陀螺仪漂移及测试

合集下载

惯性陀螺仪数据漂移的战场校准方法

惯性陀螺仪数据漂移的战场校准方法
论述 了 以下 3 种 方法 ] 。
r= = _ 丽



+ h ) c o s Bs i n 2

l Z = — = = = = = = = = 二 = 十 + 凡 ^ ) s i l n B / 5 /i . — —e 2 s i n2 B ,
其中, a和e分别为 通信卫 星轨道 的长半轴 和第 一偏 心率 ; B 为卫星 大地纬 度 ; 为 卫星经 度 ; h为卫 星到 地球 椭球表 面的铅 垂高度 。
因此 , 同步 通信 卫 星 的地球 固连地 心 直 角坐 标
刘 兴 ቤተ መጻሕፍቲ ባይዱ邵 卫
( 中国 电子科 技集 团公 司第二 十八研 究所 南京 2 1 0 0 0 7 ) 摘 要 :现代 信 息化 战争 中大量使 用移 动作 战平 台 系统 。在使 用惯 性 陀螺仪 的移动 作战 平 台 系统
中, 需对惯性 陀螺 仪 的数 据 ( 方位 角 、 俯 仰 角和横 滚 角) 漂移及 时进行 战场 校 准 , 以保 证 移动 作 战平
通信 卫 星位置 坐标 系采 用地球 固连 地心直 角坐 标系O XY Z 。坐标 原点 0位 于地 球 的质 量 中心 ; O Z 轴 与地球 自转轴 重合 , 指 向北 方 ; O X 轴 为原点 O 与
地球 赤 道 平 面 和 通过 格 林 威 治 的 子 午 线 的 交 点 连
1 … e = 0
Ab s t r a c t :I n t h e mo b i l e b a t t l e p l a t f o r m s y s t e m ,t h e i n e r t i a l g y r o s c o p e d a t a( a z i mu t h,p i t c h a n d

陀螺仪技术测试用题

陀螺仪技术测试用题

测试用题,请勿“题字”。

用后收回。

谢谢!一、(20分)以下每题各有四个答案,选择正确的答案,每题5分。

(1) 设自由陀螺的角动量为H ,已知进动角速度ω,陀螺力矩为M,下列表示三者之间关系的表达式正确的是( ) (A )HM ω=⨯ ;(B )M H ω=⨯; (C )H M ω=⨯ ;(D )M H ω=⨯(2) 采用伺服跟踪法进行单自由度陀螺测漂,转台轴沿当地垂线方向,地球自转角速度15/ie h ω=︒,当地纬度为30︒,测得转台转速为43.0210-⨯转/分,则陀螺漂移速度约为(传动比是1∶1)( ) (A )0.067/h ;(B )0.55/h ;(C )1.57/h ;(D )(A )、(B)、(C)均错; (3) 干涉式光纤陀螺光纤长1500m ,成环半径4cm ,光纤环法向角速度1.5/h Ω=︒,光波长为1580nm 。

则由Sagnac 效应引起的相位差近似为( )(A )47.9510-⨯() ;(B )0.114();(C )43.1410-⨯();(D )(A)、(B)、(C)均错;(4) 动量矩定理的向量表达式为( ) (A )n b nb d R d RR dt dtω=+⨯ ;(B )bib d HM H dtω=⨯+ ;(C )b n nb d R d R R dt dt ω=+⨯;(D )i oo d H M dt= 二、(10分)说明运动地理坐标系相对惯性空间旋转的原因,给出该旋转角速度在地理坐标系上的分量。

三、(20分)已知坐标系b b b ox y z (b 系)与n n n ox y z (n 系)初始时重合,b 系是n 系以转动顺序x y z →→,转角分别为α、β、γ得到的。

试:(1)求方向余弦矩阵nI C ,bn C 和nb C ;(2)写出b 系相对n 系的瞬时角速度在b 系上的投影表达式;(3)若向量ω在b 系中的表示为Tbx y z ωωωω⎡⎤=⎣⎦,求该向量在I I I ox y z 中的表示Iω和n n n ox y z 中的表示nω。

陀螺仪实验报告

陀螺仪实验报告

university of science and technology of china 96 jinzhai road, hefei anhui 230026,the people’s republic of china陀螺仪实验实验报告李方勇 pb05210284 sist-05010 周五下午第29组2号2006.10.22 实验题目陀螺仪实验(演示实验)实验目的1、通过测量角加速度确定陀螺仪的转动惯量;2、通过测量陀螺仪的回转频率和进动频率确定陀螺仪的转动惯量;3、观察和研究陀螺仪的进动频率与回转频率与外力矩的关系。

实验仪器①三轴回转仪;②计数光电门;③光电门用直流稳压电源(5伏);④陀螺仪平衡物;⑤数字秒表(1/100秒);⑥底座(2个);⑦支杆(2个);⑧砝码50克+10克(4个);⑨卷尺或直尺。

实验原理1、如图2用重物(砝码)落下的方法来使陀螺仪盘转动,这时陀螺仪盘的角加速度?为:?=d?r/dt=m/ip (1) 式中?r为陀螺仪盘的角速度,ip为陀螺仪盘的转动惯量。

m=f.r为使陀螺仪盘转动的力矩。

由作用和反作用定律,作用力为:f=m(g-a) (2) 式中g为重力加速度,a为轨道加速度(或线加速度)轨道加速度与角加速度的关系为:a=2h/tf2; ?=a/r (3) 式中h为砝码下降的高度,r如图1所示为转轴的半径,tf为下落的时间。

将(2)(3)代入(1)2ip?2mr2t?h2mgr可得: (4)2f测量多组tf和h的值用作图法或最小二乘法拟合数据求出陀螺仪盘的转动惯量。

2、如图3所示安装好陀螺仪,移动平衡物w使陀螺仪ab轴(x轴)在水平位置平衡,用拉线的方法使陀螺仪盘绕x轴转动(尽可能提高转速),此时陀螺仪具有常数的角动量l:l=ip.?r (5) 当在陀螺仪的另一端挂上砝码m(50g)时就会产生一个附加的力矩m*,这将使原来的角动量发生改变:dl/dt=m*=m*gr* (6) 由于附加的力矩m*的方向垂直于原来的角动量的方向,将使角动量l变化dl,由图1可见: dl=ld?这时陀螺仪不会倾倒,在附加的力矩m*的作用下将会发生进动。

光纤陀螺仪测试方法

光纤陀螺仪测试方法

光纤陀螺仪测试方法1 范围本标准规定了作为姿态控制系统、角位移测量系统和角速度测量系统中敏感器使用的单轴干涉性光纤陀螺仪(以下简称光纤陀螺仪)的性能测试方法。

2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。

凡是注目期的引用文件,其随后所有的修改单(不包含勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。

凡是不注日期的引用文件,其最新版本适用于本标准。

GB 321-1980 优先数和优先系数CB 998 低压电器基本实验方法GJB 585A-1998 惯性技术术语GJB 151 军用设备和分系统电磁发射和敏感度要求3 术语、定义和符号GJB 585A-1998确立的以及下列术语、定义和符号适用于本标准。

3.1 术语和定义3.1.1 干涉型光纤陀螺仪 interferometric fiber optic gyroscope仪萨格奈克(Sagnac)效应为基础,由光纤环圈构成的干涉仪型角速度测量装置。

当绕其光纤环圈等效平面的垂线旋转时,在环圈中以相反方向传输出的两束相干光间产生相位差,其大小正比于该装置相对于惯性空间的旋转角速度,通过检测输出光干涉强度即反映出角速度的变化。

3.1.2 陀螺输入轴 input axis of gyro垂直于光纤环圈等效平面的轴。

当光纤陀螺仪绕该轴有旋转角速度输入时,产生光纤环圈相对于惯性空间输入角速度的输出信号。

3.1.3 标度因数非线性度 scale factor nonlinearity在输入角速度范围内,光纤陀螺仪输出量相对于最小二乘法拟合直线的最大偏差值与最大输出量之比。

3.1.4 零偏稳定性 bias stability当输入角速度为零时,衡量光纤陀螺仪输出量围绕其均值的离散程度。

以规定时间内输出量的标准偏差相应的等效输入角速度表示,也可称为零漂。

3.1.5 零偏重复性 bias repeatability在同样条件下及规定间隔时间内,多次通电过程中,光纤陀螺仪零偏相对其均值的离散程度。

陀螺仪漂移及测试课件

陀螺仪漂移及测试课件

陀螺仪测试中的注意事项
在进行陀螺仪测试时,应确保测试环 境干净整洁,避免灰尘、污垢等杂质 对测试结果造成影响。
在进行动态测试时,应遵循安全操作 规程,确保测试过程中的安全。
测试前应对陀螺仪进行充分的预热, 以确保其性能稳定。
对于高精度的陀螺仪,应采用高精度 的测试设备进行测试,以确保测试结 果的准确性。
陀螺仪的种类和用途
机械陀螺仪
微机械陀螺仪
利用旋转轴的定轴性,用于方向测量 和控制系统,如导弹、飞机、船舶等 导航系统。
利用微机械加工技术制造,具有低成 本、小型化、集成化等特点,用于消 费电子产品、智能穿戴设备等。
光学陀螺仪
利用光束的干涉效应,具有高精度、 抗电磁干扰等特点,用于高精度测量 和控制系统,如卫星定位系统、惯性 导航系统等。
CHAPTER
陀螺仪静态测试
01
02
陀螺仪静态测试是指将 陀螺仪置于静止状态下 进行测试,以评估其性能。
测试内容包括检查陀螺 仪的零点稳定性、分辨 率、噪声水平等。
03
静态测试通常在实验室 环境下进行,以确保测 试结果的准确性。
04
静态测试还可以用于评 估陀螺仪在不同温度和 湿度条件下的性能表现。
陀螺仪动态测试
01
02
03
04
陀螺仪动态测试是指在实际运 动状态下对陀螺仪进行测试, 以评估其在动态环境中的性能。
测试内容包括检查陀螺仪的动 态响应速度、抗干扰能力、稳
定性等。
动态测试通常在振动台、离心 机等设备上进行,以模拟实际
使用中的各种运动状态。
动态测试还可以用于评估陀螺 仪在不同运动状态下的性能表 现,如旋转、俯仰、滚动等。
CHAPTER

现代导航技术第八章(陀螺仪的测试、标定与补偿)

现代导航技术第八章(陀螺仪的测试、标定与补偿)
17
§8.1 陀螺仪误差测试的基本方法
2、陀螺仪误差测试的种类和方法 (2)速率传递试验 测试方法
在典型的测试中,速率转台的转动速率从零开始,逐级分成 一系列角速率值,同时记录每一级的数据。 旋转速度对于每一级设定的周期上保持常量,使得敏感器的 输出在记录前已处于稳定状态。 施加的角速率在最大和最小的期望值之间递增变化。
23
§8.1 陀螺仪误差测试的基本方法
2、陀螺仪误差测试的种类和方法 (3)温度试验
如:全温范围 下的某型号光 纤陀螺标度因 数漂移特性
24
§8.1 陀螺仪误差测试的基本方法
2、陀螺仪误差测试的种类和方法 (4)摇摆速率转台试验
此类试验的目的是确定陀螺仪及其相关电子控制电路对施加 于敏感器输入轴的振荡旋转的频率响应特性 测试设备与速率变换测试中所述的速率转台非常类似。 在该情况下,转台同样安装在合适的基座上以提供稳定性, 并施加各种预先设定频率的角运动。
28
§8.1 陀螺仪误差测试的基本方法
2、陀螺仪误差测试的种类和方法 (7)冲击试验
试验的目的是测量陀螺仪对于施加的冲击 的响应,并确定该敏感器对于施加的极短 周期(一般为毫秒级)的加速度的恢复能力。 敏感器要安装到金属台上,并将该台从给 定的距离上落到一合适形状的铅块上。 在施加冲击过程中且同样在冲击后的一定 时间内记录输出信号。陀螺仪在冲击前后 漂移均值的对比能够表明该陀螺仪特性的 瞬态或永久性变化。
20
§8.1 陀螺仪误差测试的基本方法
2、陀螺仪误差测试的种类和方法 (2)速率传递试验
输出角速率偏差(deg/s)
数据分析
与实际相比的输出偏差曲线
IFOG标度因数测试情况(10℃)

第6章-陀螺仪漂移及测试

第6章-陀螺仪漂移及测试
第六章
陀螺仪的测试与标定
2018/2/25
1
§6.1 陀螺漂移的基本概念
一 自由陀螺的漂移 由于各种原因,在陀螺上往往作用有人们所不 希望的各种干扰力矩,在这些可能是很小的干扰力 矩的作用下,陀螺将产生进动,从而使角动量向量 慢慢偏离原来的方向,我们把这种现象称为陀螺的 漂移。把在干扰力矩作用下陀螺产生的进动角速度 称为陀螺的 陀螺漂移的数学模型
陀螺漂移的物理模型
ωd D0 D y a y Dz a z D yy a Dzz a
2 y 2 z
ax a ay az
Dxy a x a y D yz a y a z Dxz a x a z
一 伺服跟踪法的基本原理
双自由度陀螺的单轴转台测漂
2018/2/25 13
§6.3 陀螺测试的伺服跟踪法
二 伺服跟踪法的测速方法
d ey p
精确定位定向,即陀螺输入轴与转台轴平行,并且要使 转台在地理坐标系中精确定向。 精确地测出转台的转速。
2018/2/25
14
§6.3 陀螺测试的伺服跟踪法
2018/2/25
26
§6.5 陀螺漂移的数学模型
普遍采用的陀螺误差模型
ax a a y az
2 d D0 Dx a x D y a y Dz a z D yy a y Dzz a z2
Dxy a x a y D yz a y a z D xz a x a z (ip ) y
二 伺服跟踪法的测速方法
首先在一段时间间隔内,观测转台相对地球的转角,然后根 据地球自转角速度沿转台方向的分量通过计算求得在这段时 间内地球相对惯性空间的转角

陀螺仪漂移的测试原理及方法

陀螺仪漂移的测试原理及方法
测量值在导航坐标系(东北天坐标系)的表示应该 与重力加速大大小相等、方向相反,通过建立该比 力表示的误差与惯性导航系统标定参数误差之间的 关系来拟合各参数误差,进而实现标定。
系统级标定法
系统级标定拟合方法一般采用”静止-转动-静止”的运 动激励方式,惯性导航系统利用转动前的静止时间 对准。对准结束转入导航状态后系统开始转动,转 动停止时,记录导航结果。利用导航计算结果将转 动前后的比力测量转换到导航坐标系,作为比力观 测量。
确定四个位置与初始位置之间的坐标变换矩阵 令转台转动,输出四个位置上陀螺仪的脉冲累积 将以上四式相加,干扰量对消,即可得到零偏
分立标定法
角速度标定
利用转台给惯性系统输入一系列标称的角速度,并 于惯性系统的输出进行比较,根据惯性系统的误差 模型,即可确定出系统的标度因数和安装误差两类 误差系数。
一般有四\八\十二\二十四位置法等
分立标定法
零偏标定的实现
采用静态多位置法来实现惯性器件零偏的标定,该 方法利用转台提供精确的位置基准,使加速度计或 陀螺仪敏感不同的重力加速度或角速度分量,然后 利用每个位置上的静止采样结果计算惯性器件的参 数。
分立标定法
静态多位置标定
以陀螺仪的标定为例
标定测试
标定测试:对器件的性能参数诸如标度因数、零偏、 噪声与带宽、失准角、惯性导航系统单位时间的定 位误差、温度敏感性和模型非线性等都需要在生产 场所进行的测试,对要在导航任务中使用的模型参 数进行标定。
标定方法分类
器件标定
标定方法,可分为
分立标定法
系统级标定法
静态标定 动态标定
分立标定法
基本思想:在不同的激励信号作用下,各误 差源对观测量的影响不同,通过激励信号的 变化以改变各个误差参数的可观测性,使惯 性系统的误差参数得到分离。

陀螺仪漂移和高频扰动对两轮平衡车姿态角度测量分析

陀螺仪漂移和高频扰动对两轮平衡车姿态角度测量分析

陀螺仪漂移和高频扰动对两轮平衡车姿态角度测量分

 微机电系统(MicroElectroMechanical Systems,MEMS)陀螺仪和MEMS 加速度计在两轮平衡车姿态测量中存在扰动和噪声,引起姿态角度测量误差。

通过对陀螺仪和加速度计输入信号进行滑动扣除均值方法来抑制直流分量,利用滑动滤波算法抑制加速度计高频噪声,引入互补滤波算法将预处理后的陀螺仪和加速度计信号进行融合,得到更加准确稳定的角度测量值,分析了融合算法中加权因子与滤波频率特征之间的关系。

该方法应用到两轮平衡车的运行姿态角度控制中,提高了对姿态角度测量的精度。

 两轮平衡车具有广阔的应用前景,使其成为了当前研究的热点。

其中,两轮平衡车的姿态角度测量是研究的关键问题之一。

姿态角度测量是两轮平衡车运行和控制实现的前提。

姿态角度测量的精度和速度,将直接影响两轮平衡车控制算法的稳定性和可靠性。

随着惯性测量元件的微型化与微处理器运算能力的提高,两轮平衡车姿态测量普遍采用低成本的惯性测量组合元件(Inertal Measurement Uint,IMU),结合微处理器数据处理算法实现高精度的姿态测量。

IMU主要由低成本的MEMS陀螺仪和三轴加速度计组成。

MEMS陀螺仪有自主性好、功耗低、机电性能好易集成等优点。

但是,MEMS陀螺仪具有温度漂移特性,其测量误差会随着时间的累加而不断的累积,从而影响测量精度。

加速度计会受到平衡车振动的影响,混叠额外的振动量干扰。

所以单一的传感器测量难以得到精确的姿态角度。

需采用多传感。

现代导航技术第九章(陀螺仪随机漂移的分析与处理)

现代导航技术第九章(陀螺仪随机漂移的分析与处理)

2、平稳随机过程的数学建模方法-时间序列分析法
平稳随机时间序列线性模型的结构形式 (2)滑动平均模型-MA模型 滑动平均模型用MA(q)表示,q代表模型的阶数。该模型把 任一时刻的观测值表示成过去q个时刻的 白噪声的加权叠加:
30
§9.2 陀螺随机漂移数据的统计检验和数学建模
2、平稳随机过程的数学建模方法-时间序列分析法
1
现代导航测试技术
第九章 陀螺仪随机漂移的分析与处理
2
第九章 陀螺仪随机漂移的分析与处理
§9.1 描述陀螺仪随机漂移的特征函数 §9.2 陀螺随机漂移数据的统计检验和 数学建模
3
§9.1 描述陀螺仪随机漂移的特征函数
1、概述
陀螺漂移率包含系统性的和随机性的两种分量。 对于系统性的漂移,如线运动和角运动条件下的漂移率, 只要建立的数学模型足够精确,通过漂移补偿计算,便可 消除系统性漂移率对惯导系统的影响。 随机性的漂移率,由于其随时间变化的随机特性,因而在 惯导系统中不能用简单的方法补偿。
1、概述
陀螺漂移随机过程可以用下列统计函数来描述: 概率分布函数或概率密度函数;提供随机过程各种取值的概率特 性,可以给陀螺随机漂移以完整的描述。 均值函数和方差函数;提供随机过程幅值方面的基本信息,从幅 域来描述陀螺随机漂移的统计特性。 自相关函数和自协方差函数;反映随机过程两个不同时刻之间的 相关程度,从时域来描述陀螺随机漂移统计特性。 自功率谱密度函数;反映随机过程的平均功率按频率分布的密 度,从频域来描述陀螺随机漂移统计特性。
4
§9.1 描述陀螺仪随机漂移的特征函数
1、概述
陀螺随机漂移是一个随机变 量,而这个随机变量是时间 的函数,因而是个随机过程。 在陀螺漂移测试中,每进行 一次实验,得到1条试验曲 线,即得到一个1个样本函 数,它表明陀螺漂移在这一 次试验中随着时间变化情况。 在条件相同的情况下重复多 次试验,可以得到一族试验 曲线即一族样本函数。

陀螺仪随机漂移的测取和数学模型的确立

陀螺仪随机漂移的测取和数学模型的确立


该式表明陀螺随机漂移的均值随时间呈线性变化, 在陀螺随机漂 ⑽
如果有较大的潜周期分量 Bt, 就要从陀螺随机漂移非平稳数据序 ⑾
如果残差序列{xt}还是非平稳数据序列 (主要是随机游动造成的) , 一般采取差分的方法来处理,只需经过一阶差分,即可化为平稳时间 序列,对时间序列{xt}作一阶差分, Δxt=xt-xt-1(t≥2) ⑿ 对于含有趋势项的非平稳时间序列,也可直接利用差分处理,如果趋 势项中只含常数项和一次项,经过一阶差分即可使之平稳化;如果趋 势项中还含有二次项,则经过二阶差分就可使之平稳化。 3.3 利用时间序列分析法对平稳化的残差序列建立数学模型 时间序列分析是一种时域分析法,它不仅仅研究过程的确定性 变化,而且更着重于研究过程的随机性变化,它直接利用随机时间序 列来建立差分方程, 把一个高度相关的平稳随机时间序列表示成一种 数字递推的形式 (即看作是由各时刻相关的随机时间序列和各时刻出 现的白噪声组成) ,按照尤尔概念,有色噪声序列可以看作是白噪声 序列经过成形滤波器变换得到的。 设{xt}表示观测到的时间序列,{ωt}表示白噪声序列,对时间序 列{xt}构造数学模型就是以白噪声{ωt}为输入,经过一个实时变换的 滤波器之后, 得出时间序列{xt}的输出三者之间的关系。 实际工程中, 平稳时间序列{xt}的线性模型通常可以表示成以下三种形式:滑动平 均模型 MA 模型, 自回归模型 AR 模型, 自回归滑动平均模型 ARMA 模型。 本文着重讨论自回归模型 AR 模型 (自回归模型, p 代表 AR 模型 的阶数),适用于动力调谐陀螺仪,以一阶自回归模型 AR(1)为例,其
b1 = e − β∆t

则,AR(1)模型的表达式:
X t = e − β∆t X t −1 + ω t

陀螺漂移

陀螺漂移

ⅠⅡΩΩ捷联惯导系统的导航的精度将会随着时问的推移而降低,因为无论采取什么手段,只要惯导器件误差不为零,那么惯导系统的导航误差就要随时间而积累,这是由惯性导航原理决定的。

而两种主要的惯性元件陀螺仪和加速度计中,加速度计的精度通常比陀螺仪高一个数量级以上,一般能够满足导航要求。

因此陀螺漂移的合理补偿就成为了提高导航精度的关键。

陀螺漂移补偿的方案有很多种,本文曾对几种漂移补偿方案进行了实验比较,并在此基础上提出了一种在一定条件下行之有效的加速度计辅助补偿法。

下面介绍曾实验的几种方案并详细介绍加速度计辅助补偿法。

方案一称为动态校零的漂移补偿方法,这种方法的背景是:基于对压电陀螺的研究,发现压电陀螺始终存在零位不重复性和零位不稳定性。

零位不重复性是指在静止状态下,不同时间给陀螺通电,陀螺的输出电压各不相同;零位不稳定性是指在静止状态下,给陀螺通电,陀螺的输出电压随时间的推移而变化。

动态校零分为针对零位不重复性的开机零位校正和针对零位不稳定性的零位漂移抑制过程。

零位信号是一个变化较缓慢的信号,在短时间内,可以看作直流分量。

因此,开机零位校正可以采用一个求和过程,对开机时静态陀螺信号进行求和,再将所求之和除以积分的时间得均值,即可将开机零位分离出来。

本文采用的是开机一分钟的均值。

而零位漂移抑制则需要通过对大量陀螺数据的分析,总结出其漂移规律,根据规律预置漂移速率,由漂移抑制算法消除零位的不稳定性。

但是这个方一案存在一些问题,首先零位信号是随时间漂移的,那么开机所求得的零位信号在之后的导航解算中很可能与实际情况不符合从而影响修正的效果;另外,预置漂移速率要求陀螺输出有较强的规律性,而经过大量实验数据的采集和分析,证实本实验采用的陀螺不具有很强的规律性,所以此种动态校零的修正方案在本文并不适用。

方案二本文曾提出过一种方案,称之为最小二乘拟合法。

是根据对采集的大量陀螺数据的分析,建立一个陀螺输出漂移与时间关系的最小二乘的模型,并将陀螺输出分为若干小的时间段,例如I0s(因为在相邻的短时间段内规律性可视为相同),由于时间短,可将每个时间段内的模型近似认为是Y=aX十b, Y为陀螺输出,X为时间变量,a, b为待辨识参数,利用本时间段采集的数据实时估计的陀螺输出漂移的最小二乘模型来预估下一时间段陀螺输出漂移值,将据此估计值下一时间段中对实际陀螺输出进行修正。

《陀螺仪漂移及测试》课件

《陀螺仪漂移及测试》课件

结束语
陀螺仪漂移及测试的 重要性
陀螺仪是各种惯性导航系统的 核心部件之一,其漂移和精度 直接关系到飞行、导航和控制 的稳定性和性能。
未来发展趋势
陀螺仪技术正朝着小型化、高 精度、低功耗和低成本的方向 发展,其应用范围将越来越广 泛。
建议和展望
鼓励创新思维,加强陀螺仪技 术研发和应用,推动我国航天 及高端制造业发展。
陀螺仪的结构
陀螺仪一般由陀螺轮、控制器、 支架和电源等组成。
陀螺仪漂移
1 原因
陀螺仪漂移是由于陀螺轮旋转过程中会受到环境因素和机械因素的干扰。
2 分类
常见的漂移有常态漂移、零偏漂移和温度漂移等。
3 影响
漂移会导致陀螺仪检测结果的失真和误差,影响产品的性能和稳定性。
陀螺仪漂移补偿
1
方法
常用的补偿方法有零位调整、自适应补偿、滤波补偿和误差修正等。
《陀螺仪漂移及测试》 PPT课件
# 陀螺仪漂移及测试
本课程将深入探讨陀螺仪的基本原理、漂移、漂移补偿和测试,通过实例分 析,帮助您更好地理解和应用陀螺仪技术。
陀螺仪基本原理
陀螺仪的作用
陀螺仪作为惯性导航系统的核心 部件,可以同时检测空间中的三 个自由度。
陀螺仪的基本原理
利用陀螺效Байду номын сангаас,通过检测陀螺仪 旋转的角速度,来判断运动物体 的方向和角度。
2
技术
基于MEMS技术的陀螺仪漂移补偿技术具有优秀的性能和适应性,包括预测补偿、 自适应补偿和模型补偿等。
3
效果对比
各种陀螺仪漂移补偿方法各有优劣,应选择适合实际应用的方法。
陀螺仪测试
流程
陀螺仪的测试流程包括前期准备、测试参数设置、测试数据采集和测试结果分析等几个过程。

动力调谐挠性陀螺仪_光纤陀螺仪的测试及分析_侯煜

动力调谐挠性陀螺仪_光纤陀螺仪的测试及分析_侯煜

平衡的滤波效应引起的漂移系数 ; D(x)xx、D(y)yz为陀螺仪 x、y轴上由转子支承
系统 沿 xz、 yz方 向 不 等 弹 性 引 起 的 漂 移 系 数 ; D(x)yz、D(y)xx为陀螺仪 x、y轴上与 g平方有关的 其它漂移系数 ;gx、gy、gz为重力加速度沿陀螺仪 x、 y、z轴上的分量 ;ωx、ωy为陀螺仪壳体分别绕 x、y轴 相对于惯性空间的角 速度 ;Ex、Ey为陀螺仪 x、y轴 上的随机漂移率 。
B(y)2yω2y +B(y)3yωy3 +B(y)yxdωyωx +B(y)2yzωy2 ωz +B(y)2yxdωy2 ωx +ωdy
(3)
式中 , ωDx、ωDy为沿 x、y轴动态误差总的漂移速率 ;B (x)F、B(y)F为与载体角运动速率无关的漂移项 , 它 与剩余刚度 、陀螺仪零位偏角 、陀螺仪时间常数等有 关 ;B(x)x、B(y)y为与载体角速率一次方有关的项 , 它与陀螺仪的跟踪角速率精度及失 调转速有关 ;B (x)y、 B(x)z、B(y)x、B(y)z为 与 载 体 角速 率 一 次方 有关的项 , 它与陀螺仪惯性主轴与壳体间偏离角有 关 ;B(x)xy、B(x)xz、B(y)yx、B(y)yz为与载体角速率 交叉乘积有关的项 , 它与陀螺仪惯性主轴与壳体间 偏离角及力矩器非线性误差有关 ;B(x)2x、B(y)2y、B (x)3x、 B(y)3y、B(x)2xz、B(y)2yz分 别为 与载 体角 速率 平方 、三次方及交叉乘积有关的项 , 它与陀螺仪跟踪 精度 、失调转速等有关 ;B(x)xyd、B(y)yxd、B(x)2xyd、B (y)2yxd分别为与载体角速率 、角加速率交叉乘积有 关的项 , 它与陀螺仪跟踪角加速率精度有关 。 动态 误差模型系数的测定可在双轴或三轴速率模拟台上 进行 。 1.2.2 力矩反馈法漂移测试 力矩反馈法漂移测 试的原理 (见图 2)。 由于地球自转及外干扰力矩 的影响 , 陀螺仪的信号器将产生相应的输出信号 , 该信号经滤波 、 放大 、 解调 、 校正后 , 直流电流信 号输入到陀螺仪相应的力矩器中 , 力矩器便产生与 输入的直流信号相对应的控制力矩 , 与作用于陀螺 仪上的由地球自转产生的陀螺力矩和外干扰力矩平 衡 。测量力矩器的输入电流 , 并根据力矩器的标度 因数 , 扣除地球自转的影响 , 就可求得外加等效力 矩的数值 。

陀螺仪指标

陀螺仪指标

陀螺仪指标陀螺仪是一种测量角速度的仪器,通常用于导航、导弹控制、飞行器稳定等领域。

以下是一些常见的陀螺仪指标:1.灵敏度(Sensitivity):•陀螺仪的灵敏度是指单位角速度变化对应的输出电压变化。

通常以每秒度(degree per second)或每小时度(degree per hour)为单位。

2.零点漂移(Zero-rate Drift):•陀螺仪在没有受到角速度刺激时,输出的平均电压值。

零点漂移越小,表示陀螺仪的性能越好。

3.测量范围(Measurement Range):•陀螺仪能够稳定测量的角速度范围。

超过这个范围,陀螺仪可能无法准确测量。

4.线性度(Linearity):•陀螺仪输出与输入之间的线性关系。

线性度越高,表示陀螺仪在不同角速度下的输出更为准确。

5.温度稳定性(Temperature Stability):•陀螺仪在不同温度下的性能变化情况。

稳定性越好,表示陀螺仪在不同温度环境下能够保持较为一致的性能。

6.响应时间(Response Time):•陀螺仪从接收到角速度输入到产生相应输出的时间。

响应时间越短,表示陀螺仪对输入变化的反应越快。

7.动态范围(Dynamic Range):•陀螺仪能够处理的动态范围,即从最小到最大角速度的范围。

8.分辨率(Resolution):•陀螺仪输出的最小可检测变化。

分辨率越高,陀螺仪能够检测到更小的角速度变化。

9.稳定性(Stability):•陀螺仪输出的稳定性,即在一段时间内输出是否保持稳定。

这些指标可以帮助评估陀螺仪的性能,选择适合特定应用的陀螺仪型号。

在实际应用中,选择陀螺仪时需根据具体需求考虑这些性能指标。

第6章-陀螺仪漂移及测试分析

第6章-陀螺仪漂移及测试分析
力矩反馈法测定漂移速度只须备有足够分辨率和精 度的电流记录装置,就能测出陀螺的瞬时漂移。对力矩 器刻度因数的稳定性和线性度有很高的要求。
2020/10/18
17
§6.4 陀螺测试的力矩反馈法
一 力矩反馈法法的原理
单自由度陀螺的力矩反馈法测漂
2020/10/18
18
§6.4 陀螺测试的力矩反馈法
一 力矩反馈法法的原理
d ey p
精确定位定向。即陀螺输入轴与转台轴平行,并且要使 转台在地理坐标系中精确定向。 精确测速。精确地测出转台的转速。
2020/10/18
13
§6.3 陀螺测试的伺服跟踪法
二 伺服跟踪法的测速方法
首先在一段时间间隔内,观测转台相对地球的转角,然后根 据地球自转角速度沿转台轴向的分量,通过计算求得在这段 时间内地球相对惯性空间的转角:
20
§6.4 陀螺测试的力矩反馈法
二 力矩反馈法法中陀螺相对地理坐标系的取向
陀螺相对地理坐标系的位置需借助转台
2.陀螺输出轴沿当地铅垂线方向
x N
yK ly
lz
ey e coscosK
z
d
Mb H
KM I Bx /H
ωe cos cosK
2020/10/18
21
§6.4 陀螺测试的力矩反馈法
ie ey T
同一时间间隔内转台相对惯性空间的转角:
ip ie p
陀螺的漂移角速度:
d ip / T ey p
2020/10/18
14
§6.3 陀螺测试的伺服跟踪法
三 伺服跟踪法的转台轴的取向
1. 输入轴在水平面内沿东西方向
d p
2. 输入轴与地球自转轴平行

陀螺仪芯片漂移误差-概述说明以及解释

陀螺仪芯片漂移误差-概述说明以及解释

陀螺仪芯片漂移误差-概述说明以及解释1.引言1.1 概述概述陀螺仪芯片是一种常用的传感器,在许多电子设备和导航系统中被广泛应用。

它可以测量物体的角速度,并提供重要的姿态信息。

然而,由于各种因素的干扰和不完美的设计,陀螺仪芯片会存在漂移误差问题。

这种误差会导致陀螺仪芯片输出的姿态信息与实际姿态有一定的偏差,严重影响了其测量精度和可靠性。

本文将对陀螺仪芯片漂移误差进行深入研究,并探讨其对陀螺仪芯片性能的影响。

首先,我们将介绍陀螺仪芯片的工作原理,解释其如何测量角速度和提供姿态信息。

然后,我们将详细定义陀螺仪芯片漂移误差,并分析其产生原因和影响因素。

在正文的第二部分,我们将讨论影响陀螺仪芯片漂移误差的因素。

这些因素包括温度变化、机械振动、电磁干扰等,它们会扰乱陀螺仪芯片的精确测量。

我们将分析每个因素的影响程度和可能的解决方法,以期降低漂移误差并提高陀螺仪芯片的性能。

最后,在结论部分,我们将总结陀螺仪芯片漂移误差的影响和解决方法。

我们将指出陀螺仪芯片漂移误差对导航系统、无人机等应用领域的重要性,并提出一些可能的改进方向,以进一步减少漂移误差,提高其测量精度和可靠性。

通过对陀螺仪芯片漂移误差的深入研究和讨论,本文旨在增加人们对陀螺仪芯片性能的认识,并对相关领域的研究和实践工作提供有益的指导。

我们相信,通过更好地理解和解决陀螺仪芯片漂移误差问题,我们将能够推动相关技术的发展并取得更好的应用效果。

文章结构部分可以简要介绍整篇文章的组织结构和各个章节的主要内容。

具体内容如下:1.2 文章结构本文将主要围绕陀螺仪芯片漂移误差展开讨论,并按以下章节进行组织和阐述:2.1 陀螺仪芯片的工作原理本节将介绍陀螺仪芯片的基本工作原理,包括其内部构造和运作方式等。

通过对陀螺仪芯片工作原理的介绍,读者可以更好地理解漂移误差的产生机制和影响因素。

2.2 陀螺仪芯片漂移误差的定义在本节中,将详细介绍陀螺仪芯片漂移误差的概念和定义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


KM I Bx /H
ωe cos cosK
2019/12/14
19
§6.4 陀螺测试的力矩反馈法
二 力矩反馈法法中陀螺相对地理坐标系的取向
陀螺相对地理坐标系的位置需借助转台
3.陀螺自转轴沿当地铅垂线方向
z x
ey ecoscosK
ly y
ωd

Mb
mgly H

KM IBx /H
陀螺漂移产生的原因是作用在陀螺上的干扰 力矩根据干扰力矩的性质及其变化规律,干扰力 矩可以分为两类:
• 确定性干扰力矩 有规律、可试验或计算确定,易于 补偿。
• 随机性干扰力矩 无规律性。引起陀螺的随机漂移, 只能用统计方法来估计其概率统计 特性。
2019/12/14
5
§6.2 影响陀螺漂移的主要因素
d ey p
精确定位定向,即陀螺输入轴与转台轴平行,并且要使 转台在地理坐标系中精确定向。 精确地测出转台的转速。
2019/12/14
12
§6.3 陀螺测试的伺服跟踪法
二 伺服跟踪法的测速方法
首先在一段时间间隔内,观测转台相对地球的转角,然后根 据地球自转角速度沿转台方向的分量通过计算求得在这段时 间内地球相对惯性空间的转角
ie ey T
得到在同一时间间隔内转台相对惯性空间的转角
ip ie p
用时间间隔相除,即得到陀螺的漂移角速度
d ip / T ey p
2019/12/14
13
§6.3 陀螺测试的伺服跟踪法
三 伺服跟踪法的转台轴的取向
1. 输入轴在水平面内沿东西方向
1. 摩擦力矩及其引起的漂移 2. 不平衡力矩及其引起的漂移 3. 非等弹性力矩及其引起的漂移
2019/12/14
7
§6.3 陀螺测试的伺服跟踪法
一 伺服跟踪法的基本原理



陀螺转子 号


前置放大器
解调
校正
转台 驱动电机
角度输出 时基
记录 功放
d ey p
2019/12/14
8
§6.3 陀螺测试的伺服跟踪法
2019/12/14
1
§6.1 陀螺漂移的基本概念
一 自由陀螺的漂移
ωd M b / H
工程实际中的陀螺仪与陀螺仪模型有所差别,这 种差别的表现就是干扰力矩的存在,干扰力矩破 坏了陀螺仪的定轴性,使陀螺仪的角动量向量在 惯性空间中发生了变化,包括其大小和方向。
2019/12/14
2
§6.1 陀螺漂移的基本概念
2019/12/14
d

Mb H

KM I Bx
/H
iy
15
§6.4 陀螺测试的力矩反馈法
一 力矩反馈法法的原理 力矩反馈法采用的是力矩平衡的静力学方法。
必须测量系统稳定后各参数的数值,对系统稳定性 的判定有较高要求。
电流记录装置必须具有足够分辨力和精度。 对力矩器刻度因子的稳定性和线性度要求很高。 力矩反馈法得到的是陀螺的瞬时漂移。
外环轴
度陀螺,其内环轴和外
环轴分别既是IA又是OA,
都有信号器和力矩器,
且交叉连接,构成两个
闭环回路。可以用两个
加矩电流
力矩器的电流分别表示
内环轴
沿两根轴的漂移角速度。
加矩电流
假定陀螺在工作过程中
力矩轴是正交的,总漂 移角速度为:
d
2 dx


2 dy
2019/12/14
4
§6.2 影响陀螺漂移的主要因素
§6.1 陀螺漂移的基本概念
一 自由陀螺的漂移
由于各种原因,在陀螺上往往作用有人们所不 希望的各种干扰力矩,在这些可能是很小的干扰力 矩的作用下,陀螺将产生进动,从而使角动量向量 慢慢偏离原来的方向,我们把这种现象称为陀螺的 漂移。把在干扰力矩作用下陀螺产生的进动角速度 称为陀螺的漂Байду номын сангаас角速度或角速率。
ωe cos cosK
2019/12/14
20
§6.5 陀螺漂移的数学模型
陀螺漂移的数学模型是指描述陀螺漂移变化规 律的数学表达式。在建立数学模型的基础上,漂移 测试和数据处理的目的就转化为确定模型中参数的 大小及其稳定性,分析这些参数与物理因素间的关 系,从而找到改进陀螺性能的方向和途径,并为陀 螺的使用提供依据。
d p
2. 输入轴与地球自转轴平行
d e p
3. 输入轴沿当地垂线方向 d e sin p
2019/12/14
14
§6.4 陀螺测试的力矩反馈法
一 力矩反馈法法的原理
力矩器
IA
信号器
OA
记 录装

加矩电流
SA 放大器
K M I Bx iy H M b
d

Mb
mglz H
K M I Bx / H
esin
2019/12/14
18
§6.4 陀螺测试的力矩反馈法
二 力矩反馈法法中陀螺相对地理坐标系的取向
陀螺相对地理坐标系的位置需借助转台
2.陀螺输出轴沿当地铅垂线方向
x N
yK ly
lz
ey e coscosK
z
d

Mb H
一 伺服跟踪法的基本原理
2019/12/14
9
§6.3 陀螺测试的伺服跟踪法
一 伺服跟踪法的基本原理
单自由度陀螺的单轴转台测漂
2019/12/14
10
§6.3 陀螺测试的伺服跟踪法
一 伺服跟踪法的基本原理
双自由度陀螺的单轴转台测漂
2019/12/14
11
§6.3 陀螺测试的伺服跟踪法
二 伺服跟踪法的测速方法
对于确定性干扰力矩,根据其与加速度的分为:
• 与加速度无关的干扰力矩,例如弹性力矩、电磁力矩等。 • 与加速度成比例的干扰力矩,例如由于陀螺质量偏心引起 的干扰力矩。 • 与加速度平方成比例的干扰力矩,例如由非等弹性引起的 干扰力矩。
2019/12/14
6
§6.2 影响陀螺漂移的主要因素
干扰力矩的分类及其所产生的陀螺漂移
二 单自由度浮子陀螺的漂移
力矩器
IA
信号器
OA
SA
放大器
当沿着陀螺输入轴的角速度等于什么数值时,才能使一个 闭环系统中实际使用的陀螺仪的信号器输出为零。这个角速度 的大小称为单自由度浮子陀螺的漂移角速度。
2019/12/14
3
§6.1 陀螺漂移的基本概念
三 双自由度浮子陀螺的漂移
对伺服状态的双自由
2019/12/14
16
§6.4 陀螺测试的力矩反馈法
一 力矩反馈法法的原理
双自由度陀螺的力矩反馈法测漂
2019/12/14
17
§6.4 陀螺测试的力矩反馈法
二 力矩反馈法法中陀螺相对地理坐标系的取向
陀螺相对地理坐标系的位置需借助转台
1.陀螺输入轴沿当地前垂线方向
y
ly
x
o
lz
mg z
ey e sin
相关文档
最新文档