卡尔曼滤波简介和实例讲解.
卡尔曼滤波算法计算温升
卡尔曼滤波算法计算温升摘要:一、引言二、卡尔曼滤波算法简介1.算法原理2.算法应用三、温升计算方法1.传统方法2.卡尔曼滤波算法在温升计算中的应用四、卡尔曼滤波算法在温升计算中的优势1.精度提高2.实时性增强3.抗干扰能力五、实例分析六、结论正文:一、引言随着科技的快速发展,对温度控制的精度要求越来越高。
在各种温度控制系统中,温升计算是一个重要环节。
传统的温升计算方法存在一定的局限性,如精度低、实时性差等。
为了提高温升计算的精度和实时性,本文将介绍一种应用于温升计算的卡尔曼滤波算法。
二、卡尔曼滤波算法简介1.算法原理卡尔曼滤波算法是一种线性最优递归滤波算法,它通过对系统状态的实时估计,不断更新预测值,从而达到提高精度、降低误差的目的。
2.算法应用卡尔曼滤波算法广泛应用于航空航天、通信、测量和控制等领域。
在温度控制系统中,利用卡尔曼滤波算法进行温升计算,可以有效提高计算精度。
三、温升计算方法1.传统方法传统温升计算方法主要依赖于实验数据和经验公式。
这种方法在一定范围内具有一定的可靠性,但存在精度低、实时性差等问题。
2.卡尔曼滤波算法在温升计算中的应用将卡尔曼滤波算法应用于温升计算,可以实时采集温度数据,并对数据进行处理和优化。
通过不断更新状态变量和预测值,提高温升计算的精度和实时性。
四、卡尔曼滤波算法在温升计算中的优势1.精度提高卡尔曼滤波算法在温升计算中,可以对系统状态进行实时估计,有效减小误差,提高计算精度。
2.实时性增强卡尔曼滤波算法具有较高的实时性,能够实时采集和处理温度数据,满足温度控制系统对实时性的要求。
3.抗干扰能力在复杂环境中,温度数据容易受到各种干扰。
卡尔曼滤波算法具有较强的抗干扰能力,能够有效滤除噪声,提高温升计算的准确性。
五、实例分析以某温度控制系统为例,将卡尔曼滤波算法应用于温升计算。
通过对比传统方法和卡尔曼滤波算法的结果,可以看出卡尔曼滤波算法在温升计算中的优势。
六、结论本文对卡尔曼滤波算法在温升计算中的应用进行了详细介绍。
卡尔曼滤波的原理与应用pdf
卡尔曼滤波的原理与应用一、什么是卡尔曼滤波卡尔曼滤波是一种用于估计系统状态的算法,其基本原理是将过去的观测结果与当前的测量值相结合,通过加权求和的方式进行状态估计,从而提高对系统状态的准确性和稳定性。
二、卡尔曼滤波的原理卡尔曼滤波的原理可以简单概括为以下几个步骤:1.初始化:初始状态估计值和协方差矩阵。
2.预测:使用系统模型进行状态的预测,同时更新预测的状态协方差矩阵。
3.更新:根据测量值,计算卡尔曼增益,更新状态估计值和协方差矩阵。
三、卡尔曼滤波的应用卡尔曼滤波在很多领域都有广泛的应用,下面列举了几个常见的应用场景:•导航系统:卡尔曼滤波可以用于航空器、汽车等导航系统中,实时估计和优化位置和速度等状态参数,提高导航的准确性。
•目标追踪:如在无人机、机器人等应用中,利用卡尔曼滤波可以对目标进行状态估计和跟踪,提高目标追踪的鲁棒性和准确性。
•信号处理:在雷达信号处理、语音识别等领域,可以利用卡尔曼滤波对信号进行滤波和估计,去除噪声和提取有效信息。
•金融预测:卡尔曼滤波可以应用于金融市场上的时间序列数据分析和预测,用于股价预测、交易策略优化等方面。
四、卡尔曼滤波的优点•适用于线性和高斯性:卡尔曼滤波适用于满足线性和高斯假设的系统,对于线性和高斯噪声的系统,卡尔曼滤波表现出色。
•递归性:卡尔曼滤波具有递归性质,即当前状态的估计值只依赖于上一时刻的状态估计值和当前的测量值,不需要保存全部历史数据,节省存储空间和计算时间。
•最优性:卡尔曼滤波可以依据系统模型和观测误差的统计特性,以最小均方差为目标,进行最优状态估计。
五、卡尔曼滤波的局限性•对线性和高斯假设敏感:对于非线性和非高斯的系统,卡尔曼滤波的性能会受到限制,可能会产生不理想的估计结果。
•模型误差敏感:卡尔曼滤波依赖于精确的系统模型和观测误差统计特性,如果模型不准确或者观测误差偏差较大,会导致估计结果的不准确性。
•计算要求较高:卡尔曼滤波中需要对矩阵进行运算,计算量较大,对于实时性要求较高的应用可能不适合。
控制系统卡尔曼滤波
控制系统卡尔曼滤波卡尔曼滤波(Kalman filter)是一种经典的状态估计技术,在控制系统中拥有广泛应用。
本文将介绍控制系统中卡尔曼滤波的基本原理、算法流程以及应用实例。
一、卡尔曼滤波的基本原理卡尔曼滤波是基于系统状态和测量数据之间的线性关系,通过递推的方式对系统的状态进行估计。
其基本原理包括两个方面:状态预测和测量更新。
1. 状态预测状态预测是指根据系统的状态方程和上一时刻的状态估计值,通过数学模型预测当前时刻的系统状态。
状态方程通常用线性动力学方程表示,可以描述系统在无外界干扰下的状态演化规律。
2. 测量更新测量更新是指根据系统的测量方程和当前时刻的测量数据,对系统的状态进行修正和更新。
测量方程通常用线性观测方程表示,可以将系统的状态转化为可观测的输出。
二、卡尔曼滤波的算法流程卡尔曼滤波的算法流程主要包括两个步骤:预测步骤和更新步骤。
1. 预测步骤在预测步骤中,通过系统状态方程和控制输入预测系统的状态。
预测的过程包括两个关键的计算:(1)状态预测:根据上一时刻的状态估计值和状态方程,计算当前时刻的状态预测值。
(2)状态协方差预测:根据上一时刻的状态协方差估计值、过程噪声协方差以及状态转移矩阵,计算当前时刻的状态协方差预测值。
2. 更新步骤在更新步骤中,通过测量方程和测量数据来修正和更新系统的状态。
更新的过程包括两个关键的计算:(1)卡尔曼增益计算:根据状态协方差预测值、测量噪声协方差以及测量矩阵,计算卡尔曼增益。
(2)状态估计更新:根据卡尔曼增益、状态预测值和测量残差,计算当前时刻的状态估计值和状态协方差估计值。
三、卡尔曼滤波的应用实例卡尔曼滤波在控制系统中具有广泛的应用,下面将通过一个实际的应用实例来说明其效果。
假设有一个飞行器,通过激光雷达测量距离来估计飞行器与目标之间的距离。
然而,由于环境噪声和测量误差的存在,测量数据会受到一定程度的扰动。
在这个实例中,我们可以使用卡尔曼滤波来对飞行器与目标之间的距离进行估计。
卡尔曼滤波应用实例
卡尔曼滤波应用实例1. 介绍卡尔曼滤波是一种状态变量滤波技术,又称为按时间顺序处理信息的最优滤波。
最初,它是由罗伯特·卡尔曼(Robert Kalman)在国防领域开发的。
卡尔曼滤波是机器人领域中常用的滤波技术,用于估计变量,如机器人位置,轨迹,速度和加速度这些有不确定性的变量。
它利用一组测量值,通过机器学习的形式来观察目标,以生成模糊的概念模型。
2. 应用实例(1) 航迹跟踪:使用卡尔曼滤波可以进行航迹跟踪,这是一种有效的状态估计技术,可以处理带有动态噪声的状态变量跟踪问题。
它能够在航迹跟踪中进行有效的参数估计,而不受环境中持续噪声(如气动噪声)的影响。
(2) 模糊控制:模糊控制是控制系统设计中的一种重要方法,可用于解决动态非线性系统的控制问题。
卡尔曼滤波可用于控制模糊逻辑的控制政策估计。
它能够以更低的复杂性和高的控制精度来解决非线性控制问题,是一种高度有效的模糊控制方法(3) 定位和导航:使用卡尔曼滤波,可以实现准确的定位和导航,因为它可以将具有不确定性的位置信息转换为准确可信的信息。
这对于记录机器人的行走路径和定位非常重要,例如机器人搜索和地图构建中可以使用卡尔曼滤波来实现准确的定位和导航。
3. 结论从上文可以看出,卡尔曼滤波是一种非常强大的滤波技术,可以有效地解决各种由动态噪声引起的复杂问题。
它能够有效地解决估计(如机器人的位置和轨迹),控制(模糊控制)和定位(定位和导航)方面的问题。
而且,卡尔曼滤波技术具有计算速度快,参数估计效果好,能有效弥补传感器误差,还能够避免滤波状态混淆,精度较高等特点,可以在很多领域中广泛应用。
卡尔曼滤波及其应用
卡尔曼滤波及其应用在现代科学技术中,卡尔曼滤波已经成为了非常重要的一种估计算法,被广泛应用于各种领域。
本文将介绍卡尔曼滤波的原理及其在实际中的应用。
一、卡尔曼滤波的原理卡尔曼滤波最初是由美国数学家卡尔曼(R.E.Kalman)在1960年提出的一种状态估计算法,用于估计动态系统中某一参数的状态。
该算法基于传感器采集的实际数据,通过数学模型来估计一个已知的状态变量,同时也通过统计学方法进行补偿,使得所估计的状态变量更加接近真实值。
卡尔曼滤波的主要思想是:首先对系统的状态变化进行建模,并运用贝叶斯原理,将观测数据和模型预测进行加权平均,得到对当前状态变量的最优估计值。
该算法适用于动态系统中的状态变量为连续变化的情况下,能够快速稳定地对状态变量进行估计,从而达到优化系统性能的目的。
二、卡尔曼滤波的应用卡尔曼滤波在实际中的应用非常广泛,下面将介绍其几个经典的应用案例。
1、导航和控制卡尔曼滤波在导航和控制中的应用非常常见,尤其是在航空航天、船舶、汽车和无人机等领域。
通过卡尔曼滤波算法,可以把传感器收集到的数据进行滤波处理,从而提高定位精度和控制性能,实现更加准确和稳定的导航和控制。
2、图像处理卡尔曼滤波也可以用于图像处理中,如追踪系统、视频稳定、去噪和分割等。
通过卡尔曼滤波算法,可以对传感器的噪声和干扰进行有效削弱,从而提高图像的质量和分辨率。
3、机器人技术在机器人技术中,卡尔曼滤波可以用于机器人的运动控制和姿态估计,以及机器人的感知和决策等领域。
通过卡尔曼滤波算法,可以对机器人的位置、速度和加速度等参数进行实时估计和精确控制,从而提高机器人的自主性和灵活性。
三、结语卡尔曼滤波作为一种状态估计算法,已经成为了现代科学技术不可或缺的一部分。
通过卡尔曼滤波算法,在实际应用中可以有效地处理系统中的各种噪声和干扰,实现更加准确和稳定的状态估计。
相信在未来的科学技术领域中,卡尔曼滤波还将发挥更加重要的作用。
卡尔曼滤波详解一维卡尔曼滤波实例解析(五个公式以及各个参数的意义)
卡尔曼滤波详解一维卡尔曼滤波实例解析(五个公式以及各个参数的意义)一、问题描述假设我们有一个一维系统,我们想要估计这个系统的状态x。
我们可以通过一维传感器获得关于这个系统的观测z,但是这个观测会存在误差。
二、基本原理三、基本公式1.状态预测:我们首先假设系统可以通过一个线性方程来描述:x(k)=Ax(k-1)+B(u(k))+w(k),其中x(k)代表系统在时刻k的真实状态,A是系统的状态转移矩阵,B是外部输入的影响矩阵,u(k)是外部输入,w(k)是系统状态预测过程中的噪声。
2.状态协方差预测:卡尔曼滤波同时也需要估计状态的不确定性,即状态协方差。
协方差可以通过以下公式进行预测:P(k)=AP(k-1)A^T+Q(k-1),其中P(k)代表状态协方差矩阵,Q(k-1)是协方差预测过程中的噪声。
3.观测预测:将状态的估计值带入观测模型中,可以预测观测值:z^(k)=Hx^(k),其中z^(k)代表预测的观测值,x^(k)代表状态的估计值,H是观测模型矩阵。
4.观测残差:观测残差即观测值与预测观测值之间的差异:y(k)=z(k)-z^(k),其中y(k)代表观测残差。
5.状态更新:基于观测残差,我们可以通过以下公式更新状态的估计值:x(k)=x^(k)+K(k)y(k),其中K(k)代表卡尔曼增益。
卡尔曼增益可以通过以下公式计算:K(k)=P(k)H^T(HP(k)H^T+R)^-1,其中R为观测噪声的方差。
四、参数含义1.状态转移矩阵A:描述系统状态k与状态k-1之间的转移关系。
2.外部输入矩阵B:外部输入对系统状态的影响矩阵。
3.外部输入u(k):外部输入,可以是控制信号或者测量噪声。
4.状态预测噪声w(k):在状态预测过程中引入的噪声。
5.状态协方差矩阵P:表示状态估计的不确定性,协方差矩阵的对角线上的元素越大,状态的不确定性越大。
6.状态协方差预测噪声Q(k):在状态协方差预测过程中引入的噪声。
卡尔曼滤波方法资料课件
线性最小方差估计方法的优 点
适用于线性系统状态估计,计算量较小,易于实现。
线性最小方差估计方法的 缺点
对非线性系统效果不佳,需要先验知识或模 型参数。
04
卡尔曼滤波方法的实现 和应用案例
卡尔曼滤波方法的软件实现
软件平台
可以使用Python、C、Matlab等编程语言实现卡尔曼滤波算法。
卡尔曼滤波方法在控制系统中的应用案例
应用场景
卡尔曼滤波方法在控制系统中主要用于估计系统的状态变量。
案例分析
通过实际控制系统的数据和实验,验证卡尔曼滤波方法在控制系统中的可行性和稳定性。
卡尔曼滤波方法在雷达系统中的应用案例
应用场景
卡尔曼滤波方法在雷达系统中主要用于 目标跟踪和运动参数估计。
VS
案例分析
卡尔曼滤波方法的基本概念和原理
基本概念
卡尔曼滤波方法是一种递归估计方法,通过建立状态方程和观测方程,对系统状态进行最优估计。
原理
卡尔曼滤波方法基于最小均方误差准则,通过不断更新估计值来逼近真实值,具有计算量小、实时性 强的优点。
卡尔曼滤波方法的应用领域
机器人
用于机器人的定位、路径规划、 避障等。
描述系统状态和观测之间的关系。
定义初始状态和误差协方差
02
确定系统初始状态和误差协方差的估计值,为后续的滤波过程
提供初始条件。
选择合适的模型参数
03
根据实际情况选择合适的模型参数,如系统动态参数、观测参
数等,以更好地描述系统特性。
预测步骤
01
根据上一时刻的状态和误差协方 差,预测当前时刻的系统状态和 误差协方差。
卡尔曼滤波简介和实例讲解
卡尔曼,美国数学家和电气工程师。
1930年5月 19日生于匈牙利首都布达佩斯。
1953年在美国麻省理工学院毕业获理学士学位,1954年获理学硕士学位,1957年在哥伦比亚大学获科学博士学位。
1957~1958年在国际商业机器公司(IBM)研究大系统计算机控制的数学问题。
1958~1964年在巴尔的摩高级研究院研究控制和数学问题。
1964~1971年到斯坦福大学任教授。
1971年任佛罗里达大学数学系统理论研究中心主任,并兼任苏黎世的瑞士联邦高等工业学校教授。
1960年卡尔曼因提出著名的卡尔曼滤波器而闻名于世。
卡尔曼滤波器在随机序列估计、空间技术、工程系统辨识和经济系统建模等方面有许多重要应用。
1960年卡尔曼还提出能控性的概念。
能控性是控制系统的研究和实现的基本概念,在最优控制理论、稳定性理论和网络理论中起着重要作用。
卡尔曼还利用对偶原理导出能观测性概念,并在数学上证明了卡尔曼滤波理论与最优控制理论对偶。
为此获电气与电子工程师学会(IEEE)的最高奖──荣誉奖章。
卡尔曼著有《数学系统概论》(1968)等书。
什么是卡尔曼滤波最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。
从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。
为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。
卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。
它适合于实时处理和计算机运算。
卡尔曼滤波的实质是由量测值重构系统的状态向量。
它以“预测—实测—修正”的顺序递推,根据系统的量测值来消除随机干扰,再现系统的状态,或根据系统的量测值从被污染的系统中恢复系统的本来面目。
卡尔曼滤波器弹簧实例
卡尔曼滤波器弹簧实例概述:卡尔曼滤波器是一个强大的工具,用于各种领域,包括工程,机器人和金融,估计基于噪声测量系统的状态。
在本文中,我们将探讨在弹簧系统中使用卡尔曼滤波器的一个实际例子。
我们将讨论卡尔曼滤波器的基本原理,它在弹簧系统中的应用,以及它在精确状态估计和降噪方面提供的好处。
身体:1. 卡尔曼滤波器简介:1.1卡尔曼滤波是一种基于一系列测量估计动态系统状态的递归算法。
它考虑了系统的动力学和测量中存在的噪声,以提供对真实状态的最佳估计。
1.2滤波主要包括两个步骤:预测步骤和更新步骤。
在预测步骤中,过滤器使用系统的动态模型根据先前的状态估计来预测下一个状态。
在更新步骤中,滤波器引入新的测量值来纠正状态估计并减少噪声的影响。
2. 卡尔曼滤波在弹簧系统中的应用2.1考虑一个弹簧-质量-阻尼器系统,其中一个质量连接在弹簧和阻尼器上。
目标是基于对其位置的噪声测量来估计质量的位置和速度。
2.2在本例中,卡尔曼滤波器可用于通过结合弹簧-质量-阻尼系统的动力学和位置的噪声测量来估计质量的状态。
2.3系统的动力学可以用一组线性方程来描述,可以作为卡尔曼滤波中的系统模型。
位置的测量值可以作为滤波器中的观测值。
2.4通过使用卡尔曼滤波方程迭代更新状态估计,即使在存在测量噪声的情况下,滤波器也可以提供对质量位置和速度的准确估计。
3. 在弹簧系统中使用卡尔曼滤波器的好处:3.1准确的状态估计:卡尔曼滤波同时考虑了系统动力学和测量噪声,以提供对真实状态的最优估计。
这允许准确估计的位置和速度的质量在弹簧系统中,即使在存在噪声。
3.2降噪:卡尔曼滤波器旨在通过结合测量和系统动力学来降低测量噪声的影响。
它使用预测状态和测量值的加权平均值来更新状态估计,赋予具有较低噪声的分量更多的权重。
这就产生了受测量中存在的噪声影响较小的滤波估计。
3.3实时估计:卡尔曼滤波是一种递归算法,这意味着它可以在新的测量值可用时实时更新状态估计。
卡尔曼滤波原理及应用
卡尔曼滤波原理及应用
卡尔曼滤波是一种用于估计系统状态的有效方法,它可以通过对系统的动态模型和测量数据进行融合,提供对系统状态的最优估计。
本文将介绍卡尔曼滤波的基本原理和其在实际应用中的一些案例。
首先,我们来了解一下卡尔曼滤波的基本原理。
卡尔曼滤波是一种递归算法,它通过不断地更新状态估计和协方差矩阵来提供对系统状态的最优估计。
其核心思想是利用系统的动态模型和测量数据,通过加权融合的方式来不断修正对系统状态的估计,从而实现对系统状态的准确跟踪。
在实际应用中,卡尔曼滤波被广泛应用于导航、目标跟踪、信号处理等领域。
以导航为例,卡尔曼滤波可以通过融合GPS测量数据和惯性测量数据,提供对车辆位置和速度的准确估计,从而实现精准导航。
在目标跟踪领域,卡尔曼滤波可以通过融合雷达测量数据和视觉测量数据,提供对目标位置和速度的最优估计,从而实现对目标的准确跟踪。
除了上述应用之外,卡尔曼滤波还被广泛应用于信号处理领域。
例如,在通信系统中,卡尔曼滤波可以通过融合接收信号和信道模型,提供对信号的最优估计,从而实现对信号的准确恢复。
在图像处理领域,卡尔曼滤波可以通过融合不同时间点的图像信息,提供对目标位置和运动轨迹的最优估计,从而实现对目标的准确跟踪。
总的来说,卡尔曼滤波是一种非常有效的状态估计方法,它通过对系统的动态模型和测量数据进行融合,提供对系统状态的最优估计。
在实际应用中,卡尔曼滤波被广泛应用于导航、目标跟踪、信号处理等领域,为这些领域的应用提供了重要的技术支持。
希望本文能够帮助读者更好地理解卡尔曼滤波的原理和应用,并为相关领域的研究和应用提供一些参考。
卡尔曼滤波 例子
卡尔曼滤波例子
卡尔曼滤波是一种数学优化算法,用于估计一个系统的状态。
它通过递归地更新估计状态的值来工作,考虑了测量误差和估计误差。
下面是一个简单的例子来说明卡尔曼滤波的工作原理:
假设我们有一个系统,其状态由一个标量变量表示,例如飞机的位置。
我们有一些测量数据,这些数据是实际位置的观测值,但可能包含噪声。
我们的目标是使用卡尔曼滤波来估计飞机的实际位置。
1. 初始化:设置初始状态估计值(例如,飞机的初始位置)和初始误差协方差矩阵。
2. 预测:基于上一步的估计值和系统模型(例如,飞机的运动方程),预测下一步的状态。
这包括状态变量的预测值和误差协方差矩阵。
3. 更新:比较预测值和实际测量值。
根据这些差异,更新状态估计值和误差协方差矩阵。
4. 重复:重复步骤2和3,直到达到终止条件(例如,达到足够精确的估计或达到特定的迭代次数)。
这个过程可以用图形表示为一个流程图,其中每个步骤都有相应的数学公式来描述。
卡尔曼滤波的一个关键优势是它只需要当前和上一个测量值的噪声协方差矩阵,而不是整
个测量数据集。
这使得卡尔曼滤波在实时应用中非常有用,因为它可以快速地处理新的测量数据,而不需要大量的计算或存储资源。
《卡尔曼滤波介绍》课件
卡尔曼滤波的原理和基本公式
卡尔曼滤波基于贝叶斯推理,通过使用状态方程和测量方程来递归地更新状态估计。 核心公式包括预测步骤的状态预测和协方差预测,以及更新步骤的卡尔曼增益、状态更新和协方差更新。
针对非线性系统,设计扩展卡尔 曼滤波、粒子滤波等非线性滤波 算法。
传感器融合
结合多个传感器信息,使用卡尔 曼滤波进行融合估计,提高系统 性能。
结论和总结
卡尔曼滤波是一种强大而灵活的状态估计算法,应用广泛且效果显著。通过 深入理解其原理和应用,我们能更好地运用卡尔曼滤波解决实际问题。
希望本课件能够帮助您更好地理解和应用卡尔曼滤波,提升您的技术和研究 能力。
《卡尔曼滤波介绍》PPT 课件
卡尔曼滤波是一种用于估计线性动态系统状态的优秀算法。本课件将深入介 绍卡尔曼滤波的定义、原理和应用领域,以及其优缺点和改进方法。
卡尔曼滤波的定义和背景
卡尔曼滤波是一种基于数学模型的状态估计方法,用于预测和跟踪系统状态。 它通过融合传感器测量和系统模型,对系统状态进行优化估计。
1 优点
高效准确:卡尔曼滤波在噪声环境下具有很 好的估计性能。
3 缺点
对线性系统假设:卡尔曼滤波假设系统和观 测模型为线性,不适用于非线性系统。
2
适用范围广:卡尔曼滤波可应用于多个领域 的状态估计问题。
4
对初始条件敏感:卡尔曼滤波对初始状态估 计的准确性较为敏感。
卡尔曼滤波的实际案例和效果评估
1
案例1:目标跟踪
将卡尔曼滤波应用于视频中的目标跟踪,
案例2:机器人导航
《卡尔曼滤波》课件
3
无迹卡尔曼滤波线性系统的 估计。
卡尔曼滤波的应用案例
飞行器姿态估计
卡尔曼滤波在航空领域中被广泛应用于飞行器姿态估计,用于提高飞行器的稳定性和导航准 确性。
目标跟踪
卡尔曼滤波可用于跟踪移动目标的位置和速度,常见于机器人导航和视频监控等领域。
3 卡尔曼滤波的应用领
域
卡尔曼滤波被广泛应用于 航空航天、机器人、金融 等领域,用于提高系统的 状态估计精度。
卡尔曼滤波的数学模型
状态空间模型
卡尔曼滤波使用状态 空间模型表示系统的 状态和观测值之间的 关系,包括状态方程 和测量方程。
测量方程
测量方程描述观测值 与系统状态之间的关 系,用于将观测值纳 入到状态估计中。
了解更多关于卡尔曼滤波的内容和应用,推荐文献、学术论文和在线课程等资源。
《卡尔曼滤波》PPT课件
卡尔曼滤波是一种优秀的状态估计方法,被广泛用于目标跟踪、姿态估计和 股票预测等领域。
介绍卡尔曼滤波
1 什么是卡尔曼滤波?
卡尔曼滤波是一种递归状 态估计算法,用于通过系 统模型和测量信息估计系 统状态。
2 卡尔曼滤波的基本原
理
卡尔曼滤波基于贝叶斯估 计理论,通过最小化估计 误差的均方差来优化状态 估计。
股票预测
卡尔曼滤波可以应用于股票市场,通过对历史数据进行分析和预测,提供股票价格的预测和 趋势分析。
卡尔曼滤波的优化算法
粒子滤波
粒子滤波是一种基于蒙特卡洛 方法的状态估计算法,适用于 非线性和非高斯系统,提供更 广泛的估计能力。
自适应滤波
自适应滤波是一种根据系统的 特点自动调整滤波参数的方法, 提供更好的适应性和鲁棒性。
非线性滤波
非线性滤波是对卡尔曼滤波算 法的改进,用于处理非线性系 统和测量模型,提供更准确的 状态估计。
卡尔曼(Kalman)滤波
第4章 卡尔曼(Kalman )滤波卡尔曼滤波的思想是把动态系统表示成状态空间形式,是一种连续修正系统的线性投影算法。
功能 1) 连续修正系统的线性投影算法。
2)用于计算高斯ARMA 过程的精确有限样本预测和精确的似然函数。
3) 分解矩阵自协方差生成函数或谱密度。
4)估计系数随时间变化的向量自回归。
第一节 动态系统的状态空间表示一.假设条件令t y 表示时期t 观察到变量的一个()1n ×向量。
则t y 的动态可以用不可观测的()1r ×向量t ξ来表示,t ξ为状态向量。
t y 的动态系统可以表示为如下的状态空间模型:11t t t F v ξξ++=+ (1)t t t t y A x H w ξ′′=++ (2)其中′′F,A ,H 分别为()r r ×,()n k ×和()n r ×矩阵,t x 是外生变量或前定变量的()1k ×向量。
方程(1)称为状态方程,方程(2)称为观察方程。
其中()1r ×向量t v 和()1n ×向量t w 为向量白噪声:()()00t t Qt E v v t R t E w w t ττττττ=⎧′=⎨≠⎩=⎧′=⎨≠⎩ (3)其中,Q R 为()(),r r n n ××矩阵。
假定扰动项t v 和t w 在所有阶滞后都不相关:()0t t E v w ′= 对所有的t 和τ (4)t x 为前定或外生变量,意味着对0,1,2,....,s =除包含在121,,...,t t y y y −−之内的信息外,t x 不再能提供关于t s ξ+以及t s w +的任何信息。
即t x 可能包含y 的滞后值或所有与τ、τξ和w τ不相关变量。
状态空间系统描述有限观察值序列{}1,...,T y y ,需要知道状态向量的初始值1ξ,根据状态方程(1),t ξ可写作()123,,,...,t v v v ξ的线性函数: 2211221....t t t t t t v Fv F v F v F ξξ−−−−=+++++ 2,3,...,t T = (5)这里假定1ξ与t v 和t w 的任何实现都不相关:()()1101,2,...,01,2,...,t t E v TE w Tξτξτ′==′== (6)根据(3)和(6),得t v 和ξ的滞后值不相关:()0t E v τξ′= 1,2,...,1t t τ=−− (7) ()0t E w τξ′= 1,2,...,T τ= (8) ()()()0t t E w y E w A x H w ττττξ′′′=++= 1,2,...,1t t τ=−− (9) ()0t E v y τ′= 1,2,...,1t t τ=−− (10)二.状态空间系统的例子例1 ()AR p 过程,()()()112111...t t t p t p t y y y y µφµφµφµε+−−++−=−+−++−+ (11)()2t t E t τστεετ⎧==⎨≠⎩ (12) 可以写作状态空间形式。
卡尔曼滤波算法示例解析与公式推导
本文将对卡尔曼滤波算法进行示例解析与公式推导,帮助读者更好地理解该算法的原理和应用。
文章将从以下几个方面展开:一、卡尔曼滤波算法的概念卡尔曼滤波算法是一种用于估计动态系统状态的线性无偏最优滤波算法。
它利用系统的动态模型和观测数据,通过迭代更新状态估计值,实现对系统状态的精确估计。
卡尔曼滤波算法最初是由美国工程师鲁道夫·卡尔曼在20世纪60年代提出,随后得到了广泛的应用和研究。
二、卡尔曼滤波算法的原理1. 状态空间模型在卡尔曼滤波算法中,系统的动态模型通常用状态空间模型表示。
状态空间模型由状态方程和观测方程组成,其中状态方程描述系统的演化规律,观测方程描述观测数据与状态之间的关系。
通过状态空间模型,可以对系统的状态进行预测,并与观测数据进行融合,从而估计系统的状态。
2. 卡尔曼滤波的预测与更新卡尔曼滤波算法以预测-更新的方式进行状态估计。
在预测阶段,利用系统的动态模型和之前时刻的状态估计值,对当前时刻的状态进行预测;在更新阶段,将预测值与观测数据进行融合,得到最优的状态估计值。
通过迭代更新,可以不断优化对系统状态的估计,实现对系统状态的精确跟踪。
三、卡尔曼滤波算法的示例解析以下通过一个简单的例子,对卡尔曼滤波算法进行具体的示例解析,帮助读者更好地理解该算法的应用过程。
假设有一个匀速直线运动的物体,其位置由x和y坐标表示,观测到的位置数据带有高斯噪声。
我们希望利用卡尔曼滤波算法对该物体的位置进行估计。
1. 状态空间模型的建立我们建立物体位置的状态空间模型。
假设物体在x和y方向上的位置分别由状态变量x和y表示,动态模型可以用如下状态方程描述:x(k+1) = x(k) + vx(k) * dty(k+1) = y(k) + vy(k) * dt其中,vx和vy分别为x和y方向的速度,dt表示时间间隔。
观测方程可以用如下形式表示:z(k) = H * x(k) + w(k)其中,z(k)为观测到的位置数据,H为观测矩阵,w(k)为观测噪声。
卡尔曼滤波讲解
卡尔曼滤波器的简介
卡尔曼全名Rudolf Emil Kalman,匈牙利数学家, 1930年出生于匈牙利首都布达佩斯。1953, 1954年于麻省理工学院分别获得电机工程学士 及硕士学位。1957年于哥伦比亚大学获得博士 学位。我们现在要学习的卡尔曼滤波器,正是 源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。
y(k)是k时刻的测量值,
H是测量系统的参数,对于多测量系 统,H为矩阵。
系统噪声和测量噪声都是高斯分布的, q(k)和r(k)分别表示过程和测量的噪声。
协方差矩阵分别为Qk-1和Rk
他们被假设成高斯白噪声(White
Gaussian Noise),他们的covariance分
别是Q,R(这里我们假设他们不随
扩展Kalman滤波算法(EKF)
假定定位跟踪问题的非线性状态方程和测量方程如下:
X f (X ) W ...............(1)
k 1
k
k
Y h(X ) V ...................(.2)
k
k
k
在最近一次状态估计的时刻,对以上两式进行线性化处理,首先构造如 下2个矩阵:
卡尔曼滤波c语言姿态解算
卡尔曼滤波c语言姿态解算
摘要:
一、卡尔曼滤波简介
1.卡尔曼滤波的定义
2.卡尔曼滤波的应用领域
二、卡尔曼滤波的原理
1.卡尔曼滤波的基本思想
2.卡尔曼滤波的基本步骤
三、卡尔曼滤波在姿态解算中的应用
1.姿态解算的定义
2.姿态解算在导航系统中的重要性
3.卡尔曼滤波在姿态解算中的应用实例
四、卡尔曼滤波的C 语言实现
1.C 语言实现的基本步骤
2.C 语言实现的注意事项
3.C 语言实现的示例代码
正文:
一、卡尔曼滤波简介
卡尔曼滤波是一种线性滤波方法,主要用于估计动态系统的状态。
该方法是由俄国数学家卡尔曼提出的,被广泛应用于航空航天、自动化控制、通信、计算机等领域。
二、卡尔曼滤波的原理
卡尔曼滤波的基本思想是在系统的观测数据中,通过加权最小二乘法来估计系统的状态。
其基本步骤包括:
1.建立系统状态的数学模型
2.计算系统的观测值
3.构造卡尔曼增益公式
4.更新系统状态的估计值
三、卡尔曼滤波在姿态解算中的应用
姿态解算是指通过测量和计算,确定飞行器或其他运动物体的姿态参数,如位置、速度、加速度等。
在导航系统中,姿态解算是非常重要的一个环节。
卡尔曼滤波应用实例
卡尔曼滤波应用实例卡尔曼滤波(KalmanFiltering)是一种状态估计方法,主要应用于定位、导航、目标跟踪以及模式识别等技术中。
它可以用来估计未知系统或过程的状态,也可以将一个测量值序列转换成更准确的状态序列,以消除噪声对测量结果的影响。
卡尔曼滤波是一种概率算法,它以一种可以提供模型描述的方式来估计状态变量的未知过程。
它的主要思想是,当一次测量值被收集后,将其与历史测量值进行比较,根据观测序列和模型参数,使用最优状态估计方法来更新状态估计器的预测数据。
卡尔曼滤波的应用实例非常多,下面将介绍其在定位、导航、目标跟踪以及模式识别等领域中的典型应用实例。
1)定位:卡尔曼滤波在定位领域中最常用的是GPS定位。
GPS 是一种全球定位系统,它使用太空技术进行定位。
GPS定位系统使用微波载波技术来定位,用于计算两个位置之间的距离,然后根据计算出的距离和测量结果,使用卡尔曼滤波算法来估计当前位置。
2)导航:在航海导航领域,卡尔曼滤波算法可以应用于军用导航系统中,以便将航行状态传递给其他航行设备,以及用于精细的航行定位、航迹计算和轨迹规划等。
3)目标跟踪:卡尔曼滤波在目标跟踪领域也得到广泛应用,它可以用来跟踪目标物体,如机器人、无人机、汽车等。
例如,可以使用卡尔曼滤波算法来跟踪机器人在空间中的位置,以及汽车在高速公路上行驶的轨迹。
4)模式识别:卡尔曼滤波还可以应用于模式识别领域,可以用来识别视觉系统中的图像模式,以及用于图像处理领域中的边缘检测和轮廓提取等。
以上是卡尔曼滤波在定位、导航、目标跟踪以及模式识别等领域中的应用实例,该算法在实际工程中得到了广泛应用,但也存在一些问题和缺陷,如对模型参数的依赖性太强、不适用于动态系统以及模型中噪声太多等问题。
因此,需要持续改进卡尔曼滤波的算法,以使其能够在更复杂的场景中得到更好的应用。
总之,卡尔曼滤波是一种广泛应用于定位、导航、目标跟踪以及模式识别等领域的优秀技术,它以一种可以提供模型描述的方式来估计状态变量的未知过程,在实际应用中发挥着巨大作用,但也需要不断完善和改进,以满足更多的需求。
卡尔曼滤波计算速度
卡尔曼滤波计算速度摘要:1.卡尔曼滤波简介2.卡尔曼滤波在计算速度优化中的应用3.卡尔曼滤波计算速度的优势4.提高卡尔曼滤波计算速度的方法5.总结正文:1.卡尔曼滤波简介卡尔曼滤波(Kalman filtering)是一种线性最优估计算法,主要用于实时估计动态系统的状态。
它是一种递归滤波算法,可以对系统的状态进行连续观测,并利用观测值对系统状态的估计值进行修正。
卡尔曼滤波广泛应用于导航定位、信号处理、机器人控制等领域。
2.卡尔曼滤波在计算速度优化中的应用在许多实时应用场景中,计算速度是关键因素。
例如,在自动驾驶、无人机导航等应用中,需要快速地处理大量传感器数据,并对系统状态进行实时估计。
卡尔曼滤波在计算速度优化方面具有显著优势,可以有效地提高实时系统的性能。
3.卡尔曼滤波计算速度的优势卡尔曼滤波计算速度的优势主要体现在以下几点:(1)递归计算:卡尔曼滤波采用递归计算方式,可以对系统状态进行实时估计,无需存储大量历史数据。
(2)线性化处理:卡尔曼滤波通过线性化处理,将非线性系统模型转化为线性模型,降低了计算复杂度。
(3)加权最小二乘法:卡尔曼滤波采用加权最小二乘法,可以有效地处理观测噪声和模型误差。
4.提高卡尔曼滤波计算速度的方法尽管卡尔曼滤波具有较高的计算速度,但在某些场景下,仍然需要进一步提高计算速度。
以下是一些提高卡尔曼滤波计算速度的方法:(1)并行计算:利用多核处理器或GPU 进行并行计算,可以显著提高卡尔曼滤波的计算速度。
(2)矩阵分解:使用矩阵分解方法,如奇异值分解(SVD)或QR 分解,可以降低卡尔曼滤波的计算复杂度。
(3)数值优化:采用数值优化方法,如牛顿法或梯度下降法,可以加速卡尔曼滤波的收敛速度。
5.总结总之,卡尔曼滤波在计算速度优化方面具有显著优势,广泛应用于实时系统领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卡尔曼,美国数学家和电气工程师。
1930年5月 19日生于匈牙利首都布达佩斯。
1953年在美国麻省理工学院毕业获理学士学位,1954年获理学硕士学位,1957年在哥伦比亚大学获科学博士学位。
1957~1958年在国际商业机器公司(IBM)研究大系统计算机控制的数学问题。
1958~1964年在巴尔的摩高级研究院研究控制和数学问题。
1964~1971年到斯坦福大学任教授。
1971年任佛罗里达大学数学系统理论研究中心主任,并兼任苏黎世的瑞士联邦高等工业学校教授。
1960年卡尔曼因提出著名的卡尔曼滤波器而闻名于世。
卡尔曼滤波器在随机序列估计、空间技术、工程系统辨识和经济系统建模等方面有许多重要应用。
1960年卡尔曼还提出能控性的概念。
能控性是控制系统的研究和实现的基本概念,在最优控制理论、稳定性理论和网络理论中起着重要作用。
卡尔曼还利用对偶原理导出能观测性概念,并在数学上证明了卡尔曼滤波理论与最优控制理论对偶。
为此获电气与电子工程师学会(IEEE)的最高奖──荣誉奖章。
卡尔曼著有《数学系统概论》(1968)等书。
什么是卡尔曼滤波最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。
从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。
为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。
卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。
它适合于实时处理和计算机运算。
卡尔曼滤波的实质是由量测值重构系统的状态向量。
它以“预测—实测—修正”的顺序递推,根据系统的量测值来消除随机干扰,再现系统的状态,或根据系统的量测值从被污染的系统中恢复系统的本来面目。
释文:卡尔曼滤波器是一种由卡尔曼(Kalman)提出的用于时变线性系统的递归滤波器。
这个系统可用包含正交状态变量的微分方程模型来描述,这种滤波器是将过去的测量估计误差合并到新的测量误差中来估计将来的误差。
卡尔曼滤波的应用斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器.卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器. 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表.目前,卡尔曼滤波已经有很多不同的实现.卡尔曼最初提出的形式现在一般称为简单卡尔曼滤波器.除此以外,还有施密特扩展滤波器,信息滤波器以及很多Bierman, Thornton 开发的平方根滤波器的变种.也行最常见的卡尔曼滤波器是锁相环,它在收音机,计算机和几乎任何视频或通讯设备中广泛存在.卡尔曼滤波的一个典型实例是从一组有限的,对物体位置的,包含噪声的观察序列预测出物体的坐标位置及速度. 在很多工程应用(雷达, 计算机视觉)中都可以找到它的身影. 同时,卡尔曼滤波也是控制理论以及控制系统工程中的一个重要话题.比如,在雷达中,人们感兴趣的是跟踪目标,但目标的位置,速度,加速度的测量值往往在任何时候都有噪声.卡尔曼滤波利用目标的动态信息,设法去掉噪声的影响,得到一个关于目标位置的好的估计。
这个估计可以是对当前目标位置的估计(滤波),也可以是对于将来位置的估计(预测),也可以是对过去位置的估计(插值或平滑).扩展卡尔曼滤波(EKF)EXTEND KALMAN FILTER扩展卡尔曼滤波器是由kalman filter考虑时间非线性的动态系统,常应用于目标跟踪系统。
卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器), 它能够从一系列的不完全包含噪声的测量(英文:measurement)中,估计动态系统的状态。
简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。
对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。
他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。
近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。
卡尔曼滤波的命名这种滤波方法以它的发明者鲁道夫.E.卡尔曼(Rudolf E. Kalman)命名. 虽然Peter Swerling实际上更早提出了一种类似的算法.卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。
1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。
1957年于哥伦比亚大学获得博士学位。
我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。
如果对这编论文有兴趣,可以到这里的地址下载:/~welch/kalman/media/pdf/Kalman1960.pdf卡尔曼滤波的应用斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器.卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器. 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表.目前,卡尔曼滤波已经有很多不同的实现.卡尔曼最初提出的形式现在一般称为简单卡尔曼滤波器.除此以外,还有施密特扩展滤波器,信息滤波器以及很多Bierman, Thornton 开发的平方根滤波器的变种.也行最常见的卡尔曼滤波器是锁相环,它在收音机,计算机和几乎任何视频或通讯设备中广泛存在.卡尔曼滤波的一个典型实例是从一组有限的,对物体位置的,包含噪声的观察序列预测出物体的坐标位置及速度. 在很多工程应用(雷达, 计算机视觉)中都可以找到它的身影. 同时,卡尔曼滤波也是控制理论以及控制系统工程中的一个重要话题.比如,在雷达中,人们感兴趣的是跟踪目标,但目标的位置,速度,加速度的测量值往往在任何时候都有噪声.卡尔曼滤波利用目标的动态信息,设法去掉噪声的影响,得到一个关于目标位置的好的估计。
这个估计可以是对当前目标位置的估计(滤波),也可以是对于将来位置的估计(预测),也可以是对过去位置的估计(插值或平滑).实例分析为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。
但是,他的5条公式是其核心内容。
结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。
在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。
假设我们要研究的对象是一个房间的温度。
根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。
假设你对你的经验不是100%的相信,可能会有上下偏差几度。
我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。
另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。
我们也把这些偏差看成是高斯白噪声。
好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。
下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。
假如我们要估算k时刻的是实际温度值。
首先你要根据k-1时刻的温度值,来预测k时刻的温度。
因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差(估计值误差)是3,你对自己预测的不确定度(预测误差)是4度,他们平方相加再开方,就是5)。
然后,你从温度计那里得到了k时刻的温度值(测量值),假设是25度,同时该值的偏差是4度(测量误差)。
由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。
究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的协方差(covariance)来判断。
因为Kg^2=5^2/(5^2+4^2),所以Kg=0.78,我们可以估算出k时刻的实际温度值是:23+0.78*(25-23)=24.56度。
可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。
现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。
到现在为止,好像还没看到什么自回归的东西出现。
对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。
算法如下:((1-Kg)*5^2)^0.5=2.35。
这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。
就是这样,卡尔曼滤波器就不断的把covariance递归,从而估算出最优的温度值。
他运行的很快,而且它只保留了上一时刻的covariance。
上面的Kg,就是卡尔曼增益(Kalman Gain)。
他可以随不同的时刻而改变他自己的值,是不是很神奇!在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。
跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人!卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。
1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。
1957年于哥伦比亚大学获得博士学位。
我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。
如果对这编论文有兴趣,可以到这里的地址下载:/~welch/kalman/media/pdf/Kalman1960.pdf简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。