数值传热学第十章

合集下载

数值传热学(课件)

数值传热学(课件)

02 数值传热学的基本原理
控制方程
控制方程
数值传热学的核心是求解控制方 程,这些方程描述了热量传递过 程中的物理规律。
偏微分方程
控制方程通常以偏微分方程的形 式给出,包含了温度、时间、空 间等变量的变化关系。
初始条件和边界条

为了求解控制方程,需要给出初 始条件和边界条件,这些条件限 定了问题的解的范围。
详细描述
传热过程模拟是数值传热学的另一重要应用,通过建立传热过程的数学模型,可以模拟物体内部的温 度分布和热量传递过程。这对于能源、化工、电子等领域中的热工设备设计和优化具有重要意义。
04 数值传热学面临的挑战与 解决方案
计算精度与稳定性问题
总结词
计算精度和稳定性是数值传热学中的核心问题,直接关系到模拟结果的准确性和可靠性。
详细描述
多尺度问题要求数值方法能够捕捉到不同尺度的物理现象,并准确地将它们联系起来。 这需要发展具有多尺度分辨率的数值方法,如多重网格法、谱方法和自适应网格法等。
非线性问题
总结词
非线性问题在传热过程中广泛存在,如 流动、相变和化学反应等,给数值模拟 带来很大难度。
VS
详细描述
非线性问题需要数值方法能够处理高度非 线性的物理方程,并能够准确地捕捉到非 线性现象。这需要发展高效的数值算法, 如有限元法和有限体积法等,同时还需要 考虑非线性问题的特殊性质,如初始条件 和边界条件等。
02
它涉及传热学的基本原理、数学 建模、数值计算和计算机技术等 多个领域,是计算流体动力学和 计算传热学的重要组成部分。
数值传热学的重要性
随着科技的发展,传热问题在能源、 环境、航空航天、化工等领域越来越 突出,数值传热学的应用也越来越广 泛。

数值传热学 -回复

数值传热学 -回复

数值传热学 -回复
数值传热学(Numerical Heat Transfer)是一门研究热传递现象的学科,通过数值模拟和计算方法来分析热传导、对流和辐射等传热过程。

本文将介绍数值传热学的基本原理、方法和应用。

1. 基本原理
数值传热学基于传热学原理和计算数学方法,将传热过程建模为数学方程,并通过数
值方法求解这些方程,从而得到热传递的数值解。

主要的传热模型包括热传导、对流和辐
射传热。

2. 数值方法
数值传热学常用的方法包括有限差分法、有限元法和边界元法等。

有限差分法是最常
用的方法之一,将传热区域离散化为网格,通过差分近似计算网格点上的温度或热流量。

有限元法则是另一种常用的方法,将传热区域划分为元素,通过建立元素之间的关系来计
算温度场或热流场。

边界元法则是将问题转化为边界上的积分方程,通过求解积分方程得
到温度场或热流场。

3. 应用领域
数值传热学在各个领域都有广泛的应用。

在工程领域,数值传热学用于优化热交换器
的设计、预测电子器件温度分布、模拟流体在管道内的传热过程等。

在材料科学领域,数
值传热学用于研究材料的导热性能、相变过程以及焊接和烧结等工艺。

在能源领域,数值
传热学用于分析太阳能热收集器的性能、燃烧过程中的传热机制等。

通过数值传热学的研究,我们可以更加深入地了解热传递过程,并可以通过数值模拟
方法来预测和优化热传递的效果。

数值传热学也为各个领域的工程和科学研究提供了重要
的工具和方法。

通过不断的发展和创新,数值传热学将进一步推动热传递理论和应用的发展。

数值传热学(课件)-1

数值传热学(课件)-1

热流问题的数值计算Numerical Simulations of Thermal & Fluid Problems第一章 绪论主讲 陶文铨西安交通大学能源与动力工程学院 热流中心 CFD-NHT-EHT CENTER 2007年10月16日, 西安1/88物理问题数值解的基本思想 把原来在空间与时间坐标中连续的物理量的场 (如速度场,温度场,浓度场等),用一系列有限 个离散点(称为节点,node)上的值的集合来代替; 通过一定的原则建立起这些离散点上变量值之间关 系的代数方程 (称为离散方程,discretizationequation);求解所建立起来的代数方程以获得所求解变量的近似解.2/88大规模科学计算的重要性 传热与流动问题数值计算是应用计算机求解热量传 递过程中的速度场,温度场等的分支学科,是大规模 科学计算的重要组成部分,其重要性不言而喻. 2005年美国总统顾问委员会向美国总统提出要大 力发展计算科学以确保美国在世界上的竞争能力. 波音公司实现了对航空发动机的网格数达10亿量 级的直接数值模拟,以研究所设计发动机的性能.3/88现代科学研究的三大基本方法及其关系理论分析Analytical实验研究Experimental数值模拟Numerical4/88课程简介1. 学时- 30学时理论教学;6学时计算机作业 2. 考核- 平时作业/计算机大作业/考试: 20/30/50 3. 方法- 理解,参与,应用 努力将与数学处理相对应的物理背景联系起来理解. 4. 助手- 于乐 5. 参考教材-《计算流体力学与传热学》,中国建筑 工业出版社,19915/88学习方法建议1. 善于从物理过程基本特性来掌握理解数值方法; 2. 对数值方法-明其全而析其微:明其全-了解基本原理;析其微-掌握实施细节;3. 努力上机实践; 4. 学会分析计算结果: 合理性,规律性; 5. 应用商业软件与自编程序相结合.6/88《热流问题的数值计算》 主要教学内容第一章 绪论(物理与数学基础) 第二章 一维导热问题的数值解 第三章 多维导热问题的数值解 第四章 势流及管道内充分发展流动与换热的数值解 第五章 有回流的动与换热问题的数值解 第六章 二维涡量-流函数法通用程序介绍 第七章 原始变量法与湍流数值模拟简介7/88绪论1.1 流动与传热问题控制方程的基本类型 1.2 流动与传热问题数值计算的基本步骤 1.3 建立离散方程的方法 1.4 离散方程数学与物理特性分析简介8/881.1 流动与传热问题控制方程的基本类型1.1.1 流动与传热问题完整的数学描写 1.1.2 控制方程 1. 质量守恒方程 3. 能量守恒方程 1.1.3 单值性条件 1.1.4 建立数学描写举例 1.1.5 控制方程式的分类9/882. 动量守恒方程1.1 流动与传热问题控制方程的基本类型1.1.1 流动与传热问题完整的数学描写 1. 有关的守恒定律的偏微分方程(控制方程)一切宏观的流动与传热问题都由三个守恒定律所 支配:质量,动量与能量守恒(conservation law).2. 与表述守恒定律的偏微分方程相关的单值性条件.不同问题的区别主要在于单值性条件 (conditions for unique solution) 的不同:初始条件以,边界条件 以及物性数据.10/881.1.2 控制方程(Governing equations) Mass conservation1. 质量守恒方程r ( r u ) ( r v) ( r w) + + + =0 t x y z单位时间 内质量的 增加 单位时间内流 进微元体的净 质量物理意义:单位时间内空 间某一微元容积质量的增 加等于流入该微元容积的 净质量.11/88对不可压缩流体: r = const 对二维不可压缩流体:u v + =0 x yu v w + + =0 x y z对二维问题,速度矢量:ur u v 数学上称: + = div(U ) x yur r ur U =ui+v j为速度矢量的散度,因此对二维不可压流体有:ur div(U ) = 0下面只讨论不可压缩流体(incompressible flow).12/882. 动量守恒方程(Momentum conservation)对上图所示的微元体分别在三个坐标方向上应用 Newton第2定律(F=ma)在流体中的表现形式: [微元体内动量的增加率]=[作用在微元体上各种力之和] 可得出三个坐标方向的动量方程:u uu uv uw 1 p 2u 2u 2u + + + =+ n ( 2 + 2 + 2 ) + Fx t x y z r x x y z 1 p v vu vv vw 2v 2v 2v + + + =+ n ( 2 + 2 + 2 ) + Fy t x y z r y x y z 1 p w wu wv ww 2 w 2 w 2 w + + + =+ n ( 2 + 2 + 2 ) + Fz t x y z r z x y z微元体内动 量的增加率压力粘性力体积力13/883. 能量守恒方程(Energy conservation)[微元体内热力学能的增加率]=[通过流动与导热进入 微元体内的净热流量]+[体积力与表面力对微元体所做 的功率] 引入导热Fourier定律,假定热物性为常数,可得T (uT ) (vT ) ( wT ) 2T 2T 2T rcp[ + + + ] = l( 2 + 2 + 2 ) + S t x y z x y z微元体 内能增 加率 由于流动被带出 微元体的净功率 由于导热而进入 源项 微元体的净功率 生成 热14/88l =a rcp流体的热扩散率(thermal diffusivity)4. 对于二维稳态对流换热问题控制方程汇总u v + =0 x yuu uv 2u 2u 1 p + =+ n ( 2 + 2 ) + Fx y z r x x yvu vv 2v 2v 1 p + =+ n ( 2 + 2 ) + Fy y z r y x y(uT ) (vT ) 2T 2T + = a( 2 + 2 ) + ST x y x y对流项扩散项源项数值计算中常用的术语.15/88不同的二维,稳态求解问题之间的区别在于: (1)边界条件不同; (2)源项与扩散系数不同.5. 二点说明1. 所导出的三维非稳态Navier-Stokes方程,无论对 层流或是湍流都是适用的. 2. 辐射换热需要用积分方程来描述,课程中将不涉及 这类问题.16/881.1.3 单值性条件 1. 初始条件 2. 边界条件 (1) 第一类 (Dirichlet):t = 0, T = f ( x, y, z )TB = Tgiven(2) 第二类 (Neumann): qB = -l (T ) B = qgiven n(3) 第三类 (Rubin):规定了边界上被求函数的一阶导数与函数之间的关系: -l ( T ) B = h(TB - T f )n数值计算中计算区域的出口边界条件常常最难 确定,要做近似处理.17/881.1.4 建立数学描写举例 1. 问题与假设条件突扩区域中的对流传热:二维,稳态,不可压缩, 常物性,不计重力与黏性耗散.18/882. 控制方程u v + =0 x y1 p u u u u u +v =+n ( 2 + 2 ) r x x y x y 2 2 v v 1 p v v u +v =+n ( 2 + 2 ) x y r y x y2 2T T T T u +v = a( 2 + 2 ) x y x y2 219/883. 边界条件 (1)进口边界条件:给定u,v,T随y 的分布; (3)中心线: u = T = 0; v = 0 y y(4)出口边y x界:数学上要 求给定u,v,T 或其导数随y 的分布;实际 上做不到;数 值上近似处理20/88(2)固体边界条件:速度无滑移,温度无跳跃1.1.5 传热与流动问题的数学描写的分类 1. 从数学角度分类-椭圆型与抛物型椭圆型 (Elliptic)椭圆型方程数学上的特点是:所求解的因变量对每个 空间自变量均存在二阶导数项: 导热方程-所求解的因变量为温度T ,空间自变量x,y; 动量方程-所求解的因变量为速度u ,空间自变量x,y.21/88抛物型(Parabolic)抛物型方程数学上的特点是:所求解的因变量对某个 个自变量只存在一阶导数项: 非稳态导热方程-因变量T 对时间t仅有一阶导数; 边界层动量方程-u对空间自变量x仅有一阶导数. 仅存在一阶导数的自变量在物理过程上的重要特 点:过程只能沿该坐标的单个方向进行而不能逆向进 行.22/88抛物型与椭圆型流动的例子椭圆型方程的求解必须全场联立进行,而抛物性 方程的求解可以沿坐标正向逐步推进, 大大节省时间.23/88(1)椭圆型问题: 流动有回流,必须 全场同时求解; (2)抛物型问题:流动无回流,可以沿主流方向步 步逼进,不必全场同时求解,大大节省时间.Marching method24/882. 从物理角度分类-守恒型与非守恒型守恒型( Conservative)-对任意大小容积守恒特性 都能得到满足的方程; 凡对流项表示成散度形式的方程具有守恒性 . 非守恒型方程+u v v u u v u ++ u = 0= 0 u ( + ) = 0 x x y y x y (uu ) (uv) 1 p 2u 2 v =+n ( 2 + 2 ) + r x x x y x守恒型方程凡是从守恒型控制方程推导得到的用于数值求解 的代数方程也具有守恒特性.25/881.2 流动与传热问题数值求解的基本步骤1.2.1 流动与传热问题数值求解步骤 1. 建立数理模型 3. 方程的离散化 5.代数方程求解 1.2.2 区域离散化方法 2.区域的离散化 4. 边界条件离散 6. 求解结果分析1.区域离散化的任务 2. 区域离散方法1.2.3 网格系统标记方法26/881) 外节点法2. 内节点法1.2.1 流动与传热问题数值求解步骤把原来在空间与时间坐标中连续的物理量的场 (如速度场,温度场,浓度场等),用一系列有限个 离散点(称为节点,node)上的值的集合来代替;通过 一定的原则建立起这些离散点上变量值之间关系的代 数方程(称为离散方程,discretization equation);求 解所建立起来的代数方程以获得所求解变量的近似解.27/88(1) 区域离散 (2) (3) (4) (5) 代数求解 (6)28/88方程离散结果分析1.2.2 区域离散化1.区域离散化的任务将所计算的区域分割成许多不重叠的子区域,确 定每个子区域中节点的位置以及所代表的控制容积. 离散结果得出四种几何要素: (1) 节点(node):所求解未知量的位置; (2) 控制容积(control volume):实施守恒定律的最 小几何单位; (3) 界面(interface):控制容积的分界位置; (4) 网格线(grid lines):沿坐标方向相邻节点连接 成的曲线簇.29/882. 区域离散方法 (a) 外节点法:节点位于子区域的角顶;控制容积界 面位于两节点之间;生成过程:先节点后界面;又 称 Practice A.子区域控制容积30/88YPractice A-外节点法 x31/88(b) 内节点法:节点位于子区域的中心;子区域即为 控制容积;生成过程:先界面,后节点,又称 Practice B.子区域即为控制容积32/88YPractice B-内节点法 x33/88 1.2.3 内接点与外节点法的比较 (a)边界节点所代表的控制容积不同 方法A 边界节点代表半个CV方法B 边界节点代表零个CV(b)网格非均分时,节点作为控制容积的代表方法B 更合理 方法A 方法B34/881.2.3 网格系统表示方法 网格线-节点间连线,用实线表示;界面为虚线; 节点间距离-dx;界面间距离-Dx .35/881.2.4 网格独立解 当网格足够细密以至于再进一步加密网格已对 数值计算结果基本上没有影响时所得到的数值解称 为网格独立解(grid-independent solution).Int. Journal Numerical Methods in Fluids, 1998, 28: 1371-1387.36/881.3 建立离散方程的方法 1.3.1 一维模型方程( 1-D model equation ) 1.3.2 由Taylor 展开法导出导数的差分表示式 1.3.3 控制容积积分法导出导数的差分表示式 1.3.4 讨论37/881.3 建立离散方程的方法 1.3.1 一维模型方程( 1-D model equation ) 一维模型方程是一维非稳态有源项的对流-扩 散方程,具有四个特征项,便于离散方法的研讨. 非守恒型 守恒型 ( rf ) f f + ru = (G ) + Sf t t x xFDM采用 ( rf ) ( r uf ) f + = (G ) + Sf FVM采用 t t x x 瞬态 对流 扩散 源项38/88"麻雀虽小,五脏俱全!"1.3.2 由Taylor 展开法导出导数的差分表示式 1. 一阶导数的差分表达式的导出 将函数f ( x, t ) 在(i+1,n)的值对(i,n)点做Taylor展开:f 2f Dx 2 2 f (i + 1, n) = f (i, n) + )i ,n Dx + 2 )i ,n Dx + ..... x x 2!f f (i + 1, n) - f (i, n) Dx 2f ) i ,n = - ( 2 )i ,n + ... x Dx 2 x39/88O ( Dx ) 称为截断误差, truncation error,表示:随 Dx 的趋于零,用 f (i + 1, n) - f (i, n) 代替 f )i ,n 的误差 x Dxf f (i + 1, n) - f (i, n) )i ,n = + O(Dx) x Dx KD x, K 与 Dx 无关.D x 的方次称为截差的阶数(order of TE).用数值计算的近似解 fin 代替精确解 f (i, n)fin 1 - fin f )i ,n @ + , O(Dx) 得向前差分: x Dx40/88f -f f )i ,n @ 向后差分: x Dxn in i -1, O (Dx )fin 1 - fin 1 f )i , n @ + , O(Dx 2 ) 中心差分: x 2Dx2. 一,二阶导数的各种差分表达式. 表达差分结构的格式图案o构筑差分表达式的位置; 构筑差分表达式所用到的节点.41/88一阶导数的 常用差分表达式42/88二阶导数的常用差分表达式定性判别导数的差分表达式正确与否的方法: (1)量纲是否正确-与导数本身一致; (2)均匀场的各阶导数应为零.43/883. 一维模型方程的有限差分显式离散表示式 微分方程形式: 假设 ( rf ) f f + ru = (G ) t t x xr , u, G均为常数,显式差分表达式:fin +1 - fin fin 1 - fin 1 r + ru + = Dt 2Dx fin 1 - 2fin + fin 1 G + , O (Dt , Dx 2 ) Dx 2差分方程 截断误差44/88显式(Explicit)-空间导数均以初 始时刻之值计算.1.3.3 控制容积积分法导出导数的差分表示式 1. 控制容积积分法实施步骤 1. 将守恒型的方程对控制容积做积分; 2. 选定被求函数及其一阶导数对时间,空间的变化 曲线-型线; 3. 完成积分,整理成相邻节点间未知量的代数方程. 2. 两种常用型线 型线-被求函数随自变量的局部变化方式,本是 所求内容,近似求解需先假定.45/88随空间自变量的变化型线 型线 型线分段线性阶梯逼近46/88piece-wise linear step-wise approximation随时间自变量的变化型线分段线性 piece-wise linear阶梯逼近 step-wise approximation47/883. 一维模型方程的控制容积积分法离散 将守恒型控制方程对控制容积P 在[t, t+ Dt ]内 做积分, ( rf ) ( r uf ) ft立即可得e+xt +Dt t=xe(Gx)r ò (ft +Dt -ft )dx +rwò [(uf)òt- (uf)w ]dt =t +Dt=Gf f [( )e - ( ) w ]dt x xf 以及 x48/88继续积分,需要知道:f对空间与时间的变化型线.1. 非稳态项假设 f 对空间呈阶梯型变化:t t r ò (f t +Dt - f t )dx = r (f P+Dt - f P )Dx w e2. 对流项假设 f 对时间呈显示阶梯型变化:rt +Dtòt[(uf )e - (uf ) w ]dt = r[(uf )te - (uf )tw ]Dt49/88假设 f 对空间呈分段线性变化:fE + fP fP + fW fE - fW r[(uf ) - (uf ) ]Dt = r uDt ( ) = r uDt 2 2 2t e t w均分网格3. 扩散项f 假设 对时间呈显式阶梯型变化: xt +DtGòtf f f t f t [( )e - ( ) w ]dt = G[( )e - ( ) w ]Dt x x x x50/88假设 f 对空间呈分段线性变化:。

第一章数值传热学

第一章数值传热学
2 2
(uT ) (vT ) T T a( 2 2 ) x y x y
2 2
19/80
MOE KLTFSE
3. 边界条件
定u,v,T随 y 的分布;
(1)进口边界条件:给
u T (3)中心线: 0; v 0 y y
y x
界:数学上要 求给定u,v,T或 其导数随 y 的 分布;实际上 做不到;数值 上近似处理。

cp
c p
( ) c p

Pr
12/80
MOE KLTFSE
4. 通用控制方程
( ) * * div( U ) div( grad ) S t
瞬态项 对流项 扩散项 广义源项 不同求解变量之间的区别: (1)边界条件与初始条件不同; (2)广义源项表达式不同; (3)广义扩散系数不同。 文献中常以表格形式给出所求解变量的源项与 广义扩散系数的表达式。
常物性不可压缩流体动量方程源项中显含速度部分 为零。
11/80
MOE KLTFSE
3. 能量守恒方程
[微元体内热力学能的增加率]=[进入微元体内的净热 流量]+[体积力与表面力对微元体所做的功] 引入导热Fourier定律,忽略力所作的功, 设hc
pT ;
c p 为常数
( T ) div( T U ) div( gradT ) ST cp t
4/80
MOE KLTFSE
绪论教学目录
1.1 传热与流动问题的数学描写 1.2 传热与流动问题数值计算的基本思想及应 用举例 1.3 传热与流动问题的数学描写的分类及其对 数值解的影响 1.4 传热与流动问题的数值计算的近代发展
5/80

数值传热学陶文铨主编第二版习题答案

数值传热学陶文铨主编第二版习题答案

1
x1=x; x=t(3,1); end tcal=t
习题 4-12 的 Matlab 程序
%代数方程形式 AiTi=CiTi+1+BiTi-1+Di mdim=10;%计算的节点数 x=linspace(1,3,mdim);%生成 A、C、B、T 数据的基数; A=cos(x);%TDMA 的主对角元素 B=sin(x);%TDMA 的下对角线元素 C=cos(x)+exp(x); %TDMA 的上对角线元素 T=exp(x).*cos(x); %温度数据 %由 A、B、C 构成 TDMA coematrix=eye(mdim,mdim); for n=1:mdim coematrix(n,n)=A(1,n); if n>=2 coematrix(n,n-1)=-1*B(1,n); end if n<mdim coematrix(n,n+1)=-1*C(1,n); end end %计算 D 矢量 D=(coematrix*T')'; %由已知的 A、B、C、D 用 TDMA 方法求解 T %消元 P(1,1)=C(1,1)/A(1,1); Q(1,1)=D(1,1)/A(1,1); for n=2:mdim P(1,n)=C(1,n)/(A(1,n)-B(1,n)*P(1,n-1)); Q(1,n)=(D(1,n)+B(1,n)*Q(1,n-1))/(A(1,n)-B(1,n)*P(1,n-1)); end %回迭 Tcal(1,mdim)=Q(1,mdim); for n=(mdim-1):-1:1 Tcal(1,n)=P(1,n)*Tcal(1,n+1)+Q(1,n); end Tcom=[T;Tcal]; %绘图比较给定 T 值和计算 T 值 plot(Tcal,'r*') hold on plot(T)

《传热学》杨世铭-陶文铨-第十章传热分析与计算

《传热学》杨世铭-陶文铨-第十章传热分析与计算


t x
t
Ax dt k dA 0 t
t x ln kAx t
t x texp(kAx )
可见,当地温差随换热面呈指数变化,则沿整个换热面的平 均温差为: 1 A 1 A
t m
A
0
t x dA x
A
0
t exp( kAx )dA x
l (t fi t fo ) Φ (d o 2 )
d 0 dd o 2 do2
d l (t fi t fo ) 1 1 2 2 dd o 2 (do 2 ) 22 do 2 h2 do 2
22 d cr or h2
Bi
t h th R tc tc
式中:下标1、2分别表示两种流体,上角标 ` 表示进口, `` 表示出口,图表中均以P为横坐标,R为参量。
(2)P的物理意义:流体2的实际温升与理论上所能达到
的最大温升之比,所以只能小于1 (3)R的物理意义:两种流体的热容量之比
t h t h qmc cc R tc tc qmh ch
Φ
l (t fi t fo )
d 1 1 1 ln( o ) hi d i 2 di ho d o
圆管外敷保温层后:
Φ
l (t fi t fo )
d o1 do2 1 1 1 1 ln( ) ln( ) hi d i 21 di 22 d o1 ho d o 2
TB,out TA,in (tube side)
增加管程
TB,in (shell side) TA,in (tube side) TA,out TB,out
TB,in (shell side)

数值传热学 习题答案

数值传热学 习题答案

数值传热学习题答案数值传热学习题答案数值传热学是热力学的一个重要分支,主要研究热量在物质中传递的机理和规律。

在实际工程中,我们经常会遇到各种与传热有关的问题,通过数值计算可以得到准确的答案。

下面我将为大家提供一些数值传热学习题的答案,希望能够帮助大家更好地理解和应用这门学科。

1. 一个铝制热交换器的表面积为10平方米,其表面温度为100摄氏度,环境温度为20摄氏度。

已知铝的导热系数为200 W/(m·K),求热交换器的传热速率。

答:根据传热定律,传热速率与传热面积、传热系数和温度差之间成正比。

传热速率 = 传热系数× 传热面积× 温度差。

将已知数据代入公式中,可得传热速率= 200 × 10 × (100 - 20) = 160,000 W。

2. 一个房间的尺寸为5米× 5米× 3米,墙壁和天花板的厚度为0.2米,墙壁和天花板的导热系数为0.5 W/(m·K),室内温度为25摄氏度,室外温度为10摄氏度。

求房间的传热损失。

答:房间的传热损失可以通过计算墙壁和天花板的传热速率来得到。

墙壁和天花板的传热速率 = 传热系数× 传热面积× 温度差。

墙壁和天花板的传热面积 = 2 × (5 × 5) + 2 × (5 × 3) = 70平方米。

将已知数据代入公式中,可得墙壁和天花板的传热速率= 0.5 × 70 × (25 - 10) = 525 W。

因此,房间的传热损失为525瓦特。

3. 一个水箱的体积为1立方米,初始温度为20摄氏度,水的密度为1000千克/立方米,比热容为4186 J/(千克·摄氏度),水箱的表面积为2平方米,表面温度为100摄氏度。

已知水的传热系数为0.6 W/(m^2·K),求水箱内水的温度随时间的变化。

数值传热学

数值传热学

Numeca
16
传热数值计算与软件简介
17
传热数值计算与软件简介
18
传热数值计算与软件简介
19
传热数值计算与软件简介
20
传热数值计算与软件简介
21
传热数值计算与软件简介
22
如何实现从微分方程到代数方程的转化又可以采 用不同的数学方法,如有限差分法、有限容积法和 有限元法等。
3
传热数值计算与软件简介
流动与传热问题的控制方程
质量守恒方程
动量守恒方程
4
传热数值计算与软件简介
广义源项能量方程源自5传热数值计算与软件简介
通用形式
6
传热数值计算与软件简介
单值性条件

初始条件 边界条件

对空间上连续的计算区域进行剖分,把它划分 成许多子区域,并确定每个区域中的节点,这 一过程又称为网格生成。 结构化网格 网格 非结构化网格
9
传热数值计算与软件简介
控制方程离散化
把物理上的守恒定律直接应用于所研究的控制容积, 并把节点看成是控制容积的代表,可以导出节点上 未知值间的代数关系式。 计算节点代数式所涉及到的周围节点的不同,离散 精度也不相同,分为一阶、二阶和三阶。
速度边界条件:无滑移 温度边界条件:三类

7
传热数值计算与软件简介

1 时间与空间的离散化
节点
当进行数值求解时,首先要 做的事情是在所研究的时间和 空间区域内把时间和空间分割 成为有限大小的小区域。右图 表示了长柱体矩形截面上区域 离散化的情况。
计算区域离散
控制体
8
传热数值计算与软件简介
计算区域离散化
1、假定一个速度分布,记为u0,v0,以此作为计算动量 离散方程中的系数及常数项; 2、假定一个压力场P*; 3、依次求解两个动量方程,得u*,v*; 4、求解压力修正方程,得P’; 5、根据P‘改进速度值; 6、利用改进后的速度场求解那些通过源项物性等与速度 场耦合的变量; 7、利用改进后的速度场重新计算离散方程的系数,并利 用改进后的压力场作为下一层次迭代计算的初始值,重复 上述步骤,直到获得收敛的解。

数值传热学习题答案(汇总版)

数值传热学习题答案(汇总版)

2-4-9
= rP rS
式(2-4-9)也可以写成 a PTP = a E TE + aW TW + b 的形式。而且两种结果是一致的。
2—6:
n n TE −TW dT P , n = 解:将 , dx 2x n n TE −2TPn + TW d 2T P , n = , dx2 x 2
dk = f (x ) 代入原方程,得: dx

2-4-4
rk rk a E = , aW = , a P = a E + aW , b x w x e
= SrP r ,
式(2-4-4)可以写成 a PTP = a E TE + aW TW + b 的形式。 2. 再用 Taylor 展开法导出 k
2 2 uE + uP u = , 2 2 e
2 2 uW + uP u = 2 2 w
t u ut N − uP y = (y ) , n n
t
t ut u p − uS y = (y ) 。 s s
t
(y ) n = (y ) s = y
n n n n TE −TW TE −2TPn + TW k + f (x ) +S=0 整理得: 2x x 2
4kT P= 2k + xf ( x)T E+2k − xf ( x)T W +2x 2 S
− 2k 时, a E 会成为负值, x 2k 当 f(x)> 时, aW 会成为负值。 x
rk dr = rk r r dr dr dr
w
e
1 d

数值传热学

数值传热学

数值传热学数值传热又称计算传热,是传热学与数值方法相结合的一门交叉学科,它采用数值方法描述流动和传热问题的控制方程,并用计算机求解。

数值换热,其基本思想是将原始坐标在空间和时间上连续的物理量场(如速度场、温度场和浓度场等),用一系列有限个离散点上的数值来代替,通过一定的原理建立离散点变量值之间的关系代数方程(称为离散方程)。

通过求解所建立的代数方程组,得到求解变量的近似值。

1简介数值传热学(numerical heat transfer)数值传热学,又称计算传热学,是指对描写流动与传热问题的控制方程采用数值方法,通过计算机求解的一门传热学与数值方法相结合的交叉学科。

数值传热学的基本思想是把原来在空间与时间坐标中连续的物理量的场(如速度场,温度场,浓度场等),用一系列有限个离散点上的值的集合来代替,通过一定的原则建立起这些离散点变量值之间关系的代数方程(称为离散方程)。

求解所建立起来的代数方程已获得求解变量的近似值。

2发展简史数值传热学,主要由20世纪中叶,S.V. Patankar和D.B.Spalding 等人在总结前人的研究基础上所提出。

E.M.Sparrow对数值传热学的发展也起到了一定的促进作用。

国内比较知名的学者是陶文铨教授。

陶文铨3研究方法数值传热学常用的数值方法1.有限差分法历史上最早采用的数值方法,对简单几何形状中的流动与换热问题最容易实施的数值方法。

其基本点是:将求解区域中用于坐标轴平行的一系列网格的交点所组成的点的集合来代替,在每个节点上,将控制方程中每一个导数用相应的差分表达式来代替,从而在每个节点上,形成一个代数方程,每个方程中包括了本节点及其附近一些节点上的未知值,求解这些代数方程就获得了所需的数值解。

2.有限容积法将所计算的区域划分成一系列控制容积划分为一系列控制容积,每个控制容积都有一个节点做代表。

通过将守恒型的控制方程对控制容积坐积分导出离散方程。

在导出过程中,需要对界面上的被求函数本身及其一阶导数的构成做出假定,是目前流动与换热问题的数值计算中应用最广的一种方法。

数值传热学

数值传热学

数值传热学
t为了更好地理解热学中的非稳态传热现象,需要对其进行数值模拟,在数值传热学方法中,有一种方法叫做有限元方法,它是一种基于网格方法的非线性有限元方法。

ttt在研究和处理复杂工程问题时,为简化计算机求解代价高的无限大规模的实际物理问题,常采用网格技术,对复杂的多相流动或物体的运动状态进行模拟,并将该计算过程和成果称之为“数值模拟”。

ttt在应用数值传热学方法的过程中要注意这样几点:一是网格划分、初始条件及边界条件的选取要适当二是系统初始化要合理三是尽可能使所有的网格之间相互独立四是保证结果的重现性五是不要
忽视分辨率的概念六是分析与综合要紧密联系起来七是数值计算过
程要符合数学规,使输出的数据便于人们分析比较八是在数值计算过程中若发现新的或难以理解的情况或事件,应记录下来,待分析完后再去验证九是对所得到的结果要进行认真检查。

t有限单元法是在有限空间或无限体积中把某些大块区域作为节点,其他区域为单元,用有限个节点(单元)组成有限个相互连接的单元链。

这种方法将无限的区域离散化成有限个单元,在每个单元内假定一定的约束条件和单元本身的物理属性。

网格在三维空间中的布置形式,可以由连续函数来描述。

有限元法通过把物理问题分解成许多微小的单元,然后按照一定的节点连接关系进行组合,并假定这些单元遵循各自的约束条件。

当计算机通过网络将数据存入存储器中时,有限元法就得到了充分发挥,可以利用计算机快速运算获得高精度的解。

但由于有限元法是一
种离散化方法,因此如果计算时出现局部收敛性差的问题,很可能导致整个求解过程失败,从而影响最终结果的准确性。

(完整版)数值传热学陶文铨主编第二版习题答案

(完整版)数值传热学陶文铨主编第二版习题答案

数值传热学4-9章习题答案习题4-2一维稳态导热问题的控制方程:022=+∂∂S xTλ依据本题给定条件,对节点2节点3采用第三类边界条件具有二阶精度的差分格式,最后得到各节点的离散方程:节点1:1001=T 节点2:1505105321-=+-T T T 节点3:75432=+-T T 求解结果:,852=T 403=T 对整个控制容积作能量平衡,有:2150)4020(15)(3=⨯+-⨯=∆+-=∆+x S T T h x S q f f B 即:计算区域总体守恒要求满足习题4-5在4-2习题中,如果,则各节点离散方程如下:25.03)(10f T T h -⨯=节点1:1001=T 节点2:1505105321-=+-T T T 节点3:25.03325.032)20(4015])20(21[-⨯+=-⨯++-T T T T 对于节点3中的相关项作局部线性化处理,然后迭代计算;求解结果:,(迭代精度为10-4)818.822=T 635.353=T 迭代计算的Matlab 程序如下:x=30;x1=20;while abs(x1-x)>0.0001a=[1 0 0;5 -10 5;0 -1 1+2*(x-20)^(0.25)]; b=[100;-150; 15+40*(x-20)^(0.25)]; t=a^(-1)*b;x1=x;x=t(3,1);endtcal=t习题4-12的Matlab程序%代数方程形式A i T i=C i T i+1+B i T i-1+D imdim=10;%计算的节点数x=linspace(1,3,mdim);%生成A、C、B、T数据的基数;A=cos(x);%TDMA的主对角元素B=sin(x);%TDMA的下对角线元素C=cos(x)+exp(x); %TDMA的上对角线元素T=exp(x).*cos(x); %温度数据%由A、B、C构成TDMAcoematrix=eye(mdim,mdim);for n=1:mdimcoematrix(n,n)=A(1,n);if n>=2coematrix(n,n-1)=-1*B(1,n);endif n<mdimcoematrix(n,n+1)=-1*C(1,n);endend%计算D矢量D=(coematrix*T')';%由已知的A、B、C、D用TDMA方法求解T%消元P(1,1)=C(1,1)/A(1,1);Q(1,1)=D(1,1)/A(1,1);for n=2:mdimP(1,n)=C(1,n)/(A(1,n)-B(1,n)*P(1,n-1));Q(1,n)=(D(1,n)+B(1,n)*Q(1,n-1))/(A(1,n)-B(1,n)*P(1,n-1)); end%回迭Tcal(1,mdim)=Q(1,mdim);for n=(mdim-1):-1:1Tcal(1,n)=P(1,n)*Tcal(1,n+1)+Q(1,n);endTcom=[T;Tcal];%绘图比较给定T值和计算T值plot(Tcal,'r*')hold onplot(T)n gin th a r e 结果比较如下,由比较可知两者值非常切合(在小数点后8位之后才有区别):习题4-14充分发展区的温度控制方程如下:)(1rTr r r x T uc p ∂∂∂∂=∂∂λρ对于三种无量纲定义、、进行分析如下w b w T T T T --=Θ∞∞--=ΘT T T T w ww T T T T --=Θ∞1)由得:wb wT T T T --=Θww b T T T T +Θ-=)(由可得:T x T x T x T T T x T w b w w b ∂∂Θ-+∂∂Θ=∂+Θ-∂=∂∂)1(])[(rT r T T r T T T r T w w b w w b ∂∂Θ-+∂Θ∂-=∂+Θ-∂=∂∂)1()(])[(由与无关、与无关以及、的表达式可知,除了均匀的情况外,该无量b T r Θx x T ∂∂rT∂∂w T 纲温度定义在一般情况下是不能用分离变量法的;2)由得:∞∞--=ΘT T T T w ∞∞+Θ-=T T T T w )(由可得:T xT x T T T x T w w ∂∂Θ=∂+Θ-∂=∂∂∞∞])[(rT r T T r T T T r T w w w ∂∂Θ+∂Θ∂-=∂+Θ-∂=∂∂∞∞∞)(])[(由与无关、与无关以及、的表达式可知,在常见的四种边界条件中除了b T r Θx x T ∂∂rT ∂∂轴向及周向均匀热流的情况外,有,则该无量纲温度定义是可以用分const q w =0=∂∂rT w离变量法的;3)由得:wwT T T T --=Θ∞ww T T T T +Θ-=∞)(由可得:T xT x T T T x T w w w ∂∂Θ-=∂+Θ-∂=∂∂∞)1(])[(r T T r T T T r T w w w -+∂Θ∂-=∂+Θ-∂=∂∂∞∞1()(])[(同2)分析可知,除了轴向及周向均匀热流const q w =温度定义是可以用分离变量法的;习题4-181)采用柱坐标分析,写出统一的稳态柱坐标形式动量方程:S r r r r r r x x w r v r r r u x +∂∂∂∂+∂∂∂∂+∂∂∂∂=∂∂+∂∂+∂∂(1)(1)()(1)(1)(θφλθφλφλφρθφρφρ、和分别是圆柱坐标的3个坐标轴,、和分别是其对应的速度分量,其中x r θu v w 是管内的流动方向;x 对于管内的层流充分发展有:、,;0=v 0=w 0=∂∂xu并且方向的源项:x x pS ∂∂-=方向的源项:r r pS ∂∂-=方向的源项:θθ∂∂-=pr S 1由以上分析可得到圆柱坐标下的动量方程:方向:x 0)(1)(1=∂∂-∂∂∂∂+∂∂∂∂x pu r r r u r r r θλθλ方向:r 0=∂∂r p 方向:θ0=∂∂θp 边界条件:,R r =0=u ,;对称线上,0=r 0=∂∂r u 0=∂∂θu 不考虑液体的轴向导热,并简化分析可以得到充分发展的能量方程为:)(1(1θλθλρ∂∂∂∂+∂∂∂∂=∂∂Tr r r T r r r x T uc p 边界条件:,;,R r =w q r T =∂∂λ0=r 0=∂∂rT,πθ/0=0=∂∂-θλT2)定义无量纲流速:dxdp R uU 2-=λ并定义无量纲半径:;将无量纲流速和无量纲半径代入方向的动量方程得:R r /=ηx 0))1((1)1((122=∂∂-∂-∂∂∂+∂-∂∂∂xp U dx dp R R R R U dx dp R RR R θληλθηηλληηη上式化简得:011(1(1=+∂∂∂∂+∂∂∂∂θηθηηηηηU U 边界条件:,1=η0=U ,;对称线上,0=η0=∂∂ηU 0=∂∂θU定义无量纲温度:λ/0R q T T b-=Θ其中,是折算到管壁表面上的平均热流密度,即:;0q Rq q wπ=0由无量纲温度定义可得:bT Rq T +Θ=λ0将表达式和无量纲半径代入能量方程得:T η(1)(100θληλθηηλληηηρ∂Θ∂∂∂+∂Θ∂∂∂=∂∂R q R R R R q R R R x T uc b p 化简得:(1))1(1)(10θηθηηηηηρ∂Θ∂∂∂+∂Θ∂∂∂=∂∂x T u c q R b p 由热平衡条件关系可以得:mm m b m p b p p RU U q R u u R q A u u dx dT A u c x T u c x T uc 020221221)(===∂∂=∂∂ππρρρ将上式代入式(1)可得:)1(1)(12θηθηηηηη∂Θ∂∂∂+∂Θ∂∂∂=m U U 边界条件:,;,0=η0=∂Θ∂η1=ηR q q w πη10==∂Θ∂,;,0=θ0=∂Θ∂θπθ=0=∂Θ∂θ单值条件:由定义可知: 且: 0/0=-=ΘλR q T T b b b ⎰⎰Θ=ΘAAb UdAUdA 即得单值性条件:=Θ⎰⎰AA UdAUdA 3)由阻力系数及定义有:f Re 228)(21/Re ⎪⎭⎫ ⎝⎛=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=D D U D u u dx dp D f e m e m me νρ且:m W b m W b m W R q T T D T T q Nu ,0,,0~2)/(2Θ=-=-=λλ5-21.一维稳态无源项的对流-扩散方程如下所示: (取常物性)xx u 22∂∂Γ=∂∂φφρ边界条件如下:LL x x φφφφ====,;,00上述方程的精确解如下: 11)/(00--=--⋅Pe L x Pe L e e φφφφΓ=/uL Pe ρ2.将分成20等份,所以有:L ∆=P Pe 20 1 2 3 4 5 6……………………… 17 18 19 20 21对于中心差分、一阶迎风、混合格式和QUICK 格式分别分析如下:1)中心差分中间节点: 2)5.01()5.01(11-∆+∆++-=i i i P P φφφ20,2 =i 2)一阶迎风中间节点: ∆-∆++++=P P i i i 2)1(11φφφ20,2 =i 3)混合格式当时,中间节点: 1=∆P 2)5.01()5.01(11-∆+∆++-=i i i P P φφφ 20,2 =i 当时,中间节点: 10,5=∆P 1-=i i φφ20,2 =i 4)QUICK 格式*12111)35(8122121⎥⎦⎤⎢⎣⎡---++++++=+--∆∆-∆∆+∆i i i i i i i P P P P P φφφφφφφ2≠i*1111)336(8122121⎥⎦⎤⎢⎣⎡--++++++=+-∆∆-∆∆+∆i i i i i i P P P P P φφφφφφ2=i 数值计算结果与精确解的计算程序如下:%except for HS, any other scheme doesnt take Pe<0 into consideration %expression of exact solutiony=dsolve('a*b*Dy=c*D2y','y(0)=y0,y(L)=yL','x')y=subs(y,'L*a*b/c','t')y=simple(subs(y,'a*b/c*x','t*X'));ysim=simple(sym(strcat('(',char(y),'-y0)','/(yL-y0)')))y=sym(strcat('(',char(ysim),')*(yL-y0)','+y0'))% in the case of Pe=0y1=dsolve('D2y=0','y(0)=y0,y(L)=yL','x')y1=subs(y1,'-(y0-yL)/L*x','(-y0+yL)*X')%grid Pe number tt=[1 5 10];%dimensionless length m=20;%mdim is the number of inner node mdim=m-1;X=linspace(0,1,m+1);%initial value of variable during calculation y0=1;yL=2;%cal exact solution for n=1:size(tt,2) t=m*tt(1,n); if t==0 yval1(n,:)=eval(y1); else yval1(n,:)=eval(y); end end%extra treatment because max number in MATLAB is 10^308if max(isnan(yval1(:))) yval1=yval1'; yval1=yval1(:);indexf=find(isnan(yval1)); for n=1:size(indexf,1) if rem(indexf(n,1),size(X,2))==0 yval1(indexf(n),1)=yL; else yval1(indexf(n),1)=y0; endendyval1=reshape(yval1,size(X,2),size(yval1,1)/size(X,2));yval1=yval1';end%CD solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);b(n,:)=repmat([0.5*(1-0.5*t)],1,mdim);c(n,:)=repmat([0.5*(1+0.5*t)],1,mdim);d(n,1)=0.5*(1+0.5*tt(1,n))*y0;d(n,mdim)=0.5*(1-0.5*tt(1,n))*yL;endc(:,1)=0;b(:,mdim)=0;%numerical cal by using TDMA subfuctionyval2=TDMA(a,b,c,d,mdim);yval2=[repmat([1],size(tt,2),1),yval2,repmat([2],size(tt,2),1)]; Fig(1,X,yval1,yval2,tt);title('CD Vs. Exact Solution')% FUS solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);b(n,:)=repmat([1/(2+t)],1,mdim);c(n,:)=repmat([(1+t)/(2+t)],1,mdim);d(n,1)=(1+tt(1,n))/(2+tt(1,n))*y0;d(n,mdim)=1/(2+tt(1,n))*yL;endc(:,1)=0;b(:,mdim)=0;%numerical cal by using TDMA subfuctionyval3=TDMA(a,b,c,d,mdim);yval3=[repmat([1],size(tt,2),1),yval3,repmat([2],size(tt,2),1)]; Fig(2,X,yval1,yval3,tt);title('FUS Vs. Exact Solution')% HS solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);if t>2b(n,:)=repmat([0],1,mdim);c(n,:)=repmat([1],1,mdim);d(n,1)=y0;elseif t<-2b(n,:)=repmat([1],1,mdim);c(n,:)=repmat([0],1,mdim);d(n,mdim)=yL;elseb(n,:)=repmat([0.5*(1-0.5*t)],1,mdim);c(n,:)=repmat([0.5*(1+0.5*t)],1,mdim);d(n,1)=0.5*(1+0.5*t)*y0;d(n,mdim)=0.5*(1-0.5*t)*yL;endendc(:,1)=0;b(:,mdim)=0;% numerical cal by using TDMA subfuctionyval4=TDMA(a,b,c,d,mdim);yval4=[repmat([1],size(tt,2),1),yval4,repmat([2],size(tt,2),1)]; Fig(3,X,yval1,yval4,tt);title('HS Vs. Exact Solution')%QUICK Solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);b(n,:)=repmat([1/(2+t)],1,mdim);c(n,:)=repmat([(1+t)/(2+t)],1,mdim);d(n,1)=(1+tt(1,n))/(2+tt(1,n))*y0;d(n,mdim)=1/(2+tt(1,n))*yL;endc(:,1)=0;b(:,mdim)=0;%numerical cal by using TDMA subfuctionyval5=zeros(size(tt,2),mdim);yval5com=yval5+1;counter=1;%iterativewhile max(max(abs(yval5-yval5com)))>10^-10if counter==1yval5com=TDMA(a,b,c,d,mdim);endfor nn=1:size(tt,2)for nnn=1:mdimif nnn==1d(nn,nnn)=((6*yval5com(nn,nnn)-3*y0-3*yval5com(nn,nnn+1))*tt(1,nn))/(8*(2+tt(1,nn)))+((1+tt(1,nn))/(2+tt(1,nn))*y0);elseif nnn==2d(nn,nnn)=((5*yval5com(nn,nnn)-3*yval5com(nn,nnn+1)-yval5com(nn,nnn-1)-y0)*tt(1,nn))/(8*(2+tt(1,nn)));elseif nnn==mdimd(nn,nnn)=((5*yval5com(nn,nnn)-3*yL-yval5com(nn,nnn-1)-yval5com(nn,nnn-2))*tt(1,nn))/(8*(2+tt(1,nn)))+(1/(2+tt(1,nn))*yL);elsed(nn,nnn)=((5*yval5com(nn,nnn)-3*yval5com(nn,nnn+1)-yval5com(nn,nnn-1)-yval5com(nn,nnn-2))*tt(1,nn))/(8*(2+tt(1,nn)));endendendyval5=TDMA(a,b,c,d,mdim);temp=yval5;yval5=yval5com;yval5com=temp;counter=counter+1;endyval5=yval5com;yval5=[repmat([1],size(tt,2),1),yval5,repmat([2],size(tt,2),1)];Fig(4,X,yval1,yval5,tt);title('QUICK Vs. Exact Solution')%-------------TDMA SubFunction------------------function y=TDMA(a,b,c,d,mdim)%form a b c d resolve yval2 by using TDMA%eliminationp(:,1)=b(:,1)./a(:,1);q(:,1)=d(:,1)./a(:,1);for n=2:mdimp(:,n)=b(:,n)./(a(:,n)-c(:,n).*p(:,n-1));q(:,n)=(d(:,n)+c(:,n).*q(:,n-1))./(a(:,n)-c(:,n).*p(:,n-1));end%iterativey(:,mdim)=q(:,mdim);for n=(mdim-1):-1:1y(:,n)=p(:,n).*y(:,n+1)+q(:,n);end%-------------ResultCom SubFunction------------------function y=ResultCom (a,b,c)for n=1:max(size(c,2))y(2*n-1,:)=a(n,:);y(2*n,:)=b(n,:);end%-------------Fig SubFunction------------------function y=Fig(n,a,b,c,d)figure(n);plot(a,b);hold onplot(a,c,'*');str='''legend(';for n=1:size(d,2)if n==size(d,2)str=strcat(str,'''''Pe=',num2str(d(1,n)),''''')''');elsestr=strcat(str,'''''Pe=',num2str(d(1,n)),''''',');endendeval(eval(str));a n d A l l t h i n g s i n t h ei r b e i n g a r e g 13精确解与数值解的对比图,其中边界条件给定,。

数值传热学

数值传热学

数值传热学数值传热学(numerical heat transfer)数值传热学,又称计算传热学,是指对描写流动与传热问题的控制方程采用数值方法,通过计算机求解的一门传热学与数值方法相结合的交叉学科。

数值传热学的基本思想是把原来在空间与时间坐标中连续的物理量的场(如速度场,温度场,浓度场等),用一系列有限个离散点上的值的集合来代替,通过一定的原则建立起这些离散点变量值之间关系的代数方程(称为离散方程)。

求解所建立起来的代数方程已获得求解变量的近似值。

数值传热学(numerical heat transfer)数值传热学,又称计算传热学,是指对描写流动与传热问题的控制方程采用数值方法,通过计算机求解的一门传热学与数值方法相结合的交叉学科。

数值传热学的基本思想是把原来在空间与时间坐标中连续的物理量的场(如速度场,温度场,浓度场等),用一系列有限个离散点上的值的集合来代替,通过一定的原则建立起这些离散点变量值之间关系的代数方程(称为离散方程)。

求解所建立起来的代数方程已获得求解变量的近似值。

数值传热学常用的数值方法1.有限差分法历史上最早采用的数值方法,对简单几何形状中的流动与换热问题最容易实施的数值方法。

其基本点是:将求解区域中用于坐标轴平行的一系列网格的交点所组成的点的集合来代替,在每个节点上,将控制方程中每一个导数用相应的差分表达式来代替,从而在每个节点上,形成一个代数方程,每个方程中包括了本节点及其附近一些节点上的未知值,求解这些代数方程就获得了所需的数值解。

2.有限容积法将所计算的区域划分成一系列控制容积划分为一系列控制容积,每个控制容积都有一个节点做代表。

通过将守恒型的控制方程对控制容积坐积分导出离散方程。

在导出过程中,需要对界面上的被求函数本身及其一阶导数的构成做出假定,是目前流动与换热问题的数值计算中应用最广的一种方法。

3.有限元法把计算区域划分为一系列原题(在二维情况下,元体多为三角形或四边形),由每个元体上去数个点作为节点,然后通过对控制方程做积分来获得离散方程。

2016数值传热学第一章

2016数值传热学第一章
1.1.1 Governing equations and their general form
1. Mass conservation
( u ) ( v) ( w) 0 t x y z
9/87
MOE KLTFSE
“div” is the mathematical symbol for divergence (散度).
4/87
MOE KLTFSE
Methods for improving teaching and studying 1. Speaking simple but clear English with Chinese note (注释) of new terminology (术语) and some words; 2. Enhancing (加强) communications between students and teachers: a QQ-group has been set up, and my four assistants will help me in this regard; 3. Understanding (理解) the importance of numerical simulation method: not just for a credit(学分) , but it’s an important technique for job-looking (谋职);
4. General form 1.1.2 Conditions for unique solution(唯一解) 1.1.3 Example of mathematical formulation
8/87
MOE KLTFSE
1.1 Mathematical formulation of heat transfer and fluid flow (HT & FF) problems All macro-scale (宏观)HT & FF problems are governed by three conservation laws:mass, momentum and energy conservation law. The differences between different problems are in: conditions for the unique solution(唯一解):initial (初始的)& boundary conditions, physical properties and source terms.

数值传热学ppt

数值传热学ppt
Βιβλιοθήκη 。数值传热学的研究作用与地位
由于实验方法或分析方法在处理复杂的流动与换热问题 时,受到较大的限制,例如问题的复杂性,即无法做分析解, 也因为费用的昂贵而无力进行实验测定,而数值计算的方法 正具有成本较低和能模拟复杂或较理想的过程等优点,数值 传热学得到了飞速的发展。近20年来,计算机硬件工业的发 展更为数值传热学提供了坚实的物质基础,是数值模拟对流 动与传热过程的研究发挥了重要的作用。
·Fluent求解问题步骤
Fluent软件采用基于完全非结
构化网格的有限体积法,而且 具有基于网格节点和网格单元 的梯度算法 Fluent软件包含丰富而先进的物 理模型,使得用户能够精确地模 拟无粘流、层流、湍流
Fluent软件功能强,适用面广,包括各种优化物理模型,有
适合它的数值解法,用户可对显式或隐式差分格式进行选择, 可以在计算速度、稳定性和精度等方面达到最佳。
过去不等于未来
1. 2. 3. 4.
有限差分法 有限容积法 有限元法 有限分析法
有限容积法
A 基本思路是:
将计算区域划分为一系列不重复的控制体积,并使每个网格 点周围有一个控制体积;将待解的微分方程对每一个控制体 积积分,便得出一组离散方程。 B 区别: 有限单元法必须假定值在网格点之间的变化规律(既插值函 数),并将其作为近似解;有限差分法只考虑网格点上的数 值而不考虑值在网格点之间如何变化;有限容积法只寻求结 点值。 C 五个部分: 网格生成 、对流项的离散化、边界条件的离散化 、压力速度 耦合 、离散方程的求解
Fluent几何形状
Fluent流体
谢 谢
应用领域
· 直接空冷凝汽器考核工况的全厂数值模拟 · 连续退火炉冷却气体流场和传热特性的数值模拟 · 层流状态下纳米流体的对流传热特性 · 循环流化床锅炉炉内传热的影响 · 车用暖风散热器数值模型 · Fluent软件特点及在室内温度计算中的应用

传热学第十章传热过程和换热器计算

传热学第十章传热过程和换热器计算

传热学第十章传热过程和换热器计算热力学是研究能量转换和能量传递的学科,传热学是热力学的一个重要分支。

传热过程是指热量从一个物体传递到另一个物体的过程,它是通过传导、对流和辐射三种方式进行的。

换热器则是用来实现热量传递的设备。

一、传热过程1.传导:传导是指热量通过物质内部的微观振动和相互碰撞传递的过程。

物体的导热性质取决于其热导率和导热面积。

传导的热流量可用傅里叶传热定律表示。

2.对流:对流是指液体或气体中的分子通过传递热量的方式。

对流的热流量可用牛顿冷却定律表示。

3.辐射:辐射是指热能以电磁波的形式传递的过程。

辐射热量的传递与物体的温度和表面特性有关,可以用斯特藩—玻尔兹曼定律表示。

换热器是用来实现热量传递的设备,广泛应用于工业生产和能源系统中。

换热器的设计和计算需要考虑换热面积、传热系数、传热温差等参数。

1.换热面积:换热面积是换热器的一个重要参数,它表示传热过程中热量通过的表面积。

换热面积可以通过传热方程计算得出。

2.传热系数:传热系数是指在单位时间内,单位面积上的热量传递量与温度差之比。

传热系数的大小与换热器的结构、工作条件及流体性质等有关。

3.传热温差:传热温差是指热量在换热过程中的温度差异。

传热温差越大,热量传递越快。

换热器的计算包括两个方面:换热面积计算和传热系数计算。

换热面积计算一般根据传热方程进行。

传热方程可以写成Q=UAΔT,其中Q为热量传递量,U为总传热系数,A为换热面积,ΔT为温度差。

通过已知的换热量和温度差,可以计算出换热面积。

传热系数计算一般需要参考实验数据或者经验公式。

传热系数与换热器的结构和工作条件有关,一般通过实验或者估算得到。

在进行换热器计算时,还需要注意换热器的热损失问题。

热损失会影响换热器的热效率,因此需要进行热损失的计算和控制。

总之,传热过程和换热器计算是传热学中重要的内容,它们在工程实践中有着广泛的应用。

通过对传热过程和换热器的深入理解和计算,可以提高工程设备的热效率,实现能源的节约和利用。

传输原理教案 (第10章) 传热

传输原理教案 (第10章) 传热
1
10.1 热辐射的基本概念
1. 热辐射的本质
(1)辐射——物体中分子(原子)受激发而以电磁波的形式释 放能量的现象,称为辐射。电磁波携带的能量称为辐射能。
(2)任何物体都随时向周围空间发射电磁波,因热的原因,以 电磁波方式释放能量,即热辐射。
(3)只要物体温度高于绝对零度,就会产生热辐射。以热辐射 的方式进行物体间的热量传递,称为辐射换热。
(2)实际厚度一般 远大于此,可以认为固液体不能透过热辐射, 热辐射全部被吸收或者反射,穿透率=0,即α + ρ = 1
(3)对固体和液体的辐射、吸收、反射特性的影响因素:物体 表面材料的性质、表面状态、覆盖层厚度、温度等。
(4)辐射能的反射情况决定于热辐射波长λ与表面不平整尺寸Δ 的相对大小。 λ <Δ时,属于漫反射。 λ >Δ时,属于镜面反射。
(10-8)
C1= 3.74310-6 C2 =1.438710-2
观察上图:每条曲线下的面积表示某个温度下黑体的辐射力。 辐射力 Eb 随黑体温度的升高而增大。
Eb2hc2ehCkT 5 1
某温度下:
Eb
0 Ebd
8
10.3.2 维恩(Wien)位移定律
黑体辐射中, 能量最大的波长m 与绝对温度成反比。
者达到平衡。
由1的任意性,得: E1 1 E2 2 E3 3... EEb
(10-13) (基尔霍夫定律表达式)
基尔霍夫 (Kirchhoff) 定律的结论:
体系处于热平衡时,任何物体的辐射力E 和 吸收率 的 比值,恒等于同温度下黑体的辐射力。与物性无关,而仅仅取 决于温度。
11
E1 1 E2 2 E3 3... EEb (10-13 基尔霍夫定律)

数值传热学总结

数值传热学总结

1. 质量守恒方程:单位时间内微元体中流体质量的增加=同一时间间隔内流入该微元体的净质量2. 动量守恒方程:微元体中流体动量的增加率=作用在微元体上各种力之和3. 能量守恒方程:微元体内热力学能的增加率=进入微元体的净热量+体积力与表面力对微元体做的功4. 控制方程的通用形式:展开形式:5. 控制方程的守恒与非守恒形式对比:1.从微元体的角度,控制方程的守恒形式与非守恒形式是等价的,都是物理的守恒定律的数学表示。

2.从数值计算的观点,守恒型的方程有两个优点。

A 守恒型的控制方程可以使激波的计算结果光滑而且稳定,而应用非守恒型方程时激波的计算结果会在激波前及后引起解的振荡,并导致错误的激波位置。

B 只有守恒型的控制方程才可以保证对有限大小的控制容积内所研究的物理量的守恒定律仍然得到满足。

6. 初始条件是所研究现象在过程开始时刻的各个求解变量的空间分布,必须予以给定。

对于稳态问题不需要初始条件。

边界条件是在求解区域的边界上所求解的变量或其一阶导数随地点及时间的变化规律。

7. 二维稳态层流控制方程: 质量守恒方程:0=∂∂+∂∂yv x u 动量守恒方程:)(1)()(2222yu x u x p y vu x uu ∂∂+∂∂+∂∂-=∂∂+∂∂νρ )(1)()(2222yv x v y p y vv x uv ∂∂+∂∂+∂∂-=∂∂+∂∂νρ 能量守恒方程:)()()(2222yT x T a y vT x uT ∂∂+∂∂=∂∂+∂∂ 8. 偏微分方程的三种类型:双曲型b2-4ac>0,过该点有两条实的特征线;抛物型b2-4ac=0过该点有一条实的特征线;椭圆型b2-4ac<0过该点没有实的特征线。

9. 椭圆型方程:描写物理学中一类稳态问题,这种物理问题的变量与时间无关而需要在空间的一个闭区域内来求解。

这类问题又称边值问题。

稳态导热过程,有回流的流动与对流换热都属于椭圆型问题,其控制方程都是椭圆型的。

数值传热学习题解答(汇总版)

数值传热学习题解答(汇总版)

习题1-7解:由于对称性,取半个通道作为求解区域。

常物性不可压缩流体,二维层流、稳态对流换热的控制方程组为: 质量守恒方程0=∂∂+∂∂yv x u 动量守恒方程 ()()⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂−=∂∂+∂∂22221y u x u x py vu x uu νρ ()()⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂−=∂∂+∂∂22221y v x v y p y vv x uv νρ 能量守恒方程 ()()⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=∂∂+∂∂2222y T xT a y vT x uT 边界条件:进口截面 ()0,,===v c T y u u in ; 平板通道上(下)壁面 0,0=∂∂==yTv u ; 中心线上对称条件: 0,0u T v y y∂∂===∂∂; 出口截面0,0,0=∂∂=∂∂=∂∂xT x v x u ; 或者写:采用数值传热学的处理方法。

图1-10 习题1-7的图示本题如果采用整个通道作为计算区域,应该扣除0.5 分2-3.解:由u x u ∂∂=()xuu ∂∂21=η22y u ∂∂得: 其守恒形式为:()xuu ∂∂=2η22y u ∂∂ 对方程两端在t ∆时间间隔内对其控制容积积分得:()dxdydt x uu t t t nsew ⎰⎰⎰∆+∂∂=⎰⎰⎰∆+∂∂t t t e w n s dydxdt y u 222η()()[]dxdt y u y u dydt uu uu s n t t t ewtt t w e n s ][2⎪⎪⎭⎫ ⎝⎛∂∂−⎪⎪⎭⎫ ⎝⎛∂∂=−⎰⎰⎰⎰∆+∆+η 将()()2)(PE e uu uu uu +=, ()()()2P W w uu uu uu +=,()n PN n y u u y u δ−=⎪⎪⎭⎫ ⎝⎛∂∂,()sSP s y u u y u δ−=⎪⎪⎭⎫ ⎝⎛∂∂。

y y y s n ∆==)()(δδ 带入,得:xdt y u u u ydt uu uu t t t S P N tt tW E ∆∆+−=∆⎥⎦⎤⎢⎣⎡−⎰⎰∆+∆+]2[22)()(η t x yu u u t y uu uu tSt P t N t W t E ∆∆∆+−=∆∆−222)()(η整理得离散方程为:()()0242=∆−+−∆−yu u u xuu uu t P t S t N tWt E η2—3:解:由2221()u 2u u ux x y η∂∂∂===∂∂∂得:原方程的守恒形式为: 222()2u ux yη∂∂=∂∂ 对方程两端在t ∆时间间隔内对其控制容积积分,把可积的部分积出后得:22()t tsne wtu u dtdy +∆−⎰⎰= 2t te wtn s u u dtdx y y η+∆⎡⎤⎛⎫⎛⎫∂∂−⎢⎥ ⎪ ⎪∂∂⎝⎭⎝⎭⎣⎦⎰⎰选定2u 随y 而变化的型线,这里取为阶梯式,即在控制容积内沿y 方向不变,则2222()=y ()t tt ts ne we w ttu u dtdy u u dt +∆+∆−∆−⎰⎰⎰选定2u 随t 而变化的规律,这里采用阶梯式显式,则22()t tewty u u dt +∆∆−⎰= ()()22t t e w u u t y ⎡⎤−∆∆⎢⎥⎣⎦选定uy∂∂随x 而变化的型线,这里取为阶梯式,即在控制容积内沿x 方向不变,则22t tt t e wtt n s n s u u u u dtdx x dt y y y y ηη+∆+∆⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂∂−=∆−⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎰⎰⎰ 选定uy∂∂随t 而变化的规律,这里采用阶梯显式,则 2t ttn s u u x dt y y η+∆⎡⎤⎛⎫⎛⎫∂∂∆−⎢⎥ ⎪ ⎪∂∂⎝⎭⎝⎭⎣⎦⎰= 2t t n s u u t x y y η⎡⎤⎛⎫⎛⎫∂∂−∆∆⎢⎥ ⎪ ⎪∂∂⎢⎥⎝⎭⎝⎭⎣⎦进一步选取u 随x,y 分段线性变化,则2222E Pe u u u += , 222w 2W P u u u +=()nt PtN ty uu y u δ−=⎪⎪⎭⎫ ⎝⎛∂∂n , ()stSt p ts y u u y u δ−=⎪⎪⎭⎫ ⎝⎛∂∂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于不规则程度较轻的情形,不失为一种实用方法。
2) 特殊正交曲线坐标系
现有14种正交曲线坐标系,可以用来求解部分与 该坐标系相适应的不规则区域。
7/82
采用椭圆坐标系计算 椭圆管内的流动与换 热。
采用双极坐标系计算 偏心环形夹层内的流 动与换热。
3) 组合网格(块结构化网格)
对于不同块上的区域各自采用合适的网格,不同块
间对应关系的方法。 3. 微分方程法 (PDE method)
通过求解微分方程来建立计算平面与物理平面上 节点间对应关系的方法。按所求解的微分方程的类 型,分为采用双曲型方程,抛物型方程和椭圆型方程 三类。
15/82
10.2.4 对适体坐标系生成网格的要求 1. 两个平面上网格节点间要一一对应; 2. 物理平面上网格节点的疏密要易于控制; 3. 物理平面上网格线要尽量与与边界正交。
的网格之间需要在分界面上进行信息的交换与传递;数 学上称为分区算法 (Domain decomposition method)。
8/82
网格线连续,
可整求解
网格线不连续
应用举例
9/82
4) 适体坐标系
计算区域边界与网格的等值线相适应的坐标系, 采用数值方法生成这种坐标系是本章讨论重点。
2. 非结构化网格 (unstructured grid)
11/82
10.2 适体坐标方法概述
10.2.1 用适体坐标系求解物理问题的基本思想
1.在进行物理问题的数值计算时最理想的坐标系是坐 标轴与计算区域边界完全相适应的坐标系,称为适体 坐标系(body-fitted coordinates):直角坐标系是矩 形区域的适体坐标系;极坐标是圆环的适体坐标系。 2.数学上已经发展出来的正交曲线坐标系,满足不了 千变万化的工程实际需要,因此采用人工方法来建立 与计算区域边界相适应的坐标系,是网格生成技术的 主要研究内容。
12/82
10.2.2 用适体坐标系为什么能使计算区域简化 1.设已经在直角坐标系x-y中建立了一个适体坐标系,
记为 ξ −η ; 2.将 ξ −η 看成是计算平面上一个直角坐标的两个
轴,则物理平面的不规则计算区域立即转换为计算平 面的矩形区域;
13/82
3.规定计算平面上网格永远均匀划分,只要给定节点 数目可以立即得出计算平面上的网格; 4.先在计算平面上进行求解,获得收敛的解后再将结 果传递到物理平面上,这样就使求解区域简化。
5.为了将求解结果传递到物 理平面上,需要获得计算平 面与物理平面节点间的对应 关系;所谓网格生成技术主 要就是指已知计算平面上的
(ξ ,η) 获取物理平面上相应 的 (x, y)的过程。
14/82
10.2.3 生成适体坐标系的常用方法
1.保角变换法 (conforming mapping)
2.代数法 (algebraic method) 利用代数方法来建立计算平面与物理平面上节点
节点间没有固定的规则 予以联系,因此需要存节点 间储联系的信息;适合求解 不规则区域问题,但计算工 作量大。
10/82
10.2 适体坐标方法概述 10.2.1 用适体坐标系求解物理问题的基本思想
10.2.2 用适体坐标系为什么能使计算区域简化 10.2.3 生成适体坐标系的常用方法 10.2.4 对适体坐标系生成网格的要求 10.2.5 用适体坐标系求解物理问题的基本步骤
数值传热学
第十章 网格生成技术
主讲
西安交通大学能源与动力工程学院 热流中心 CFD-NHT-EHT CENTER
2009年12月16日
1/82
第10章 网格生成技术 10.1 FDM,FVM 中处理不规则区域的方法 10.2 适体坐标方法概述 10.3 生成适体坐标的代数方程法 10.4 生成适体坐标的PDE方法 10.5 网格分布的控制 10.6 控制方程与边界条件的转换与离散 10.7 计算平面上的SIMPLE算法 10.8 计算结果的处理和算例
3/82
10.1 FDM,FVM 中处理不规则区域的方法 10.1.1 常用正交坐标系无法适应各种复的杂区域
平面喷管 偏心圆环 集热器
外掠管束
4/82
10.1.2 FDM,FVM 中处理复杂计算区域的常用方法 1. 结构化网格(structured grid) 1) 区域扩充法
将不规则区域扩充为规则计算区域,用阶梯型曲 线逼近实际的不规则边界,采用常规坐标系计算。 (1) 流场计算 (a)令扩充区边界B-C-D-E上
u=v=0; (b)令扩充区内
η = 1025 ~ 1030; 5/82
(c) 界面扩散系数采用调和平均。 (2) 温度场计算 (a)第一类边界条件(且温度均匀)-方法同流场:
扩充区 λ = 1025 ~ 1030 , 边界温度为给定值;
(b)第二,三类边界条件采用附加源项法
• 第二 类边界条件-给定热流密度分布(未必均匀)
ቤተ መጻሕፍቲ ባይዱ
对P控制容积引入附加热流
SC ,ad
=
qief ΔVP
;
同时令扩充区 λ = 0
以阻止热量向外传导。
6/82
• 第三类边界条件-给定对流换热系数及周围流体温度
对P控制容积引入附加源项:
SC ,ad
=
ef ΔVP
Tf
1/ h +δ

;
Tf ,h
S P ,ad
=

ef ΔVP
1
1/ h +δ

;
同时令扩充区 λ = 0 ,以阻止热量向外传导。
2/82
10.1 FDM,FVM 中处理不规则区域的方法 10.1.1 常用正交坐标系无法适应各种复的杂区域 10.1.2 FDM,FVM 中处理复杂计算区域的常用方法 1. 结构化网格
1) 区域扩充法 2) 特殊正交曲线坐标系 3) 组合网格(块结构化网格) 4) 适体坐标系 2. 非结构化网格
10.2.5 用适体坐标系求解物理问题的基本步骤
1. 生成网格,即找出(ξ ,η) − (x, y) 的一一对应关系;
2. 将所研究问题的控制方程与边界条件从物理平面 转换到计算平面上; 3. 在计算平面上离散求解; 4. 将求解所得结果传递到物理平面上。
16/82
10.3 生成适体坐标的代数方程法 10.3.1 边界规范化方法 1. 二维渐扩喷管 2. 梯形封闭空腔 3. 偏心圆环 4. 一边不规则的平面通道 10.3.2 双边界法
相关文档
最新文档