一类混沌系统动力学行为的突变分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3期屈双惠等:一类混沌系统动力学行为的突变分析225

2突变行为分析

2.1发生突变行为的条件

系统(1)之所以会在口∈[3.5,3.86J出现2个吸引子,是因为在此区域系统出现2个稳定不动点,围绕这2个稳定不动点形成了2个混沌吸引子.为了分析系统产生稳定不动点的情况,图3给出了当Co=17.0时,随口变化,F(x。)与分角线相交的情况.

——一凡h);——一y2z

图3C。=17.0时,系统(1)的_F(z。)曲线

口较小时,系统与分角线只有一个交点C,为稳定不动点,此时系统只有围绕该稳定不动点C的吸引子;当肛增大到3.5时,系统与分角线相切,另一稳定不动点D(与切点B重合)开始出现,此时Xtr-。=z。,系统斜率F7(z。)一1;随着肚的继续增大,系统与分角线出现3个交点,交点E为不稳定不动点,D点和C点为稳定不动点,在此区域可出现围绕稳定不动点C,D的2混沌吸引子;当口增大到3.86时,系统再次与分角线相切,交点C减小到与切点A重合;当∥超越此值时,在C点处系统与分角线分离,交点C消失,系统与分角线只有一个交点D,此时系统只有围绕稳定不动点D的吸引子[4].2.2突变行为走向分析

在系统发生突变过程的区域。交点E为不稳定不动点,其系统值zE与系统状态参数C。及系统参数/.t有关,即

zE一号COSq--[-psing+号,

式中:p2√一3(一÷+吉),923.5时,由稳定不动点C决定的吸引子处于混沌状态;当系统参数口增大超过临界值3.5时,系统与分角线交点由1个增至3个,出现另一稳定不动点D及不稳定不动点E,由于吸引子不能跨越不稳定不动点(虚线)同时占据2吸引子空间,因此卢=3.5时,系统从由原稳定不动点C决定的吸引子(混沌状态)突变到另一稳定不动点D决定的吸引子上;随着岸的继续增大,不动点D决定的吸引子进入混沌状态,其吸引域不断逼近不稳定不动点,在口=3.78时将超越不稳定不动点,由于同一吸引子不能跨越不稳定不动点同时占据2吸引子空间,此时其吸引子将突变回由不动点C决定的吸引子上;当“增大到另一临界值3.86时,不稳定不动点C消失,吸引子突变到D决定的吸引子上.麒减小时的情况与此类似,系统也发生3次突变.

系统状态参数C。略有变动时,系统的动力学行为会略有不同,但仍会在特定区域出现突变.图4,5分别给出了C。=16.0,系统参数肛∈E3.4。3.953时,混沌系统(1)随系统参数增大或减小时的分岔情况.可以看出:随着口的增大,原稳定不动点C决定的吸引子始终未超越不稳定不动点(虚线),直到口越过临界值3.73时,交点C消失,系统值才突变到另一稳定不动点D决定的吸引子上;随着肛的减小,当其越过另一临界值3.47时。原不动点D消失,系统突变到稳定不动点C决定的吸引子上.

图4Co一16.0,卢增大时系统(1)的分f岔ltt

÷arc。s:::!j2;i!:::i:{;

一.

226宁夏大学学报(自然科学版)第31卷

给出了Co=17.0时。随肛的增大,系统在突变区域的吸引子.可以看出:Co=17.0时,随着系统参数的增大,突变区域出现2吸引子,吸引子以不稳定不动点(虚线)为界线,除个别误差点外不会逾越不稳定不动点而同时占据2吸引子空间.

图6Co=17.0时的吸引子

-£n

图7Co=16.0时的吸引子

图7给出了C。一16.0时,随且的增大,系统在突变区域的吸引子.可以看出:随着口的增大,突变区域只出现一围绕稳定不动点C的吸引子,即在此区域,该吸引子不会突变到另一吸引子上,只在临界点才发生突变.

对于高阶次突变系统,由于系统与分角线的交点可更多,在突变区域可出现多个由稳定不动点决定的吸引子,当某一吸引子的吸引域逾越不稳定不动点界限或临界点时,也会发生突变【5卅].zE=0.743,迭代将围绕不动点D进行,系统为混沌状态;若选定的初始值大于不稳定不动点,迭代将围绕不动点C进行,系统为二周期轨道.如图9所示,口一3.73时,取迭代次数玎=300,当初始值选定为0.4时,系统处于混沌状态;当初始值选定为0.8时,系统处于二周期轨道[8].

图8Co一17.0时。由初值决定的2吸引子图9砧-----3.73。迭代次数挖300时系统的状态

3初始值对系统动力学行为的影响

月继适

‘士;口p口

对于系统(1),由于在突变区域,以不稳定不动点(虚线)为界线,不动点把迭代数值分为了2个混沌区域,如图8所示.

当口一定时,以不稳定不动点为界限,如果初始值大于不稳定不动点,迭代将围绕稳定不动点C进行,如果初始值小于不稳定不动点,迭代将围绕稳定不动点D进行.因此,通过对初始值的调节,可以实现对系统动力学行为迭代范围的控制.在图8中,当卢=3.73时,若选定的初始值小于不稳定不动点

通过对突变系统突变行为的分析发现,在系统突变区域可出现2个由稳定不动点决定的混沌吸引子,随着系统参数的变化,当某个吸引子的吸引域逾越不稳定不动点界限或临界状态时。系统将突变到另一吸引子上.并且在此区域,随着系统参数变化趋势的不同,系统的动力学行为要发生变化.据此,在突变区域,通过适当调节系统的初始值,可对系统的动力学行为走向加以控制,这对分析和调节复杂混沌系统的非线性动力学行为具有重要的理论意义.

相关文档
最新文档