x
n0
3、
弧微分公式:ds 1 y2 dx x(t) y(t)2 dt 2 2 d
平均曲率:K从点到点.(, 切: 线M斜率的M倾 角变化量;: s
弧长)
s MM
M点的曲率:K lim d s0 s ds
y
(t) (t) (t) (t)
= (1 y2 )3
Байду номын сангаас
3
[2 (t) 2 (t)]2
x2 a2 2a x a
a2 x2 2a a x
dx ln(x x2 a2 ) C;
x2 a2
x2 a2 dx x x2 a2 a2 ln(x x2 a2 ) C;
2
2
a2 x2 dx x a2 x2 a2 arcsin x C
高等数学公式大全(免费)
高等数学公式大全一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ导数公式:高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。
高等数学公式定理全集(完整编辑版)
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。
高等数学公式、定理最全版
高等数学公式导数公式:根本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβα-+=--+=+βαβαβαβαβαβαβαβαtg tg tg ±=±=±±=±)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xx x x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹〔Leibniz 〕公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
(完整版)大学应用数学(高等数学)最全公式知识点总结
高等数学初等函数正弦定理:I (R 为外接關的半径)Mn Λ Mn B Sln C余弦定理:a 2 = h 2 ÷c* -2∕κ cos4 同角三角:Sin Λ esc Λ = I CoSASeC 4 = I tan Aco< A一 ISirMtan 4 = ---- ;CoM cosΛ COM ∙=τ;sin 4两角和差:Sin(A 土 8)= Sin Λco ⅛ B ± cυ⅛ A Sill B ∙ cos(Λ ± Λ) = CoS A COS S z fSin Λ sin B; m m ZjlS <anΛ⅛tangITlanA tan R二倍角:sin2Λ = 2sin ACoS B;co,2A ≡ ex' 4 -sin : Λ ■ 2cos 2 A -12 tan 4积化和畫:»[sin(4 + fl)÷sin(4-Λ)l Cm AMn // = -[MΠ(∕I ÷ Λ)-MΠ(4-Λ)JCOS A CoS λ1:ICoS(Zl ÷ 8) +CoS(A -Mn AMn U = ■一[c<n(4 ÷ B)^Cm(A- 〃)}和差化积^・ n r Λ-Λ SIn Λ ÷ sin Λ = 2 Sln ------ ∙CoS ------------------2 2Sin ? A + cm' A ∙ II ÷ tan * A = see* A1-2M ∩2Λ; tan 2 A ■ ,I-Ian* ADr A^B . A-B sιnΛ -M∏β = ∖∙s∣∣∣2 2nC Λ + β Λ —ΛCoSA ÷cσsW = 2 cos - ∙cos ----- ;2 2 O O・ A^B ・ A-Bcos Λ - cos β = -2 Mn ——∙sm——反三角函数:Mn(afCM∏ r)≡ r;x€ [-1.l];cos(arccosx)≡ x:XG 卜 Ll}ian(arcun X)= x;je I-8.÷∞}co((arccot.v)=x;Xe ∣-∞.*<*}; 等差数列:≡<ιl ÷π2 +・・・*《 求 M√ ∏ 项% ≡α∣ (Λ-1M注:dl ⅛公淮求第n 项和= g等比数列:l÷2÷4÷8÷..→α19^求第n 顶^ S "广 求第n 项和:S Il ■止£)・竺空 I -q I -q算术平均数大于或等于几何平均数值:绝对值不等式:Il-IyI≤∣Λ±3⅛≤∣-t∣>∣)∙∣ 对数运算:Iog -M ≡⅛^;Iog^≡7J-gaIOgAa因式分解,<ι' ±b l =(α±b)((f' ^ab^b') 二项式定理,(4÷∕r)n =C> + C 1IIΛΛ ,Λ + C^Λ∙,4 ∙→Ctf w阶乘与半阶乗5为自然数): 阶乘:Λ!=∏X: =l×2×3×∙∙∙×∕∣ζθ!=li-4(2n)!!=ΓI(2⅛)=2×4×6×∙∙∙×(2Λ) = 24∙Λkυ!!=(λ半阶乘:l ∙l.(2M ÷ l>!= fl (2⅛ ÷ l)≡ I×3×5×-×(2Λ ÷ t)一元二次方程:ax : +bx÷c = O W 为 A = b' 4u< 当XO 时右•个虬当A>0时仃刈个解:当,0时无解:>0l∣∙t JFu 向上: a<0 时 JFl I 向下 方用组的解:,空坐二3Iaarvsin(-x)® -arcMn.r :x€ [-l.∣} arccos(- x) = Λ, -arccos.∏Λ G 卜 LIl arvtan(-j) = -arvtanx;j€ ∣-∞.⅛co); CIrC COt(-x)≡ ΛF-(IrCCOt x;xe [-oo,⅛coj韦达定理:Λl+Λ; =--IΛlΛy ≡-iΛl.Λ,为腐个根a a用韦达定理解三次方程:若F + p.『+g"r・0的三个根分别为x...r;.x, 则X| +X1 +X3= ./>;旺∙Λ2÷ X1∙ X j÷ X1∙ X1 = q;X\∙χ1∙χj≡-Γ 抛物线:抛物线y = αr ⅛ΛΛ÷C性质:对祢轴为:: 顶点为*竺MIa 4a抛物线标准方稈:√=2px⅛1=2p)∙) 焦点:卷.0): 准线方程:XT 楠圆:Iffi I 用标准方IV; ^j∙∙t∙^y — I为“ >b时c∙■ Jo匚b;•焦点F仕cθ);准线方程:x≡±-;C肉心率:r = — < 1a'l^a <b时C = JW ,焦点F(O,±c):准线方程:x = d-:离心那:r • - < Ih参数方程;I X=^oSj.(0<r<2π)(y ≡hsιnr双曲线,双曲线的标准方程:⅛='准线方程:x≡±≤- 渐近线方稈:y = t —x:离心率:e = — > 1 •其中c≈∖∣cι2 ÷fr'aaHx = α tan / '∣ y≡ΛsccJ初等几何公式,设/为、卜径.h 为氐f 为MJK. S 为而积•"为体职。
高等数学基本公式与定理
高等数学常用公式与定理一、代数运算1.()222=2a b a ab b ±±+;2.()33223=33a b a a b ab b ++++;3.()33223=33a b a a b ab b --+-;4.22=()()a b a b a b -+-;5.3322=()()a b a b a ab b ++-+;6.3322=()()a b a b a ab b --++;二、指数运算1.n m nm a a a ⋅=+;2.m nmn aa a =-;3.()()nm mnnm a a a ==;4.()n mm n mn a a a==(最后一个式子0>a )三、对数运算1.Na Ma MNalog log log +=;2.Na Ma N Ma log log log -=;3.Ma M aN Nlog log =;4.MaNaNMlog log log =;5.0log 1=a ,特别有01ln =;6.1log =aa ,特别有1ln =e ;7.C C a a=log ,特别有C e C =ln ;8.()0log >=C aC Ca ,特别有C e C ln =;四、三角函数运算1.平方关系:1cos sin 22=+x x ;x x 22sec 1tan =+;xx 22csc 1cot =+2.倍角关系:x x x cos sin 22sin =;1cos 2sin 21sin cos 2cos 2222-=-=-=x x x x x ;3.半角关系:2cos 2sin 2sin xx x =;12cos 22sin 212sin 2cos cos 2222-=-=-=xx x x x ;4.和差公式:()βαβαβαsin cos cos sin sin ±=±;()βαβαβαsin sin cos cos cos =±;5.积化和差:()()()B A B A B A -++=sin sin 21cos sin ;()()()B A B A B A --+=sin sin 21sin cos ;()()()B A B A B A -++=cos cos 21cos cos ()()()B A B A B A --+-=cos cos 21cos cos 6.1.互余关系:2arccos arcsin π=+x x ;2cot arctan π=+x arc x 2.常用的反三角函数值:七、数列求和公式1.等差数列求和公式:等差数列n a a a ,...,,21,则()21na a S n n +=2.等比数列公式:等比数列n a a a ,...,,21,其中公比为q ,则()qq a S nn -+=111第一章函数、极限、连续一、函数1.奇偶性运算:奇函数±奇函数=奇函数;奇函数×(÷)奇函数=偶函数;偶函数±偶函数=偶函数;偶函数×(÷)偶函数=偶函数;奇函数±偶函数=非奇非偶函数;奇函数×(÷)偶函数=奇函数;()偶函数奇函数=';()奇函数偶函数=';⎰=偶函数奇函数dx ;⎰=不一定偶函数dx ;⎰=x dx 0偶函数奇函数;⎰=xdx 0奇函数偶函数;2.反函数运算(1)nnnx y y x x y 11=→=→=;(2)x y y x a y a a x log log =→=→=;(3)x y a a y a x x y =→=→=log ;(4)x y y x x y arcsin arcsin sin =→=→=(其余三角函数类似)(5)x y y x x y sin sin arcsin =→=→=(其余反三角函数类似)3.周期运算:已知()x f 的周期为T ,则()ax f 的周期为aT 二、极限1.左右极限问题:(1)()()A x f A x f x x =⇔=+∞→∞→lim lim 且()Ax f x =-∞→lim (2)()()()+-0lim lim lim x xx x x x f x A f x f x A→→→=⇔==2.无穷小量和有界函数乘积为0:01sin lim 0=→x x x ,0sin lim =∞→x xx 3.两个重要极限:(1)1sin lim 0=→x x x ,11sin lim =∞→xx x (2)e x xx =⎪⎭⎫⎝⎛+∞→11lim ,()ex x x =+→101lim 4.有理函数极限计算(抓大头)⎪⎪⎩⎪⎪⎨⎧>∞=<=++++++--∞→mn m n b a m n b x b x b a x a x a m m m n n n x ,,,0......lim 001101105.无穷小与无穷大(1)倒数关系:∞=01,01=∞(2)比较(β是α的):(a)高阶:()()0lim=x a x β;(b)低阶:()()∞=x a x βlim(c)同阶:()()()0,lim≠=C C x a x β(d)等价:()()1lim=x a x β(3)常用等价无穷小量(0→x )x x ~sin ,x x ~tan ,x x ~arcsin ,x x ~arctan ,x e x ~1-,()x x ~1ln +,2~cos 12x x -,n x x n ~11-+,()x x αα~11-+,()m n x x x x m n m n n n >+++---~...16.洛必达法则(1)00型:若()0lim =x f ,()0lim =x g ,则()()()()x g x f x g x f ''=lim lim(2)∞∞型:若()∞=x f lim ,()∞=x g lim ,则()()()()x g x f x g x f ''=lim lim三、连续1.连续的定义:(1)0lim 0=∆→∆y x (2)()()00lim x f x f x x =→2.零点定理:设()x f 在[]b a ,上连续,且()()0<b f a f ,则至少存在一点()b a ,∈ξ,使得()0=ξf 。
高等数学必背公式大全
高等数学必背公式大全1、勾股定理:a2+b2=c22、椭圆方程:(x-x0)2/a2+(y-y0)2/b2=13、两点公式:,P1P2,=√((x2-x1)2+(y2-y1)2)4、双曲线方程:a2(x2/b2)-(y2/c2)=15、圆的方程:(x-x0)2+(y-y0)2=r26、三角形公式:a2+b2=c27、直线方程:y = kx + b (斜率k和截距b)8、斜率定理:m1*m2=-1/K29、余弦定理:a2 = b2 + c2 - 2bc*cosA10、正弦定理:a * sinA = b * sinB = c * sinC11、贝塞尔曲线方程:(x-x0)4+(y-y0)4=r412、三角函数公式:sin2A + cos2A = 113、极坐标方程:r = a * e(acosθ + bsinθ)14、反正弦定理:y = arcsin(x/a) + c15、偏微分公式:dy/dx = (dy/du) * (du/dx)16、平面四边形公式:a2+b2=c2+d217、反余弦定理:y = arccos(x/a) + c18、三角形面积公式:S = 1/2 * a * b * sinC19、多边形内角和公式:(n-2)*π=∑(内角弧度)20、抛物线公式:y=ax2+bx+c21、多项式求导公式:f'(x) = an-1 * xn-1 + an-2 * xn-2 + …… + a1 * x + a022、函数变换公式:f(x+h) = f(x) + hf'(x)23、矩阵乘法公式:(AB)ij = ∑k=1n(Aik*Bkj)24、求和公式:∑(a1+an)*n/225、模除法:a / b = a mod b + b * (a div b)26、几何平均数公式:(a1*a2*a3*……*an)^(1/n)27、距离公式:L=(x2-x1)^2+(y2-y1)^228、几何中点公式:(x1+x2)/2,(y1+y2)/229、坐标转换公式:x = x0 + (x-x0)cosα - (y-y0)sinα。
高等数学常用公式与定理总结
高等数学常用公式与定理总结作为一门基础学科,高等数学在各个领域中发挥着重要的作用。
学习高等数学,掌握一些常用的公式与定理是非常必要的。
本文将对高等数学常用的公式与定理进行总结,以供读者参考和下载使用。
一、常用公式总结1. 三角函数公式- 正弦定理:在三角形ABC中,边长分别为a、b、c,对应的角为A、B、C,那么有:a/sinA = b/sinB = c/sinC- 余弦定理:在三角形ABC中,边长分别为a、b、c,对应的角为A、B、C,那么有:c^2 = a^2 + b^2 - 2abcosC- 正切公式:tan(A+B) = (tanA + tanB) / (1 - tanA*tanB)2. 导数与微分公式- 导数的链式法则:若y = f(u)和u = g(x)都可导,则复合函数y = f(g(x))的导数为:dy/dx = f'(g(x)) * g'(x)- 微分的乘法法则:若z = u * v,则dz = u * dv + v * du- 微分的复合法则:若z = f(u)且u = g(x)都可导,则复合函数z = f(g(x))的微分为:dz = f'(g(x)) * g'(x) * dx3. 级数公式- 幂级数:若幂级数∑(n=0,∞)an(x-a)^n的收敛半径为R,则在收敛区间内函数f(x)的表达式为:f(x) = ∑(n=0,∞)an(x-a)^n- 等比数列的和:如果|q| < 1,则等比数列∑(n=0,∞)aq^n的和为:S = a / (1 - q)二、常用定理总结1. 一元函数极值定理设函数f(x)在[a, b]上连续,在(a, b)内可导,且在(a, b)内具有极值,那么它的极值点必定在(a, b)内的某个驻点或者两个端点上。
2. 泰勒公式设函数f(x)在点a附近有直到n阶的连续导数,那么函数在点a处的泰勒展开式为:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ... + f^n(a)(x-a)^n/n! + Rn(x)3. 全微分定理设函数z = f(x, y)在点(x0, y0)的某一邻域内偏导数存在且连续,那么在点(x0, y0)处可微分,且有:δz = ∂f/∂x * δx + ∂f/∂y * δy三、总结与下载通过本文的总结,我们对高等数学的常用公式与定理进行了梳理。
最完整高数公式大全赶紧了以后用
最完整高数公式大全赶紧了以后用1.极限相关公式:- 极限定义:如果对于任意一个给定的正数ε,存在正数δ,使得只要x与a的距离小于δ,则必有f(x)与L的距离小于ε,即lim(x→a)f(x)=L。
2.一元函数相关公式:- 基本求导法则:(C)'=0,(xⁿ)'=nxⁿ⁻¹,(sinx)'=cosx,(cosx)'=-sinx,(tanx)'=sec²x,(cotx)'=-csc²x,(secx)'=secxtanx,(cscx)'=-cscxcotx。
- 链式法则:设y=f(u),u=g(x),则y=f(g(x)),则y'=(dy)/(dx)=(dy)/(du)*(du)/(dx)=f'(u)*g'(x)。
-高阶导数:(fⁿ(x))'=fⁿ⁻¹(x)·f'(x),其中n为正整数。
-函数泰勒级数展开式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)²/2!+…+fⁿ(a)(x-a)ⁿ/n!+Rⁿ(x),其中Rⁿ(x)为剩余项。
- 微分方程:设y=f(x),则dy/dx=f'(x),d²y/dx²=f''(x),…3.多元函数相关公式:-偏导数:设z=f(x,y),则∂z/∂x表示在y固定的条件下对x的变化率,∂z/∂y表示在x固定的条件下对y的变化率。
-链式法则:设z=f(x,y),x=g(u,v),y=h(u,v),则∂z/∂u=∂z/∂x*∂x/∂u+∂z/∂y*∂y/∂u,…- 梯度:设z=f(x₁,x₂,…,xₙ),则gradz=(∂z/∂x₁,∂z/∂x₂,…,∂z/∂xₙ)。
- 散度:设F=(P,Q,R)为一个三维向量场,则divF=∂P/∂x+∂Q/∂y+∂R/∂z。
高等数学公式定理(全)
………………………………………………最新资料推荐………………………………………·平方关系:sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α) ·积的关系:sinα=tanα*cosαcosα=cotα*sinαtan α=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1 sinα·cscα=1 cos α·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边正切等于对边比邻边, ·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cos α·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cos α·sinβtan(α+β)=(tanα+tanβ)/(1-tan α·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sin α·sinβ·sinγcos(α+β+γ)=cosα·cos β·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tan α·tanβ-tanβ·tanγ-tanγ·tanα) ·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B ·倍角公式:sin(2α)=2sin α·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1= 1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] ·三倍角公式:sin(3α)=3sinα-4sin^3(α) cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cos α)/(1+cosα))=sinα/(1+cosα)=(1-cos α)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) ·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tan α=2tan(α/2)/[1-tan^2(α/2)] ·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sin α-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] ·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2 ·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A +B)=0三角函数的角度换算[编辑本段] 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sin αcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sin αcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin (-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z) 部分高等内容[编辑本段] ·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)] 泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
高等数学公式、定理 最全版(2020年10月整理).pdf
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+−=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅−='⋅='−='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +−='+='−−='−='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+−=⋅+=⋅+−==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=−+−+=−++−=−+=++−=++=+=+−=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++−=−+−+−−=−+++++=+−===−Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα−+=−−+=+−+=−−+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx −+=−+±=++=+−==+=−=−−−−11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin −=+=−+±=+=−=+−±=+±=−±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222−+=·反三角函数性质:arcctgx arctgx x x −=−=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++−−++''−+'+==−−−=−∑中值定理与导数应用:拉格朗日中值定理。
高等数学公式定理(全)
·平方关系:sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边正切等于对边比邻边, ·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sin βtan(α+β)=(tanα+tanβ)/(1-tan α·tanβ)tan(α-β)=(tanα-tanβ)/(1+tan α·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cos α·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cos α·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tan β-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B ·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cot α)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)= 0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
高数公式大全
高数公式大全高等数学是一门涉及多个分支和概念的学科,其中包含了许多重要的公式和定理。
以下是一些高等数学中常用的公式和定理的详细内容:1. 极限与连续性:- 极限的定义:对于函数f(x),当x无限接近于某个值a时,如果f(x)的值无限接近于L,则称L为f(x)在x=a处的极限,记作lim(x→a)f(x)=L。
- 常用极限公式:- lim(x→a)(c) = c,其中c为常数。
- lim(x→a)(x^n) = a^n,其中n为正整数。
- lim(x→a)(sin(x)) = sin(a)。
- lim(x→a)(e^x) = e^a,其中e为自然对数的底数。
- lim(x→∞)(1/x) = 0。
- lim(x→0)(sin(x)/x) = 1。
2. 导数与微分:- 导数的定义:对于函数f(x),在某个点x=a处的导数表示函数在该点的变化率,记作f'(a)或df(x)/dx|_(x=a)。
- 常用导数公式:- (c)' = 0,其中c为常数。
- (x^n)' = nx^(n-1),其中n为正整数。
- (sin(x))' = cos(x)。
- (cos(x))' = -sin(x)。
- (e^x)' = e^x。
- (ln(x))' = 1/x。
- 微分的定义:对于函数f(x),在某个点x=a处的微分表示函数在该点的线性近似,记作df(x)。
- 常用微分公式:- df(x) = f'(x)dx。
3. 积分与定积分:- 不定积分的定义:对于函数f(x),其不定积分表示函数的原函数,记作∫f(x)dx。
- 常用不定积分公式:- ∫(c)dx = cx,其中c为常数。
- ∫(x^n)dx = (1/(n+1))x^(n+1),其中n不等于-1。
- ∫(sin(x))dx = -cos(x)。
- ∫(cos(x))dx = sin(x)。
- ∫(e^x)dx = e^x。
高等数学上常用公式定理
高等数学上常用公式定理1.导数的基本公式:(a) (c^k)' = kc^(k-1) * f'(x) ,其中c为常数,k为常数(b) (ax^n)' = anx^(n-1),其中a为常数,n为常数(c) (sinx)' = cosx, (cosx)' = -sinx, (tanx)' = sec^2x, (cotx)' = -csc^2x(d) (lnx)' = 1/x,(ex)' = ex , (a^x)' = a^x * ln(a)2.基本积分公式:(a) ∫kdx = kx + C,其中k为常数,C为常数(b) ∫x^n dx = (x^(n+1))/(n+1) + C,其中n≠-1,C为常数(c) ∫1/x dx = ln,x, + C,其中C为常数(d) ∫e^xdx = e^x + C3.基本微分方程:(a) dy/dx + P(x)y = Q(x),其中P(x)和Q(x)为已知函数,求解y(x)(b)y'+P(x)y=g(x),其中P(x)和g(x)为已知函数,求解y(x)(c)y'+yP(x)=Q(x),其中P(x)和Q(x)为已知函数,求解y(x)4.泰勒级数展开:函数f(x)在a点的n阶泰勒级数展开式为:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+R_n(x),其中R_n(x)为剩余项5.定积分的基本定理:(a) 若F(x)是f(x)的一个原函数,则有∫[a,b] f(x)dx = F(b) -F(a)(b) 若F(x)是f(x)的一个原函数,则有∫[a,b]f(x)dx =∫[a,c]f(x)dx + ∫[c,b]f(x)dx,其中a < c < b6.常用级数:(a)等比数列求和公式:Sn=a(1-q^n)/(1-q),其中a为首项,q为公比(b)幂级数:f(x)=Σ(a_n*x^n),其中a_n为常数,n从0到无穷大7.连续函数定理:如果函数f(x)在区间[a,b]上连续,且在[a,b]的任意一点x处可导,则f(x)在[a,b]上有界。
高数公式定理大全
高数公式定理大全一、导数和微分1.导数的定义:如果函数f(x)在点x0处可导,则函数f(x)在x0处的导数为:f'(x0) = lim(x→x0) (f(x) - f(x0))/(x - x0)。
2.常见函数的导数:(1)幂函数的导数:(x^n)' = nx^(n-1)。
(2)指数函数的导数:(a^x)' = a^x ln(a),其中a是一个正实数。
(3)对数函数的导数:(ln x)' = 1/x。
(4)三角函数的导数:- (sin x)' = cos x。
- (cos x)' = -sin x。
- (tan x)' = sec^2 x。
- (cot x)' = -csc^2 x。
- (sec x)' = sec x tan x。
- (csc x)' = -csc x cot x。
3.高阶导数:函数f(x)的n阶导数可表示为:f^(n)(x) 或 d^n f / dx^n。
4.微分的定义:函数f(x)在点x0处的微分为:df = f'(x0) dx。
5.微分的性质:(1)微分与导数的关系:df = f'(x) dx。
(2)微分的加法性质:d(u + v) = du + dv。
(3)微分的乘法性质:d(uv) = u dv + v du。
(4)微分的链式法则:如果 y = f(u) 和 u = g(x),则 dy/dx = dy/du * du/dx。
二、积分1.定积分的定义:如果函数f(x)在闭区间[a, b]上有定义,且在[a, b]上可积,则记作∫(a→b) f(x) dx,表示从a到b的f(x)在x轴正方向的面积。
2.基本积分公式:(1)幂函数的积分:∫x^n dx = (x^(n+1))/(n+1) + C,其中C为常数。
(2)三角函数的积分:- ∫sin x dx = -cos x + C。
(完整word版)高数公式大全(费了好大的劲)
高等数学公式汇总第一章 一元函数的极限与连续1、一些初等函数公式:sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot ()()sh sh ch ch sh ch ch ch sh sh αβαβαβαβαβαβαβαβαβαβαββααβαβαβαβαβαβ±=±±=±±=⋅⋅±=±±=±±=±和差角公式:sin sin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=和差化积公式: 1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos [cos()cos()]21sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式:2222222222sin 22sin cos cos22cos 112sin cos sin2tan tan 21tan cot1cot 22cot 2221221sh sh ch ch sh ch ch sh αααααααααααααααααααααα==-=-=-=--===+==-=+倍角公式:22222222sin cos 1;tan 1sec ;cot 1csc ;1sin 2cos 21cos sin tan 2sin 1cos 1cos sin cot2sin 1cos x x x x ch x sh x αααααααααααααα+=+=+=-===-==++===-半角公式:::ln(2::ln(211::ln21x xx xx x x x e e shx arshx x e e chx archx x shx e e xthx arthx chx e e x-----==+==±-+===+-双曲正弦;反双曲正弦双曲余弦;反双曲余弦双曲正切;反双曲正切3322()()()a b a b a ab b ±=±+,222(1)(21)126n n n n +++++=22333(1)124n n n ++++=2、极限➢常用极限:1,lim 0n n q q →∞<=;1,1n a >=;1n =➢ ln(1())limln(1())~()()lim[()()]1/()()0,(),lim[1()]f x f x f x g x f x g x g x f x g x f x ee ++±→→∞±=−−−−−−→若则➢ 两个重要极限100sin sin 1lim 1,lim 0;lim(1)lim(1)x x x x x x x x e x x x x→→∞→∞→==+==+ ➢:常用等价无穷小2111cos ~; ~sin ~arcsin ~arctan 1~;2 1~ln ; ~1;(1)~1; ln(1)~x x a x x x x x x x n a x a e x x ax x x--++++3、连续:定义:000lim 0;lim ()() x x x y f x f x ∆→→∆==00lim ()lim ()()()x x x x f x f x f x f x -+-+→→⇔==极限存在或 第二章 导数与微分1、 基本导数公式:00000000()()()()()limlim lim tan x x x x f x x f x f x f x yf x x x x x α∆→∆→→+∆--∆'====∆∆-_0+0()()f x f x -+''⇔=导数存在1220; (); (sin )cos ; (cos )sin ; (tan )sec ; (cot )csc ;(sec )sec tan ; (csc )csc ; ()ln ;();11(log ); (ln ); (arcsin ) (arccos )ln a a x x x x a C x ax x x x x x x x x x x x x x ctgx a a a e e x x x x x a x -''''''======-''''=⋅=-⋅==''''====222211(arctan ); (cot ); ();();1111(); () ())1x arc x shx hx chx shx x x thx arshx archx arthx ch x x ''''==-==++''''====-2、高阶导数:()()()()!()()!; ()ln ()()!n k n k n n x n x n x n x n x x x n a a a e e n k -=⇒==⇒=-()()()1111(1)!1(1)!1!(); (); ()()()n n n n n n n n n n n x x x a x a a x a x +++--===++-- ()()(sin )sin(); (cos )cos();22n n n n kx k kx n kx k kx n ππ=⋅+⋅=⋅+⋅()1()(1)1(1)!1(1)![ln()](1)[ln()]()(1)()n n n n n n nn n a x x a x x x -----+=-⇒==-+ 牛顿-莱布尼兹公式:()()()0()(1)(2)()()()()(1)(1)(1)2!!nn k n k k n k n n n n k k n uv C u v n n n n n k u v nu v u v u v uv k -=---=---+'''=++++++∑3、微分:0()()(); =()();y f x x f x dy o x dy f x x f x dx ''∆=+∆-=+∆∆=⇒⇔⇒连续极限存在收敛有界;=⇔⇔⇒可微可导左导右导连续;⇒不连续不可导第三章微分中值定理与微分的应用1、基本定理()()()(),(,)()()(),(,)()()()F()f b f a f b a a b f b f a f a b F b F a F x x ξξξξξ'-=-∈'-=∈'-=拉格朗日中值定理:柯西中值定理:当时,柯西中值定理就是拉格朗日中值定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。
:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααααααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110 抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=bab a dt t f a b dx x f a b y k rmm k F Ap F sF W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:空间解析几何和向量代数:。
代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。
与是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(2222222212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj ib ac b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u AB AB j z z y y x x M Md zyx z y xzy xzyxz y xzy x z y x zz y y x x z z y y x x u u⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+=-+-+-==(马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+-=-+=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz b y a x c z b y a x q p z q y p x c z b y a x ptz z nty y mtx x p n m s t p z z n y y m x x C B A DCz By Ax d czb y a x D Cz By Ax z y x M C B A n z z C y y B x x A多元函数微分法及应用zy z x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v FuFv u G F J v u y x G v u y x F vu v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:上的投影。