应用多元统计分析 第二章正态分布的参数估计答案
应用多元统计分析课后习题答案高惠璇
第三章 多元正态总体参数的检验
3-2 设X~Nn(μ,σ2In), A,B为n阶对称阵.
若AB =0 ,证明X′AX与X′BX相互独立.
证明的思路:记rk(A)=r. 因A为n阶对称阵,存在正交阵Γ,使得
Γ ′AΓ=diag(λ1,…,λr 0,..,0) 令Y=Γ′X,则Y~Nn(Γ′μ,σ2In),
(2x12
x22
2x1x2
22x1
14x2
65)
1 2 1 2
1
2
exp
1
212
2 2
(1
2
)
[
2 2
(
x1
1 ) 2
21 2(x1
1)(x2
2
)
2 1
(
x2
2
)
2
]
比较上下式相应的系数,可得:
1 2
2 2
1 2
2
1
2 1
1
1 2 1
2 1
1
2
1/
21
2 2
2
2
2 1
21 22 21 21
f (x; , ) a
a0 (2 ) p/ 2 |
(x )1
|1/ 2 ,当0 a
(x )
1
ba02
时,
其中 b2 2 ln[a(2 ) p/2 | |1/ 2 ] 2 ln[aa0 ] 0, 20
第二章 多元正态分布及参数的估计
因 0,的特征值记为1 2 p 0, i对应
3-1 设X~Nn(μ,σ2In), A为对称幂等 阵,且rk(A)=r(r≤n),证明
证明 因A为对称幂等阵,而对称幂等阵的
多元统计分析:第二章 多元正态分布及
1 2 exp( it ) exp( s j ) 2 j 1
) E(e
isqU q
)
第二章 多元正态分布及参数的估计
§2.2
记Σ=AA′,则有以下定义。 定义2.2.2 若p维随机向量X的特征函数 t ' t 为:
X (t ) exp[ it '
,d为s×1常向量,令Z=BX+d,则
Z~Ns(Bμ+d , BΣB ).
该性质指出正态随机向量的任 意线性组合仍为正态分布.
19
第二章 多元正态分布及参数的估计
§2.2 多元正态分布的性质2
证明 因Σ ≥0, Σ可分解为Σ=AA ,其中A 为p×q 矩阵.已知X~Np(μ,Σ),由定义 2.2.1可知 X = AU+μ
是对称非负定阵. 即 =´ , ´ ≥0 (为任给的p维常量).
7
第二章 多元正态分布及参数的估计
§2.1 随机向量—
(4) Σ=L2 ,其中L为非负定阵.
由于Σ≥0(非负定),利用线性代数中实对称阵的对角化定理,存 在正交阵Γ,使
1 0 LL
1 0 ' 0 p
并设:
i 0(i 1,, q), q1 0,, p 0.
10
第二章 多元正态分布及参数的估计
§2.2
在一元统计中,若U~N(0,1),则U的任意 线性变换X=σU+μ~N(μ,σ2)。利用这一性质, 可以从标准正态分布来定义一般正态分布:
若U~N(0,1),则称X =σU+μ的分布为 一般正态分布,记为X ~N(μ, σ2 )。
如例2.1.1,证明了X1,X2均为一元正态 分布,但由(X1,X2) 联合密度函数的形式易见 它不是二元正态.
厦门大学《应用多元统计分析》习题第02章 多元正态分布的参数估计
思考与练习2.1 试述多元联合分布和边缘分布之间的关系。
2.2 设随机向量12(,)X X ′=X 服从二元正态分布,写出其联合分布密度函数和1X 、2X 各自的边缘密度函数。
2.3 已知随机向量12(,)X X ′=X 的联合分布密度函数为:()()()()()()()()()121122222,d c x a b a x c x a x c f x x b a d c −−+−−−−−2⎡⎤⎣⎦=−−其中,。
求:12,a x b c x d ≤≤≤≤⑴ 随机变量1X 和2X 各自的边缘密度函数、均值与方差。
⑵ 随机变量1X 和2X 的协方差和相关系数。
⑶ 判断1X 和2X 是否相互独立。
2.4 设随机向量12(,,,)p X X X ′=X L 服从正态分布,已知其协差阵为对角阵,证明ΣX 的分量是相互独立的随机变量。
2.5 从某企业全部职工中随机抽取一个容量为6的样本,该样本中各职工的目前工资、受教育年限、初始工资和工作经验资料如下表所示: 职工编号目前工资 (美元)受教育年限(年)初始工资 (美元)工作经验(月)11 2 3 4 5 6 57,000 40,200 21,450 21,900 45,000 28,350 15 16 12 8 15 8 27,000 18,750 12,000 13,200 21,000 12,000 144 36 381 190 138 26设职工总体的以上变量服从多元正态分布,根据样本资料求出均值向量和协差阵的最大似然估计。
2.6 均值向量和协差阵的最大似然估计量具有哪些优良性质? 2.7 试证多元正态总体的样本均值向量(,)p N μΣ1~(,p N nX μΣ)。
2.8 试证多元正态总体的样本协差阵S 为(,)p N μΣΣ的无偏估计。
2.9 设()1x 、()2x 、…、()n x 是从多元正态总体中独立抽取的一个随机样本,试求样本协差阵的分布。
第2章多元正态分布的参数估计
第2章多元正态分布的参数估计多元正态分布是统计学中常用的一种概率分布模型,在实际应用中经常被用来描述多个变量之间的关系。
在参数估计的过程中,我们通常需要估计多元正态分布的均值向量和协方差矩阵。
本章将介绍多元正态分布的参数估计方法。
多元正态分布的均值向量和协方差矩阵分别用μ和Σ表示。
在参数估计的过程中,我们可以使用样本的均值向量和协方差矩阵来估计总体的均值向量和协方差矩阵。
首先,我们需要收集一个包含n个样本的数据集,其中每个样本有d 个变量。
我们将这个数据集表示为X=[x1, x2, ..., xn],其中xi是一个d维向量。
均值向量的估计可以通过计算样本向量的平均值来得到。
均值向量的估计公式为:μ̂ = (1/n) * Σxi其中,μ̂是均值向量的估计值。
协方差矩阵的估计可以通过计算样本向量之间的协方差来得到。
协方差矩阵的估计公式为:Σ̂ = (1/n) * Σ(xi - μ̂)(xi - μ̂)T其中,Σ̂是协方差矩阵的估计值。
这里需要注意的是,协方差矩阵是一个对称正定矩阵,因此需要对估计值进行修正,以保证估计出的协方差矩阵是对称正定的。
修正的常用方法有Ledoit-Wolf修正和修正。
在进行参数估计之后,我们还可以计算估计值的标准误差(standard error),以衡量估计值的可靠性。
在多元正态分布的参数估计中,均值向量估计值的标准误差为:SE(μ̂) = (√((2/n)(d(d+1)/2))) * (√(Σi î))协方差矩阵估计值的标准误差为:SE(Σ̂) = (√((1/n)(d(d+1)/2))) * (√(Σi î(Σj ĵ -Σi ĵ^2)))其中,Σi î表示协方差矩阵估计值的第i个对角元素,Σi ĵ表示协方差矩阵估计值的第i行第j列元素。
参数估计的过程中,还需要考虑到样本量的大小。
当样本量较大时,参数估计的精度会提高;而当样本量较小时,参数估计的精度会降低。
应用多元统计分析课后习题答案详解北大高惠璇(第二章部分习题解答) (2).ppt
4 3
u1u2
1
2
exp[
1 2
(2u12
u22
2u1u2 )]du1du2
1
2
u12
u1e 2
1
2
u2e
1 2
(
u2
u1
)
2
du2
du1
1
2
u12
u1e 2
1
2
(u2
u1
)e
1 2
(u2
u1
)
2
du2
u1
e
1 2
(
u2
u1
)
2
du2
du1
1
2
u e
2
u12 2
2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
X
X X
(1) (2)
~
N
2
p
(1) (2)
,
1 2
2 1
,
其中μ(i) (i=1,2)为p维向量,Σi (i=1,2)为p阶矩阵,
《应用统计方法》多元正态分布参数估计 (2)
它度量了在值 xk 1 ,, xp给定的条件下,xi 与 x j ( i, j k )相关性的强弱。
2019/4/23 应用统计方法
十三.全相关系数 X XX X 设Z ~ N p 1 ( , y Y 1 yX
cov(y, z ) E (y Ey )(z Ez )
E ( Ax EAx)(Bx EBx) AE (x Ex)(x Ex)B AVar (x)B
AIB AB
2019/4/23 应用统计方法
九、设x ~ Nn (0, ) , y Ax , z Bx ,其中 A 是 p n 阶矩阵, B 是 q n 阶矩阵, rank( A) p , rank( B) q, 则 Z 与 Y 相互独立,当且仅当 AB 0。
1 μ12 μ1 Σ12Σ 22 (x 2 μ 2 ).
为 x 2 给定的条件下 x1 数学期望。
并称1.2为X 对X 的回归,称 B 12 为回归系数
(1) ( 2) 1 22
2019/4/23
1 Σ11.2 Σ11 Σ12 Σ x1的条件协方差矩阵 22 Σ21是x2的条件下
11 22
2019/4/23
应用统计方法
f (x) f1 (x1 ) f 2 (x2 )
故x1和x2相互独立。
2019/4/23
应用统计方法
八、设 x ~ Nn (0, I) , y Ax , z Bx ,其中 A 是 p n 阶矩阵, B 是 q n 阶矩阵, rank ( A) p , rank( B) q , 则 Z 与 Y 相互独立,当且仅当 AB 0 。
第二章 多元正态分布的参数估计
第二章多元正态分布的参数估计1.随机向量:将p个随机变量的整体称作p维随机向量,记为同时对p个指标(变量)进行了n次观测,这p个指标为,常用向量表示对同一个体观测的p个变量注:横看表示为第a个样品的观测值,记为竖看表示为对第j个变量的n次观测值,记为上表可用矩阵表示为(1)离散型随机向量:设是p维随机向量,若存在有限个或可列个p 维数向量,记,,满足,则X为离散型随机向量,为X的概率分布(2)连续型随机变量:设,若存在一个非负函数,使得对一切x均有,则X为连续型随机变量,为分布密度函数其中,应满足条件:i.ii.2.多元分布:设是p维随机向量,它的多元分布函数定义为,记为。
其中表示p维欧氏空间3.边缘(或边际)分布:设是p维随机向量,由它的q(<p)个分量组成的子向量的分布为X的边缘分布假定正好是X的前q个分量,其中p-q个分量为,则,相应的取值也分为了两部分。
当X的分布函数为时,的分布函数即边缘分布函数为;当X有分布密度时,则的边缘密度函数为注:相互独立——p个随机变量的联合分布等于各自的边缘分布的乘积4.随机向量的均值向量/数学期望:设,若存在且有限,则称为X的均值(向量)或数学期望,有时也把分别记为,即,容易得到均值(向量)有以下性质:其中,X和Y为随机向量,A和B为大小适合运算的常数矩阵5.随机变量的方差或协差阵:设,称为X的方差或协差阵,有时候把D(X)简记为,简记为,从而有随机变量X和Y的协差阵为当X=Y时,即为D(X)注:独立一定不相关,不相关不一定独立当A和B为常数矩阵时,协差阵有如下性质:注:对任何随机向量来说,其协差阵都是对称阵,大多情况下是正定的6.相关系数:若的协差阵存在,且每个分量的方差大于0,则称随机向量X的相关阵为,为的相关系数。
7.指标的标准化处理:,令,有,则即标准化数据的协差阵=原指标的相关阵8.多元正态分布:X服从p元正态分布,也称X为p维正态随机分布,简称9.多元样本的数字特征样本资料可以用矩阵表示为(1)样本均值向量:(2)样本离差阵:(3)样本协差阵:(4)样本相关阵:其中,10.①②③④11.的性质①②③12.维希特(Wishart)分布设且相互独立,则由组成的随机矩阵:的分布称为非中心Wishart分布,记为。
第二章多元正态分布的参数估计
就是剔除了 X2 Xk1, , X p 得(线性)影响之后,Xi和
Xj之间得协方差。
给定X2时Xi 和Xj得偏相关系数(partial correlation
coefficient)定义为: ij k1, , p
ij k1, , p
,
ii k1, , p jj k1, , p
其中 Σ11 2 ij k1, , p 。
μ12
μ1
Σ12
Σ
1 22
x2 μ2
Σ112
Σ11
Σ12
Σ
1 22
Σ
21
μ1·2和Σ11·2分别就是条件数学期望和条件协方差矩
阵,Σ11·2通常称为偏协方差矩阵。
这一性质表明,对于多元正态变量,其子向量得条件分布仍
就是(多元)正态得。
例5 设X~N3(μ, Σ),其中
1
16 4 2
μ
0 2
μ(1) μ(2)
11 Σ 21
31
12 22 32
13 23 33
Σ11
Σ
21
Σ12
22
则
X (1)
X1
X
2
~
N2 ( μ(1) ,
Σ11)
其中
μ (1)
1
2
Σ11
11 21
12
22
在此我们应该注意到,如果 X ( X1, X 2 , , X p ) 服从 p
aX
(0,1,
0)
X
2
X2
~
N (aμ, aΣa)
X3
1
aμ
(0,1,
0)
2
2
3
11 12 aΣa (0,1, 0) 21 22
应用多元统计分析课后习题答案高惠璇第二章部分习题解答学习资料
1 2 [y ( 1 7 )2 (y 2 4 )2]
g(y1,y2)
设函数 g(y1, y2) 是随机向量Y的密度函数.
15
第二章 多元正态分布及参数的估计
(3) 随机向量
YYY12~N274,
I2
(4) 由于 XX X121011Y Y12CY
1 0 1 1 7 4 3 4 , 1 0 1 1 I2 1 0 1 1 1 1 2 1
e e d x e 2
2
1 2 (x 1 7 )2
9
第二章 多元正态分布及参数的估计
1 1 2(2x1 22x2 16 5 x1 2 1x4 14)91 2(x2x17)2
e e dx 2
2
2 1e 2 1 e dx 1 2(x1 28x1 1)6
1 2(x2x17)2 2
1(
1 e2
(22)(22)0
可得Σ的特征值 1 2 (1 )2 , 2 (1 ).
22
第二章 多元正态分布及参数的估计
λi (i=1,2)对应的特征向量为 1
1
l1
2 1 2
l1
2 1 2
由(1)可得椭圆方程为 2(1y 1 2)b22(1y 2 2)b21
其 b 2 中 2 la n ( 2 ) [ | |1 /2 ] 2 l2 n2 [ 1 2 a ]
解二:比较系数法 设 f(x 1,x2)2 1ex 1 2 p (2 x 1 2x2 2 2 x 1x2 2x 1 2 1x2 4 6) 5
2 1 2 11 2ex 2 p 1 2 2 2 1 (1 2)[2 2(x 1 1)2 2 1 2(x 1 1)x (2 2) 1 2(x2 2)2]
第二章 多元正态分布及参数的估计
27
北大数学学院
第二章 多元正态分布及参数的估计
§2.2 多元正态分布的定义与基本性质—简单例子
y BxB
0 0 1
1 0 0
100 110
1 2 0
003 100
0 0 1
1 0 0
1 0 1
2 0 1
003 100
2
北大数学学院
第二章 多元正态分布及参数的估计
目录
§2.1 随机向量 §2.2 多元正态分布的定义与
基本性质
§2.3 条件分布和独立性 §2.4 随机矩阵的正态分布 §2.5 多元正态分布的参数估计
3
北大数学学院
第二章 多元正态分布及参数的估计
§2.1 随 机 向
本课程所讨论的是多变量总体.把 p个随机变量放在一起得
第二章 多元正态分布及参数的估计
§2.2 多元正态分布性质2的推论
例2.1.1
f (x1, x2
()X1,X212)的e联 12合( x12密 x22度) [1函数x为1 x2e
1 2
(
x12
x22
)
]
我们从后面将给出的正态随机向量的联合密
度函数的形式可知, (X1,X2)不是二元正态随机向 量.但通过计算边缘分布可得出:
本节有关随机向量的一些概念(联合分布, 边缘分布,条件分布,独立性;X的均值向量,X 的协差阵和相关阵,X与Y的协差阵)要求大家 自已复习.
三﹑ 均值向量和协方差阵的性质 (1) 设X,Y为随机向量,A,B为常数阵,则
E(AX)=A·E(X) E(AXB)=A·E(X)·B
6
应用多元统计分析课后习题答案高惠璇(第二章部分习题解答
2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
注意:由D(X)≥0,可知 (Σ1-Σ2) ≥0.
8
第二章 多元正态分布及参数的估计
2-11 已知X=(X1,X2)′的密度函数为
f
( x1 ,
x2 )
1
2
exp
1 2
(2 x12
x22
2 x1 x2
22 x1
14 x2
65)
试求X的均值和协方差阵.
解一:求边缘分布及Cov(X1,X2)=σ12
应用多元统计分析
第二章部分习题解答
第二章 多元正态分布及参数的估计
2-1 设3维随机向量X~N3(μ,2I3),已知
002,
A
0.5 0.5
1 0
00.5.5, d 12.
试求Y=AX+d的分布.
解:利用性质2,即得二维随机向量Y~N2(y,y),
其中:
2
第二章 多元正态分布及参数的估计
2-2 设X=(X1,X2)′~N2(μ,Σ),其中
应用多元统计分析 第二章正态分布的参数估计答案
练习二 多元正态分布的参数估计2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=-- 其中1a x b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数; (3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()d x cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。
第二章多元正态分布的参数估计详解演示文稿
μ
0 2
,
Σ
4 2
4 1
41
试求给定X1+2X3时 X
2
X1
X
3
的条件分布。
第十九页,共63页。
§2.3 复相关系数和偏相关系数
一、复相关系数
二、偏相关系数
第二十页,共63页。
一、复相关系数 相关系数度量了一个随机变量x1与另一个随机变量x2之间 线性关系的强弱。
复相关系数度量了一个随机变量X1与一组随机变量X2, ⋯,Xp之间线性关系的强弱。 将X, Σ(>0)剖分如下:
第六页,共63页。
§2.2 多元正态分布的性质
(1)多元正态分布的特征函数是:
X
(t)
exp( it '
1 2
t 't
)
,
AA'.
(2)设X是一个p维随机向量,则X服从多元正态分布,当且
仅当它的任何线性函数 均a服X从一元正态分布。
➢ 性质(2)常可用来证明随机向量服从多元正态分布。
(3)设X~N p (μ, Σ),Y=CX+b其中C为r×p 常数矩阵,则
; 14 44
(iii)
X4 X1
~
N
3
4 1
44
,
14
41 11
1433。
X3
3 34 31 33
第十五页,共63页。
§2.2 多元正态分布的性质
(5)设X1,X2, ⋯,Xn相互独立,且Xi~N p (μi, Σi) ,i=1,2,⋯,n,则
1 x12 x22
f ( x1, x2 ) 2 e 2 (1 sin x1 sin x2 ) x1, x2 R
厦门大学《应用多元统计分析》第02章_多元正态分布的参数估计
• 在实用中遇到的随机向量常常是服从正态分布或近似正态分布,或虽本身不 是正态分布,但它的样本均值近似于正态分布。因此现实世界中许多实际问 题的解决办法都是以总体服从正态分布或近似正态分布为前提的。在多元统 计分析中, 多元正态分布占有很重要地位,本书所介绍的方法大都假定数据 来之多元正态分布。为此,本章将要介绍多元正态分布的定义和有关性质。
矩阵。
• 定义 2.7 设 X ( X1, X 2 , , X p ) ,Y (Y1,Y2 , ,Yp ) , 称 D( X )E( X E( X ))( X E( X ))
Cov( X1, X1) Cov( X 2, X1)
Cov( X p , X1)
Cov( X1, X 2 ) Cov( X 2, X 2 )
, X p ) 是 p 维随机向量,它
F ( x)F ( X1, X 2 , , X p ) P( X1 x1, X 2 x2 , , X p xp )
(2.2)
记为 X ~ F ( x) ,其中 x (x1, x2, , xp ) Rp , R p 表 示 p 维欧氏空间。
多维随机向量的统计特性可用它的分布函数来完整地描 述。
x
x
(2)
。
• 当 X 的分布函数是 F (x1, x2 , , xq ) 时, X (1) 的分布函数即边
缘分布函数为:
F (x1, x2 , , xq ) P( X1 x1, , X q xq )
P( X1 x1, , X q xq , X q1 , , X p )
•
F (x1, x2 , , xq , , , )
第二章 多元正态分布的参数估计
第一节 引言 第二节 基本概念 第三节 多元正态分布 第四节 多元正态分布的参数估计 第五节 多元正态分布参数估计的
第2章多元正态分布参数估计
第2章多元正态分布参数估计多元正态分布是多元随机变量的一种常见模型。
在实际问题中,我们常常需要通过已有的数据对多元正态分布的参数进行估计,便于进行后续的统计分析和预测。
多元正态分布的参数估计主要包括均值向量和协方差矩阵的估计。
对于均值向量的估计,最简单的方法是直接计算样本均值。
假设我们有一个包含n个样本的数据集,其中每个样本有d个维度的观测值,我们可以将样本数据表示为一个n×d的矩阵X。
则样本均值向量的估计值μ可以通过以下公式得到:μ = (1/n) * Σxi其中,xi表示第i个样本观测值。
对于协方差矩阵的估计,最常用的方法是样本协方差矩阵的估计。
样本协方差矩阵S的估计值可以通过以下公式得到:S = (1/n) * Σ(xi - μ)(xi - μ)T其中,T表示矩阵的转置。
需要注意的是,样本协方差矩阵的估计是基于样本的二阶矩估计,因此在数据量较小的情况下,估计结果可能存在偏差。
为了减小估计结果的偏差,可以使用修正样本协方差矩阵的估计。
修正样本协方差矩阵的估计值可以通过以下公式得到:S = ((n-1)/n) * Σ(xi - μ)(xi - μ)T其中,n-1是修正系数。
除了样本协方差矩阵,也可以使用样本相关系数矩阵来估计多元正态分布的协方差矩阵。
样本相关系数矩阵R的估计值可以通过以下公式得到:rij = sij / (si * sj)其中,sij表示样本协方差矩阵的元素,si和sj分别表示样本标准差。
需要注意的是,当样本量较小或者存在样本相关系数为1的情况时,样本相关系数矩阵的估计结果可能不可靠,此时推荐使用样本协方差矩阵来估计。
在实际问题中,参数估计是多元正态分布分析的重要步骤。
通过对样本数据进行参数估计,我们可以对多元正态分布的均值和协方差矩阵有一个初步的认识,从而便于进行后续的模型建立、参数推断和预测。
同时,合理的参数估计方法也有助于提高分析结果的精度和可靠性。
总之,多元正态分布参数估计是一个对多元随机变量的观测数据进行统计分析的重要任务。
应用多元统计分析课后习题解答详解北大高惠璇(第二章部分习题解答)
2 2
X 2 ~ N (3,2).
10
第二章 多元正态分布及参数的估计
12 Cov( X1, X 2 ) E[( X1 E( X1))( X 2 E( X 2 )]
E[( X1 4)( X 2 3)]
(x1 4)(x2 3) f (x1, x2 )dx1dx2
令uu21
x1 x2
X
X X
(1) (2)
~
N2 p
(1) (2)
,
1 2
2 1
,
其中μ(i) (i=1,2)为p维向量,Σi (i=1,2)为p阶矩阵,
(1) 试证明X(1) +X(2)和X(1) -X(2) 相互独立.
(2) 试求X(1) +X(2) 和X(1) -X(2) 的分布.
解 :(1) 令
Y
2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
4
第二章 多元正态分布及参数的估计
(2) 因
Y
X1 X1
《应用多元统计分析》各章作业题及部分参考答案
60.6
16.5
2 76
58.1
12.5
3 92
63.2
14.5
4 81
59.0
14.0
5 81
60.8
15.5
6 84
59.5
14.0
解:作如下假设 H0 : μ = μ0 , H1 : μ ≠ μ0
经计算,求的样本均值向量 x = (82.0, 60.2,14.5) ' ,x − μ0 = (−8, 2.2, −1.5) ' ,样本协差阵
x2
+
1 2
x3
+
1 2
x4 。
(2)第一主成分的贡献率为
λ1
+
λ2
λ1 +
λ3
+ λ4
= 1+ 3ρ 4
≥ 95% ,得 ρ
≥ 0.933 。
第 7 章 因子分析
1、设 x = (x1, x2 , x3 )′ 的相关系数矩阵通过因子分析分解为
⎛ ⎜
1
⎜
R
=
⎜ ⎜
−1 3
⎜ ⎜⎜⎝
2 3
−1 3 1
54.58
11.67
产品净值率 10.7
6.2
21.41
11.67
7.90
2、 设 G1, G2 , G3 三个组,欲判别某样品 x0 属于何组,已知 p1 = 0.05, p2 = 0.65, p3 = 0.3,
应用多元统计分析
pofeel@
3
f1 (x0 ) = 0.10, f2 (x0 ) = 0.63, f3 (x0 ) = 2.4 ,假定误判代价矩阵为:
⎢⎣ 4.5 ⎥⎦
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习二 多元正态分布的参数估计2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=-- 其中1a x b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数; (3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()d x cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。
同理,由于2X 服从均匀分布[]2121,()0x x c d f x d c⎧∈⎪=-⎨⎪⎩其它,则均值为2d c+,方差为()212d c -。
(2)解:随机变量1X 和2X 的协方差和相关系数;12cov(,)x x12121212222[()()()()2()()]22()()dbca d c x ab a xc x a x c a bd c x x dx dx b a d c --+-----++⎛⎫⎛⎫=-- ⎪⎪--⎝⎭⎝⎭⎰⎰ ()()36c d b a --=1212cov(,)13x xx x ρσσ==(3)解:判断1X 和2X 是否相互独立。
1X 和2X 由于121212(,)()()x x f x x f x f x ≠,所以不独立。
2.4设12(,,)p X X X X '=服从正态分布,已知其协方差矩阵∑为对角阵,证明其分量是相互独立的随机变量。
解: 因为12(,,)p X X X X '=的密度函数为1/2111(,...,)exp ()()2pp f x x --⎧⎫'=---⎨⎬⎩⎭Σx μΣx μ 又由于21222p σσσ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭Σ 22212pσσσ=Σ 212122111p σσσ-⎛⎫ ⎪ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭Σ 则1(,...,)p f x x211/2222212122111exp ()()21pp p σσσσσσ--⎧⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪'==--=-⎨⎬⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎩⎭Σx μΣxμ ()222123111222212()()()111exp ...222pp p p p x x x μμμσσσσσσ-⎧⎫---⎪⎪=----⎨⎬⎪⎪⎩⎭2121()()...()2pi i p i i x f x f x μσ=⎧⎫-=-=⎨⎬⎩⎭则其分量是相互独立。
2.5由于多元正态分布的数学期望向量和均方差矩阵的极大似然分别为1ˆni i n ===∑μX X 1ˆ()()n i ii n ='=--∑ΣX X X X 35650.0012.33ˆ17325.00152.50⎛⎫⎪ ⎪== ⎪ ⎪ ⎪⎝⎭μX 201588000.0038900.0083722500.00-736800.0038900.0013.06716710.00-35.80ˆ83722500.0016710.0036573750.00-199875.00-736800.00-35.800-199875.0016695.10⎛⎫⎪⎪= ⎪ ⎪⎪⎝⎭Σ2.6 渐近无偏性、有效性和一致性;2.7 设总体服从正态分布,~(,)p N X μΣ,有样本12,,...,n X X X 。
由于X 是相互独立的正态分布随机向量之和,所以X 也服从正态分布。
又()111()n nni i i i i E E n E n n ===⎛⎫==== ⎪⎝⎭∑∑∑X X X μμ()2211111()n nn i i i i i D D n D n n n ===⎛⎫==== ⎪⎝⎭∑∑∑ΣX X X Σ所以~(,)p N X μΣ。
2.8 方法1: 11ˆ()()1ni i i n ='=---∑ΣX X X X 111ni i i n n =''=--∑X X XX 11ˆ()()1ni i i E E n n =''=--∑ΣX X XX()()111n i i i E nE n =⎡⎤''=-⎢⎥-⎣⎦∑X X XX 111(1)11n i n n n n n =⎡⎤=-=-=⎢⎥--⎣⎦∑ΣΣΣΣ。
方法2:1()ni i i ='=∑S X -X)(X -X1((ni i i ='⎡⎤⎡⎤=----⎣⎦⎣⎦∑X -μX μ)X -μX μ)11()()2()()()nni i i i i n =='''=-+--∑∑X -μX -μX -μX -μX μ)(X μX μ1()()2()()ni i i n n ='''=---+--∑X -μX -μX μ)(X μX μ)(X μ1()()()ni i i n =''=---∑X -μX -μX μ)(X μ11()()()()11n i i i E E n n n =⎛⎫''=--- ⎪--⎝⎭∑S X -μX -μX μ)(X μ 11()()()1n i i i E nE n =⎛⎫''=---= ⎪-⎝⎭∑X -μX -μX μ)(X μΣ。
故1n -S为Σ的无偏估计。
9.设(1)(2)()n X ,X ,...,X 是从多元正态分布~(,)p N X μΣ抽出的一个简单随机样本,试求S 的分布。
证明: 设()12******ij n n nγγγγ⨯⎡⎤'⎡⎤⎢⎥⎢⎥⎢⎥'⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎥'⎣⎦⎥⎦Γ为一正交矩阵。
令()''12n 12n Ζ=(ΖΖΖ)=X X X Γ,(1,2,3,4,),i n =i X Γ由于独立同正态分布且为正交矩阵所以12()n 'Z =Z Z Z 独立同正态分布。
且有1nn i i ==ΖΧ,1()()n n i i E E ===ΖΧ,1()Var n =nZ Σ。
1()()(1,2,3,,1)na aj j j E E r a n ===-∑ΖΧ1najj ==r10najnj i r r ='==∑ 0(,)i j i j Cov i j≠⎧=⎨=⎩ΖΖΣ又因为1()()nj j ='=--∑i S X X X X1nj j n =''=-∑i X X XX1nj j n n =''=-∑i X X ΖΖ'''=n n ΖΓΓΖ-ΖΖ=1122...n n ''''=+++n n Z Z Z Z Z Z -ΖΖ故11n j j j -='=Z Z ∑S ,由于121,,,n Z Z Z -独立同正态分布(0,)p N Σ,所以11~(1,)n j j p j W n -='=Z Z -∑∑S10.设()i i X n p ⨯是来自(,)p i i N μΣ的简单随机样本,1,2,3,,i k =, (1)已知2...k ====1μμμμ且2...k ====1ΣΣΣΣ,求μ和Σ的估计。
(2)已知2...k ====1ΣΣΣΣ求2,,...,,k 1μμμ和Σ的估计。
解:(1)11121ˆ...an k a ia i kn n n ====+++∑∑μx x,()()1112ˆ...an k aa ii a i kn n n =='--=+++∑∑xx x x Σ(2) 1ln (,,,)k L μμΣ111ln ()exp[]2a n k n paa i a i a a i 2π-=='⎡⎤=-⎣⎦∑∑-1Σ(x -μ)Σ(x -μ)ln ()L ∂⎧=⎪∂⎨⎪⎩μ,ΣΣ1111ln()ln 222a n k a a i a i a a i n pn 2π=='=--+-∑∑-1Σ(x -μ)Σ(x -μ) ()21111ln (,)1()()022an k a a i a i a a i L n --==∂'=-+--=∂∑∑μΣΣX μX μΣΣ 11ln (,)()0(1,2,...,)jn j ij j i jL j k -=∂=-==∂∑μΣΣX μμ解之,得11ˆjn j j iji jn ===∑μx x,()()1112ˆ...jn kj jj i kn n n =='--=+++∑∑ij ij xx x x Σ。