ANSYS单元生死
ANSYS生死单元解析
关于 LSWRITE 和 LSSOLVE的注释
LSWRITE 命令不能同单元生和死选项一起使用,需要采用一系列 显式SOLVE命令进行多载荷步求解。
January 30, 2001 Inventory #001451 10-14
求解的命令流实例
NLGEOM,ON NROPT,FULL ESTIF,… ESEL,… EKILL,… ESEL,S,LIVE NSLE,S NSEL,INVE D,ALL,ALL,0 NSEL,ALL ESEL,ALL D,… F,… SAVE SOLVE ! 打开大变形效果 ! 必须明确设定牛顿-拉普森选项 ! 设定非缺省缩减因子 (可选) ! 选择在本载荷步中将杀死的单元 ! 杀死选择的单元 ! 选择所有活单元 ! 选择所有活节点 ! 选择所有非活节点 ! 约束所有非活的节点自由度 (可选) ! 选择所有节点 ! 选择所有单元 ! 施加合适的约束 ! 施加合适的活动节点自由度载荷 ! 存储数据库 ! 求解
• 如果要对不同的载荷步作后处理,一定要先确信数据库中存有和 该载荷步生死状态相匹配的所有单元的生死状态 (对于改变生死 状态的每一载荷步应作一数据库副本)。
January 30, 2001 Inventory #001451 10-17
使用ANSYS结果控制单元生与死
Training Manual
• 后处理时确信只选择活的单元,如在等值线显示中包括“ 被杀 死”的单元,将在显示衍生节点值 (应力和应变)时污染结果。
January 30, 2001 Inventory #001451 10-22
January 30, 2001 Inventory #001451 10-8
求解
Training Manual
ANSYS生死单元
• 如果需要保持死亡单元的应变记录,可以通过在求解器中改变材 料属性来杀死单元: Solution > Load Step Opts > Other > Change Mat Props • 然而,这一操作不能删除单元集中力、应变、质量、比热等。如 果在求解器中改变材料属性不当,则会导致收敛问题。例如如果 一个单元的刚度被缩减为零,而保留其质量,那么在加速度载荷 的问题中将产生奇异性。
January 30, 2001 Inventory #001451 10-20
问题解答
Training Manual
Basic Structural Nonlinearities 5.7
注意不要因杀死或重新激活单元而在模型中产生奇异性,如尖锐 凹形拐角。这可能导致收敛困难。
杀死单元时应避免锯 齿状边 (凹形拐角)
Session Objective
Training Manual
Basic Structural Nonlinearities 5.7
1. 单元死活的定义 2. 单元死活的应用范畴 3. 单元死活在ANSYS中的实现 4. 单元死活的使用过程 5. 使用ANSYS结果控制单元生与死 6. 排错
January 30, 2001 Inventory #001451 10-2
January 30, 2001 Inventory #001451 10-5
Basic Structural Nonlinearities 5.7
单元生与死的实现
Training Manual
Basic Structural Nonlinearities 5.7
• 出生单元也不是被真正加入模型中,它们只不过重新被激活了而 已。 – 所有单元,包括在分析的后一阶段产生的单元,都必须在前 处理阶段就被生成。 – 单元被重新激活时,它们的刚度、质量、阻尼及单元载荷都 恢复原值。 – 被激活的单元无应变历史记录(它们被生与死操作““退火” 了,被激活时它们的应力与应变均为零)。
ANSYS生死单元应用总结
ANSYS生死单元应用总结ANSYS生死单元(ELEM死单元)是一种特殊的有限元单元,在一些特殊的仿真分析中起着重要的作用。
它主要用于描述材料失效、破裂和破坏等现象。
本文将从原理、应用场景和使用技巧三个方面对ANSYS生死单元进行总结和分析。
首先,我们来了解一下ANSYS生死单元的原理。
生死单元是基于拉格朗日变形体的有限元模型。
在传统的有限元分析中,单元被认为是连续的,其应变和应力分布是均匀的。
而生死单元则具有不均匀的应变和应力分布,因为它能够模拟材料的失效和断裂。
生死单元会根据预设的破坏准则,在模拟过程中将材料断裂的部分视为未活动的“死单元”,使其不再参与力学响应的计算,从而实现对材料破坏过程的模拟。
接下来,我们来分析ANSYS生死单元的应用场景。
生死单元主要在以下两个领域得到广泛应用:材料破坏和结构破坏。
在材料破坏方面,生死单元可以用于模拟材料在极限载荷下的破坏过程,包括塑性变形、断裂和破碎。
在结构破坏方面,生死单元可以用于模拟结构在外部载荷作用下的破坏过程,如断层、裂纹扩展和结构崩溃等。
生死单元在工程实践中有着广泛的应用。
例如,在航空航天领域,生死单元可以用于模拟飞行器在失速或超过极限载荷时的破坏过程,以评估结构的强度和耐久性。
在汽车工程领域,生死单元可以用于模拟车身在碰撞事故中的变形和破坏,以评估车辆的安全性能。
在材料科学和工业制造领域,生死单元可以用于模拟材料的断裂和破坏过程,以优化材料的性能和工艺。
最后,我们来总结一些使用生死单元的技巧。
首先,需要选择合适的破坏准则。
不同的材料和应用场景可能适用不同的破坏准则,如最大应力准则、最大应变准则和能量准则等。
其次,需要合理设置生死单元的参数。
生死单元有一些参数可以调整,如破坏准则的参数、接触条件的设置和破坏表面的定义等。
合理设置这些参数可以提高模拟精度和计算效率。
最后,需要进行后处理分析。
生死单元模拟的结果可能包括材料的断裂面、裂纹扩展路径和破坏区域等信息。
ANSYS单元生死功能模拟门式刚架施工
ANSYS单元生死功能模拟门式刚架施工门式刚架是一种常用的结构形式,用于支撑建筑物的框架结构。
在门式刚架的施工过程中,需要考虑各种因素,包括结构的稳定性、载荷承受能力以及施工过程中的安全性。
通过使用ANSYS软件对门式刚架的施工过程进行生死功能模拟,可以帮助工程师和设计师更好地了解结构的行为,并优化设计方案。
1.模型建立首先,需要在ANSYS软件中建立门式刚架的三维模型。
模型包括门式结构的主要构件,如立柱、横梁和支撑等。
对于门式结构的具体尺寸和材料性质,需要根据实际情况进行确定。
在建立模型的过程中,需要考虑结构的连接方式和荷载传递路径,确保模型的真实性和准确性。
2.材料性质和约束条件设定在模型建立完成后,需要设定材料的性质和约束条件。
门式结构通常采用钢材或混凝土材料,因此需要输入材料的弹性模量、泊松比和密度等参数。
同时,还需要设定结构的约束条件,如支座的固定方式和边界条件等。
这些参数对于后续的分析和模拟过程至关重要。
3.荷载分析和施工模拟在模型建立和参数设定完成后,可以对门式结构施加不同方向和大小的荷载进行分析。
通过分析结构在各种荷载情况下的应力和变形情况,可以评估结构的强度和稳定性。
同时,在进行荷载分析的同时,也可以进行施工模拟,模拟不同施工阶段结构的变形和应力分布情况。
4.结果分析和优化设计最后,根据模拟结果进行结构的优化设计。
可以通过调整材料的厚度和尺寸等参数,优化结构的承载能力和稳定性。
同时,也可以根据模拟结果对结构施工过程中可能出现的问题进行预防和解决,确保施工的顺利进行和安全性。
通过使用ANSYS软件对门式刚架的生死功能模拟,可以帮助工程师和设计师更好地理解结构的行为和性能,提高设计方案的准确性和可靠性。
同时,也可以为结构的优化设计和施工过程中的安全保障提供重要参考,促进结构工程领域的发展和进步。
ANSYS单元生死
单元生死法的使用收藏到手机转发评论2006-06-17 23:04 单元生死法的使用在大多数静态和非线形瞬态分析小,都可以使用单元死活行为,与其他分析一样,分析过程包括建摸、加载并求解和查看结果3 个主要步骤。
1.建立模型在PREP冲创建所有单元,包括那些在开始死掉”在以后的荷载少中被激活的单元。
不能在求解过程中创建新的单元。
2.加载和求解(1) 指定分析类型。
(2) 定义第—个荷载步。
在结构分析中应激活大变形效应:•命令:NLGEOM,ON GUI:mainnMenu->preprocessor->Loads->Analysis OptionsMain Menu->Solution->Sol'n ControlsMain Menu->Solution->AnalysisOptions 使用单元生死选项叫,应设置Newton-Raphson 选项:命令:NROPT,Option,—,AdptkyGUI:Main Menu->Preprocessor->Loads->AnalysisOptionsMain Menu->Solution->Analysis Options 提示:打开自适应下降因子的全牛顿-拉普森选项通常会产生更好的结果。
杀死所有要在后续荷载步“生”激(活)的单元:命令:EKILL,ELEMGUI:main Menu->Preprocessor->Loads->Other->Kill ElementsMain Menu->Solution->Other->Kill Elements 重新定义刚度缩减因子:•命令:ESTIF,KMULTGUI:Main Menu->Preprocessor->Loads->Other->SfiffnessMultMain Menu->Solution->Other->StiffnessMult 注童:不与任何“生”的单元相连的结点将可能“漂移”,为了减少求解的方程数和避免病态条件,需要约束死的自由度。
基于ANSYS生死单元的移动荷载作用下桥梁结构动力响应分析
基于ANSYS生死单元的移动荷载作用下桥梁结构动力响应分析移动荷载是指在桥梁结构上以一定速度行驶的载重车辆,它会在桥梁结构上引起振动和动力响应。
了解桥梁结构在移动荷载作用下的动力响应对于确保其安全性和稳定性至关重要。
在这种情况下,使用有限元软件ANSYS对桥梁结构进行动力响应分析是一种有效的方法。
本文将介绍如何利用ANSYS的生死单元对移动荷载作用下的桥梁结构进行动力响应分析。
1.研究背景桥梁结构在运行过程中会受到不同方向和大小的荷载作用,其中移动荷载是其主要荷载之一、移动荷载对桥梁结构的振动和动力响应产生重要影响,因此对其进行分析是非常必要的。
2.ANSYS介绍ANSYS是一种有限元分析软件,可以用于模拟和分析各种工程结构的动力响应。
它具有强大的仿真功能,可以准确地模拟结构在不同荷载作用下的响应。
3.动力响应分析步骤(1)建立模型:首先,在ANSYS中建立桥梁结构的有限元模型,包括桥梁梁、板、墩等组成部分。
确定桥梁结构的几何形状、材料性质等参数。
(2)施加荷载:在模型中模拟移动荷载作用,可以通过施加集中荷载或均布荷载的方式来模拟车辆通过桥梁的情况。
(3)定义边界条件:设置模型的边界条件,确定结构的支座和约束条件,以保证结构在运行过程中的稳定性。
(4)设置分析类型:选择动态分析类型,在分析设置中定义荷载的作用时间、频率和幅值等参数。
(5)进行动力响应分析:运行模型进行动力响应分析,获取桥梁结构在移动荷载作用下的振动响应情况。
(6)结果分析:对分析结果进行后处理和分析,评估结构在移动荷载作用下的动力响应性能,确定结构的安全性和稳定性。
4.结论与展望通过以上步骤,可以利用ANSYS对移动荷载作用下的桥梁结构进行动力响应分析,为工程师提供了一个强大的工具,可以帮助他们更好地理解桥梁结构在实际运行中的动力响应情况。
未来,可以进一步研究不同荷载作用下桥梁结构的动力响应特性,为桥梁结构的设计和改进提供更加准确和可靠的依据。
生死单元总结
这是我以前发在SimWe仿真论坛上的一个总结,今天看到此标题转载过来,供大家参考。
参考了ANSYS的help文件,ANSYS的培训文件,崔家春关于生死单元的总结,还有很多不足,欢迎大家补充,以及提出错误---钢构-明科总结在ANSYS中,单元的生死功能被称为单元非线性,是指一些单元在状态改变时表现出的刚度突变行为。
1)单元生死的原理:1.在ANSYS中,单元的生死功能是通过修改单元刚度的方式实现的。
单元被“杀死”时,它不是从刚度矩阵删除了,而是它的刚度降为一个低值。
杀死的单元的刚度乘以一个极小的减缩系数(缺省为1e-6)。
为了防止矩阵奇异,该刚度不设置为0。
2.与杀死的单元有关的单元载荷矢量(如压力、温度)是零输出3.对于杀死的单元,质量、阻尼和应力刚度矩阵设置为0。
4.单元一被杀死,单元应力和应变就被重置为05.因为杀死的单元没有被删除,所以刚度矩阵尺寸总是保持着1.与之相似,当单元“活”的时候,也是通过修改刚度系数的方式实现的。
所有的单元,包括开始被杀死的,在求解前必须存在,这是因为在分析过程中刚度矩阵的尺寸不能改变,所以,被激活的单元在建模时就必须建立,否则无法实现杀死与激活。
2.当单元被重新激活时,它的刚度、质量与荷载等参数被返回到真实状态。
3.当大变形效应打开时(NLGEOM,ON),为了与当前的节点位置相适应,单元被激活后,其形状会被改变(拉长或压短)。
当不使用大变形效应时,单元将在原始位置被激活。
4.当单元“激活”后,它们没有任何应变历史记录,它们通过生和死操作被“退火”,生的时候所有应力和所有应变等于零。
2)单元生死求解过程:1 建模,对将要进行杀死或激活的单元进行分组。
这点非常重要,将会影响后续工作的效率。
2定义第一个荷载步。
在第一个荷载步中,必须选择分析类型和适当的分析选项。
通常情况下,应该打开大应变效应,而且当要使用单元死活行为时,必须在第一个荷载步中明确设置Newton-Raphson选项。
ansys单元生死解析
建模
Training Manual
Basic Structural Nonlinearities 5.7
• 当在前处理器(PREP7)中建模时,应在分析开始就创建所有单元 -甚至一些到载荷结束也不会被激活的单元。
• 并非所有单元都支持生与死的操作,只能杀死或激活那些具有生 死能力的单元。请参考ANSYS高级分析技术手册,那里列出了所 有支持生死操作的单元类型。
January 30, 2001 Inventory #001451 10-18
使用ANSYS结果控制单元生与死
基于结果杀死单元的命令流输入实例
… /POST1 SET,… ETABLE,… ESEL,S,… FINISH ! /SOLU ANTYPE,,REST EKILL,ALL ESEL,ALL ... ! 以前求解过程 ! 进入 POST1 ! 读入结果 ! 将标准存入 ETABLE ! 根据 ETABLE 项选择单元
Basic Structural Nonlinearities 5.7
• 杀死或激活单元会导致模型刚度的突变,甚至还会导致收敛困 难。所以应该限制在某一载荷步中生死单元的数目。
• 由于迭代过程中大的刚度缩减会导致不连续发生,应使用 Newton-Raphson 过程,使用线性搜索方法作为收敛工具也会有 所帮助。
January 30, 2001 Inventory #001451 10-6
单元生与死的使用过程
Training Manual
Basic Structural Nonlinearities 5.7
• 和其它分析时一样,单元生与死的使用也包括三个主要步骤:
– 建模 – 加载并求解 – 查看结果
January 30, 2001 Inventory #001451 10-7
单元生死算例 (ANSYS) 文档
土木工程中经常需要对施工过程进行模拟。
很多复杂工程构件的最不利受力状态往往未必是在结构完工以后,而是在结构施工过程中。
由于施工中的结构是一个时变系统,如何进行准确的模拟是一个具有一定难度的问题。
本例子将利用ANSYS提供的单元"生死"功能来进行一个门式框架的施工模拟施工分为三步1: 建立立柱和临时支撑2: 安装横梁3: 去掉临时支撑知识要点(1) 单元激活和杀死(1) 首先定义以下变量SECTWIDTH=300 !构件截面宽度300mmSECTHEIGHT=600 !构件截面高度600mmSECTAREA=SECTWIDTH*SECTHEIGHT !截面面积SECTIYY=SECTWIDTH**3*SECTHEIGHT/12. !截面Y轴惯性矩SECTIZZ=SECTWIDTH*SECTHEIGHT**3/12. !截面Z轴惯性矩SPAN=24000 !跨度24mCOLUMNHEIGHT=8000 !柱子高度8mSLOP=3000 !顶部斜坡3m(2) 进行施工模拟首先要建立整个结构的模型,然后逐个控制模型中部分构件的"生"或"死"来模拟结构的施工。
首先选择单元,为简单起见,选用比较简单的单元(空间4号梁单元Beam 4),在ANSYS主菜单Preprocessor->Element Type->Add/Edit/Delete,添加单元Beam4(3) 在ANSYS主菜单Preprocessor->Real Constants->Add/Edit/Delete中添加属于Beam 4单元的截面信息如下图(4) 在ANSYS主菜单Materials Props->Material Models中添加混凝土材料属性:Structural->Linear->Elastic->Isotropic,输入弹性模量为30E3,泊松比为0.2,Structural->Density,输入密度为2500E-12(5) 下面建立结构模型,首先建立关键点信息,在ANSYS主菜单Preprocessor->Modeling->Create->Keypoints->In Active CS,依次输入以下关键点:关键点编号X坐标Y坐标Z坐标(6) 选择ANSYS主菜单Preprocessor->Modeling->Create->Lines->Lines->Straight Line,依次连接关键点1-4(左立柱),2-6(临时支撑),3-5(右立柱),4-6(左横梁--,5-6(右横梁),得到结构模型如图(7) 下面进行单元网格划分,进入ANSYS主菜单Preprocessor->Meshing->Size Cntrls->ManualSize->Lines->All Lines,设定NDIV no. of element division为1,即所有的直线只划分为一个单元。
单元生死算例 (ANSYS)
单元生死算例(ANSYS)土木工程中经常需要对施工过程进行模拟。
很多复杂工程构件的最不利受力状态往往未必是在结构完工以后,而是在结构施工过程中。
由于施工中的结构是一个时变系统,如何进行准确的模拟是一个具有一定难度的问题。
本例子将利用ANSYS提供的单元"生死"功能来进行一个门式框架的施工模拟施工分为三步1: 建立立柱和临时支撑2: 安装横梁3: 去掉临时支撑知识要点(1) 单元激活和杀死(1) 首先定义以下变量SECTWIDTH=300 !构件截面宽度300mmSECTHEIGHT=600 !构件截面高度600mmSECTAREA=SECTWIDTH*SECTHEIGHT !截面面积SECTIYY=SECTWIDTH**3*SECTHEIGHT/12. !截面Y轴惯性矩SECTIZZ=SECTWIDTH*SECTHEIGHT**3/12. !截面Z轴惯性矩SPAN=24000 !跨度24mCOLUMNHEIGHT=8000 !柱子高度8mSLOP=3000 !顶部斜坡3m(2) 进行施工模拟首先要建立整个结构的模型,然后逐个控制模型中部分构件的"生"或"死"来模拟结构的施工。
首先选择单元,为简单起见,选用比较简单的单元(空间4号梁单元Beam 4),在ANSYS主菜单Preprocessor->Element Type->Add/Edit/Delete,添加单元Beam4(3) 在ANSYS主菜单Preprocessor->Real Constants->Add/Edit/Delete中添加属于Beam 4单元的截面信息如下图(4) 在ANSYS主菜单Materials Props->Material Models中添加混凝土材料属性:Structural->Linear->Elastic->Isotropic,输入弹性模量为30E3,泊松比为0.2,Structural->Density,输入密度为2500E-12(5) 下面建立结构模型,首先建立关键点信息,在ANSYS主菜单Preprocessor->Modeling->Create->Keypoints->In Active CS,依次输入以下关键点:关键点编号 X坐标 Y坐标 Z坐标(6) 选择ANSYS主菜单Preprocessor->Modeling->Create->Lines->Lines->Straight Line,依次连接关键点1-4(左立柱),2-6(临时支撑),3-5(右立柱),4-6(左横梁--,5-6(右横梁),得到结构模型如图(7) 下面进行单元网格划分,进入ANSYS主菜单Preprocessor->Meshing->Size Cntrls->ManualSize->Lines->All Lines,设定NDIV no. of element division 为1,即所有的直线只划分为一个单元。
ANSYS单元生死总结
ANSYS单元生死总结主要参考了ANSYS帮助和ANSYS公司的培训资料,以及崔家春关于生死单元总结的文章,格式按照崔工的编排,很多内容也是他的总结,我加了些补充。
在ANSYS中,单元的生死功能被称为单元非线性,是指一些单元在状态改变时表现出的刚度突变行为。
1)单元生死的原理:1.在ANSYS中,单元的生死功能是通过修改单元刚度的方式实现的。
单元被“杀死”时,它不是从刚度矩阵删除了,而是它的刚度降为一个低值。
杀死的单元的刚度乘以一个极小的减缩系数(缺省为1e-6)。
为了防止矩阵奇异,该刚度不设置为0。
2.与杀死的单元有关的单元载荷矢量(如压力、温度)是零输出3.对于杀死的单元,质量、阻尼和应力刚度矩阵设置为0。
4.单元一被杀死,单元应力和应变就被重置为05.因为杀死的单元没有被删除,所以刚度矩阵尺寸总是保持着1.与之相似,当单元“活”的时候,也是通过修改刚度系数的方式实现的。
所有的单元,包括开始被杀死的,在求解前必须存在,这是因为在分析过程中刚度矩阵的尺寸不能改变,所以,被激活的单元在建模时就必须建立,否则无法实现杀死与激活。
2.当单元被重新激活时,它的刚度、质量与荷载等参数被返回到真实状态。
3.当大变形效应打开时(NLGEOM,ON),为了与当前的节点位置相适应,单元被激活后,其形状会被改变(拉长或压短)。
当不使用大变形效应时,单元将在原始位置被激活。
4.当单元“激活”后,它们没有任何应变历史记录,它们通过生和死操作被“退火”,生的时候所有应力和所有应变等于零。
2)单元生死求解过程:1 建模,对将要进行杀死或激活的单元进行分组。
这点非常重要,将会影响后续工作的效率。
2定义第一个荷载步。
在第一个荷载步中,必须选择分析类型和适当的分析选项。
通常情况下,应该打开大应变效应,而且当要使用单元死活行为时,必须在第一个荷载步中明确设置Newton-Raphson选项。
若不存在其它非线性,应明确指定完全Newton-Raphson 选项。
ANSYS单元生死总结3
ANSYS单元死活应用探讨本文探讨了ANSYS单元死活应用相关内容.在大多数静态和非线形瞬态分析小,都可以使用单元死活行为,与其他分析一样,分析过程包括建摸、加载并求解和查看结果3个主要步骤。
1.建立模型在PREP7中创建所有单元,包括那些在开始“死掉”,在以后的荷载少中被激活的单元。
不能在求解过程中创建新的单元。
2。
加载和求解(1)指定分析类型。
(2)定义第-个荷载步。
命令:NLGEOM,ON在结构分析中应激活大变形效应:GUI:mainnMenu--preprocessor—-Loads—-Analysis OptionsMain Menu——Solution——Sol’n ControlsMain Menu-—Solution—-AnalysisOptions命令:NROPT,Option,—,Adptky使用单元生死选项叫,应设置Newton-Raphson选项:GUI: Main Menu-—Preprocessor--Loads——AnalysisOptionsMain Menu—-Solution-—Analysis Options提示:打开自适应下降因子的全牛顿-拉普森选项通常会产生更好的结果。
命令:EKILL,ELEM杀死所有要在后续荷载步“生"(激活)的单元:GUI:main Menu—-Preprocessor-—Loads-—Other-—Kill ElementsMain Menu——Solution——Other——Kill Elements命令:ESTIF,KMULT重新定义刚度缩减因子:GUI:Main Menu—-Preprocessor——Loads—-Other--SfiffnessMultMain Menu——Solution——Other——StiffnessMult注童:不与任何“生”的单元相连的结点将可能“漂移",为了减少求解的方程数和避免病态条件,需要约束死的自由度。
Ansys 单元生死一例
Ansys 单元生死一例默认分类2010-04-07 11:32:02 阅读258 评论0 字号:大中小订阅finish/clear/title, Convection Example/prep7 ! Enter the preprocessor! define geometryk,1,0,0 ! Define keypointsk,2,0.03,0k,3,0.03,0.03k,4,0,0.03a,1,2,3,4 ! Connect the keypoints to form area! mesh 2D areasET,1,Plane55 ! Element typeMP,Dens,1,920 ! Define densitymp,c,1,2040 ! Define specific heatmp,kxx,1,1.8 ! Define heat transfer coefficientesize,0.0005 ! Mesh sizeamesh,all ! Mesh areafinish/solu ! Enter solution phaseantype,4 ! Transient analysistime,60 ! Time at end of analysisnropt,full ! Newton Raphson - fulllumpm,0 ! Lumped mass offnsubst,20 ! Number of substeps, 20neqit,100 ! Max no. of iterationsautots,off ! Auto time search offlnsrch,on ! Line search onoutres,all,all ! Output data for all substepskbc,1 ! Load applied in steps, not rampedIC,all,temp,268 ! Initial conditions, temp = 268nsel,s,ext ! Node select all exterior nodessf,all,conv,10,368 ! Apply a convection BCnsel,all ! Reselect all nodes/gst,off ! Turn off graphical convergence monitorsolvefinish/post1 ! Enter postprocessorset,last ! Read in last subset of dataetable,melty,temp, ! Create an element tableesel,s,etab,melty,273 ! Select all elements from table above 273 finishANSYS基坑开挖及混凝土回填(单元生死)finish/clear/filname,dig/title,element birth and death-dig!第一步;创建挖掘过程仿真用的有限元模型/prep7et,1,plane42,,,1mp,ex,1,2.675e9 !土mp,nuxy,1,0.3375mp,dens,1,1000mp,ex,2,2.85e10 !混凝土mp,nuxy,2,0.17mp,dens,2,2548!创建基坑旋转几何面rectng,0,7.5,0,4rectng,0,7.5,4,4+11/3rectng,0,7.5,4+11/3,4+11*2/3rectng,0,7.5,4+11*2/3,15rectng,4,4.5,0,15aptn,all/pnum,line,1/pnum,area,1/number,0lplot!定义径向各线上单元份数lsel,s,loc,x,2lesize,all,,,4,,,,,1lsel,s,loc,x,4.25lesize,all,,,2,,,,,1lsel,s,loc,x,6lesize,all,,,3,,,,,1!定义高度方向各线上的单元份数lsel,s,loc,x,0lsel,a,loc,x,4lsel,a,loc,x,4.5lsel,a,loc,x,7.5lesize,all,,,3,,,,,1!划分实体网格allsmshape,0,1dmshkey,1amesh,allfinish!第二步:计算挖掘前的地基状态/soluantype,staticnlgeom,on!nropt,fulloutres,all,alltime,1lsel,s,loc,y,0dl,all,,uysfgrad,pres,0,y,15,-3e4 !土压力载荷斜率lsel,s,loc,x,7.5sfl,all,pres,0 !周围土压力acel,0,9.8,0 !重力加速度allsel,allsbctran/psf,pres,norm,2,0,1eplotsavesolve!第三步:计算地基开挖和添加混凝土围衬过程!地基分三次开挖,每次开挖后立即浇注混凝土围衬asel,s,,,9asel,a,,,15allsel,below,areaeplotcm,e_death1,elemekill,all !杀死第一次开挖的图层单元allsel,alltime,2solveasel,s,,,9allsel,below,areaeplotmpchg,2,all !将材料号由1改为2cm,e_birth1,elemealive,all !激活第一次开挖的围衬单元allsel,alltime,3solve!第二次开挖和浇注混凝土围衬asel,s,,,17asel,a,,,13allsel,below,areaeplotcm,e_death2,elemekill,all !杀死第二次开挖的土层单元allsel,alltime,4solveasel,s,,,17allsel,below,areaeplotmpchg,2,all !改变材料号为2ealive,all !激活单元allsel,alltime,5solve!第三次开挖和浇注混凝土单元asel,s,,,16asel,a,,,11allsel,below,areaeplotcm,e_death3,elemekill,allallsel,alltime,6solveasel,s,,,16allsel,below,areaeplotmpchg,2,allcm,e_birth3,elemealive,allallsel,alltime,7solvefinish!后处理/post1/expand,18,axis,,,10!--------制作总位移动画/show,dig_sum,grph set,,,,,,,1plnsol,u,sum,0,1cmsel,u,e_death1 set,,,,,,,2plnsol,u,sum,0,1cmsel,a,e_birth1 set,,,,,,,3plnsol,u,sum,0,1set,,,,,,,4 plnsol,u,sum,0,1 cmsel,a,e_birth2 set,,,,,,,,5 plnsol,u,sum,0,1 cmsel,u,e_death3 set,,,,,,,6 plnsol,u,sum,0,1 cmsel,a,e_birth3 set,,,,,,,7 plnsol,u,sum,0,1 /show,term。
ANSYS中的单元的生死
ANSYS 单元的生和死何为单元的生和死?如果模型中加入(或删除)材料,模型中相应的单元就“存在”(或消亡)。
单元生死选项就用于在这种情况下杀死或重新激活选择的单元。
(可用的单元类型在表6-1中列出。
)本选项主要用于钻孔(如开矿和挖通道等),建筑物施工过程(如桥的建筑过程),顺序组装(如分层的计算机芯片组装)和另外一些用户可以根据单元位置来方便的激活和不激活它们的一些应用中。
单元生死功能只适用于ANSYS/Multiphysics,ANSYS/Mechanical和ANSYS/Structural产品。
应力,应变等。
可以用ETABLE命令(Main Menu>General Postproc>Element Table>Define Table)和ESEL命令(Utility Menu>Select>Entities)来确定选择的单元的相关数据,也可以改变单元的状态(溶和,固结,俘获等)。
本过程对于由相变引起的模型效应(如焊接过程中原不生效的熔融材料变为生效的模型体的一部分),失效扩展和另外一些分析过程中的单元变化是有效的。
单元生死是如何工作的?要激活“单元死”的效果,ANSYS程序并不是将“杀死”的单元从模型中删除,而是将其刚度(或传导,或其他分析特性)矩阵乘以一个很小的因子[ESTIF]。
因子缺省值为1.0E-6,可以赋为其他数值(详见“施加载荷并求解”一章)。
死单元的单元载荷将为0,从而不对载荷向量生效(但仍然在单元载荷的列表中出现)。
同样,死单元的质量,阻尼,比热和其他类似效果也设为0值。
死单元的质量和能量将不包括在模型求解结果中。
单元的应变在“杀死”的同时也将设为0。
与上面的过程相似,如果单元“出生”,并不是将其加到模型中,而是重新激活它们。
用户必须在PREP7 中生成所有单元,包括后面要被激活的单元。
在求解器中不能生成新的单元。
要“加入”一个单元,先杀死它,然后在合适的载荷步中重新激活它。
Ansys单元生死功能
Ansys单元生死功能(Ansys培训材料)何为单元的生和死?如果模型中加入(或删除)材料,模型中相应的单元就“存在”(或消亡)。
单元生死选项就用于在这种情况下杀死或重新激活选择的单元。
(可用的单元类型在表6-1中列出。
)本选项主要用于钻孔(如开矿和挖通道等),建筑物施工过程(如桥的建筑过程),顺序组装(如分层的计算机芯片组装)和另外一些用户可以根据单元位置来方便的激活和不激活它们的一些应用中。
单元生死功能只适用于ANSYS/Multiphysics,ANSYS/Mechanical和ANSYS/Structural产品。
应力,应变等。
可以用ETABLE命令(Main Menu>General Postproc>Element Table>Define Table)和ESEL命令(Utility Menu>Select>Entities)来确定选择的单元的相关数据,也可以改变单元的状态(溶和,固结,俘获等)。
本过程对于由相变引起的模型效应(如焊接过程中原不生效的熔融材料变为生效的模型体的一部分),失效扩展和另外一些分析过程中的单元变化是有效的。
单元生死是如何工作的?要激活“单元死”的效果,ANSYS程序并不是将“杀死”的单元从模型中删除,而是将其刚度(或传导,或其他分析特性)矩阵乘以一个很小的因子[ESTIF]。
因子缺省值为1.0E-6,可以赋为其他数值(详见“施加载荷并求解”一章)。
死单元的单元载荷将为0,从而不对载荷向量生效(但仍然在单元载荷的列表中出现)。
同样,死单元的质量,阻尼,比热和其他类似效果也设为0值。
死单元的质量和能量将不包括在模型求解结果中。
单元的应变在“杀死”的同时也将设为0。
与上面的过程相似,如果单元“出生”,并不是将其加到模型中,而是重新激活它们。
用户必须在PREP7 中生成所有单元,包括后面要被激活的单元。
在求解器中不能生成新的单元。
要“加入”一个单元,先杀死它,然后在合适的载荷步中重新激活它。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元生死法的使用
收藏到手机转发评论
2006-06-17 23:04
单元生死法的使用
在大多数静态和非线形瞬态分析小,都可以使用单元死活行为,与其他分析一样,分析过
程包括建摸、加载并求解和查看结果3个主要步骤。
1.建立模型
在PREP7中创建所有单元,包括那些在开始“死掉”,在以后的荷载少中被激活的单元。
不能在求解过程中创建新的单元。
2.加载和求解
(1)指定分析类型。
(2)定义第—个荷载步。
在结构分析中应激活大变形效应:
● 命令:NLGEOM,ON
GUI:mainnMenu->preprocessor->Loads->Analysis Options
Main Menu->Solution->Sol'n Controls
Main Menu->Solution->AnalysisOptions
使用单元生死选项叫,应设置Newton-Raphson选项:
命令:NROPT,Option,—,Adptky
GUI:Main Menu->Preprocessor->Loads->AnalysisOptions
Main Menu->Solution->Analysis Options
提示:打开自适应下降因子的全牛顿-拉普森选项通常会产生更好的结果。
杀死所有要在后续荷载步“生”(激活)的单元:
命令:EKILL,ELEM
GUI:main Menu->Preprocessor->Loads->Other->Kill Elements
Main Menu->Solution->Other->Kill Elements
重新定义刚度缩减因子:
● 命令:ESTIF,KMULT
GUI:Main Menu->Preprocessor->Loads->Other->SfiffnessMult
Main Menu->Solution->Other->StiffnessMult
注童:不与任何“生”的单元相连的结点将可能“漂移”,为了减少求
解的方程数和避免
病态条件,需要约束死的自由度。
当单元变“生”时,必须删除这些人
为约束。
第一个荷载步的命令流示例:
TIME,... !定义荷载步时间
NLGEOM,ON !打开大变形效应
NROPT,FULL !设定牛顿-拉普森选项
ESTIF,... !设定刚度端蔽因子(可选)
ESEL,... !选择在本荷效步要杀死的单元
EKILL,... !杀死选择的单元
ESEL,S,LIVE !选择所有活的单元
NSLE,S !选择所有活的结点
NSEI,INVE !选择所有死的结点(不与任何活动单元相连的结点)
0,ALL,ALL,0 !约束所有死的结点(可选)
NSELALL !选择所有结点
ESEL,ALL !选择所打单元
D,... !施加合适的约束
F,... !在“生”的结点上施加合适的自由度荷载
SF,... !施加合适的单元分布苘载
BF,... !施加合适的体荷载
SAVE !保存数怀库
SOLVE !求解
(3)定义后续荷载步。
在后续荷载步中,用户可以杀死或激活单元。
杀此单元:
杀死所有要在后续荷载步“生”(激活)的单元:
' 命令:EKILL,ELEM
' GUI:Main Menu->preprocessor->Loads->Other->Kill Elements Main Menu->Solution->Other->Kill Elements
激活单元:
● 命令:EALIVE,ELEM
● GUI:Main Menu->Preprocessor->Loads->Other->Activate Elem Main Menu->Solution->Other Activate Elem
后续荷载步的命令流示例:
TIME,...
ESEL,... !选择要杀死的单元
EKILL,... !杀死所选择的单元
ESEL,... !选择要徼活的单元
EALIVE,... !激活所选择的单元
FDELE,... !删除死结点自由度荷载
D,... !约束死的结点自由度
F,... !在生的结点施加合适的结点自由度荷载
DDELE,!删除重新激活的结点自由度上的约束
SAVE
SOLVE
注意:单元包含生死行为时,求解多个荷栽步不能使用荷载步文件法。
荷载步文件不能记
录单元的生死状态。
3.查看结果
对包含单元生死的分析进行后处理时,方法基本按标准的后处理方法。
需要指出的是,
“死”的单元仍保持在模型中,在图形显示和列表输出时仍包括“死”
的单元。
在使用PLNSOL
命令(GUI:Utility Menu->Plot->Results->Contour Plot->Nodal
Solution)显示结点平均结果时,
“死”的单元将会“污染”结果。
在后处理时,建议使用ESEL命令移走“死”的单元。
4.通过ANSYS计算结果控制单元生死
有些时候,无法明确指定单元“生”和”死”的时间点或空间位置。
例
如,热分析中要杀
死已经熔化的单元,但事先并不知道单元的确切位置。
单元的位置要以程序计算的温度为标准
进行判断。
可以使用下面的命令来判断和选择临界单元。
将单元讣算结果存储到单元表:
命令:ETABlE,Lab,Item,Comp
● GUI:Main Menu->General Postproc->Element Table->Define Table
使用选择命令选择临界单元:
● 命令:ESEl,Type,item,ComP,VMIN,VMAX,VINC,KABS
● GUI:Utility Menu->Select->Entities
通过训算结果控制单元生死命令流:
/SOLU !进入求解器
... !设置求解选项
SOLVE !开始求解
FINISH
!
/POST1 !进入后处理器POST1
SET,... !存储总的等效匝变到单元表
ETABLE,STRAIN,EPTO,EQV
!选择所有总的等效应变大于0.2的单元
ESEL,S,ETAB,STRAIN,O,20
FINISH
!
/SOLU !垂新进入求解器
ANTYPE,REST !定义进行重启动分析
EKILL,ALL !杀死析选定的单元
ESEL,All !重新选择所有单元 ... !继续完成下面的求解分析。