工程力学--静力学(北京科大、东北大学版)第4版_第四章习题答案

合集下载

工程力学材料力学第四版(北京科技大学与东北大学)习题答案

工程力学材料力学第四版(北京科技大学与东北大学)习题答案
工程力学材料力 学
(北京科技大学与东 北大学)
第 一意轴向拉伸和压缩
, 1-1 lfJ截 Illi法 求 下列各轩指 定的 lii fl'J 内 )J
2
f
2
F 2k N
I
(a 1
2
f
(bl
3P
11
(d 1
2kN P
2
2
(e 1
题 1 ) [fI

P
({)
P rlp|p
iE

e-
I Iz Il
F
5,
为 20 俐 , 许用应力 I δ]=50 Mpa . 试
根据吊钩螺纹部分的强主确定吊钩的阵 111 起重盐 1 解 P= 119kN
P
3m
B
P
E
题1-1 8 固
lIlí l - l ~ 罔
1 - 1 9 如入所示结构的 ABH 为钢轩,其帧故而积 -4.:::6 cm2 • 咛用阻力 ( σ 1=140 MPa ; BC
<.l
(bl
题 1-3 归
且ø 1 -4 因
1-4 : 桩杆起lli:机如 l 国所示,起lli:忏 AB 为钢管 , J[外径 。=2ûrnm , 内径 d= 1 8mrn;制绳
CB 的棋极而而积为 01cnEZe 己知l起重证
P=2脱lO N ,
试计fI起重机轩;归 钢丝绳的应 )J.
解 受力分析得

E = GPa . v = 0.3 17
1- 10: i主杆端部与的如1I相迹 , 其构应如罔 ,谊作用在连杆的轴向 jJ P=l28KN , 蝉挟处的内
径 d = 3.7cm , 螺栓材料的冉川剧

工程力学材料力学第四版(北京科技大学和东北大学)习题答案解析

工程力学材料力学第四版(北京科技大学和东北大学)习题答案解析

工程力学材料力学(科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力 解:(a):N 1=0,N 2=N 3=P (b):N 1=N 2=2kN(c):N 1=P,N 2=2P,N 3= -P (d):N 1=-2P,N 2=P(e):N 1= -50N,N 2= -90N (f):N 1=0.896P,N 2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a 所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b 所示;拉杆上端螺纹的内径d=175mm 。

以知作用于拉杆上的静拉力P=850kN ,试计算大钟拉杆的最大静应力。

解:σ1= 2118504P kN S d π==35.3Mpaσ2=2228504P kNS d π==30.4MPa∴σmax =35.3Mpa1-3:试计算图a 所示钢水包吊杆的最大应力。

以知钢水包与其所盛钢水共重90kN ,吊杆的尺寸如图b 所示。

解:下端螺孔截面:σ1=19020.065*0.045P S ==15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa上端双螺孔截面:σ3=3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB 为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 的横截面面积为0.1cm 2。

已知起重量P=2000N ,试计算起重机杆和钢丝绳的应力。

解:受力分析得:F 1*sin15=F 2*sin45 F 1*cos15=P+F 2*sin45∴σAB = 11F S =-47.7MPa σBC =22F S =103.5 MPa1-5:图a 所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c 所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力. 解:F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2F S=38.1MPa1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1)AC. CD DB 各段的应力和变形. (2)AB 杆的总变形.解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△l AC =NL EA =AC LEA σ=-0.01mm△l CD =CD LEA σ=0△L DB =DB LEA σ=-0.01mm (2) ∴ABl ∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知材料的弹性模量E=200Gpa,试求各段的应力和应变. 解:AC AC ACLNL EA EA σε===1.59*104,CB CB CBLNL EA EA σε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧 制压力.压头材料的弹性模量E=200Gpa. 解:1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。

工程力学(静力学与材料力学)第四版习题答案

工程力学(静力学与材料力学)第四版习题答案

静力学部分第一章基本概念受力图2-1 解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。

2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。

(a )由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b )由平衡方程有:1.064AB F W=(拉力)0.364AC F W=(压力)(c )由平衡方程有:0X =∑ cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d )由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑22sin 45042RA RB F F P +-=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑cos 45cos 45010RA RB F F P --=0Y =∑sin 45sin 45010RA RB F F P -=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=-2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC P F α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及 ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD PF F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力) 列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q -=联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得: 22RA F Q=2RB F Q P=+(3)取BCE 部分。

工程力学材料力学第四完整版本习题答案解析

工程力学材料力学第四完整版本习题答案解析

工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。

以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。

解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:试计算图a所示钢水包吊杆的最大应力。

以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。

解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa上端双螺孔截面:σ3= 3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 的横截面面积为0.1cm2。

已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。

解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2F S =38.1MPa1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1) AC. CD DB 各段的应力和变形.(2) AB 杆的总变形.解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△l CD =CD LEA σ=0△L DB =DB LEA σ=-0.01mm(2) ∴ABl ∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知 材料的弹性模量E=200Gpa,试求各段的应力和应变. 解:31.8127AC ACCB CBPMPa S PMPa S σσ====AC AC AC LNL EA EA σε===1.59*104,CB CB CB LNL EA EA σε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa. 解:NllEAllε∆=∆=∴NEAε=62.54*10N EA Nε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。

工程力学--材料力学(北京科大、东北大学版)第4版第四章习题答案

工程力学--材料力学(北京科大、东北大学版)第4版第四章习题答案

第四章习题4-1 求下列各梁指定截面上的剪力Q和弯矩M。

各截面无限趋近于梁上A、B、C等各点。

4-2 试列出下列各梁的剪力方程和弯矩方程,作剪力图和弯矩图,并求和。

用叠加法作以下各梁的弯矩图。

并求出。

4-3用剪力、弯矩和分布载荷集度之间的微分关系校核前面已画的剪力4-4 图和弯矩图是否正确。

不列剪力方程和弯矩方程,作以下各梁的剪力图和弯矩图,并求出4-5。

和4-6 用合适的方法作下列各梁的剪力图和弯矩图。

4-7 试根据载荷、剪力图和弯矩图之间的关系,检查下列各梁的剪力图和弯矩图是否正确,并对错误之处加以改正。

4-8 作下列构件的内力图。

4-9 在梁上行走的小车二轮的轮压均为P ,如图所示。

问小车行至何位置时梁内的弯矩最大?最大弯矩值是多少?设小车的轮,大梁的跨度为。

c距为参考答案4-1 解:题(b)求支反力(见图) 1()=l-Pl=0 ,由由,(2)剪力按计算剪力的规则(3)弯矩按计算弯矩的规则其它各题的答案:(a)(c)(d)(e)(f)4-2 解:题c(1)(图)为原点,任一截面距左端的距离为x\ 剪力和弯矩方程以左端A 剪力方程:弯矩方程:按上述剪力方程和弯矩方程绘剪力图和弯矩 (2 )剪力图与弯矩图图(3)及得由值与=950 =200N题(f)求支反力(见图)(1)由600-10040,40=0=由20-60=0q40,=校核:+=2667+1333=4000N=q40=10040 所以支反力计算正确(2)剪力和弯矩方程以左端为原点,任一截面距左端的距离为x,则得剪力方程:弯矩方程及按上述剪力及弯矩方程绘出图 2()剪力图和弯矩图.所示的剪力图和弯矩图所示剪力图和弯矩图的条件求得,即剪力图中最大弯矩的截面位置可由=3333-100x=0)Q(xx=33.3cm及4)(得及由,=2667N =355其他各题的答案:ql =)= (a)(b)(d)e()(g)h()(i)j (c4-3 解:题q 、),然后将此二图叠加单独作用时的弯矩图(图分别作、可知得总的弯矩图。

工程力学第4版(静力学)答案

工程力学第4版(静力学)答案

第一章习题下列习题中,凡未标出自重的物体,质量不计。

接触处都不计摩擦。

1-1试分别画出下列各物体的受力图。

1-2试分别画出下列各物体系统中的每个物体的受力图。

1-3试分别画出整个系统以及杆BD,AD,AB(带滑轮C,重物E和一段绳索)的受力图。

1-4构架如图所示,试分别画出杆HED,杆BDC及杆AEC的受力图。

1-5构架如图所示,试分别画出杆BDH,杆AB,销钉A及整个系统的受力图。

1-6构架如图所示,试分别画出杆AEB,销钉A及整个系统的受力图。

1-7构架如图所示,试分别画出杆AEB,销钉C,销钉A及整个系统的受力图。

1-8结构如图所示,力P作用在销钉C上,试分别画出AC,BCE及DEH部分的受力图。

参考答案1-1解:1-2解:1-3解:1-4解:1-5解:1-6解:1-7解:1-8解:第二章 习题参考答案2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故: 22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+=方向沿OB 。

2-3解:所有杆件均为二力杆件,受力沿直杆轴线。

(a ) 由平衡方程有:0X =∑sin 300ACAB FF -=0Y =∑cos300ACFW -=联立上二式,解得:0.577AB F W =(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑cos 700ACAB FF -=0Y =∑sin 700ABFW -=联立上二式,解得:1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300ACAB FF -=0Y =∑sin 30sin 600ABAC FF W +-=联立上二式,解得:0.5AB F W=(拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300ABAC FF -=0Y =∑cos30cos300ABAC FF W +-=联立上二式,解得:0.577AB F W =(拉力)0.577AC F W=(拉力)2-4解:(a)受力分析如图所示:由x=∑22cos45042RAF P=+15.8RAF KN∴=由Y=∑22sin45042RA RBF F P+-=+7.1RBF KN∴=(b)解:受力分析如图所示:由0x =∑cos 45cos 45010RA RB F F P ⋅--= 0Y =∑sin 45sin 45010RA RB F F P ⋅+-= 联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN=(压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理 0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600ABAC FF W +-=联立上二式,解得:7.32AB F KN =-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程由0Y =∑ sin cos 0BD T T αα'-=230BDT T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑ sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CE F F α'-=CECE F F '=故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:0x =∑sin 75sin 750ABAD FF -=0Y =∑cos 75cos 750ABAD FF P +-=联立后可得:2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:0x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD PF F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x=∑cos cos300RA DCF F Pα+-=Y=∑sin sin300RAF Pα-=联立上二式得: 2.92RAF KN=1.33DCF KN=(压力)列C点平衡x=∑405DC ACF F-⋅=Y=∑305BC ACF F+⋅=联立上二式得: 1.67ACF KN=(拉力)1.0BCF KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡0x =∑05RD REF F '-= 0Y =∑05RD F Q -=联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡0x =∑cos 450RERA FF -=0Y =∑sin 450RBRA FF P --=且RE REF F '=联立上面各式得:22 RAFQ=2RBF Q P=+(3)取BCE部分。

工程力学 课后习题答案 第四版 北京师范大学 东北大学

工程力学 课后习题答案 第四版 北京师范大学 东北大学

第一章静力学的基本概念受力图2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN ==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。

2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。

(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑ 22sin 45042RA RB F F P +-=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑3cos 45cos 45010RA RB F F P ⋅--=0Y =∑1sin 45sin 45010RA RB F F P ⋅+-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC P F α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及 ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD PF F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力) 列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q -=联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。

工程力学材料力学第四版(北京科技大学与东北大学)习题答案

工程力学材料力学第四版(北京科技大学与东北大学)习题答案

工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N 1=0,N 2=N 3=P(b):N 1=N 2=2kN(c):N 1=P,N 2=2P,N 3= -P(d):N 1=-2P,N 2=P(e):N 1= -50N,N 2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。

以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。

解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:试计算图a所示钢水包吊杆的最大应力。

以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。

解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa 上端双螺孔截面:σ3= 3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB的横截面面积为0.1cm2。

已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。

解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2F S =38.1MPa1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1) AC. CD DB 各段的应力和变形.(2) AB 杆的总变形.解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△ l CD =CD LEA σ=0△ L DB =DB LEA σ=-0.01mm(2) ∴ABl ∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知 材料的弹性模量E=200Gpa,试求各段的应力和应变. 解:31.8127AC ACCB CBPMPa S PMPa S σσ====AC AC AC LNL EA EA σε===1.59*104, CB CB CB LNL EA EA σε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa. 解:NllEAllε∆=∆=∴NEAε=62.54*10N EA Nε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。

工程力学材料力学第四完整版本习题答案解析

工程力学材料力学第四完整版本习题答案解析

工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。

以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。

解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:试计算图a所示钢水包吊杆的最大应力。

以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。

解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa上端双螺孔截面:σ3= 3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 的横截面面积为0.1cm2。

已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。

解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2F S =38.1MPa1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1) AC. CD DB 各段的应力和变形.(2) AB 杆的总变形.解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△l CD =CD LEA σ=0△L DB =DB LEA σ=-0.01mm(2) ∴ABl ∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知 材料的弹性模量E=200Gpa,试求各段的应力和应变. 解:31.8127AC ACCB CBPMPa S PMPa S σσ====AC AC AC LNL EA EA σε===1.59*104,CB CB CB LNL EA EA σε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa. 解:NllEAllε∆=∆=∴NEAε=62.54*10N EA Nε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。

工程力学(静力学与材料力学)第四版习题答案

工程力学(静力学与材料力学)第四版习题答案

工程力学(静力学与材料力学)第四版习题答案-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII静力学部分第一章基本概念受力图2-1 解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故:223R RX RY F F F KN=+= 方向沿OB 。

2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。

(a )由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b )由平衡方程有:0X =∑cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c )由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)由x =∑22cos 45042RA F P =+15.8RA F KN∴=由Y =∑22sin 45042RA RB F F P -=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑cos 45cos 45010RA RB F F P --=0Y =∑sin 45sin 45010RA RB F F P -=联立上二式,得:22.410RA RB F KN F KN==三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=-2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑ sin cos 0BDT T αα'-=230BDT T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑ sin 0BC F P α-= sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得:2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及 ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD PF F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '=0Y =∑0RD F Q -=联立方程后解得:RD F2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得:RA F =2RB F Q P=+(3)取BCE 部分。

工程力学材料力学第四版[北京科技大学及东北大学]习题答案解析

工程力学材料力学第四版[北京科技大学及东北大学]习题答案解析

工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。

以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。

解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:试计算图a所示钢水包吊杆的最大应力。

以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。

解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa 上端双螺孔截面:σ3= 3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 的横截面面积为0.1cm2。

已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。

解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2F S =38.1MPa1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1) AC. CD DB 各段的应力和变形.(2) AB 杆的总变形.解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△ l CD =CD LEA σ=0△ L DB =DB LEA σ=-0.01mm(2) ∴ABl∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知材料的弹性模量E=200Gpa,试求各段的应力和应变.解:31.8127ACACCBCBPMPaSPMPaSσσ====ACACACLNLEA EAσε===1.59*104,CBCBCBLNLEA EAσε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa.解:QNllEAllε∆=∆=∴NEAε=62.54*10N EA Nε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。

工程力学第4版(静力学)答案

工程力学第4版(静力学)答案

第一章习题下列习题中,凡未标出自重的物体,质量不计。

接触处都不计摩擦。

1-1试分别画出下列各物体的受力图。

1-2试分别画出下列各物体系统中的每个物体的受力图。

1-3试分别画出整个系统以及杆BD,AD,AB(带滑轮C,重物E和一段绳索)的受力图。

1-4构架如图所示,试分别画出杆HED,杆BDC及杆AEC的受力图。

1-5构架如图所示,试分别画出杆BDH,杆AB,销钉A及整个系统的受力图。

1-6构架如图所示,试分别画出杆AEB,销钉A及整个系统的受力图。

1-7构架如图所示,试分别画出杆AEB,销钉C,销钉A及整个系统的受力图。

1-8结构如图所示,力P作用在销钉C上,试分别画出AC,BCE及DEH部分的受力图。

参考答案1-1解:1-2解:1-3解:1-4解:1-5解:1-6解:1-7解:1-8解:第二章 习题参考答案2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:161.2R F N==1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN ==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 3R F KN==方向沿OB 。

2-3解:所有杆件均为二力杆件,受力沿直杆轴线。

(a ) 由平衡方程有:0X =∑sin 300ACAB FF -=0Y =∑cos300ACFW -=联立上二式,解得:0.577AB F W =(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑cos 700ACAB FF -=0Y =∑sin 700ABFW -=联立上二式,解得:1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300ACAB FF -=0Y =∑sin 30sin 600ABAC FF W +-=联立上二式,解得:0.5AB F W=(拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300ABAC FF -=0Y =∑cos30cos300ABAC FF W +-=联立上二式,解得:0.577AB F W=(拉力)0.577AC F W=(拉力)2-4解:(a )受力分析如图所示:由0x =∑ cos 450RA F P =15.8RA F KN∴=由Y =∑ sin 450RA RB F F P +-=7.1RB F KN∴=(b)解:受力分析如图所示:由0x =∑cos 45cos 450RA RB F F P -= 0Y =∑sin 45sin 450RA RB F F P +-= 联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN=(压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=2sin N F W G W α∴=-⋅=2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理 0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600ABAC FF W +-=联立上二式,解得:7.32AB F KN =-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程由0Y =∑ sin cos 0BD T T αα'-=230BDT T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑ sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CE F F α'-=CECE F F '=故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:0x =∑sin 75sin 750ABAD FF -=0Y =∑cos 75cos 750ABAD FF P +-=联立后可得:2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:0x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD PF F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x=∑cos cos300RA DCF F Pα+-=Y=∑sin sin300RAF Pα-=联立上二式得: 2.92RAF KN=1.33DCF KN=(压力)列C点平衡x=∑405DC ACF F-⋅=Y=∑305BC ACF F+⋅=联立上二式得: 1.67ACF KN=(拉力)1.0BCF KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡0x =∑0RD REF F '-=Y =∑0RD F Q -=联立方程后解得: RD F =2REF Q '=(2)取ABCE 部分,对C 点列平衡0x =∑cos 450RERA FF -=0Y =∑sin 450RBRA FF P --=且RE REF F '=联立上面各式得:RA F =2RB F Q P=+(3)取BCE 部分。

工程力学--静力学(北京科大、东北大学版)第4版_第四章习题答案

工程力学--静力学(北京科大、东北大学版)第4版_第四章习题答案

第四章习题4-1 已知F1=60N,F2=80N,F3=150N,m=100N.m,转向为逆时针,θ=30°图中距离单位为m。

试求图中力系向O点简化结果及最终结果。

4-2 已知物体所受力系如图所示,F=10Kn,m=20kN.m,转向如图。

(a)若选择x轴上B点为简化中心,其主矩LB=10kN.m,转向为顺时针,试求B 点的位置及主矢R’。

(b)若选择CD线上E点为简化中心,其主矩LE=30kN.m,转向为顺时针,α=45°,试求位于CD直线上的E点的位置及主矢R’。

4-3 试求下列各梁或刚架的支座反力。

解:(a)受力如图由∑MA =0 FRB•3a-Psin30°•2a-Q•a=0∴FRB=(P+Q)/3由∑x=0 FAx-Pcos30°=0∴FAx =32P由∑Y=0 FAy +FRB-Q-Psin30°=0∴FAy=(4Q+P)/64-4 高炉上料的斜桥,其支承情况可简化为如图所示,设A和B为固定铰,D为中间铰,料车对斜桥的总压力为Q,斜桥(连同轨道)重为W,立柱BD质量不计,几何尺寸如图示,试求A和B的支座反力。

4-5 齿轮减速箱重W=500N,输入轴受一力偶作用,其力偶矩m1=600N.m,输出轴受另一力偶作用,其力偶矩m2=900N.m,转向如图所示。

试计算齿轮减速箱A和B两端螺栓和地面所受的力。

4-6 试求下列各梁的支座反力。

(a) (b)4-7 各刚架的载荷和尺寸如图所示,图c中m2>m1,试求刚架的各支座反力。

4-8 图示热风炉高h=40m,重W=4000kN,所受风压力可以简化为梯形分布力,如图所示,q1=500kN/m,q2=2.5kN/m。

可将地基抽象化为固顶端约束,试求地基对热风炉的反力。

4-9 起重机简图如图所示,已知P、Q、a、b及c,求向心轴承A及向心推力轴承B的反力。

4-10 构架几何尺寸如图所示,R=0.2m,P=1kN。

工程力学材料力学第四版(北京科技大学与东北大学)习题答案重点

工程力学材料力学第四版(北京科技大学与东北大学)习题答案重点

工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。

以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。

解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:试计算图a所示钢水包吊杆的最大应力。

以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。

解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa 上端双螺孔截面:σ3= 3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB的横截面面积为0.1cm2。

已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。

解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2F S =38.1MPa1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1) AC. CD DB 各段的应力和变形.(2) AB 杆的总变形.解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△ l CD =CD LEA σ=0△ L DB =DB LEA σ=-0.01mm(2) ∴ABl ∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知 材料的弹性模量E=200Gpa,试求各段的应力和应变. 解:31.8127AC ACCB CBPMPa S PMPa S σσ====AC AC AC LNL EA EA σε===1.59*104, CB CB CB LNL EA EA σε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa. 解:QNl lEAllε∆=∆=∴NEAε=62.54*10N EA Nε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。

工程力学材料力学第四版[北京科技大学及东北大学]习题答案解析

工程力学材料力学第四版[北京科技大学及东北大学]习题答案解析

工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸与压缩1-1:用截面法求下列各杆指定截面得内力解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=0、896P,N2=-0、732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中得大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆得横截面如图b所示;拉杆上端螺纹得内径d=175mm。

以知作用于拉杆上得静拉力P=850kN,试计算大钟拉杆得最大静应力。

解:σ1=2118504P kNS dπ==35、3Mpaσ2=2228504P kNS dπ==30、4MPa∴σmax=35、3Mpa1-3:试计算图a所示钢水包吊杆得最大应力。

以知钢水包及其所盛钢水共重90kN,吊杆得尺寸如图b所示。

解:下端螺孔截面:σ1=19020.065*0.045P S=15、4Mpa上端单螺孔截面:σ2=2P S =8、72MPa上端双螺孔截面:σ3= 3P S =9、15Mpa∴σmax =15、4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 得横截面面积为0、1cm2。

已知起重量P=2000N,试计算起重机杆与钢丝绳得应力。

解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47、7MPaσBC=22FS=103、5 MPa1-5:图a所示为一斗式提升机、斗与斗之间用链条连接,链条得计算简图如图b 所示,每个料斗连同物料得总重量P=2000N、钢链又两层钢板构成,如c所示、每个链板厚t=4、5mm,宽h=40mm,H=65mm,钉孔直径d=30mm、试求链板得最大应力、解:F=6PS 1=h*t=40*4、5=180mm 2S2=(H-d)*t=(65-30)*4、5=157、5mm2∴σmax=2F S =38、1MPa1-6:一长为30cm 得钢杆,其受力情况如图所示、已知杆截面面积A=10cm2,材料得弹性模量E=200Gpa,试求;(1) AC 、 CD DB 各段得应力与变形、 (2) AB 杆得总变形、解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0、01mm△ l CD =CD LEA σ=0△ L DB =DB LEA σ=-0、01mm (2) ∴ABl ∆=-0、02mm1-7:一圆截面阶梯杆受力如图所示,已知 材料得弹性模量E=200Gpa,试求各段得应力与应变、 解:31.8127AC ACCB CBPMPa S PMPa S σσ====AC AC AC LNL EA EA σε===1、59*104,CB CB CB LNL EA EA σε===6、36*1041-8:为测定轧钢机得轧制力,在压下螺旋与上轧辊轴承之间装置一测压用得压头、压头就是一个钢制得圆筒,其外径D=50mm,内径d=40mm,在压头得外表面上沿纵向贴有测变形得电阻丝片、若测得轧辊两端两个压头得纵向应变均为ε=0、9*10-2,试求轧机得总轧 制压力、压头材料得弹性模量E=200Gpa 、 解:QNl l EA l l ε∆=∆=∴N EA ε=62.54*10N EA N ε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向与横向得电阻丝来测定试样得改变。

(完整版)工程力学(静力学与材料力学)第四版习题答案

(完整版)工程力学(静力学与材料力学)第四版习题答案

静力学部分第一章基本概念受力图2-1 解:由解析法,23cos 80RX F X P P N θ==+=∑12sin 140RY F Y P P N θ==+=∑故: 22161.2R RX RY F F F N =+=1(,)arccos 2944RY R R F F P F '∠==o v v2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN ==++=∑o o13sin 45sin 450RY F Y P P ==-=∑o o故: 223R RX RY F F F KN =+= 方向沿OB 。

2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。

(a ) 由平衡方程有:0X =∑ sin 300AC AB F F -=o0Y =∑ cos300AC F W -=o0.577AB F W =(拉力) 1.155AC F W =(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=o0Y =∑ sin 700AB F W -=o1.064AB F W =(拉力)0.364AC F W =(压力)(c ) 由平衡方程有:0X =∑ cos 60cos300AC AB F F -=o o0Y =∑ sin 30sin 600AB AC F F W +-=o o0.5AB F W = (拉力)0.866AC F W =(压力)(d ) 由平衡方程有:0X =∑ sin 30sin 300AB AC F F -=o o0Y =∑ cos30cos300AB AC F F W +-=o o0.577AB F W = (拉力)0.577AC F W = (拉力)2-4 解:(a )受力分析如图所示:由0x =∑ 22cos 45042RA F P -=+o15.8RA F KN ∴= 由0Y =∑ 22sin 45042RA RB F F P +-=+o7.1RB F KN ∴=(b)解:受力分析如图所示:由 0x =∑ cos 45cos 45010RA RB F F P --=o o0Y =∑sin 45sin 45010RA RB F F P -=o o联立上二式,得: 22.410RA RB F KNF KN ==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN = (压力) 5RB F KN =(与X 轴正向夹150度) 2-6解:受力如图所示:已知,1R F G = ,2AC F G =由0x =∑ cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由0x =∑ cos 45cos 450RA CB P F F --=o o0Y =∑sin 45sin 450CB RA F F '-=o o 联立后,解得: 0.707RA F P = 0.707RB F P =由二力平衡定理 0.707RB CB CB F F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=o o0Y =∑sin 30sin 600AB AC F F W +-=o o联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC P F α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '=Q 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=o o0Y =∑cos 75cos 750AB AD F F P +-=o o联立后可得: 2cos 75AD AB PF F ==o取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=o ocos5cos80NDAD F F '=⋅oo由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N NDADP F F F KN '∴===⋅=o o o o o2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=o0Y =∑sin sin 300RA F P α-=o联立上二式得:2.92RA F KN=1.33DC F KN=(压力) 列C 点平衡x =∑405DC AC F F -⋅=Y=∑305BC ACF F+⋅=联立上二式得: 1.67ACF KN=(拉力)1.0BCF KN=-(压力)2-13解:(1)取DEH部分,对H点列平衡x=∑05RD REF F'=Y=∑05RDF Q-=联立方程后解得:5RDF Q=2REF Q'=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=o0Y =∑sin 450RB RA F F P --=o且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。

工程力学第4版(静力学)答案

工程力学第4版(静力学)答案
工程力学(第四版)--静力学 北京科技大学、东北大学
第一章 习题
下列习题中,凡未标出自重的物体,质量不计。接触处都不计摩擦。 1-1 试分别画出下列各物体的受力图。
1-2 试分别画出下列各物体系统中的每个物体的受力图。
工程力学(第四版)--静力学 北京科技大学、东北大学
1-3 试分别画出整个系统以及杆 BD,AD,AB(带滑轮 C,重物 E 和一 段绳索)的受力图。
工程力学(第四版)--静力学 北京科技大学、东北大学
联立上二式,且有 FBC FBC 解得:
FCE

P 2

cos sin2

1 cos

取 E 为研究对象:
由 Y 0 FNH FCE cos 0
FCE FCE 故有:
FNH

P cos 2 sin2
FRC FRE 2 FRB2
2Q2 2Q P2
8Q2 4PQ P2 2-14 解:(1)对 A 球列平衡方程
工程力学(第四版)--静力学 北京科技大学、东北大学
x 0 FAB cos FNA sin 0 (1) Y 0 FNA cos FAB sin 2P 0 (2)
2-9 解:各处全为柔索约束,故反力全为拉力,以 D,B 点分别列平衡方 程
(1)取 D 点,列平衡方程
由 x 0 TDB sin W cos 0
工程力学(第四版)--静力学 北京科技大学、东北大学
TDB Wctg 0
(2)取 B 点列平衡方程
由 Y 0 T sin TBD cos 0
F G , FNA FNB
由M 0
FNA 0.8 G 0.3 0

工程力学材料力学第四完整版本习题答案解析

工程力学材料力学第四完整版本习题答案解析

工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。

以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。

解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:试计算图a所示钢水包吊杆的最大应力。

以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。

解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa上端双螺孔截面:σ3= 3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 的横截面面积为0.1cm2。

已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。

解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2F S =38.1MPa1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1) AC. CD DB 各段的应力和变形.(2) AB 杆的总变形.解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△l CD =CD LEA σ=0△L DB =DB LEA σ=-0.01mm(2) ∴ABl ∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知 材料的弹性模量E=200Gpa,试求各段的应力和应变. 解:31.8127AC ACCB CBPMPa S PMPa S σσ====AC AC AC LNL EA EA σε===1.59*104,CB CB CB LNL EA EA σε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa. 解:NllEAllε∆=∆=∴NEAε=62.54*10N EA Nε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。

工程力学第4版(静力学)答案

工程力学第4版(静力学)答案

第一章习题下列习题中,凡未标出自重的物体,质量不计。

接触处都不计摩擦。

1-1试分别画出下列各物体的受力图。

1-2试分别画出下列各物体系统中的每个物体的受力图。

1-3试分别画出整个系统以及杆BD,AD,AB(带滑轮C,重物E和一段绳索)的受力图。

1-4构架如图所示,试分别画出杆HED,杆BDC及杆AEC的受力图。

1-5构架如图所示,试分别画出杆BDH,杆AB,销钉A及整个系统的受力图。

1-6构架如图所示,试分别画出杆AEB,销钉A及整个系统的受力图。

1-7构架如图所示,试分别画出杆AEB,销钉C,销钉A及整个系统的受力图。

1-8结构如图所示,力P作用在销钉C上,试分别画出AC,BCE及DEH部分的受力图。

参考答案1-1解:1-2解:1-3解:1-4解:1-5解:1-6解:1-7解:1-8解:第二章 习题参考答案2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故: 22161.2R RX RY F F F N=+=1(,)arccos 2944RYR RF F P F '∠==o v v2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑o o13sin 45sin 450RY F Y P P ==-=∑o o故:223R RX RY F F F KN=+=方向沿OB 。

2-3解:所有杆件均为二力杆件,受力沿直杆轴线。

(a ) 由平衡方程有:0X =∑sin 300ACAB FF -=o0Y =∑cos300ACFW -=o联立上二式,解得:0.577AB F W =(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑cos 700ACAB FF -=o0Y =∑sin 700ABFW -=o联立上二式,解得:1.064AB F W =(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300ACAB FF -=o o0Y =∑sin 30sin 600ABAC FF W +-=o o联立上二式,解得:0.5AB F W=(拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300ABAC FF -=o o0Y =∑cos30cos300ABAC FF W +-=o o联立上二式,解得:0.577AB F W =(拉力)0.577AC F W=(拉力)2-4解:(a)受力分析如图所示:由x=∑22cos45042RAF P=+o15.8RAF KN∴=由Y=∑22sin45042RA RBF F P+-=+o7.1RBF KN∴=(b)解:受力分析如图所示:由0x =∑cos 45cos 45010RA RB F F P ⋅--=o o 0Y =∑sin 45sin 45010RA RB F F P ⋅+-=o o联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN=(压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=o o0Y =∑sin 45sin 450CBRA F F '-=o o联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理 0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=o o0Y =∑sin 30sin 600ABAC FF W +-=o o联立上二式,解得:7.32AB F KN =-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程由0Y =∑ sin cos 0BDT T αα'-=230BDT T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑ sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '=Q 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:0x =∑sin 75sin 750ABAD FF -=o o0Y =∑cos 75cos 750AB ADFF P +-=o o联立后可得:2cos 75AD AB PF F ==o取D 点平衡,取如图坐标系:0x =∑cos5cos800ADND F F '-=o ocos5cos80NDAD F F '=⋅oo由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N NDADPF F F KN '∴===⋅=o o o o o2-12解:整体受力交于O 点,列O 点平衡由x=∑cos cos300RA DCF F Pα+-=oY=∑sin sin300RAF Pα-=o联立上二式得:2.92RAF KN=1.33DCF KN=(压力)列C点平衡x=∑405DC ACF F-⋅=Y=∑305BC ACF F+⋅=联立上二式得:1.67ACF KN=(拉力)1.0BCF KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡0x =∑05RD REF F '-= 0Y =∑05RD F Q -=联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡0x =∑cos 450RERA FF -=o 0Y =∑sin 450RBRA FF P --=o且RE REF F '=联立上面各式得:22 RAFQ=2RBF Q P=+(3)取BCE部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章习题4-1 已知F1=60N,F2=80N,F3=150N,m=,转向为逆时针,θ=30°图中距离单位为m。

试求图中力系向O点简化结果及最终结果。

4-2 已知物体所受力系如图所示,F=10Kn,m=,转向如图。

(a)若选择x轴上B点为简化中心,其主矩L B=,转向为顺时针,试求B点的位置及主矢R’。

(b)若选择CD线上E点为简化中心,其主矩L E=,转向为顺时针,α=45°,试求位于CD直线上的E点的位置及主矢R’。

4-3 试求下列各梁或刚架的支座反力。

解:(a)受力如图由∑M A=0 F RB•3a-Psin30°•2a-Q•a=0∴FRB=(P+Q)/3由∑x=0 F Ax-Pcos30°=0∴F Ax=3 2P由∑Y=0 F Ay+F RB-Q-Psin30°=0∴F Ay=(4Q+P)/64-4 高炉上料的斜桥,其支承情况可简化为如图所示,设A和B为固定铰,D为中间铰,料车对斜桥的总压力为Q,斜桥(连同轨道)重为W,立柱BD质量不计,几何尺寸如图示,试求A和B的支座反力。

4-5 齿轮减速箱重W=500N,输入轴受一力偶作用,其力偶矩m1=,输出轴受另一力偶作用,其力偶矩m2=,转向如图所示。

试计算齿轮减速箱A和B两端螺栓和地面所受的力。

4-6 试求下列各梁的支座反力。

(a) (b)4-7 各刚架的载荷和尺寸如图所示,图c中m2>m1,试求刚架的各支座反力。

4-8 图示热风炉高h=40m,重W=4000kN,所受风压力可以简化为梯形分布力,如图所示,q1=500kN/m,q2=m。

可将地基抽象化为固顶端约束,试求地基对热风炉的反力。

4-9 起重机简图如图所示,已知P、Q、a、b及c,求向心轴承A及向心推力轴承B的反力。

4-10 构架几何尺寸如图所示,R=0.2m,P=1kN。

E为中间铰,求向心轴承A的反力、向心推力轴承B的反力及销钉C对杆ECD的反力。

4-11 图示为连续铸锭装置中的钢坯矫直辊。

钢坯对矫直辊的作用力为一沿辊长分布的均布力q,已知q=1kN/mm,坯宽1.25m。

试求轴承A和B的反力。

4-12 立式压缩机曲轴的曲柄EH转到垂直向上的位置时,连杆作用于曲柄上的力P最大。

现已知P=40kN,飞轮重W=4kN。

求这时轴承A和B 的反力。

4-13 汽车式起重机中,车重W1=26kN,起重臂CDE重G=4.5kN,起重机旋转及固定部分重W2=31kN,作用线通过B点,几何尺寸如图所示。

这时起重臂在该起重机对称面内。

求最大起重量Pmax。

4-14 平炉的送料机由跑车A及走动的桥B所组成,跑车装有轮子,可沿桥移动。

跑车下部装有一倾覆操纵柱D,其上装有料桶C。

料箱中的载荷Q=15kN,力Q与跑车轴线OA的距离为5m,几何尺寸如图所示。

如欲保证跑车不致翻倒,试问小车连同操纵柱的重量W最小应为多少4-15 两根位于垂直平面内的均质杆的底端彼此相靠地搁在光滑地板上,其上端则靠在两垂直且光滑的墙上,质量分别为P1与P2。

求平衡时两杆的水平倾角α1与α2的关系。

4-16 均质细杆AB重P,两端与滑块相连,滑块A和B可在光滑槽内滑动,两滑块又通过滑轮C用绳索相互连接,物体系处于平衡。

(a)用P和θ表示绳中张力T;(b)当张力T=2P时的θ值。

4-17 已知a,q和m,不计梁重。

试求图示各连续梁在A、B和C处的约束反力。

4-18 各刚架的载荷和尺寸如图所示,不计刚架质量,试求刚架上各支座反力。

4-19 起重机在连续梁上,已知P=10kN,Q=50kN,不计梁质量,求支座A、B和D的反力。

4-20 箱式电炉炉体结构如图a所示。

D为炉壳,E为炉顶拱,H为绝热材料,I为边墙,J为搁架。

在实际炉子设计中,考虑到炉子在高温情况下拱顶常产生裂缝,可将炉拱简化成三铰拱,如图b所示。

已知拱顶是圆弧形,跨距l=1.15m,拱高h=0.173m,炉顶重G=2kN。

试求拱脚A和B处反力。

4-21 图示厂房房架是由两个刚架AC和BC用铰链连接组成,A与B两铰链固结于地基,吊车梁宰房架突出部分D和E上,已知刚架重G1=G2=60kN,吊车桥重Q=10kN,风力F=10kN,几何尺寸如图所示。

D和E两点分别在力G1和G2的作用线上。

求铰链A、B和C的反力。

4-22 图示构架由滑轮D、杆AB和CBD构成,一钢丝绳绕过滑轮,绳的一端挂一重物,重量为G,另一端系在杆AB的E处,尺寸如图所示,试求铰链A、B、C和D处反力。

4-23 桥由两部分构成,重W1=W2=40kN,桥上有载荷P=20kN,尺寸如图所示,试求出铰链A、B和C的反力。

4-24 图示结构,在C、D、E、F、H处均为铰接。

已知P1=60kN,P2=40 kN,P3=70kN,几何尺寸如图所示。

试求各杆所受的力。

4-25 构架的载荷和尺寸如图所示,已知P=24kN,求铰链A和辊轴B的反力及销钉B对杆ADB的反力。

4-26 构架的载荷和尺寸如图所示,已知P=40kN,R=0.3m,求铰链A 和B的反力及销钉C对杆ADC的反力。

4-27 图示破碎机传动机构,活动夹板AB长为600mm,假设破碎时矿石对活动夹板作用力沿垂直于AB方向的分力P=1kN,BC=CD=600mm,AH=400mm,OE=100mm,图示位置时,机构平衡。

试求电机对杆OE作用的力偶的力偶矩m0。

4-28 曲柄滑道机构如图所示,已知m=,OA=0.6m,BC=0.75m。

机构在图示位置处于平衡,α=30°,β=60°。

求平衡时的P值及铰链O和B 反力。

4-29 插床机构如图所示,已知OA=310mm,O1B=AB=BC=665mm,CD=600mm,OO1=545mm,P=25kN。

在图示位置:OO1A在铅锤位置;O1C在水平位置,机构处于平衡,试求作用在曲柄OA上的主动力偶的力偶矩m。

4-30 在图示机构中,OB线水平,当B、D、F在同一铅垂线上时,DE 垂直于EF,曲柄OA正好在铅锤位置。

已知OA=100mm,BD=BC=DE=100mm,EF=1003mm,不计杆重和摩擦,求图示位置平衡时m/P的值。

4-31 图示屋架为锯齿形桁架。

G1=G2=20kN,W1=W2=10kN,几何尺寸如图所示,试求各杆内力。

4-32 图示屋架桁架。

已知F1=F2=F4=F5=30kN,F3=40kN,几何尺寸如图所示,试求各杆内力。

4-33 桥式起重机机架的尺寸如图所示。

P1=100kN,P2=50kN。

试求各杆内力。

4-34图示屋架桁架,载荷G1=G2=G3=G4=G5=G,几何尺寸如图所示,试求:杆1、2、3、4、5和6 的内力。

参考答案 4-1 解:23cos3049.9x oR F X F F N ==-=-∑13sin3015y o R F Y F F N ==-=-∑22'52.1x y R R R F F F N =+='RF/0.3tg Y X α==∑∑∴α=196°42′00123()52cos304279.6o L M F F F F m N m==⨯-⨯-⨯+=-⋅∑(顺时针转向)故向O 点简化的结果为:(49.915)x y R R R F F i F j i j N'=+=--0279.6L N m=-⋅由于F R ′≠0,L 0≠0,故力系最终简化结果为一合力R F ,R F 大小和方向与主矢'R F 相同,合力FR 的作用线距O 点的距离为d 。

F R =F R = d=L 0/F R =5.37m4-2 解:(a )设B 点坐标为(b ,0) L B =∑M B (F )=-m-Fb=∴b=(-m+10)/F=-1m ∴B 点坐标为(-1,0)1'nR i i F F F===∑'RF = ∴F R ′=10kN ,方向与y 轴正向一致(b )设E 点坐标为(e ,e ) L E =∑M E (F )=-m-F •e=∴e=(-m+30)/F=1m ∴E 点坐标为(1,1) F R ′=10kN 方向与y 轴正向一致 4-3解:(a ) 受力如图由∑M A =0 F RB •3a-Psin30°•2a-Q •a=0 ∴FRB=(P+Q )/3 由 ∑x=0 F Ax -Pcos30°=0∴F Ax =3P由∑Y=0 F Ay +F RB -Q-Psin30°=0 ∴F Ay =(4Q+P )/6 (b )受力如图由∑M A =0 F RB •cos30°-P •2a-Q •a=0∴F RB =33(Q+2P )由∑x=0 F Ax-F RB•sin30°=0∴F Ax=33(Q+2P)由∑Y=0 F Ay+F RB•cos30°-Q-P=0∴F Ay=(2Q+P)/3(c)解:受力如图:由∑M A=0 F RB•3a+m-P•a=0∴F RB=(P-m/a)/3由∑x=0 F Ax=0由∑Y=0 F Ay+F RB-P=0∴F Ay=(2P+m/a)/3(d)解:受力如图:由∑M A=0 F RB•2a+m-P•3a=0∴F RB=(3P-m/a)/2由∑x=0 F Ax=0由∑Y=0 F Ay+F RB-P=0∴F Ay=(-P+m/a)/2(e)解:受力如图:由∑M A=0 F RB•3-P••5=0∴F RB=P/2+5Q/3由∑x=0 F Ax+Q=0∴F Ax=-Q由∑Y=0 F Ay+F RB-P=0∴F Ay=P/2-5Q/3(f)解:受力如图:由∑M A=0 F RB•2+m-P•2=0∴F RB=P-m/2由∑x=0 F Ax+P=0∴F Ax=-P由∑Y=0 F Ay+F RB =0∴F Ay=-P+m/24-4解:结构受力如图示,BD为二力杆由∑M A=0 -F RB•a+Q•b+W•l/2•cosα=0∴F RB=(2Qb+Wlcosα)/2a由∑F x=0 -F Ax-Qsinα=0∴F Ax=-Qsinα由∑F y=0 F RB+F Ay-W-Qcosα=0∴F Ay=Q(cosα-b/a)+W(1-lcosα/2a)4-5 解:齿轮减速箱受力如图示,由∑M A=0 F RB××=0F RB=由∑F y=0 F RA+F RB-W=0F RA=4-6 解:(a)由∑F x=0 F Ax=0 (b) 由∑F x=0 F Ax=0由∑F y=0 F Ay=0 由∑F y=0 F Ay-qa-P=0由∑M=0 M A-m=0 M A=m ∴F Ay=qa+P由∑M=0 M A-q•a•a/2-Pa=0∴M A=qa2/2+Pa(c) (d)(c) 由∑F x=0 F Ax+P=0 (d) 由∑F x=0 F Ax=0∴F Ax=-P 由∑M A=0 F RB•5a+m1-m2-q•3a•3a/2=0由∑F y=0 F Ay-q•l/2=0 ∴F RB=+(m2-m1)/5aFAy=ql/2 由∑F y=0 F Ay+F RB-q•3a=0由∑M=0 M A-q•l/2•l/4-m-Pa=0 F Ay=+(m1-m2)/5a∴M A=ql2/8+m+Pa4-7 解:(a) (b)(a)∑M A=0 F RB•6a-q(6a)2/2-P•5a=0 ∴F RB=3qa+5P/6∑F x=0 F Ax+P=0 ∴F Ax =-P∑F y=0 F Ay+F RB-q•6a=0 ∴F Ay=3qa-5P/6(b) ∑M A=0 M A-q(6a)2/2-P•2a=0 ∴M A=18qa2+2Pa∑F x=0 F Ax+q•6a=0 ∴F Ax =-6qa∑F y=0 F Ay-P=0 ∴F Ay=P(c) ∑M A=0 M A+m1-m2-q•6a•2a-P•4a=0 ∴M A=12qa2+4Pa+m2-m1∑F x=0 F Ax+P=0 ∴F Ax=-P∑F y=0 F Ay-q•6a=0 ∴F Ay=6qa(d) ∑M A=0 M A+q(2a)2/2-q•2a•3a=0 ∴M A=4qa2∑F x=0 F Ax-q•2a=0 ∴F Ax =2qa∑F y=0 F Ay-q•2a=0 ∴F Ay =2qa4-8解:热风炉受力分析如图示,∑F x=0 F ox+q1•h+(q2-q1)•h/2=0 ∴F ox=-60kN∑F y=0 F Ay-W=0 ∴F Ay=4000kN∑M A=0 M0-q•h•h/2-(q2-q1)•h•2h/3/2=0 ∴M0=•m4-9解:起重机受力如图示,∑M B=0 -F RA•c-P•a-Q•b=0 ∴F RA=-(Pa+Qb)/c∑F x=0 F RA+F Bx=0 ∴F Bx=(Pa+Qb)/c∑F y=0 F By-P-Q=0 ∴F By=P+Q4-10 解:整体受力如图示∑M B=0 -F RA××=0 ∴F RA=-764N∑F x=0 F Bx+F RA=0 ∴F Bx=764N∑F y=0 F By-P=0 ∴F By=1kN由∑M E=0 F Cy×2+P××=0 ∴F Cy=2kN由∑M H=0 F’Cx×2-F Cy×2-P×+P×=0 ∴F Cx=F’Cx=3kN4-11解:辊轴受力如图示,由∑M A=0 F RB×1600-q×1250×(1250/2+175)=0∴F RB=625N由∑F y=0 F RA+F RB-q×1250=0 ∴F RA=625N4-12 解:机构受力如图示,∑M A=0 -P×+F RB××=0 ∴F RB=26kN∑F y=0 F RA+F RB-P-W=0 ∴F RA=18kN4-13 解:当达到最大起重质量时,F NA=0由∑M B=0 W1×α+W2×0-G××=0∴P max=4-14解:受力如图示,不致翻倒的临界状态是F NE=0由∑M F=0 W×1m-Q×(5-1)=0 ∴W=60kN故小车不翻倒的条件为W≥60kN4-15解:设左右杆长分别为l1、l2,受力如图示左杆:∑M O1=0 P1(l1/2)cosα1-F A l1sinα1=0 ∴F A=ctgα1P1/2右杆:∑M O2=0 -P2(l2/2)cosα2+F'A l2sinα2=0 ∴F'A=ctgα2P2/2由F A=F'A∴P1/P2=tgα1/tgα24-16解:设杆长为l,系统受力如图(a) ∑M0=0 P •l/2cosθ+T•l•sinθ-Tlcosθ=0 ∴T=P/2(1-tgθ)(b)当T=2P时, 2P= P/2(1-tgθ) ∴tgθ3/4 即θ≈36°52′4-17 解:(a)(a)取BC杆:∑M B=0 F RC•2a=0 ∴F RC=0∑F x=0 F Bx=0∑F y=0 -F By+F RC=0 ∴F By=0取整体:∑M A=0 -q•2a•a+F RC•4a+M A=0 ∴M A=2qa2∑F x=0 F Ax=0∑F y=0 F Ay+F RC-q•2a=0∴F Ay==2qa(b)(b)取BC杆:∑M B=0 F RC•2a-q•2a•a=0 ∴F RC=qa∑F x=0 F Bx=0∑F y=0 F RC-q•2a-F By=0 ∴F By=-qa取整体:∑M A=0 M A+F RC•4a-q•3a• 2.5a=0 ∴M A=∑F x=0 F Ax=0∑F y=0 F Ay+F RC-q•3a=0∴F Ay==2qa(c)(c)取BC杆:∑M B=0 F RC•2a =0 ∴F RC=0∑F x=0 F Bx=0∑F y=0 F RC-F By=0 ∴F By=0取整体:∑M A=0 M A+F RC•4a-m=0 ∴M A=m∑F x=0 F Ax=0∑F y=0 F Ay+F RC=0∴F Ay=0(d)(d)取BC杆:∑M B=0 F RC•2a-m=0 ∴F RC=m/2a∑F x=0 F Bx=0∑F y=0 F RC-F By=0 ∴F By=m/2a取整体:∑M A=0 M A+F RC•4a-m=0 ∴M A=-m∑F x=0 F Ax=0∑F y=0 F Ay+F RC=0∴F Ay=-m/2a 4-18 解:(a)取BE部分∑M E=0 F Bx×××2=0 ∴F Bx=取DEB部分:∑M D=0 F Bx×+F By×6-q××2=0 ∴F By=0取整体:∑M A=0 F By×6+ q××2-F RC×cos45°×3=0 ∴F RC=∑F x=0 F RC×cos45°+F Ax+F Bx-q×=0 ∴F Ax=∑F y=0 F RC×sin45°+F Ay+F By=0 ∴F Ay=(b)取CD段,∑M C=0 F RD×4-q2/2×42=0 ∴F RD=2q2取整体:∑M A=0 F RB×8+F RD×12q2×4×10-q1×6×4-P×4=0∑F x=0 P+F Ax=0 ∴F Ax=-P∑F y=0 F Ay+F RB+F RD-q1×6-q2×4=0 ∴F Ay=3q1-P/24-19 解:连续梁及起重机受力如图示:取起重机:∑M H=0 Q×1-P×3-F NE×2=0 ∴F NE=10kN∑F y=0 F NE+F NH-Q-P=0 ∴F NH=50kN取BC段:∑M C=0 F RB×6-F NH×1=0 ∴F RB=取ACB段:∑M A=0 F RD×3+F RB×12-F NE×5-F NH×7=0 ∴F RD=100kN ∑F x=0 F Ax=0∑F y=0 F Ay+F RD+F RB-F NE-F NH=0 ∴F Ay=4-20解:整体及左半部分受力如图示取整体:∑M A=0 F By×l-G×l/2=0 ∴F By=1kN∑M B=0 -F Ay×l+G×l/2=0 ∴F Ay=1kN取左半部分:∑M C=0 F Ax×h+G/2×l/4-F Ay×l/2=0 ∴F Ax=取整体:∑F x=0 F Ax+F Bx=0 ∴F Bx=4-21 解:各部分及整体受力如图示取吊车梁:∑M D=0 F NE×8-P×4-Q×2=0 ∴F NE=∑F y=0 F ND+F NE-Q-P=0 ∴F ND=取T房房架整体:∑M A=0 F By×12-(G2+F NE)×10-(G1+F ND)×2-F×5=0 ∴F By=∑M B=0 -F Ay×12-F×5+(G1+F ND)×2+(G2+F NE)×2=0 ∴F Ay=取T房房架作部分:∑M C=0 F Ay×6-F Ax×10-F×5-(G1+F ND) ×4=0 ∴F Ax=∑Fx=0 F Cx+F+F Ax=0 ∴F Cx=∑Fy=0 F Cy+F Ay-G1-F ND=0 ∴F Cy=5kN取T房房架整体:∑F x=0 F Ax+F+F Bx=0∴F Bx=4-22解:整体及部分受力如图示取整体:∑M C=0 -F Ax•l•tg45°-G•(2l+5)=0 ∴F Ax=-(2+5/l)G ∑M A=0 F Cx•ltg45°-G(2l+5)=0 ∴F Cx=(2+5/l)G取AE杆:∑M E=0 –F Ax•l-F Ay•l-G•r=0 ∴F Ay=2G∑F x=0 F Ax+F Bx+G=0 ∴F Bx=(1+5/l)G∑F y=0 F Ay+F By=0 ∴F By=-2G取整体:∑F y=0 F Ay+F Cy-G=0 ∴F Cy=-G取轮D:∑F x=0 F Dx-G=0 ∴F Dx=G∑F y=0 F Dy-G=0 ∴F Dy=G4-23 解:整体及部分受力如图示取整体:∑M B=0 F Cy×10-W2×9-P×4-W1×1=0 ∴F Cy=48kN∑F y=0 F By+F Cy-W1-W2-P=0 ∴F By=52kN取AB段:∑M A=0 F Bx×4+W1×4+P×1-F By×5=0 ∴F Bx=20kN∑F x=0 F Bx+F Ax=0 ∴F Ax=-20kN∑F y=0 F By+F Ay-W1-P=0 ∴F Ay=8kN取整体:∑F x=0 F Bx+F Cx=0 ∴F Cx=-20kN4-24 解:系统中1、2、3、4、5杆均为二力杆,整体及部分受力如图:取整体:∑F x=0 F Ax=0∑M A=0 -3P1-6P2-10P3+14F RB=0 ∴F RB=80kN∑F y=0 F Ay+F RB-P1-P2-P3=0 ∴F Ay=90kN取左半部分:∑M H=0 P2×1+P1×4-F Ay×7+S3×3=0 ∴S3=117kN取节点E:∑F x=0 S3-S1cosα=0 ∴S1=146kN∑F y=0 S2+S1sinα=0 ∴S2=取节点F:∑F x=0 -S3+S5cosα=0 ∴S5=146kN∑F y=0 S4+S5sinα=0 ∴S4=4-25解:整体及部分受力如图示:取整体:∑M A=0 F RB×4-P-P(2+R)=0 ∴F RB=21kN∑F x=0 F Ax-P=0 ∴F Ax=24kN∑F y=0 F Ay+F RB-P=0 ∴F Ay=3kN取ADB杆:∑M D=0 F By×2-F Ay×2=0 ∴F By=3kN取B点建立如图坐标系:∑F x=0 (F RB-F'By)sinθ-F'Bx cosθ=0 且有F By=F'By,F Bx=F'Bx ∴F'Bx18tgθ=18×2/=24kN4-26 解:整体及部分受力如图示:取整体:∑M B=0 F Ax×4+P×=0 ∴F Ax=-43kN∑F x=0 F B+F Ax=0 ∴F Bx=43kN取BC杆:∑M C=0 F Bx×4+P××××4=0 ∴F By=20kN∑F x=0 F Bx+F Cx-P=0 ∴F Cx=-3kN∑F y=0 F By+P+F Cy-P=0 ∴F Cy=-20kN取整体:∑F y=0 F Ay+F By-P=0 ∴F Ay=20kN4-27 解:受力如图示:取AB:∑M A=0 P××=0 ∴S BC=取C点:∑F x=0 S'BC sin60°+°-S CD cos30°=0∑F y=0 -S'BC cos60°+°-S CD sin30°=0联立后求得:S CE=取OE:∑M O=0 °×=0∴m0=70kN4-28 解:整体及部分受力如图示:取OA杆,建如图坐标系:∑M A=0 F Ox× sin60°+m-F oy×°=0∑F y=0 F ox×cos60°+F oy cos30°=0联立上三式:F oy= F ox=-1000N取整体:∑M B=0 -F oy××cos30° sin30°×ctg60°)-P××sin60°+m=0∴P=∑F x=0 F ox+F Bx+P=0 ∴F Bx=∑F y=0 F oy+F By=0 ∴F By=4-29 解:整体及部分受力如图示:取CD部分:∑M C=0 F ND×α-P×α=0 ∴F ND=Ptgα取OA部分:∑M A=0 -F ox×=0 ∴F ox=-m/取整体:∑M O1=0 F ox×+P××α=0代入后有:-m/×+×α× cosα=0∴m=•m4-30 解:整体及部分受力如图示:取OA段:∑M A=0 m+F ox×=0 ∴F ox=-10m取OAB段:∑M B=0 m-F oy×°=0 ∴F oy取EF及滑块:∑M E=0 F NF+P=0 ∴F NF取整体:∑M D=0 F NF°+m-F ox×× ctg30°=0∴m/P=0.1155m4-31解:取整体:∑M B=0 -F RA×4+W1×4+G1×3+G2×2cos30°×cos30°=0∴F RA=∑F x=0 F Bx=0∑F y=0 F By+F RA-W1-W2-G1-G2=0 ∴F By=取A点:∑F y=0 F RA+S2cos30°-W1=0 ∴S2=-26kN∑F x=0 S1+S2sin30°=0 ∴S1=13kN取C点:∑F x=0 -S2cos60°+S4cos30°+S3cos60°=0∑F y=0 -S2sin60°-S3sin60°-S4sin30°-G1=0联立上两式得:S3= S4=-25kN取O点:∑F x=0 -S3cos60°-S1+S5cos60°+S6=0∑F y=0 S3sin60°+S5sin60°=0联立上两式得:S 5= S 6=取E 点:∑F x =0 -S 5cos60°-S 4cos30°+S 7cos30°=0 ∴S 7=-35kN4-32 解:取整体:∑M A =0 F 1×+F 2×3+F 3×+F 4×6+F 5××9=0 ∑F y =0 F RA +F RB -(4×30+40)=0 ∴F RA =80kN取A 点:∑F x =012221.50.66S S =+∑F y =01221.50.66RA F S +=+联立后解得:S 1=-197kN S 2=180kN取C点:∑F x =03412222()01.50.661.50.66S S S +-=++∑F y =041312222(01.50.661.50.66S S S F '+-=++联立后解得:S 3=-37kN S 4=-160kN取E点:∑F x =0 64S S '=∑F y =064520S S S F '---=联立后解得:S 5=-30kN S 6=-160kN取D点:∑F x =078230S S S S ''+-=∑F y =08350S S S ''++=联立后解得:S 7=112kN S 8= 由对称性可知:S 9=S 8= S 10=S 6=-160kN S 11=S 5=-30kN S 12=S 4=-160kN S 13=S 2=180kN S 14=S 3=-37kN S 15=S 1=-197kN4-33 解:取整体:∑M A =0 F RB ×4-P 1×2-P 2×3=0 ∴F RB = ∑F y =0 F RA +F RB -P 1-P 2=0 ∴F RA = 取A 点:∑F x =0 S 1+S 2cos45°=0 ∑F y =0 FRA-S2sin45°=0 解得:S 1= S 2=取C点:∑F x=0 S4-S2cos45°=0∑F y=0 S3+S2sin45°=0解得:S3= S4=取D点:∑F x=0 S6+S5cos45°-S1=0∑F y=0 -S3-S5sin45°=0解得:S5= S6=-125kN取F点:∑F x=0 S8-S6=0∑F y=0 -P1-S7=0解得:S7=-100kN S8=-125kN取E点:∑F x=0 S9cos45°+ S10-S5cos45°-S4=0∑F y=0 S7+S5sin45°+ S9sin45°=0解得:S9=53kN S10=取G点:∑F x=0 S12cos45°-S10=0∑F y=0 S12sin45°+ S11=0解得:S9= S10=取H点:∑F x=0 S13-S8-S9sin45°=0∴S13=4-34解:取整体:∑M A=0 -F RA×6a+G×(5a+4a+3a+2a+a)=0 ∴F RA=2.5G ∑F y=0 F RA +F RB +5G=0 ∴F RB=2.5G取A点:∑F x=0 S1+S2cos45°=0∑F y=0 S2sin45°+F RA=0解得:S1=2.5G S2=-3.54G取C点:∑F x=0 S4-S1=0 ∴S4=2.5G∑F y=0 S3-G=0 ∴S3=G截面Ⅰ-Ⅰ,取左半部分∑F y=0 S5sin45°+F RA-3G=0 ∴S5=0.707G∑M D=0 -F RA×4a+G×3a+G×2a+G×a+S6×a=0∴S6=4G。

相关文档
最新文档