Femap轴承载荷_BearingLoad
abaqus命令编辑说明

在工作目录下用记事本打开Job-1.inp ,该文件包含模型的节点、单元、集合、截面和材料属性、载荷和边界条件、分析步及输出设置等信息,这些信息用关键词及其参数和数据行表示。
关键词总是以* 开头,以**开头的是注释行。
*********************************************************************************定义分析的标题*Heading**注释行:显示分析作业名称和模型名称** Job name: Job-1 Model name: Model-1**设置dat文件中打印输出的选项*Preprint, echo=NO, model= NO, history=NO, contact=NO**注释行:提示下面将创建各部件**创建轴承座部件abutment*Part, name=abutment**定义节点(编号和坐标)*Node1, 27., -7.5, 20.2, 27., -7.5, 37.5……37264, 55.4273071, 30., 0.**定义C3D20 单元(单元编号及组成单元的节点编号)*Element, type=C3D201, 78, 958, 53, 1, 1073, 4680, 1080, 85,9834, 9833, 9832, 9831, 9835, 9836, 9837, 9838,9840, 9839, 9841, 9842……7802, 9821, 4210, 4211, 9830, 3542, 879, 880, 3551,34699, 34774, 34767, 34773, 37189, 37264, 37257, 37263, 37191,37193, 37260, 37255**定义C3D15 单元(单元编号及组成单元的节点编号)*Element, type=C3D15169, 114, 113, 1094, 1165, 1166, 4764, 10557, 10556,10555, 10558, 10559, 10560, 10562, 10561, 10563……2433, 5820, 5818, 5822, 2408, 2406, 2410, 18519, 18512,18465, 18657, 18650, 18603, 18601, 18585, 18605**定义包含abutment 部件所有节点的集合*Nset, nset=_PickedSet2, internal, generate1, 37264, 1**定义包含abutment 部件所有单元的集合*Elset, elset=_PickedSet 2, internal, generate1, 7802, 1*Nset, nset=Set-seed**定义用于设置边种子(Set-seed)的节点集合1, 2, 3, 4, 5, 6, 7, 8,11396, 11431, 11618, 11639, 11826, 11847, 18208, 18423, 18561**定义用于设置边种子(Set-seed)的单元集合*Elset, elset=Set-seed1, 8, 49, 56, 57, 64, 105, 112, 113, 120, ……2632, 2639, 2886, 2887, 2888, 2905, 2906, 2907, 3020, 3027, 3034 ** Region: (abutment:Picked)*Elset, elset=_PickedSet 2, internal, generate1, 7802, 1** 定义截面属性(单元集合为_PickedSet2,材料名称为steel )*Solid Section, elset=_Pic kedSet2, material=steel1.,**结束对abutment 部件的定义*End Part** 创建轴瓦部件axletree*Part, name=axletree**定义节点(编号和坐标)*Node1, -7.84628201, 30., 53.4392776……384, 17., 30., 55.**定义S3单元(单元编号及组成单元的节点编号)*Element, type=S31, 31, 33, 32……384, 365, 323, 324**结束对axletree部件的定义*End Part**创建轴部件shaft*Part, name=shaft**定义节点(编号和坐标)*Node1, 7.84628201, -1.56072259, 100.……128, 8., 0., 0.**定义S3单元(单元编号及组成单元的节点编号)*Element, type=S31, 1, 63, 32……124, 127, 113, 128**结束对shaft 部件的定义*End Part**注释行:提示下面将创建装配件*Assembly, name=Assembly*Instance, name=shaft-1, part=shaft0., -50., 55.0., -50., 55., -1., -50., 55., 90.**结束对轴部件实体的定义*End Instance**定义轴承座部件的实体*Instance, name=abutment-1, part=abutment**结束对轴承座部件实体的定义*End Instance**定义轴瓦部件的实体*Instance, name=axletree-1, part=axletree第9 章线性静力学分析实例211**结束对轴瓦部件实体的定义*End Instance**定义用于施加边界条件(Set-BC )的节点集合*Nset, nset=Set-BC, instance=abutment-138, 40, 41, 43, 45, 46, 47, 48……37253, 37254, 37257, 37258, 37259, 37262, 37263, 37264**定义用于施加边界条件(Set-BC )的单元集合*Elset, elset=Set-BC, instance=abutment-12460, 2461, 2462, 2463, 2482, 2483, 2484, 2485, 2501, 2502……7794, 7795, 7796, 7797, 7798, 7799, 7800, 7801, 7802**定义单元集合*Elset, elset=_Surf-gravity_S6, internal, instance=abutment-1718, 721, 724, 1146, 1147, 1148, 1149, 1150, 1151, 1152……2226, 2227, 2228**定义单元集合*Elset, elset=_Surf-gravity_S4, internal, instance=abutment-1729, 732, 735, 738, 812, 813, 814, 815, 816, 817**定义单元集合*Elset, elset=_Surf-gravity_S5, internal, instance=abutment-1739, 740, 741, 742, 743, 744, 777**定义用于施加轴承孔径向压力的表面(Surf-gravity ),包含之前定义的三个单元集合*Surface, type=ELEMENT, name=Surf-gravity_Surf-gravity_S6, S6_Surf-gravity_S4, S4_Surf-gravity_S5, S5**定义单元集合*Elset, elset=_Surf-push_S1, internal, instance=abutment-1, generate1146, 1191, 1**定义用于施加轴承孔圆周上推力的表面(Surf-push )_Surf-push_S1, S1** Constraint: Constraint-axletree**定义轴瓦实体的显示体约束*Display Body, instance=axletree-1abutment-1.28,abutment -1.25,abutment-1.19** Constraint: Constraint-shaft**定义轴实体的显示体约束*Display Body, instance=shaft-1abutment-1.28,abutment -1.25,abutment-1.19**结束对装配件的定义*End Assembly**注释行:提示下面将定义材料参数** MATERIALS*Material, name=steel**定义材料参数*Elastic200000., 0.3**注释行:提示下面将定义边界条件** BOUNDARY CONDITIONS**注释行:显示边界条件名称和类型** Name: BC-fixed Type: Symmetry/Antisymmetry/Encastre**定义边界条件*BoundarySet-BC, ENCASTRE**注释行:提示下面将定义分析步** STEP: Step-1**定义分析步的名称*Step, name=Step-1**定义静态通用分析步及其参数*Static1., 1., 1e-05, 1.**注释行:提示下面将定义载荷** LOADS**注释行:显示载荷名称和类型** Name: pres-gravity Type: Pressure** 定义轴承孔径向压力(施加在Surf-gravity 面上,50MPa )*DsloadSurf-gravity, P, 50.** Name: pres-push Type: Pressure**定义轴承孔圆周上的压力(施加在Surf-push 面上,10MPa )*DsloadSurf-push, P, 10.**注释行:提示下面将定义输出要求** OUTPUT REQUESTS*Restart, write, frequency=0**注释行:提示下面将定义场变量输出要求** FIELD OUTPUT: F-Output-1**设置写入输出数据库的场变量*Output, field**定义写入输出数据库的节点变量*Node OutputCF, RF, U**定义写入输出数据库的单元变量*Element Output, directions=YESEE, LE, S** HISTORY OUTPUT: H-Output-1 ** 注释行:提示下面将定义历史变量输出要求**设置写入输出数据库的历史变量*Output, history, variable=PRESELECT**结束对分析步的定义*End Step9.3 专题:inp 文件格式的简要理解inp 文件是一种文本格式(可以通过Windows过EditPlus 或者UltraEdit 等文本编辑软件来编辑)inp 文件,在ABAQUS的任何一个功能模块下,执行Model→Edit Keywords命令,选择要编辑的分析模型就可以进行修改了,inp 文件的具体内容包含具体分析案例的整个前处理过程,即分析模型的完整描述,其可以直接递交ABAQUS求解器进行求解。
【技术贴】动力学分析中的滚动轴承

【技术贴】动力学分析中的滚动轴承大家好!随着EXCITE Power Unit软件在齿轮箱分析领域的开疆拓土,有越来越多的CAE工程师开始采用EXCITE Power Unit进行齿轮箱动力学分析。
尤其针对齿轮箱NVH分析,EXCITE以其高分析精度广受业界好评。
另外,新版本也在建模便利性和计算效率上不断推陈出新,力求更好的用户友好性。
滚动轴承作为齿轮箱建模必不可少的一环,它的建模在EXCITE Power Unit中有多种方式,而每种方式都各有特点,用户可以根据实际情况进行合理选择。
本期技术贴给大家详细介绍每种滚动轴承建模方式及各自特点,以期为EXCITE齿轮箱动力学分析用户提供建模和分析参考。
一.前言:滚动轴承作为轴和壳体或轴和轴之间的连接部件,在动力学分析中,传递体与体之间的作用力。
它的核心参数与其他连接副并无它异,即刚度和阻尼。
但是,由于滚子的存在,内外圈之间的连接刚度会随着滚子位置不同或作用力方向不同而发生微小的变化;另外,对于高速运转的轴承,滚子的离心力也会随转速升高逐渐增大,从而变得不可忽视,它的作用会使得外圈受力大于内圈受力,如果是角接触球轴承,受力方向还会受离心力的影响。
不论是刚度变化还是离心力的影响,都会导致轴承力的波动,从而传递到结构体引起结构振动,产生振动噪声。
常见的滚动轴承类型及示意图如下表所示:二.滚动轴承建模方式:考虑到动力学模型中滚动轴承的核心参数依然是刚度和阻尼,在EXCITE Power Unit中建立滚动轴承推荐采用的单元有FTAB单元和Rolling Elements Bearing,其中FTAB单元实际上是通用的非线性连接副,它可以通过T able的形式定义任意自由度的非线性刚度和阻尼,所以滚动轴承自然也可以采用。
而Rolling Element Bearing则是EXCITE Power Unit中专门用于滚动轴承连接副的单元,所以它能够考虑的因素也是最全面的。
fesafe讲稿

r/d
0.3
Stress S = P/A πd2 A= 4
• 较低的疲劳耐久力时,缺口处疲劳强度的计算更复杂, 因为Kt是弹性应力集中系数,而缺口处的应力会显示 出塑性。下图为开口部分的耐力极限。 • 当应力为弹-塑性时,局部应变和工程应力疲劳方法都 包含了计算开口效应的方程。
Stress amplitude Sa
• Load amplitude
• • • 100 10
Applied cycles
10 2000
Endurance
104 106
n/N
0.001 0.002 0.003
• 计算得总的 Σ(n/N) = 0.003 • 根据 Miner’s 法则,当总和值 Σ(n/N) = 1时,将 发生破坏。即当上述的载荷组合重复次数为 333次时,将会发生破坏。 • 因此计算的寿命也就为载荷历程重复333次。
• 疲劳的定义 – 当材料或结构受到多次重复变化的载荷作用 后,应力值虽然始终没有超过材料的强度极 限,甚至比弹性极限还低的情况下就可能发 生破坏。这种在交变载荷作用下材料或结构 的破坏现象,就叫做疲劳破坏。
• 疲劳破坏的特征
– 材料力学是根据静力试验来确定材料的机械 性能(比如弹性极限、屈服极限、强度极限) 的,这些机械性能没有充分反映材料在交变 载荷作用下的特性。因此,在交变载荷作用 下工作的零件和构件,如果还是按静载荷去 设计,在使用过程中往往就会发生突如其来 的破坏。
• 在传统的设计过程中,机械产品的疲劳寿命通 常是通过一定量物理样机的耐久试验得到,不 但试验周期长、耗资巨大,而且许多相关参数 与失效的定量关系也不可能在试验中得出,试 验结论还可能受许多偶然因素的影响。 • 产品投放市场后,耐久性问题的出现造成许多 新产品失去竞争力,给企业带来巨大的经济损 失,同时又使企业形象蒙受巨大的负面影响。 • 在中国,疲劳耐久性与可靠性问题更是普遍存 在,是国产产品缺乏国际竞争力的最重要因素 之一。
德国FAG-INA轴承参数对照表

轴承参数对照表1)内部结构A——内部设计与标准不同的轴承。
A——角接触球轴承,接触角为30度。
A5——角接触球轴承,接触角为25度。
B——角接触球轴承,接触角为40度。
C——角接触球轴承,接触角为15度。
C——圆锥滚子轴承,接触角为20度。
D——圆锥滚子轴承,接触角为28度。
C,CA(带黄铜实体保持架),CD(带冲压保持架)——高负载调心滚子轴承。
E——高负载圆柱滚子轴承。
H——高负载推力调心滚子轴承。
J——圆锥滚子轴承的外圈滚道的小端径,角度,外圈宽度与ISO规定一致。
(2)材料g——套圈,滚动体为渗碳钢。
H——套圈,滚动体为不锈钢。
(3)保持架M——铜合金实体保持架。
T——合成树脂保持架。
W——冲压保持架。
V——无保持架。
(4)密封圈,防尘盖Z,ZS——一面带钢板防尘盖。
ZZ,ZZS——两面带钢板防尘盖。
D,DU——一面带接触式橡胶密封圈。
DD,DDU——两面带接触式橡胶密封圈。
V——一面带非接触式橡胶密封圈。
VV——两面带非接触式橡胶密封圈。
(5)套圈形状K——圆锥孔,锥度1:12。
K30——圆锥孔,锥度1:30。
E——套圈上有切口或油孔。
E4——外圈上带油槽,油孔。
N——外圈外径带止动槽。
NR——外圈外径带止动槽,止动环。
(6)配合及衬垫DB——背靠背成对安装。
DF——面对面成对安装。
DT——串联成对安装。
+K——外圈带衬垫。
+L——内圈带衬垫。
+KL——内,外圈带衬垫。
(7)游隙C1——向心轴承径向游隙,比C2游隙小。
C2——向心轴承径向游隙,比标准游隙小。
CN(省略)——向心轴承径向标准游隙。
C3——向心轴承径向游隙,比标准游隙大。
C4——向心轴承径向游隙,比C3游隙大。
C5——向心轴承径向游隙,比C4游隙大。
CC1——圆柱滚子轴承(不可互换)径向游隙,比CC2游隙小。
CC2——圆柱滚子轴承(不可互换)径向游隙,比标准游隙小。
CC——圆柱滚子轴承(不可互换)径向标准游隙。
CC3——圆柱滚子轴承(不可互换)径向游隙,比标准游隙大。
调心滚子轴承 适用于风力发电机主轴轴承布置说明书

适用于风力发电机主轴轴承布置
目录
特点
设计和安全指导 精度
订货举例、订货号 .............................................. 2 X-life......................................................................................... 3 优化的几何尺寸 ....................................................................... 4 客户定制轴承 ........................................................................... 6 密封 ......................................................................................... 6 润滑 ......................................................................................... 7 保持架 ...................................................................................... 8 后缀 ......................................................................................... 8
0018DA53
图6 再润滑装置
其它信息 ■ TPI 176, Lubrication of Rolling Bearings (滚动轴承的润滑) ■ TPI 252, Lubricators (加脂器)。
轴承术语及解释&轴承专业词汇表

轴承术语及解释&轴承专业词汇表发布时间:2008-12-22轴承寿命Bearing life滚动轴承之寿命以转数(或以一定转速下的工作的小时数),定义:在此寿命以内的轴承,应在其任何轴承圈或滚动体上发生初步疲劳损坏(剥落或缺损)。
然而无论在实验室试验或在实际使用中,都可明显的看到,在同样的工作条件下的外观相同轴承,实际寿命大不相同。
此外还有数种不同定义的轴承“寿命”,其中之一即所谓的“工作寿命”,它表示某一轴承在损坏之前可达到的实际寿命是由磨损、损坏通常并非由疲劳所致,而是由磨损、腐蚀、密封损坏等原因造成。
简单的轴承寿命预测Bearing life calculation轴承精度轴承的精度等级与划分标准滚动轴承的精度分(主要)尺寸精度与旋转精度。
精度等级已标准化,分为0级、6X级、6级、5级、4级、2级六个等级。
精度从0级起依次提高,对于一般用途0级已足够,但在用于其他条件或场合时,需要5级或更高的精度。
以上的精度等级虽然是以ISO标准为基准制定的,但其称呼在各国标准中有所不同。
尺寸精度(与轴及外壳安装有关的项目)1、内径、外径、宽度及装配宽度的允许偏差2、滚子组内复圆直径及外复圆直径的允许偏差3、倒角尺寸的允许界限值4、宽度的允许变动量旋转精度(与旋转体跳动有关的项目)1、内圈及外圈的允许径向跳动和轴向跳动2、内圈的允许横向跳动3、外径面倾斜度的允许变动量4、推力轴承滚道厚度的允许变动量5、圆锥孔的允许偏差和允许变动量轴承类型与适用精度等级GB/T30794标准将轴承等级划分为GEDCB,ISO、JIS等标准对照轴承精度等级的选择轴承公差等级公制轴承普通组间隙P6P5P4P4ASPUPPA9A英制轴承普通组间隙轴承游隙所谓内部游隙是轴承外轮、内轮、钢球间的游隙量。
一般固定内轮把外轮上下方向运动时的运动量称为径向游隙,左右方向运动时的运动量称为轴向游隙。
在轴承运转中,内部游隙的大小是左右振动、发热、疲劳寿命等性能的主要因素。
变桨轴承钢球/沟道接触载荷分布规律

( 京工业大学 南 机械 与动力学院 , 南京 2 11) 186
摘要: 工程实践表 明 , 安装基础 刚性 、 螺栓预 紧力 、 安装表 面平 面度 等各种 因素对 风力 发电机变桨 轴承的运行性
能有显 著影 响 , 钢球/ 沟道接触载荷 分布规律是研究转盘 轴承 运行性 能 、 承载能力 及寿命 等的基础 。讨 论 了一
变桨 轴 承 作 为 变 桨 系统 的 关 键 零 件 , 装 机 其
后 的受 力 和 变 形 情 况 将 严 重 影 响 风 机 的 可 靠 运
装平 面和安 装 基础对 转 盘轴 承 受 力状 态 的影 响不
容忽 略 。另外 , 有 的 转 盘 轴 承 设 计 理 论 基 本 都 现
中 图 分 类 号 :H133 ; 2 1 8 T 3 .3 O 4 .2 文 献 标 志 码 : A 文 章 编 号 :00—3 6 ( 02 0 0 0 — 4 10 7 2 2 d Dit i in n Bl d a i s e lBal— Ra e y Co t c a srbuto i a e Be rng
p roma c , e r g c p ct n aiu i .A f i lme tmo e i gmeh d i ic s e h c p n l me t e r n e b a i a a i a d f t el e nt ee n d l t o sd s u s d i w i h a s r g ee n f n y g f i e n n i i u e o smu ae t e b l —r c w y c na ta d t e a p ia in e a l sa eg v n s s d t i lt h a l a e a o tc n h p l t x mp e r i e .T e c o h n,t ei f e c f h n tl h l n e o ei sa— n u t lt n r i ,b l r la e o c n u t g s r c an s n t e b l —r c w y c n a tla it b t n i ld a i g d ot p eo d d fr e a d mo n i u f e f te so h al a e a o t c o d d sr ui ba e o i s n a l i o n
Simcenter Femap 软件产品介绍说明书

SummarySimcenter™ Femap™ software is a standalone finite element modeling (FEM) pre- and postprocessor for engineering simulation and analysis. The software is computer-aided design (CAD) independent and can import geometry from all major CAD platforms. It supports most CAD data formats. Simcenter Femap also works in combination with a wide variety of finite element analysis (FEA) solv-ers, including Simcenter™ Nastran software.The latest release provides a variety of enhancements that will improve your productivity across the simulation workflow. Building on the advanced meshing capabilities added for Simcenter Femap 2021.2, this version sees the addition of automated hex-dominant meshing technology which eliminates the need for geometry simplification and subdivision typically required to create a high-qual-ity hex-dominant mesh. Support for Kinematic Joints and Flexible Sliders, available in Simcenter Nastran’s Multi-Step Nonlinear Kinematic solution, has been added to better capture the real-world behavior of assembly models whichBenefits• Better representation of real-world conditions when simulating assemblies with moving parts• Eliminate need for geometry simplifica-tion and manipulation typically needed to create a high-quality solid mesh • Take advantage of advanced analysis types via improved support for special-ized entities needed to run certain simulations• Enhanced graphics performance and helpful user interface features designed to improve overall User ExperienceDIGITAL INDUSTRIES SOFTWARESimcenter Femap version 2022.1Breaking new ground with advanced analysis types/simcentercontain parts which move relative to one another. A new solution monitor optimized to provide valuable real-time feedback for Simcenter Nastran’s Multi-step solutions is also now available. Finally, updates to the user interface designed to improve overall user experience in various areas, such as controlling display options, entity selection, grouping, and accessing the modernized Online Help System, have been implemented.Preprocessing enhancementsSimulation Entities – Kinematic Joints and Joint ConnectionsSimcenter Femap 2022.1 provides support for advanced simulation methods, such as flexible body dynamics, using Simcenter Nastran’s Multi-Step Nonlinear Kinematic solution, SOL 402.Kinematic Joints connect two nodes and allow a certain relationship of relative motion or rotation between the two depending on what type of joint is estab-lished. The types of Kinematic joints include revolute, inline, slider, spherical, cylindrical, and other highly specialized types which can be used for the analysis of models containing moving parts, such as aerostructures, helicopters, deploy-able structures in space, gas turbines, and machine tools. The addition of drive loads as a new load type can be used to enforce displacements or rotations on kinematic joints.To accelerate the process of creating kinematic joints, Joint Connections have been added as a new unique entity type in Simcenter Femap. Joint Connections allow the user to establish how a kinematic joint will be connected to geometric entities and/or existing mesh of the model and are then expanded to the neces-sary nodes when the input file is exported.Features• Automated hex-dominant meshing for streamlined creation of models repre-senting solid parts• Kinematic Joints and Flexible Sliders required to perform flexible body dynamic analysis, without the need for a motion solver, are now supported • Enhanced Simulation Monitor provides live feedback of simulation progress and data, including displacements, energy, contact, and time steps• User Interface improvements provide access to a modern Online Help system, along with new options to control displayand assist in entity selectionSimulation Entities – Flexible Sliders Simcenter Femap’s support for kinematic analysis of mechanical systems is enhanced with the addition of “Flexible Slider” simula-tion entities. This capability includes several parameters for customization such as different slider types, driver loads, and additional fric-tion options. The available slider types allow different constraints for relative rotation of the nodes sliding along the track. This includes spherical, prismatic, cylindrical, and universal types. For driver loads, Flexible Sliders can be driven with both external load sets, and forces/displacements applied directly to a specified driver node. Furthermore, for friction, avail-able types include options for validating motion (no friction), infinite friction, and displacement or velocity dependent frictionalforces.Entity Display toolbarThe Entity Display toolbar has been enhanced to include an icon which can be toggled to select if the toolbar is currently controlling the overall display of the various entity types available on the toolbar or the labels for those entity types.GroupingNew Group Commands to include nodes or elements in a group based on being associated to geometric entities which are part of a Solid have been added. For nodes, these include Group, Node, on Points of Solid; Group, Node, on Curves of Solid; and Group, Node, onSurfaces of Solid. The same commands are also available for elements.Also new for grouping, is the addition of the Add to Copied Entity Groups option to the various Copy, Rotate, and Reflect commands for geometry and finite element entities, which places any duplicated entity into any existing group where the original entity resides at the time of the command.Finally, the ability to evaluate any number of groups using the Model Info tree is now avail-able by using the Evaluate command on the context-sensitive menu for Groups.Selection of nodes and elements by geometric entities used by solid geometry Like the commands mentioned in the Grouping section, options were added to Method^ menu in Standard Entity Selection dialog box for Node and Elements to select these entities based on their association to geometric entities used by Solids.MeshingMesh, hex mesh bodiesHex-dominant meshing of solid geometry with little to no simplification or subdivision into smaller and simpler regions has long been desired by the finite element analysis commu-nity. Simcenter Femap has collaborated with other development organizations in the Siemens Simcenter Portfolio to offer this exciting technology to Femap users for the first time for v2022.1.To accomplish this goal, the hex-dominant mesher first fills a solid volume with as many hexahedral elements as possible, then fills the remainder of the volume with wedge, pyramid, and tetrahedral elements, as needed. This process creates high quality elements which can be sent directly to the Simcenter Nastran solver with no additional interaction from the user or manual refinement of the mesh.In addition to being able to mesh single parts,the hex-dominant mesher can work on multi-ple parts to create a single continuous mesh of the assembly. There are also additional options to control various aspects of mesh sizing, mesh associativity, and if all elements should be given midside nodes during the meshing process.Mesh, editing, mapped hex refineThis command offers the ability to refine solid elements in regions of the mesh are fullymapped. Similar to the Mesh, editing, element refine command, the elements to refine are first highlighted, then are spilt when the user clicks OK to commit to the element splitting. Any elements which are needed to properly transition the fully refined elements back to the original mesh will also be split with a specialized transitiion pattern.Solver supportSimcenter NastranEnhanced SolutionMonitorDisplays curated output fromSimcenter Nastran includingdetailed warnings, informa-tion messages, and errors forany type of analysis. SeparateSOL401 or 402 tab to displaytime steps and number itera-tions requested to convergethe model. In addition, canbe used to display graphs andinformation for time steps,iterations for each time step,and other items such asconvergence criteria, cumula-tive number of iterations,elements which have experi-enced plastic deformation,and many other quantities.Kinematic Joints – Joint Time Constraint Dialog box in Analysis Set Manager to specify fixation time(s), liberation time(s), and/or removeable link(s) for Kinematic Joints in SOL 402 using groups of Kinematic Joints. Default is to set time for all Kinematic Joints in the model using a single entry in T/T1 field, but multiple entries can also exist. In either case, the appropriate entries will be written to the Nastran input file.Flexible Slider SelectionSpecialized dialog box controls which Flexible Sliders will be included for a particular Multi-Step Nonlinear Kinematic analysis run. Regardless of the number of Flexible Sliders has been selected, the appropriate entries are automatically written to the Nastran input file. The dialog box can also be used to highlight which Flexible Sliders are currently selected in the graphics window as well as to create new Flexible Sliders, edit any existing one, or delete any number of existing ones.DDAM EnhancementsAdded support for streamlined approach to specify control options for the Dynamic Design Analysis Method (DDAM). Previously, many of the control options were specified in an exter-nal file, but these can now be specified via the DDAMCTR entry in the Nastran input file. In additions, the base excitation had to be defined using a number of different entries, but certain aspects can now be defined using a SPDIR entry written to the Nastran input fileSupport for Tension-Only Quad Property Support for the PSHLPNL entry is now available by specifying Property Extensions for a Plate Property in Femap, which offers the ability for a shell element to a shear panel element when certain user-specified criteria have been met when using Simcenter Nastran’s Multi-Set Structural Analysis solution. Once conversion has occurred, the element will continue to act as a shear panel for each Sequentially Dependent subcase following an initial Sequentially Independent subcase. In addi-tion, a parameter which can be used to disable the conversion behavior, PARAM,TENSOQD, can be specified using the Analysis Set Manager.Support for DTEMP entrySupport for time-dependent temperature set definition for SOL 401 and SOL 402 has been added. In Femap, this is accomplished by creating a new set with Type set to Nastran DTEMP Sequence, then using the Referenced Set dialog box, Model, Load, Combine command, or the Load Set Combination Table in the Function/Table Editor to specify the desired time values to the appropriate Load Sets.Nastran SolversNonstructural Mass Axis for Beam Prop-ertyIt is now possible to specify the Y Axis Offset and/or Z Axis Offset at End A and/or End B to define a Nonstructural Mass Axis for Beam Properties in the new Nonstructural Mass Property Values section of the Define Property dialog box for Beam elements. For consis-tency, Nonstructural Mass/Length has also been moved to the Nonstructural Mass Property Values section. Also, if values for Nonstructural Mass Axis are defined, they are used any time the Center of Gravity is calcu-lated inside Femap, including for mass properties.Help SystemFemap’s Online Help System has been modernized to provide the content in HTML format. It can now be access either online through the Siemens Support Center website or the help content can be downloaded locally and accessed by also installing the Siemens DI Software Documentation Server to the user’s machine or a server machine which can be accessed by an entire organization. This new system is fully searchable and offers the ability set Browser Bookmarks as well.Application Programming Interface (API)Added Joint Object and FlexibleSIider Object,along with applicable Properties and Methods,to allow programmatic access to newSimulation Entities added for 2022.1Added properties and methods to existingObjects to reflect new options added to theuser interface for 2022.1feCheckCoincidentNode5 can be used toaccess options in the Tools, Check, CoincidentNodes command which could previously notbe specified programmatically.© 2021 Siemens. A list of relevant Siemenstrademarks can be found here. Othertrademarks belong to their respectiveowners.84339-D3 12/21 H。
赛龙轴承工程手册

赛龙轴承工程手册公制转换表长度1m=39.37″1mm=0.0393″力1N=0.2248磅1kg=2.205磅压力1kg/cm2=14.223磅/英寸21Mpa=145磅/英寸2符号和单位英制单位Ct=超过生产车间环境温度时的额外径向间隙英寸MMCs=吸水时的额外径向间隙d=轴径英寸MMEo=弹性模量1BS/SQN MPAID=轴承内径英寸MML=轴承长度英寸MMN=轴转速RPM RPMO.D.=轴承外径INCHES MMP=压力1BS/SQIN MPATa=生产车间环境温度(典型21℃(70℉))℉℃T0=运转温度℉℃W.T=轴承壁厚INCHES MMα=热膨胀系数IN/IN/ ℉CM/CM/℃μ=摩擦系数IN/IN/ ℉CM/CM/℃V=线速度FT/MIN M/SEC γ=拍松比不同硬度比例的大约对照(译者:表略)韦氏硬度(VICKERS)硬度莱氏B(ROCK WELL B)(BARCOL)硬度(HARDNESS)柔度(SOFTNESS)冷冻装配温度干冰:–78℃(–109℉)液氮:–196℃(–320℉)可供其它THORDON技术信息A)THORDON海洋工程安装手册B)THORDON计算机尺寸计算程序如有需要请与当地THORDON分发商或THORDON轴承公司联系1目录1.THORDON定义2.摩擦学3.物理性能A 热效应B 水效应C 形状系数D 应力应变E 刚度F 压变形-蠕变-应力释放G 冲击/恢复 H 滞后量 I 化学防腐 J 选择过程 K 故障和失效原因4.设计指导A 应用分析B 轴承压力C 速度D P.V.T图表EL/D比 J 选择过程 K 故障和失效原因5.THORDON轴承的应用设计A 应用设计B 过盈C 内径收缩D 运转间隙E 膨胀允差F 吸水允差G 分步计算H 实例计算I 键轴承计算J 计算机计算K 高压轴承6.加工指导A 一般加工B 加工XL和SXLC 尺寸和表面粗糙度测量D 加工Composite定义:THORDON 弹性轴承材料是一种热凝树脂,是三维交叉结晶聚合物。
ansys14.0深沟球轴承接触分析

13 深沟球轴承接触分析13.1实践任务和目的滚动轴承的刚度、接触应力及寿命是工程应用中关心的热点问题。
滚动轴承接触分析的困难在于滚动体与圈体的接触,滚动体在载荷为0 的情况下与圈体接触为一点,随着载荷的增大,点接触变为面接触。
接触区域的位置、大小、形状、接触面压力及摩擦力分布等接触参数在分析前未知,它们随外载荷变,是典型的边界非线性问题。
深沟球轴承结构简单、使用方便,是生产批量最大、应用范围最广的一类轴承。
本实验以618/5 深沟球轴承为代表,利用ansys软件的建立深沟球轴承的三维有限元模型。
通过加载边界条件,进行面-面接触分析,得出轴承的接触应力分布。
轴承弹性模量E=210GPa,泊松比0.3,作用在轴承上的力P=3.472Mpa。
13.2实验环境Ansys14.0 及其以上版本软件,w in7 以上版本操作系统13.3实践准备接触问题是一种高度非线性行为,需要较大的计算资源,为了进行有效的计算,理解问题的特性和建立合理的模型是很重要的。
接触问题分为两种基本类型:刚体─柔体的接触,柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触;另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。
1)接触分析的基本概念①接触协调因为实际接触体相互不穿透,Ansys 在这两个接触面间建立一种关系,防止它们在有限元分析中相互穿过。
将程序防止接触面间相互穿透作用称为强制接触协调。
如果没有强制接触协调,接触面间会发生穿透。
②罚函数法罚函数法用一个接触“弹簧”在两个接触面间建立关系实现接触协调的方法,弹簧刚度称为惩罚参数(也可叫接触刚度)。
当接触面分开时(开状态),弹簧不起作用;当面开始穿透时(闭合),弹簧起作用,弹簧偏移量满足平衡方程: F = k △ ;式中k 是接触刚度,△ 为穿透量,如图13.1 所示。
轴承行业专业术语名词解释

轴承行业专业术语名词解释Rated Dead-Load, Rated Static Load 额定静载荷rated active load,dynamic load rating 额定动负荷prelubricated bearing 预润滑轴承Vibration Measurement 测振self-lubricating bearing,self-lubrication bearing 自润滑轴承The material of DU、DX bearings is consist of plastic、bronze and baseDU、DX类复合材料轴承的材料结构为塑料—青铜—钢背复合而成。
DU类轴承为自润滑轴承,在无润滑的条件下,可在-200~280°C、应力水平250N/mm~2的工况下运转;DX类轴承是预润滑轴承,一次加脂后,可在-40~130°C、应力水平140N/mm~2的工况下工作。
对轴承的性能、参数计算及其应用作了详细的介绍。
aperture,pore size,pore diameter,孔径,内径dantirust grease,anti-corruption grease,rust resistant grease 防锈脂antirust oil 防锈油flushing oil,清洗油,清洗防锈油的轴承上涂布的防锈油具有良好的润滑性能,对于一般用途的轴承或充填润滑脂的轴承,可不必清洗直接使用。
但对于仪表用轴承或用于高速旋转的轴承,应用清洁的清洗油将防锈油洗去,这时轴承容易生锈,不可长时间放置。
lubricating oil,lubricant 润滑油grease,lubricating grease 润滑脂machine oil,machinery oil 机械油cleaning agent ,cleaner ,detergent 清洗剂basic oil 基础油viscosity 油粘度diesel ,diesel oil,diesel fuel 柴油kerosene,kerosine,kerosene oil 煤油dust cap,dust cover,dustproof cap 防尘盖groove 止动槽N止动槽内放置止动环NRsnap ring 止动环By the way of improving roller dimensions, roller number, outer roller path diameter ,stop groove diameter and the effective thickness ,the using reliability of the bearing is advanced.通过对轴承结构中的滚子尺寸、滚子数量、外圈滚道直径、止动槽直径公差及有效壁厚的改进,提高其使用的可靠性。
世界各地轴承代号的辅助记号、前后缀代号说明(汇集)

世界各地轴承代号的辅助记号、前后缀代号说明(汇集)世界各地轴承代号的辅助记号、前后缀代号说明(汇集)轴承前后置代码查询SKF公司(1)内部设计ACD——接触角为25度。
B——接触角为40度。
CC——接触角为12度。
CD——接触角为15度。
BE——接触角为40度的BE型轴承,钢球加大,以玻璃纤维增强尼龙6.6保持架。
双列角接触球轴承A——外径小于等于90毫米轴承的标准设计,没有装球缺口,采用玻璃纤维增强尼龙6.6保持架。
E——轴承一侧有装球口,可装较多钢球,因此具有较高的径向及轴向承载能力。
调心滚子轴承CAC,ECAC,CA,ECA——这些设计用于大尺寸的轴承,滚子呈对称型。
CC,C,EC——这类轴承滚子呈对称型,内圈无挡边。
E——是SKF公司采用最新标准设计。
E型轴承外圈带有油槽及三个油孔,则后置代号中须加W,以示区别。
圆柱滚子轴承B——轴承采用表面经处理的滚子(满装滚子轴承)。
B4——轴承套圈表面及滚子表面均经处理(满装滚子轴承)。
EC——轴承内部几何形状经改进,有较高的承载能力,挡边和滚子端面具有良好的接触和润滑条件,能承受较高的轴向载荷。
(2)外部设计CA,CB,CC——通用配对型单列角接触球轴承,可任意(串联,面对面或背靠背)配对安装。
背靠背或面对面排列时,轴向安装前内部间隙与正常值比:小(CA),正常(CB),较大(CC)。
-2F——外球面球轴承两侧带甩尘挡圈。
-2FF——外球面球轴承两侧带组合甩尘挡圈。
G——通用配对单列角接触球轴承。
面对面或背靠背排列时,轴承内有一定的安装前预载荷。
GA——面对面,背靠背排列时,轴承内有较轻的预载荷。
GB——面对面,背靠背排列时,轴承内有中等预载荷。
GC——面对面,背靠背排列时,轴承内有较重的预载荷。
K——圆锥孔,锥度1:12。
K30——圆锥孔,锥度1:30。
-LS——轴承一面具有接触式密封,内圈无密封凹槽。
-2LS——轴承两面具有LS密封。
N——轴承外圈上有止动槽。
SKF Gear Bearing Unit 说明书

w July/August 2014 133SKF Gear Bearing Unit launchedSKF launched a new solution that can help truck OEMs to downsize engines while maintaining the sameperformance, or keep the same engine and increase the performance. The SKF Gear Bearing Unit offers higherload carrying capacity and power take off torque, enabling truck OEMs to offer even greater effi ciency. The SKFGear Bearing Unit is a ready-to-use (plug & play) solution. It is easy to install and interchangeable with currentunits. The new solution incorporates a roller bearing, as opposed a plain bearing, which offers the customera series of benefi ts. The change to roller bearings has enabled signifi cantly increased power intensity, theintegration of a gear unit and a reduction of oil fl ow and oil pump size. Plain bearings require a separated oilsupply and oil pressure for lubrication. In contrast, the SKF Gear Bearing Unit needs only oil mist lubrication and,therefore, enables optimised oil metering. “The SKF Gear Bearing Unit is a compact, unique solution exclusivelyfrom SKF,” explains Anja Riedl, new market offer & marketing manager, Trucks. “This solution provides the userwith a laboratory-verifi ed solution that is new in the market and specially designed for the trucks industry.” TheSKF Gear Bearing Unit has been tested successfully at customer-end and is running in series production now.BERNARD CONTROLS’ new interactive GuideBERNARD CONTROLS, global electric actuation specialist, has just moved its former printed User’s Guide into an interactive web application named GPS Actuator. As suggested by its name, the GPS function of this web application simply drives the user to the electric actuation solution fi tting to his needs. Available on BC website in responsive web design (optimized for all devices: smartphone, tablet and computer) or directly on , this new interactive tool is currently in English but will be available in other languages step by step. A printed brochure, also available on BERNARD CONTROLS website, replaces the former printed User’s guide, presents the functioning of the GPS and summarizes key steps and choices/options up to the selection of a range of electric actuators. There is also a dedicated focus on EN15714-2 Standard actuator duty classifi cation and Modulating classifi cation. Many additional information (data, defi nitions, standards and regulations…), as well as presentation of BERNARD CONTROLS technical advantages, are available on the application. At the end of the on-line selection process, the user can fi ll in a form to be contacted by BC back offi ces. BERNARD CONTROLS sales teams then receive an e-mail with the sum up of criteria selected by the user and can contact him to fi nalize the quotation.。
Fe-safe振动疲劳解决方案

Fe-safe振动疲劳解决方案SIMULIA/FE-SAFE一直是多轴疲劳分析解决方案的领导者,算法先进,功能全面细致,是世界公认精度最高的疲劳分析软件。
在产品设计阶段使用SIMULIA FE-SAFE,可在物理样机制造之间进行疲劳分析和优化设计,真实的预测产品的寿命,实现等寿命周期设计。
设计阶段的耐久向分析可以显著缩短产品推向市场的时间、提高产品可靠性,极大地降低制造物理样机和进行耐久性试验所带来的巨额研发费用。
SIMULIA /FE-SAFE耐久性分析技术客观反应于空间站、飞机发动机到汽车、火车;从空调、洗衣机等家电产品到电子通讯系统;从舰船到石化设备;从内燃机、核能、电站设备到通用机械等各个领域。
基于有限元分析的疲劳技术,实现了产品设计→CAE仿真→疲劳设计→重设计的现代设计研发流程,使疲劳设计更加高效快速和经济实用。
SIMULIA/FE-SAFE具有完整的材料库、灵活多变的载荷谱定义方法、实用的疲劳信号采集与分析处理功能以及丰富先进的疲劳算法,完整的输出疲劳结果。
此外,针对不同的工况和行业,还有丰富的产品和功能模块,包括通用疲劳耐久性分析模块Fe-safe™、复合材料疲劳分析模块Fe-safe/Composite™、旋转对称机械疲劳分析模块Fe-safe/Rotate™、橡胶材料疲劳分析模块Fe-safe/Rubber™、热-机械疲劳分析模块Fe-safe/TMF™、原位加载实测分析模块Fe-safe/Ture-Load™、疲劳与蠕变疲劳交互分析模块Fe-safe/TURBOlife™、疲劳分析和信号处理模块Safe4fatigue、焊接接头疲劳分析模块Verity in Fe-safe。
针对工程上存在很多的振动疲劳问题,可以在通用模块Fe-safe TM得到很好的解决。
下面详细介绍振动疲劳解决方案,图1为本次介绍所用例子。
图1 使用示例-支架因为Fe-safe是基于有限元的疲劳分析软件,所以振动疲劳也是基于有限元的。
INA FAG轴承样本中文版-圆锥滚子轴承

圆锥滚子轴承 JK0S 为单侧密封的即装即用单元,主要用于 O 型 布置配对安装。它们是不可分离轴承,且不需要再注脂。
无需设定轴承对的内部轴向游隙。是因为当用轴螺母或轴端盖 夹紧内圈时,内外圈之间存在非常小的突出量 ( 尺寸 u)。 为了获得正确的安装后轴向游隙,内圈和外圈需要采用紧配合。 整体式圆锥滚子轴承以 O 型布置配对使用时,外圈会形成一个 适宜的环形槽以供卡环 BR 定位。卡环必须单独订购。
F轴a 承轴向动载荷
N
F轴r 承径向动载荷
N
e, Y
–
系数,见尺寸表。
对于动载荷下的 O 型或 X 型布置的轴承对,采用下面公式:
载荷比
轴承当量动载荷
Fa Ϲ e Fr
P = Fr + 1.12 · Y · Fa
Fa Ͼ e Fr
P = 0.67 · Fr + 1.68 · Y · Fa
212 009b
整体式圆锥滚子轴承 JK0S
单侧密封
00010A96
516 HR 1
Schaeffler Group Industrial
圆锥滚子轴承
特性
径向和轴向承载能力
接触角
圆锥滚子轴承由具有锥形滚道的实体内、外圈和采用窗式保持架 的圆锥滚子组件组成。 轴承形式有: ■ 标准设计 ■ 配对的开式变型设计 ■ 单侧密封的整体式设计, JK0S。 开式轴承是可分离轴承。因此,带有滚子与保持架组件的内圈和 外圈能够分开安装。 提供公制和英制轴承。型号中带有字母 K 的轴承为英制轴承。 在新设计中,请优先选用公制的圆锥滚子轴承 。
这些轴承术语搞不懂,你还好意思说轴承专业人士!!

这些轴承术语搞不懂,你还好意思说轴承专业人士!!我是机械教授老板,轴承刚装上就坏了,轴承质量真的这么差?1. 启动力矩 starting torque使一轴承套圈或垫圈相对于另一固定的套圈或垫圈开始旋转所需的力矩。
2. 旋转力矩 running torque当一个轴承套圈或垫圈旋转时,阻止另一套圈或垫圈运动所需的力矩。
3. 径向负荷 radial load作用于垂直轴承轴心线方向的负荷。
4. 轴向负荷axial load作用于平行轴承轴心线方向的负荷。
5. 静负荷 static load当轴承套圈或垫圈的相对旋转速度为零时(向心或推力轴承)或当滚动元件在滚动方向无运动时(直线轴承),作用在轴承上的负荷。
6. 动负荷dynamic load当轴承套圈或垫圈相对旋转时(向心或推力轴承)或当滚动元件在滚动方向运动时(直线轴承),作用在轴承上的负荷。
7. 当量负荷equivalent load计算理论负荷用的一般术语,在特定的场合,轴承在该理论负荷作用下如同承受了实际负荷。
8. 径向(轴向)基本额定静负荷 basic static radial (axial) load rating与滚动体及滚道的总永久变形量相对应的径向静负荷(中心轴向静负荷)。
如果在零负荷下,滚子与滚道(滚子轴承)为或假定为正常母线(全线接触)时,在最大接触应力下,滚动体与滚道接触处产生的总永久变形量为滚动体直径的0.0001倍。
对单列角接触轴承,径向额定负荷为引起轴承套圈彼此相对纯径向位移的负荷的径向分量。
9. 径向(轴向)基本额定动负荷 basic dynamic radial (axial) load rating恒定的径向负荷(恒定的中心轴向负荷),在该负荷下,滚动轴承理论上可以经受1百万转的基本额定寿命。
对单列角接触轴承,该径向额定负荷为引起轴承套圈彼此相对纯径向位移的负荷的分量。
10. 寿命(指一套轴承的)life轴承的一个套圈或一个垫圈或一个滚动体的材料首次出现疲劳扩展之前,一个套圈或一个垫圈相对于另一个套圈或一个垫圈的转数。
Danfoss 轴承传动机MFE15(X)- -30 和 MFE19(X)- -30 的维护数据说明

M-2837-SFixed Displacement Transmission MotorsMFE15(X)-*-30MFE19(X)-*-30Service DataDanfoss ®TransmissionsAX430779740667en-000101NoteIf the shaft bearings, shaft, valve plate or housing were not replaced, use the bearing spacer removed during the disassembly procedure to preload the shaft. If preload is necessary, perform the following steps:1.Install the thickest bearing spacer from the kit with chamfer facing toward shoulder of the shaft.(See table)2.Slide tapered roller bearing over the shaft and up against the bearing spacer. The small diameter of the tapered roller bearing must face out of the housing.3.Install valve plate to housing without gasket and rotating group. Turn the shaft to seat bearings then torque the four valve plate attaching screws to two (2) lb. in. Check the opening between the valve plate and housing to be as even as possible after tightening.e a feeler gage to measure theopening between valve plate and hous-ing. Four (4) measurements should beobtained equidistant around the unit. Atapered feeler gage is especially usefulfor this purpose. Average the measure-ments be adding them together anddividing by four (4). Calculate thicknessof the shaft bearing spacer as follows:5.Remove the large spacer and re-place with one having the calculateddimensions.6.Assemble the motor with rotatinggroup and a new gasket. Cross torquethe valve plate screws to 42-45 lb. ft.+0.150–0.027+0.003 + 0.001+0.0200.146 + 0.001Measured thickness of bearing spacerAverage gap (assumed)Preload settingCompressed thickness of gasketRequired thickness of spacer to provide a 0.001 to 0.003bearing preload.Danfoss Hydraulics, Incorporated 2000 All Rights ReservedModel Code5Printed in U.S.A.For satisfactory service life of these components in industrial applications, use full ow ltration to provide uid which meets ISO cleanliness code 18/15 or cleaner. Selections from Danfoss OF P, OFR, and OFRS series are recommended.15 -15 USgpm 19 -19 USgpmDesignDanfoss Power Solutions is a global manufacturer and supplier of high-quality hydraulic and electric components. We specialize in providing state-of-the-art technology and solutions marine sector. Building on our extensive applications expertise, we work closely with you to ensure exceptional performance for a broad range of applications. We help you and other customers around the world speed up system development, reduce costs and bring vehicles and vessels to market faster.Danfoss Power Solutions – your strongest partner in mobile hydraulics and mobile Go to for further product information.outstanding performance. And with an extensive network of Global Service Partners, we also provide you with comprehensive global service for all of our components.Local address:DanfossPower Solutions GmbH & Co. OHG Krokamp 35D-24539 Neumünster, Germany Phone: +49 4321 871 0DanfossPower Solutions ApS Nordborgvej 81DK-6430 Nordborg, Denmark Phone: +45 7488 2222DanfossPower Solutions (US) Company 2800 East 13th Street Ames, IA 50010, USA Phone: +1 515 239 6000DanfossPower Solutions Trading (Shanghai) Co., Ltd.Building #22, No. 1000 Jin Hai Rd Jin Qiao, Pudong New District Shanghai, China 201206Phone: +86 21 2080 6201Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to productsagreed.All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.© Danfoss | September 2022•Cartridge valves •DCV directional control valves•Electric converters •Electric machines •Electric motors •Gear motors •Gear pumps •Hydraulic integrated circuits (HICs)•Hydrostatic motors •Hydrostatic pumps •Orbital motors •PLUS+1® controllers •PLUS+1® displays •PLUS+1® joysticks and pedals•PLUS+1® operator interfaces•PLUS+1® sensors •PLUS+1® software •PLUS+1® software services,support and training •Position controls and sensors•PVG proportional valves •Steering components and systems •TelematicsHydro-GearDaikin-Sauer-Danfoss。
铁路机车轴承CAD——载荷分布计算

铁路机车轴承CAD——载荷分布计算
周明溥
【期刊名称】《上海理工大学学报》
【年(卷),期】1993(000)001
【摘要】无
【总页数】1页(P85)
【作者】周明溥
【作者单位】无
【正文语种】中文
【相关文献】
1.螺纹载荷分布计算方法研究及有限元分析 [J], 颜庭梁; 李家春
2.考虑紧固螺栓的三排滚柱式转盘轴承载荷分布计算 [J], 黄龙艺;王华;嵇栩
3.紧固件载荷分布计算方法及结构疲劳寿命预测 [J], 邓强;赵维涛
4.紧固件载荷分布计算方法及结构疲劳寿命预测 [J], 邓强;赵维涛
5.基于模态函数的谐波轴承载荷分布计算 [J], 乐可锡;全永昕;周桂如;张明杰因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
IntroductionIn this exercise, you will create and compare the results of a load applied to the edge of a hole using two different types of load distributions. In this exercise, you will complete the following steps:∙Open an existing model file∙Create a Cylindrical Coordinate System for the hole on the plate∙Apply a 100 lb. load on a curve∙Using a Data Surface apply a 100 lb. bearing load on a curve in a separate load set∙Expand the bearing load and set the load vectors to scale by magnitude∙Set up and run a Multi-Set analysis∙View and compare the results from the two analysesStep 1:Open an existing model fileIn this step you will open an existing model file and save it in your Exercises folder.Start Femap.∙Select the File, Import, Femap Neutral command.∙In the Read Model from Femap Neutral dialog box, select the file, ex7-Bearing Load - inches.NEU fromyour class files Geometry folder.∙Click the Open button.∙Your model should appear as follows:Save the file in your exercises folder.∙With the File, Save As command, save the model as ex5-bearing.mod in your training class exercisesfolder.Step 2:Create a cylindrical coordinate system for the large hole on the plate.Create a coordinate system for the large hole.Zoom in around the large hole on the right side of the plate.∙Click the Zoom icon on the View toolbar.∙Click and drag your mouse so that the right side of the plate will be displayed in your graphics window.Create a new cylindrical coordinate system.∙In the Model Info pane, right-click the Coordinate Systems object and select New from the context-sensitive menu.∙In the Define Coordinate System dialog box, enter: ID = 101Title = HoleMethod to XY LocateType to CylindricalClick OK to continue with creating the newcoordinate system.∙In the Locate – Define Coordinate System Origin dialog box, click the Methods button and selectCenter from the menu.∙Select the right edge of the large hole (Curve ID = 101) and click OK to confirm your selection.∙In the Center – Define Location on CSys X-Axis dialog box, click the Method button again and select Locate from the menu.∙Since the default “snap mode” for Femap is set to screen, right-click your mouse in the graphicswindow and select Snap to Point from the pop-upmenu.Select the start point on the bottom of the arc as the locator for the vector defining the X-axis of thecoordinate system and click OK.∙The third point locates a point on the positive X-Y plane of the new coordinate system. Click theMethods button again in the Locate – DefineLocation in CSys X-Y Plane and click Midpoint. ∙Select the right edge of the large hole (ID = 101) and click OK to create the cylindrical coordinate system.∙Click Cancel or use the Esc key to exit the command after the coordinate system is created.Step 3:Create a 100 pound load on a curve.Before creating loads, you must create a Load Set for the load(s).Create the load set.∙In the Model Info pane, expand the Model object.∙Right-click Loads and select New from the menu.This is same action as selecting the Model, Load,Create/Manage Set command.∙In the New Load Set dialog box, enter the name as Curve Load.∙Click OK to create the load set.Create the load.∙Expand the Loads object, then the Curve Load set in the Model Info pane.∙Right-click Load Definitions and select On Curve from the menu.This is the same action as selecting the Model, Load, On Curve command.Select the right side of the large hole (Curve ID = 101) and click OK to confirm your selection.Remember that you can use the Preview Selectedicon in the Select dialog box to confirm that youselected the correct entity or entities beforeconfirming your selection with the OK button.In the Create Loads on Curves dialog box, set the Title to 100 lb. in +X and the following:Set the load type as Force.Set the Coord Sys to 1..Basic Cylindrical.Enter 100 in the FX field. You can optionallydeselect the FY and FZ checkboxes.Click OK to create the load.Step 4:Create a 100 lb. bearing load on a curve using a Data Surface.In this step, you will create a new load set, an Equation Data Surface and use that data surface to create a distributed bearing load on the same curve that you used in the previous step. You will also use the Tools, Check, Sum Forces command to list the value of the load and adjust the load to achieve a 100 lb total load on the curve.Create a new load set.∙In the Model Info pane, expand the Model object.∙Right-click Loads and select New from the menu.∙In the New Load Set dialog box, enter the name as Bearing Load.∙Click OK to create the load set.Create an Equation Data Surface. The first step is to open the Data Surface pane.∙Select the Tools, Data Surface Editor command.∙Undock the Data Surface Editor pane and expand it so that you can clearly see the contents of the newdata surface that you will create.∙In the Data Surface Editor pane, click the Create Load Data Surface icon and select Equation DataSurface.In the Define Equation dialog box, enter the Title as Sinusoidal Load Distribution and the following:CSys for Data: 101..HoleEquation: abs(sin(!y))Click OK to create the data surface.Create the bearing load.∙Expand the Loads object, then the Bearing Load set in the Model Info pane.∙Right-click Load Definitions and select On Curve from the menu.∙Select the same curve you did when you created the previous 100 lb. load.In the Entity Selection dialog box, click the Previousbutton to reselect the curve on the large hole andclick OK to complete the selection.∙In the Create Loads on Curves dialog box, set the Title to 100 lb Bearing Load and the following:Set the load type as Force Per Node.For the Direction, select the Components button.Under the Load section, uncheck FY and FZ, and set the Value of FX = 1.0.Set the Method to Data Surface and for the DataSurface for FX, select 1..Sinusoidal Load Distribution.∙Click OK to create the load.Note: The load applied to each node on the curve will be the value of the FX times the value ofthe Data Surface equation at each node. Thenext step will sum all the values of theindividual forces on each node and then youwill adjust the value of FX to achieve a totalload of 100 lbs. on the curve.Determine the total value of the load.∙Select the Tools, Check, Sum Forces command.∙In the Locate – Enter Location to Sum Forces About dialog box, click OK to use the default location of0,0,0.∙In the Sum Forces dialog box, use the default Coord Sys of 0..Basic Rectangular.∙Click OK to confirm your selection.∙In the Messages pane, the load listing shows a radial load (Fx direction) of 15.2571 in the cylindricalcoordinate system (CSys 1):∙Select the value of FX in the Messages pane(15.2571) and either use the right-mouse to openthe context-sensitive menu and Copy the value oruse the Ctrl+c hotkey to copy the value.Adjust the value of the load so that the total value of the load is 100 lbs.∙In the Model Info pane, expand the Load Definitions object under the Bearing Load load set.∙Right-click 100 lb Bearing Load to select the Edit Load operation from the context-sensitive menu.∙In the Editing Load Definition dialog box, change the value of FX to 100/15.2571. You can use the Ctrl+vkey to paste the value of 15.2571 from theMessages pane.∙Click OK to complete editing the load.Run the sum forces command again to confirm that the total load is 100 lb.∙Select the command, Tools, Check, Sum Forces.∙Click OK to compute sum of the applied loads.Note that the total force applied to the hole is now99.9997 lbs. You can adjust the load further if youwant to achieve a 100 lb load exactly.Step 5:Expand the load to see the actual loads on each nodeSince the load has been applied to the curve, the load on each node is not visible until the load is expanded. This occurs automatically when you create an Analysis Set and export an analysis file or run the analysis. In this step, you will manually expand the load set to see the individual loads on the nodes.Expand the load.∙Select the Model, Load, Expand command.∙Click OK to continue.Note: If you want to permanently convert the loads from "Geometry-based" to "Nodal andElemental based" loads, you can choose theConvert To Node/Elem option in the ExpandGeometric Loads dialog box.When you choose this option, the Femapdialog box appears with a prompt topermanently convert loads. In the FEMAPdialog box, click Yes to expand the load.This option should only be used once yourloading conditions have been finalized andeven then is not a required step to export theloads properly for analysis.Turn off the display of the elements and scale the loads by magnitude.∙In the Entity Display toolbar, click the ViewElements Toggle icons to turn the elements off inthe display.Change the display of loads using the View Options dialog box.∙With the F6 hotkey, open the View Options dialog box.∙In the View Options dialog box, set the Category to Labels, Entities and Color.For Options, select Load Vectors.For Vector Length, select 1..Scale by Magnitude.Click Apply (not OK) to update your display.Change the Options to Load Vectors.Set the Label Mode to Load Value.Click OK to apply the changes and to close the View Options dialog box.Your model should appear as follows:Step 6:Set up and run a MultiSet Linear Statics simulation.In this step, you will set up and run a MultiSet analysis with the Analysis Set Manager.Create a new analysis set.∙In the Model Info pane, right-click the Analyses object and select Manage from the menu.∙In the Analysis Set Manager dialog box, click the New button.∙In the Analysis Set dialog box, set the Title to Load Type Comparison.Leave the Analysis Program as 36..NX Nastran andthe Analysis Type as 1..Static.Click OK to create the new analysis set.Edit the analysis set to set up a multi-set simulation.∙In the Analysis Set Manager dialog box, expand the Master Requests and Conditions, and the BoundaryConditions and Output Requests subtrees.∙Select Boundary Conditions and click the Edit button.∙In the Boundary Conditions dialog box, set both the Primary Sets Constraints and Loads to 0..None.Click OK to apply the changes.∙Click the MultiSet button in the Analysis Set Manager dialog box.∙In the Entity Selection – Select Constraint Set(s) to Generate Cases dialog box, click Select All andthen OK.∙In the Entity Selection – Select Load Set(s) to Generate Cases dialog box, click Select All andthen OK.∙Note that in the Analysis Set Manager dialog box, there are now two sub cases, one for thecombination of the Fixed Holes and Curve Load sets and and second for the combination of the FixedHoles and Bearing Load sets.∙Click the Done button to close the dialog box.Before you analyze the model, you will set your Femap preferences so that the title of the results is the title of the NX Nastran subcase.∙Select the File, Preferences command.∙Select the Interfaces tab in the Preferences dialog box.∙Under the Nastran Solver Options group, set the Output Set Titles to 2..Nastran Subtitle.Click OK to apply the changes and to close thedialog box.Run the NX Nastran simulations.∙On the Model toolbar, click the Analyze Model icon.This is the same action as clicking the Analyzebutton in the Analysis Set Manager dialog box.∙After the previous step, the NX Nastran Analysis Monitor pane is opened and the log file for the NXNastran simulation is displayed.∙Once the analysis is completed and both results sets are loaded into your Femap model, you canclose the Analysis Monitor pane.∙Expand the Results object in the Model Info pane.Note how you have two results sets, one for eachsub case with the title the same as the sub casename.∙Right-click the result set 1..FIXED HOLES – CURVE LOAD and select Activate from the context-sensitive menu.Note: Femap automatically activates the last result set loaded into the model.Step 7:Compare the results of the two simulations.In this step you will toggle between the two output sets to see the subtle differences between the results due to the difference in the load distributions.Display a deformed contour of the Von Mises stresses.∙In the Femap graphics window, right-click your mouse to display the context sensitive menu andselect Post Data.∙In the Select PostProcessing Data dialog box, set the options as below and click OK.On the Post toolbar, click the Select a Deformed View and the Select a Countour View icons.Since the deformed shape is highly distorted, you will change the deformed display from displaying themaximum deformation as a percent of the viewwindow size to a scaled view of the actualdeformation.∙On the Post toolbar, click the Post Options icon and select Actual Deformation from the menu.∙Again, click the Post Options icon on the Post toolbar and select Scale Deformation.∙Set the value of the Actual scale to 1000.Your view should now appear as follows:Note that the maximum deformation is .00039.Switch to the FIXED HOLES – BEARING LOAD output set.∙Click the Switch to Post Data to Next Output Seticon on the Post toolbar.∙Note that the stresses are higher at the midpoint of the right edge of the hole and that the maximumdeformation is now .00044.Save your model and exit Femap. You will use this model in a future workshop.。