北师大版九年级数学下册 同步练习题圆

合集下载

2022-2023学年北师大版九年级数学下册《3-6直线和圆的位置关系关系》同步练习题(附答案)

2022-2023学年北师大版九年级数学下册《3-6直线和圆的位置关系关系》同步练习题(附答案)

2022-2023学年北师大版九年级数学下册《3.6直线和圆的位置关系关系》同步练习题(附答案)一.选择题1.下列说法正确的是()A.三点确定一个圆B.任何三角形有且只有一个内切圆C.相等的圆心角所对的弧相等D.正多边形一定是中心对称图形2.如图,半⊙O的半径为2,点P是⊙O直径AB延长线上的一点,PT切⊙O于点T,M 是OP的中点,射线TM与半⊙O交于点C.若∠P=20°,则图中阴影部分面积为()A.1+B.1+C.2sin20°+D.3.如图,△ABC中,∠A=90°,AC=3,AB=4,半圆的圆心O在BC上,半圆与AB、AC分别相切于点D、E,则半圆的半径为()A.B.C.D.4.在Rt△ABC中,AB=6,BC=8,则这个三角形的内切圆的半径是()A.5B.2C.5或2D.2或﹣1 5.如图,⊙O的半径为4,A、B、C、D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH =30°时,PE+PF的值是()A.4B.2C.4D.值不确定6.如图,P A,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠P AO=∠PBO=90°B.OP平分∠APBC.P A=PB D.∠AOB=7.如图,在Rt△ABC中,AC⊥BC,过C作CD⊥AB,垂足为D,若AD=3,BC=2,则△ABC的内切圆的面积为()A.πB.(4﹣2)πC.()πD.2π8.已知:如图,AB是⊙O的直径,点P在BA的延长线上,弦CD交AB于E,连接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,过E作弦GF⊥BC交圆与G、F两点,连接CF、BG.则下列结论:①CD⊥AB;②PC是⊙O的切线;③OD∥GF;④弦CF的弦心距等于BG.则其中正确的是()A.①②④B.③④C.①②③D.①②③④9.如图将△ABC沿着直线DE折叠,点A恰好与△ABC的内心I重合,若∠DIB+∠EIC=195°,则∠BAC的大小是()A.40°B.50°C.60°D.70°10.如图:P A切⊙O于A,PB切⊙O于B,OP交⊙O于C,下列结论中错误的是()A.∠APO=∠BPO B.P A=PBC.AB⊥OP D.C是PO的中点二.填空题11.如图,P A,PB是⊙O的两条切线,切点分别为A,B.连接OA,OB,AB,PO,PO与AB交于点C.若∠APB=60°,OC=1,则△P AB的周长为.12.如图,正方形ABCD的边长为4,M为AB的中点,P是BC边上的动点,连接PM,以点P为圆心,PM长为半径作圆P,当圆P与正方形ABCD的边相切时,CP的长为.13.如图,AB是⊙O的直径,AD、BC是⊙O的切线,P是⊙O上一动点,若AD=3,AB =4,BC=6,则△PDC的面积的最小值是.14.已知正方形ABCD边长为2,DE与以AB的中点为圆心的圆相切交BC于点E,求三角形DEC的面积.15.平面直角坐标系xOy中,以O为圆心,1为半径画圆,平面内任意点P(m,n2﹣9),且实数m,n满足m﹣n2+5=0,过点P作⊙O的切线,切点为A,当P A长最小时,点P 到原点O的距离为.16.如图,I为△ABC的内心,有一直线经过点I且分别与AB、AC相交于点D、点E.若AD=DE=5,AE=6,则点I到BC的距离为.三.解答题17.如图,在四边形ABCD中,AB=AD,CB=CD,圆心在四边形对角线AC上的⊙O与CD边相切于点E.(1)求证:BC是ʘO的切线;(2)若O是AC的中点,点E是CD的中点,∠CAD=30°,⊙O的半径R=3,求CD 的长.18.已知:如图,AB是⊙O的直径,AB⊥AC,BC交⊙O于点D,点E是AC的中点,ED 与AB的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若∠F=30°,BF=2,求△ABC外接圆的半径.19.如图,△ABC内接于⊙O,AB是⊙O的直径,过⊙O外一点D作DG∥BC,DG交线段AC于点G,交AB于点E,交⊙O于点F,连接DB,CF,∠A=∠D.(1)求证:BD与⊙O相切;(2)若AE=OE,CF平分∠ACB,BD=12,求DE的长.20.△ABC内接于⊙O,∠BAC的平分线交⊙O于D,交BC于E(BE>EC),过点D作⊙O 的切线DF,交AB的延长线于F.(1)求证:DF∥BC;(2)连接OF,若tan∠BAC=,BD=,DF=8,求OF的长.21.如图,在Rt△ABC中,∠C=90°,在AC上取一点D,以AD为直径作⊙O,与AB 相交于点E,作线段BE的垂直平分线MN交BC于点N,连接EN.(1)求证:EN是⊙O的切线;(2)若AC=3,BC=4,⊙O的半径为1.求线段EN与线段AE的长.22.如图,AB、AC分别是半⊙O的直径和弦,OD⊥AC于点D,过点A作半⊙O的切线AP,AP与OD的延长线交于点P,连接PC并延长与AB的延长线交于点F.(1)求证:PC是半⊙O的切线;(2)若∠CAB=30°,AB=6,求由劣弧AC、线段AC所围成图形的面积S.23.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,D是的中点,DE⊥BC交BC 的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AB=10,BC=8,求BD的长.参考答案一.选择题1.解:A.不在同一条直线上的三个点确定一个圆,故A不符合题意;B.任何三角形有且只有一个内切圆,故B符合题意;C.在同圆或等圆中,相等的圆心角所对的弧相等,故C不符合题意;D.正多边形一定是轴对称图形,不一定是中心对称图形,故D不符合题意;故选:B.2.解:连接OT、OC,∵PT切⊙O于点T,∴∠OTP=90°,∵∠P=20°,∴∠POT=70°,∵M是OP的中点,∴TM=OM=PM,∴∠MTO=∠POT=70°,∵OT=OC,∴∠MTO=∠OCT=70°,∴∠TOC=180°﹣2×70°=40°,∴∠COM=30°,作CH⊥AP,垂足为H,则CH=OC=1,S阴影=S△AOC+S扇形OCB=+=1+,故选:A.3.解:连接OE,OD,∵圆O切AC于E,圆O切AB于D,∴∠OEA=∠ODA=90°,∵∠A=90°,∴∠A=∠ODA=∠OEA=90°,∵OE=OD,∴四边形ADOE是正方形,∴AD=AE=OD=OE,设OE=AD=AE=OD=R,∵∠A=90°,∠OEC=90°,∴OE∥AB,∴△CEO∽△CAB,同理△BDO∽△BAC,∴△CEO∽△ODB,∴=,即=,解得:R=,故选:A.4.解:设直角三角形ABC内切圆的圆心为点I,半径为r,三边上的切点分别为D、E、F,连接ID、IE、IF,得正方形,则正方形的边长即为r,如图所示:当BC为直角边时,AC==10,根据切线长定理,得AD=AF=AB﹣BD=6﹣r,CE=CF=BC﹣BE=8﹣r,∴AF+FC=AC=10,即6﹣r+8﹣r=10,解得r=2;当BC为斜边时,AC==2,根据切线长定理,得BD=BF=6﹣r,CE=CF=2﹣r,∴BC=BF+CF=6﹣r+2﹣r=8,解得r=﹣1.答:这个三角形的内切圆的半径是2或﹣1.故选:D.5.解:当∠ADG=∠BCH=30°时,PE+PF是定值.理由:连接OA、OB、OC、OD,如图:∵DG与⊙O相切,∴∠GDA=∠ABD.∵∠ADG=30°,∴∠ABD=30°.∴∠AOD=2∠ABD=60°.∵OA=OD,∴△AOD是等边三角形.∴AD=OA=4.同理可得:BC=4.∵PE∥BC,PF∥AD,∴△AEP∽△ACB,△BFP∽△BDA.∴=,=.∴+=+=1.∴+=1.∴PE+PF=4.∴当∠ADG=∠BCH=30°时,PE+PF=4.故选:A.6.解:∵P A,PB分别与⊙O相切于点A,B,∴∠P AO=∠PBO=90°,OP平分∠APB,P A=PB,则A、B、C正确,不符合题意;∠AOB的度数与的度数相等,D错误,符合题意;故选:D.7.解:∵在Rt△ABC中,AC⊥BC,过C作CD⊥AB ∴△ADC∽△CDB∴CD2=AD•DB∴CD2=3DBRt△CDB中,CB2=CD2+DB2∴4=3DB+DB2解得DB=1或DB=﹣4(舍去)∴CB=2∴AC=2设△ABC内切圆半径为r,内心为O,连OA、OB、OC由面积法可知S△ABC=S△AOC+S△BOC+S△AOB∴∴r==∴内切圆半径为π()2=(4﹣2)π故选:B.8.解:连接BD、OC、AG,过O作OQ⊥CF于Q,OZ⊥BG于Z,∵OD=OB,∴∠ABD=∠ODB,∵∠AOD=∠OBD+∠ODB=2∠OBD,∵∠AOD=2∠ABC,∴∠ABC=∠ABD,∴弧AC=弧AD,∵AB是直径,∴CD⊥AB,∴①正确;∵CD⊥AB,∴∠P+∠PCD=90°,∵OD=OC,∴∠OCD=∠ODC=∠P,∴∠PCD+∠OCD=90°,∴∠PCO=90°,∴PC是切线,∴②正确;假设OD∥GF,则∠AOD=∠FEB=2∠ABC,∴3∠ABC=90°,∴∠ABC=30°,已知没有给出∠B=30°,∴③错误;∵AB是直径,∴∠ACB=90°,∵EF⊥BC,∴AC∥EF,∴弧CF=弧AG,∴AG=CF,∵OQ⊥CF,OZ⊥BG,∴CQ=AG,OZ=AG,BZ=BG,∴OZ=CQ,∵OC=OB,∠OQC=∠OZB=90°,∴△OCQ≌△BOZ,∴OQ=BZ=BG,∴④正确.故选:A.9.解:∵I是△ABC的内心,∴∠IBC=∠ABC,∠ICB=∠BCA,∵∠DIB+∠EIC=195°,∴∠DIE+∠BIC=165°,由折叠过程知∠BAC=∠DIE,∴∠BAC+∠BIC=165°∵∠BAC+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=180°﹣∠BAC,∴∠IBC+∠ICB=90°﹣∠BAC,又∵∠BIC+(∠IBC+∠ICB)=180°,∠BIC+(90°﹣∠BAC)=180°,∴∠BIC=90°+∠BAC,∴∠BAC+90°+∠BAC=165°,∴∠BAC=50°故选:B.10.解:∵P A、PB是⊙O的切线,切点是A、B,∴P A=PB,∠BPO=∠APO,∴选项A、B错误;∵P A=PB,∠BPO=∠APO,∴OP⊥AB,∴选项C错误;根据已知不能得出C是PO的中点,故选项D正确;故选:D.二.填空题11.解:∵P A、PB是⊙O的两条切线,∴OA⊥P A,OB⊥PB,OP平分∠APB,P A=PB,∵∠APB=60°,∴△P AB是等边三角形,AB=2AC,PO⊥AB,∴∠P AB=60°,∴∠OAC=∠P AO﹣∠P AB=90°﹣60°=30°,∴AO=2OC,∵OC=1,∴AO=2,∴AC=,∴AB=2AC=2,∴△P AB的周长=6.故答案为:6.12.解:如图1中,当⊙P与直线CD相切时,设PC=PM=x.在Rt△PBM中,∵PM2=BM2+PB2,∴x2=22+(4﹣x)2,∴x=2.5,∴CP=2.5;如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC 是矩形.∴PM=PK=CD=2BM,∴BM=2,PM=4,在Rt△PBM中,PB==2,∴CP=BC﹣PB=4﹣2.综上所述,CP的长为2.5或4﹣2.故答案是:2.5或4﹣2.13.解:由CD是固定的,所以当P到CD的距离最小时△PCD的面积最小,如图,过P 作EF∥CD,交AD于点E,交BC于点F,当EF与⊙O相切时,P到CD的距离最短,连接OP并延长交CD于点Q,过O作OH∥BC,交EF于点G,交CD于点H,则可知OH为梯形ABCD的中位线,OG为梯形ABFE的中位线,∴OH=(AD+BC)=4.5,过D作DM⊥BC于点M,则DM=AB=4,MC=BC﹣AD=3,∴CD=EF=5,由切线长定理可知AE=EP,BF=PF,∴AE+BF=EF=5,∴OG=(AE+BF)=2.5,∴GH=OH﹣OG=4.5﹣2.5=2,又∵OP=2,且=,∴=,∴PQ=1.6,∴S△PCD=PQ•CD=×1.6×5=4,故答案为:4.14.解:设∴DE与圆O相切于点F,∵四边形ABCD是正方形,∴∠OAD=∠OBC=∠C=90°,AB=BC=AD=CD=2,∵OA、OB是圆O的半径,∴DA与圆O相切于点A,EB与圆O相切于点B,∵DE与圆O相切于点F,∴DA=DF=2,EB=EF,设EB=EF=x,则EC=BC﹣EB=2﹣x,DE=DF+EF=2+x,在Rt△DEC中,DC2+CE2=DE2,∴22+(2﹣x)2=(2+x)2,解得:x=,∴EC=BC﹣EB=2﹣x=,∴三角形DEC的面积=EC•DC=××2=1.5,故答案为:1.5.15.解:如图,连接OA,∵m﹣n2+5=0,∴n2=m+5,∴n2﹣9=m+5﹣9=m﹣4,∴点P的坐标为(m,m﹣4),即点P在直线y=x﹣4上,当x=0时,y=﹣4,当y=0时,x=4,∴OB=OC=4,∴BC=4,∵P A与⊙O相切于点A,∴OA⊥AP,∵OA=1,∴当OP最小时,P A最小,当OP⊥BC时,OP最小,此时OP=BC=2,答:当P A长最小时,点P到原点O的距离为2.故答案为:2.16.解:根据题意点I在DE上,连接AI,作IG⊥AB于点G,IJ⊥BC于点J,作IH⊥AC 于点H,作DF⊥AE于点F,如右图所示:∵AD=DE=5,AE=6,DF⊥AE,∴AF=3,∠AFD=90°,∴DF===4,设IH=x,∵I为△ABC的内心,∴IG=IJ=IH=x,∵S△ADE=S△ADI+S△AEI,∴=+,解得x=,∴IJ=,即I点到BC的距离是.故答案为:.三.解答题17.(1)证明:连接OE,过点O作OF⊥BC,垂足为F,∵CD与⊙O相切于点E,∴OE⊥CD,∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,∴OF=OE,∵OE是⊙O的半径,∴BC是ʘO的切线;(2)解:∵O是AC的中点,点E是CD的中点,∴OE是△ACD的中位线,∴OE∥AD,∴∠COE=∠CAD=30°,在Rt△OCE中,OE=3,∴CE=OE tan30°=3×=,∴CD=2CE=2.18.(1)证明:连接OD,∵AB⊥AC,∴∠CAB=90°,∴∠CAD+∠DAO=90°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADC=180°﹣∠ADB=90°,∵点E是AC的中点,∴EA=ED=AC,∴∠EAD=∠EDA,∵OA=OD,∴∠OAD=∠ODA,∴∠EDA+∠ODA=90°,∴∠ODE=90°,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:∵∠F=30°,BF=2,∠ODF=90°,∴OF=2OD,∴OB+2=2OD,∵OD=OB,∴OD=OB=2,∵∠DOF=90°﹣∠F=60°,∴△DOB是等边三角形,∴∠OBD=60°,在Rt△ABC中,AB=2OB=4,∴BC===8,∵△ABC外接圆的半径=BC=4,∴△ABC外接圆的半径为:4.19.(1)证明:如图1,延长DB至H,∵DG∥BC,∴∠CBH=∠D,∵∠A=∠D,∴∠A=∠CBH,∵AB是⊙O的直径∴∠ACB=90°,∴∠A+∠ABC=90°,∴∠CBH+∠ABC=90°,∴∠ABD=90°,∴BD与⊙O相切;(2)解:解法一:如图2,连接OF,∵CF平分∠ACB,∴∠ACF=∠BCF,∴,∴OF⊥AB,∵BD⊥AB,∴OF∥BD,∴△EFO∽△EDB,∴,∵AE=OE,∴,∴=,∴OF=4,∴BE=OE+OB=2+4=6,∴DE===6.解法二:如图2,连接OF,∵AE=OE,∴OA=OF=2OE,Rt△OEF中,tan∠OEF==2,Rt△BED中,tan∠OEF===2,∴BE=6,由勾股定理得:DE===6.20.(1)证明:连接OD,∵DF是⊙O的切线,∴OD⊥DF,∵AD平分∠BAC,∴∠BAD=∠CAD,∴,∴OD⊥BC,∴DF∥BC;(2)解:连接OB,∵,∴∠BOD=∠BAC,由(1)知OD⊥BC,∴tan∠BOD=,∵tan∠BAC=2,∴,设ON=x,BN=2x,由勾股定理得:OB=3x,∴OD=3x,∴DN=3x﹣x=2x,Rt△BDN中,BN2+DN2=BD2,∴,x=2或﹣2(舍),∴OB=OD=3x=6,Rt△OFD中,由勾股定理得:OF===10.21.解:(1)证明:如图,连接OE,∵NM是BE的垂直平分线,BN=EN,∴∠B=∠NEB,∵OA=OE∴∠A=∠OEA,∵∠C=90°,∴∠A+∠B=90°,∴∠OEN=90°,即OE⊥EN,∵OE是半径,∴EN是⊙O的切线;(2)如图,连接ON,设EN长为x,则BN=EN=x∵AC=3,BC=4,⊙O的半径为1,∴CN=4﹣x,OC=AC﹣OA=3﹣1=2,∴OE2+EN2=OC2+CN2,∴12+x2=22+(4﹣x)2,解得x=,∴EN=.连接ED,DB,设AE=y,∵AC=3,BC=4,∴AB=5,∵⊙O的半径为1.∴AD=2,则DE2=AD2﹣AE2=22﹣y2,∵CD=AC﹣AD=3﹣2=1,∴DB2=CD2+BC2=17,∵AD为直径,∴∠AED=∠DEB=90°,∴DE2+EB2=DB2,即22﹣y2+(5﹣y)2=17,解得y=,∴EN=,AE=.22.(1)证明:连接OC,∵P A是半⊙O的切线,A为切点,∴∠OAP=90°,∵OD⊥AC,OD经过圆心O,∴CD=AD,∴OP是AC的垂直平分线,∴PC=P A,∵OC=OA,OP=OP,∴△OCP≌△OAP(SSS),∴∠OCP=∠OAP=90°,∵OC是⊙O的半径,∴PC是⊙O的切线;(2)解:∵AB是⊙O的直径,AB=6,∴OA=OB=3,∵∠ADO=90°,∠CAB=30°,∴OD=OA=,∴AC=2AD=,∴S△AOC=AC•OD=,∵∠CAB=30°,∴∠COB=2∠CAB=60°,∴∠AOC=180°﹣60°=120°,∴S扇形AOC=,∴S=S扇形AOC﹣S△AOC=.23.(1)证明:连接OD,∵DE⊥BC,∴∠DEC=90°,∵D是的中点,∴=,∴∠ABD=∠CBD,∵OD=OB,∴∠ODB=∠OBD,∴∠ODB=∠CBD,∴OD∥BC,∴∠ODE=180°﹣∠DEC=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:过点D作DF⊥AB,垂足为F,由(1)得:∠ABD=∠CBD,∴BD平分∠ABC,∵DF⊥AB,DE⊥BC,∴DF=DE,∵四边形ABCD内接于⊙O,∴∠A+∠DCB=180°,∵∠DCB+∠DCE=180°,∴∠A=∠DCE,∵∠DF A=∠DEC=90°,∴△ADF≌△CDE(AAS),∴AF=EC,∵∠DFB=∠DEC=90°,BD=BD,∴△BDF≌△BDE(AAS),∴BF=BE,设AF=EC=x,则BE=BF=8+x,∵AB=10,∴AF+BF=10,∴x+8+x=10,∴x=1,∴BF=9,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=∠DBF,∴△BFD∽△BDA,∴BD2=BF•BA,∴BD2=90,∴BD=3.。

北师大九年级下册第三章 圆同步练习含答案

北师大九年级下册第三章 圆同步练习含答案

北师大九年级下册第三章圆同步练习含答案一、选择题(本大题共8小题,每小题4分,共32分;在每小题列出的四个选项中,只有一项符合题意)1.在下列四个命题中:①直径是最长的弦;②每个三角形都有一个内切圆;③三角形的外心到三角形各边的距离都相等;④如果两条弦相等,那么这两条弦所对的弧也相等.其中正确的有() A.1个B.2个C.3个D.4个2.如图3-Z-1,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,若∠C=40°,则∠ABD的度数是()A.30°B.25°C.20°D.15°图3-Z-13.如图3-Z-2,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠DAO+∠DCO 的大小为()图3-Z-2A.45°B.50°C.60°D.75°4.如图3-Z-3,AB为⊙O的直径,弦DC⊥AB于点E,∠DCB=30°,EB=3,则弦AC的长为()A.3 3 B.4 3 C.5 3 D.6 3图3-Z-35.如图3-Z-4,四边形ABCD的边AB,BC,CD,DA和⊙O分别相切于点L,M,N,P.若四边形ABCD的周长为20,则AB+CD等于()A .5B .8C .10D .126.在圆柱形油槽内装有一些油,截面如图3-Z -5,油面宽AB 为6分米,如果再注入一些油后,油面AB 上升1分米,油面宽变为8分米,则圆柱形油槽的直径MN 为( )A .6分米B .8分米C .10分米D .12分米图3-Z -57.如图3-Z -6,某厂生产横截面直径为7 cm 的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳的视觉效果,字样在罐头侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为()图3-Z -6A.π4 cmB.7π4 cm C.7π2 cm D .7π cm8.如图3-Z -7,四边形ABCD 是菱形,∠A =60°,AB =2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )图3-Z -7A.2π3-32 B.2π3-3 C .π-32 D .π- 3二、填空题(本大题共5小题,每小题4分,共20分)9.已知⊙O 的半径为5,点A 在⊙O 外,那么线段OA 的长度的取值范围是________. 10.如图3-Z -8,已知经过原点的⊙P 与x 轴、y 轴分别交于A ,B 两点,C 是劣弧OB 上一点,则∠ACB 的度数为________.11.如图3-Z -9,在⊙O 中,弦DA ∥BC ,DA =DC ,∠AOC =160°,则∠BCO =________度.图3-Z -912.如图3-Z -10,正方形ABCD 内接于⊙O ,其边长为4,则⊙O 的内接正三角形EFG 的边长为________.图3-Z -1013.如图3-Z -11,在Rt △AOB 中,OA =OB =3 2,⊙O 的半径为1,P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (Q 为切点),则切线PQ 长的最小值为________.图3-Z -11三、解答题(本大题共4小题,共48分)14.(10分)如图3-Z -12,已知四边形ABCD 内接于⊙O ,连接BD ,∠BAD =105°,∠DBC =75°.(1)求证:BD =CD ;(2)若⊙O 的半径为3,求BC ︵的长.图3-Z -1215.(12分)如图3-Z-13,BE是⊙O的直径,半径OA⊥弦BC,D为垂足,连接AE,EC.(1)若∠AEC=28°,求∠AOB的度数;(2)若∠BEA=∠B,BC=6,求⊙O的半径.图3-Z-1316.(12分)如图3-Z-14,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6,过点B作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.(1)连接AD,求证:AD平分∠BAC;(2)求AC的长.图3-Z-1417.(14分)如图3-Z -15①,⊙O 的直径AB =12,P 是弦BC 上一动点(与点B ,C 不重合),∠ABC =30°,过点P 作PD ⊥OP 交⊙O 于点D .(1)如图②,当PD ∥AB 时,求PD 的长.(2)如图③,当DC ︵=AC ︵时,延长AB 至点E ,使BE =12AB ,连接DE . ①求证:DE 是⊙O 的切线; ②求PC 的长.图3-Z -15详解详析1.[答案] B 2.[解析] B ∵AC 是⊙O 的切线,∴∠BAC =90°.又∠C =40°,∴∠AOC =90°-40°=50°,∴∠ABD =12∠AOC =12×50°=25°.故选B.3.[解析] C 连接OD ,∵OA =OD ,OD =OC ,∴∠DAO =∠ODA ,∠DCO =∠ODC ,∴∠DAO +∠DCO =∠ADC .∵四边形ABCO 是平行四边形,∴∠B =∠AOC .∵四边形ABCD 是圆内接四边形,∴∠ADC +∠B =180°.∵∠ADC =12∠AOC ,∴∠ADC =12∠B ,即3∠ADC =180°,∴∠ADC =60°, 即∠DAO +∠DCO =60°.故选C.4.[解析] D 如图,连接OC ,∵弦DC ⊥AB 于点E ,∠DCB =30°,∴∠ABC =60°,∴△BOC 是等边三角形.∵EB =3,∴OB =6,∴AB =12.∵AB 为⊙O 的直径,∴∠ACB =90°.在Rt △ACB 中,AC =12×32=6 3.故选D.5.[答案] C 6.[答案] C7.[解析] B ∵字样在罐头侧面所形成的弧的度数为90°,∴此弧所对的圆心角为90°,由题意可得R =72 cm ,则“蘑菇罐头”字样的长为90π×72180=7π4(cm).8.[解析] B 如图,连接BD .∵四边形ABCD 是菱形,∠A =60°,∴∠ADC =120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∴AB =BD ,∠3+∠5=60°.∵AB =2,∴△ABD 的高为 3.∵扇形BEF 的圆心角为60°,∴∠4+∠5=60°,∴∠3=∠4.设AD ,BE 相交于点G ,BF ,DC 相交于点H ,在△ABG 和△DBH 中,∠A =∠2,AB =BD ,∠3=∠4,∴△ABG ≌△DBH (ASA),∴S 四边形GBHD =S △ABD ,∴S 阴影=S 扇形EBF -S △ABD =60π×22360-12×2×3=2π3- 3.故选B.9.[答案] OA >5[解析] ∵⊙O 的半径为5,点A 在⊙O 外,∴线段OA 的长度的取值范围是OA >5.故答案为OA >5.10.[答案] 90°[解析] ∵∠AOB =90°,∴∠ACB =∠AOB =90°.11.[答案] 30 [解析] 连接AC , ∵∠B =12∠AOC =80°,∴∠D =180°-∠B =100°. ∵DA =DC ,OA =OC ,∴∠DAC =∠ACD =40°,∠OCA =∠OAC =10°. ∵DA ∥BC ,∴∠ACB =∠DAC =40°, ∴∠BCO =30°. 12.[答案] 26[解析] 连接AC ,OE ,OF ,过点O 作OM ⊥EF 于点M .∵四边形ABCD 是正方形,∴AB =BC =4,∠ABC =90°, ∴AC 是直径,AC =4 2,∴OE =OF =2 2.∵OM ⊥EF ,∴EM =MF .∵△EFG 是等边三角形,∴∠GEF =60°. 在Rt △OME 中,∵OE =22,∠OEM =12∠GEF =30°,∴OM =2,EM =3OM =6,∴EF =26.13.[答案] 22[解析] 如图,连接OP ,OQ .∵PQ 是⊙O 的切线,∴OQ ⊥PQ ,∴PQ 2=OP 2-OQ 2,∴当OP ⊥AB 时,OP 最短,则此时线段PQ 最短.∵在Rt △AOB 中,OA =OB =3 2,∴AB =2OA =6,∴OP =OA ·OBAB =3,∴PQ =OP 2-OQ 2=32-12=2 2.14.解:(1)证明:∵四边形ABCD 内接于⊙O ,∴∠DCB +∠BAD =180°. ∵∠BAD =105°,∴∠DCB =180°-105°=75°, ∴∠DCB =∠DBC ,∴BD =CD .(2)由(1)可知∠DBC =∠DCB =75°,∴∠BDC =30°.由圆周角定理得BC ︵的度数为60°,故BC ︵的长为60π×3180=π.15.[解析] (1)根据垂径定理得到AC ︵=AB ︵,根据圆周角定理解答;(2)根据圆周角定理的推论得到∠C =90°,进而得到∠B =30°,根据余弦的定义求出BE 的长即可.解:(1)∵OA ⊥BC ,∴AC ︵=AB ︵,∴∠BEA =∠AEC =28°,由圆周角定理,得∠AOB =2∠AEB =56°. (2)∵BE 是⊙O 的直径,∴∠C =90°, ∴∠CEB +∠B =90°.又∵∠BEA =∠B ,∠BEA =∠AEC , ∴∠B =30°,∴BE =BC=4 3,∴⊙O 的半径为2 3.16.解:(1)证明:连接OD . ∵BD 是⊙O 的切线,∴OD ⊥BD . 又∵AC ⊥BD ,∴OD ∥AC , ∴∠CAD =∠ODA .∵OA =OD ,∴∠OAD =∠ODA ,∴∠OAD =∠CAD ,即AD 平分∠BAC . (2)∵OD ∥AC ,∴△BOD ∽△BAC , ∴OD AC =BO BA ,即4AC =610, 解得AC =203,即AC 的长为203.17.解:(1)连接OD .∵OP ⊥PD ,PD ∥AB ,∴∠POB =90°. ∵⊙O 的直径AB =12,∴OB =OD =6.在Rt △POB 中,∵∠ABC =30°,∴OP =OB ·tan30°=6×33=2 3.在Rt △POD 中,PD =OD 2-OP 2=62-(2 3)2=26.(2)①证明:连接OD ,交CB 于点F ,连接BD .∵DC ︵=AC ︵,∴∠DBC =∠ABC =30°,∴∠ABD =60°. 又∵OB =OD ,∴△OBD 是等边三角形, ∴∠DOB =60°,则∠OFB =180°-60°-30°=90°, ∴OD ⊥FB ,∴OF =DF . 又∵BE =12AB ,OB =12AB , ∴OB =BE ,∴BF ∥DE , ∴∠ODE =∠OFB =90°, ∴DE 是⊙O 的切线.②由①知OD ⊥BC ,∴CF =BF =OB ·cos30°=6×32=33.在Rt △POD 中,∵OF =DF ,∴PF =OD =3,∴PC =CF -PF =33-3.。

北师大版九年级数学下册圆同步测试卷

北师大版九年级数学下册圆同步测试卷

北师大版九年级数学下册圆同步测试卷一.选择题(共10小题)1.如图,在⊙O中,弧AB=弧AC,∠A=36°,则∠C的度数为()A.44°B.54°C.62°D.72°2.下随有关圆的一些结论:①任意三点确定一个圆;②相等的圆心角所对的弧相等;③平分弦的直径垂宜于弦;并且平分弦所对的弧,④圆内接四边形对角互补.其中错误的结论有()A.1个B.2个C.3个D.4个3.如图所示,⊙O的直径为20,弦AB的长度是16,ON⊥AB,垂足为N,则ON 的长度为()A.4B.6C.8D.104.下列说法中正确的个数有()①相等的圆心角所对的弧相等;②平分弦的直径一定垂直于弦;③圆是轴对称图形,每一条直径都是对称轴;④直径是弦;⑤长度相等的弧是等弧.A.1个B.2个C.3个D.4个5.已如△ABC的面积18cm2,其周长为24cm,则△ABC内切圆半径为()A.1cm B .cm C.2cm D .cm6.如图,△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ADC的度数是()A.80°B.160°C.100°D.80°或100°7.如图,C、D是以线段AB为直径的⊙O上两点,若∠ADC=70°,则∠CAB=()A.10°B.20°C.30°D.40°8.如图,AB为⊙O的直径,C、D是⊙O上的两点,∠BAC=30°,弧BC等于弧CD,则∠DAC的度数是()A.30°B.35°C.45°D.70°9.如图,A、B、C在⊙O上,∠ACB=40°,点D 在上,M为半径OD上一点,则∠AMB的度数不可能为()A.45°B.60°C.75°D.85°10.如图,⊙O中,若∠BOD=140°,∠CDA=30°,则∠AEC的度数是()A.80°B.100°C.110°D.125°二.填空题(共10小题)11.半径等于16的圆中,垂直平分半径的弦长为.12.如图,BC是⊙O的直径,点A在圆上,连接AO,AC,∠ACB=32°,则∠AOB=.13.如图,在△ABC中,∠A=60°,BC=5cm,△ABC的外接圆为⊙O,则该⊙O的直径是cm.14.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为.15.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=8,OE=3,则⊙O的半径为.16.如图,半圆O的直径AB=4,弦CD∥AB ,是45°弧,则阴影部分的面积是.17.圆外一点到圆的最大距离为9cm,最小距离为4cm,则圆的半径是cm.18.如图,在⊙O中,AB=DC,∠AOB=50°,则∠COD=.19.若一个扇形的面积为6π平方米,弧长为2π米,则这个扇形的圆心角度数为°.20.在⊙O中,直径AB=4,弦CD⊥AB于P,OP=,则弦CD的长为.三.解答题(共10小题)21.一条排水管的截面如图所示,已知排水管的半径OA=10m,水面宽AB=12m,某天下雨后,水管水面上升了2m,求此时排水管水面的宽CD.22.如图,D是△ABC外接圆上的点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.(1)求证:∠BAD=∠PCB;(2)求证:BG∥CD;(3)设△ABC外接圆的圆心为O,若AB=DH,∠COD=23°,求∠P的度数.23.如图,AB是⊙O的一条弦,OD⊥AB,垂足为点C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=52°,求∠DEB的度数;(2)若CD=2,AB=8,求半径的长.24.已知:在⊙O中,弦AB=AC,AD是⊙O的直径.求证:BD=CD.25.如图,AB是⊙O直径,弦CD与AB相交于点E,∠ADC=26°.求∠CAB的度数.26.如图,AB是半圆的直径,点D 是的中点,∠ABC=50°,求∠BAD的度数.27.在半径为10dm的圆柱形油罐内装进一些油后,横截面如图.①若油面宽AB=12dm,求油的最大深度.②在①的条件下,若油面宽变为CD=16dm,求油的最大深度上升了多少dm?28.如图,一圆与平面直角坐标系中的x轴切于点A(8,0),与y轴交于点B(0,4),C(0,16),求该圆的直径.29.如图,AB为半圆O的直径,C、D是⊙O上的两点,∠BAC=20°,弧AD=弧CD,求∠DAC的度数.30.已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC=∠DBA;(2)求证:PD=PF;(3)连接CD,若CD﹦3,BD﹦4,求⊙O的半径和DE的长.北师大版九年级数学下册圆同步测试卷参考答案一.选择题(共10小题)1.D;2.C;3.B;4.A;5.B;6.C;7.B;8.A;9.D;10.B;二.填空题(共10小题)11.16;12.64°;13.;14.68°;15.5;16.π;17.2.5;18.50°;19.60;20.2;三.解答题(共10小题)21.;22.;23.;24.;25.;26.;27.;28.;29.;30.;。

精品学习九年级数学下册第3章圆3.1圆同步测试新版北师大版

精品学习九年级数学下册第3章圆3.1圆同步测试新版北师大版

《圆》分层练习◆基础题1.下列说法错误的是()A.直径是圆中最长的弦B.长度相等的两条弧是等弧C.面积相等的两个圆是等圆D.半径相等的两个半圆是等弧2.把地球和篮球的半径都增加一米,那么地球和篮球的大圆的周长也都增加了,谁增加得多一些呢()A.地球多B.篮球多C.一样多D.不能确定3.如图,一枚半径为r的硬币沿着直线滚动一圈,圆心经过的距离是()A.4πr B.2πr C.πr D.2r4.已知线段AB长3厘米,经过A,B两点,以半径2厘米作圆,则()A.可作1个B.可作2个C.可作无数个D.无法作出5.到点O的距离等于8的点的集合是.6.已知⊙O的半径为5cm,则圆中最长的弦长为cm.7.过圆内的一点(非圆心)有条直径.8.在同一平面内,1个圆把平面分成2个部分,2个圆把平面最多分成4个部分,3个圆把平面最多分成8个部分,4个圆把平面最多分成14个部分,那么10个圆把平面最多分成个部分.9.已知线段AB=3cm,用图形表示到点A的距离小于2cm,且到点B的距离大于2cm的所有点的集合.10.实践探究:有一个周长62.8米的圆形草坪,准备为它安装自动旋转喷灌装置进行喷灌,现有射程为20米、15米、10米的三种装置,你认为应选哪种比较合适?安装在什么地方?◆能力题1.由所有到已知点O的距离大于或等于3,并且小于或等于5的点组成的图形的面积为()A.4πB.9πC.16πD.25π2.如图,在⊙O中,弦的条数是()A.2 B.3 C.4 D.以上均不正确3.下列说法:①弧分为优弧和劣弧;②半径相等的圆是等圆;③过圆心的线段是直径;④长度相等的弧是等弧;⑤半径是弦,其中错误的个数为()A.2 B.3 C.4 D.54.战国时的《墨经》就有“圆,一中同长也”的记载.它的意思是圆上各点到圆心的距离都等于.5.已知,圆A的周长是圆B的周长的4倍,那么圆A的面积是圆B的面积的倍.6.线段AB=10cm,在以AB为直径的圆上,到点A的距离为5cm的点有个.7.已知线段AB=4cm,以3cm长为半径作圆,使它经过点A、B,能作几个这样的?请作出符合要求的图.8.如图,CD是⊙O的直径,点A在DC的延长线上,∠A=20°,AE交⊙O于点B,且AB=OC.(1)求∠AOB的度数.(2)求∠EOD的度数.◆提升题1.如图中正方形、矩形、圆的面积相等,则周长L的大小关系是()A.L A>L B>L C B.L A<L B<L C C.L B>L C>L A D.L C<L A<L B2.如图是公园的路线图,⊙O1,⊙O2,⊙O两两相切,点A,B,O分别是切点,甲乙二人骑自行车,同时从点A出发,以相同的速度,甲按照“圆”形线行驶,乙行驶“8字型”线路行驶.若不考虑其他因素,结果先回到出发点的人是()A.甲B.乙C.甲乙同时D.无法判定3.如图甲,圆的一条弦将圆分成2部分;如图乙,圆的两条弦将圆分成4部分;如图丙,圆的三条弦将圆分成7部分.由此推测,圆的四条弦最多可将圆分成11 部分;圆的十九条弦最多可将圆分成部分.4.如图,A是硬币圆周上一点,硬币与数轴相切于原点O(A与O点重合).假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A恰好与数轴上点A′重合,则点A′对应的实数是.5.如图所示,最外侧大圆的面积是半径为2厘米的小圆面积的几倍?阴影部分的面积是半径为3厘米的圆的面积的多少?6.如图,圆心为点M的三个半圆的直径都在x轴上,所有标注A的图形面积都是S A,所有标注B的图形面积都是S B.(1)求标注C的图形面积S C;(2)求S A:S B.答案和解析◆基础题1.【答案】B解:A、直径是圆中最长的弦,所以A选项的说法正确;B、在同圆或等圆中,长度相等的两条弧是等弧,所以B选项的说法错误;C、面积相等的两个圆的半径相等,则它们是等圆,所以C选项的说法正确;D、半径相等的两个半圆是等弧,所以D选项的说法正确.2.【答案】C解:根据圆的周长公式为2πr,假设地球的半径为R,篮球的半径为r,地球和篮球的半径都增加一米,那么地球和篮球的大圆的周长将变为:2π(R+1)和2π(r+1),即2π(R+1)=2πR+2π,2π(r+1)=2πr+2π,∴周长都增加了2π.3.【答案】B解:圆心经过的距离就是圆的周长,所以是2πr.4.【答案】B解:如图,分别以A、B为圆心、2cm为半径作圆,两圆相交于点C、D,然后分别以C、D为圆心,2cm为半径作圆,则⊙C和⊙D为所求.5.【答案】以点O为圆心,以8为半径的圆解:到点O的距离等于8的点的集合是:以点O为圆心,以8为半径的圆.6.【答案】10解:∵⊙O的半径为5cm,∴⊙O的直径为10cm,即圆中最长的弦长为10cm.7.【答案】且只有一解:过圆内的一点(非圆心)有且只有一条直径.8.【答案】92解:∵1个圆把平面分成部分=2,2个圆把平面最多分成的部分=2+2=4,3个圆把平面最多分成的部分=2+2+4=2+2(1+2)=8,4个圆把平面最多分成的部分=2+2(1+2+3)=14,∴10个圆把平面最多分成的部分=2+2(1+2+3+4+5+6+7+8+9)=92.9.解:如图:阴影部分就是到点A的距离小于2cm,且到点B的距离大于2cm的所有点组成的图形10.解:设圆形草坪的半径为r,则由题意知,2πr=62.8,解得:r≈10m.所以选射程为10米的喷灌装置,安装在圆形草坪的中心处.◆能力题1.【答案】C解:由所有到已知点O的距离大于或等于3,并且小于或等于5的点组成的图形的面积是以5为半径的圆与以3为半径的圆组成的圆环的面积,即π×52﹣π×32=16π.2.【答案】C解:如图,在⊙O中,有弦AB、弦DB、弦CB、弦CD.共有4条弦.3.【答案】C解:①根据半圆也是弧,故此选项错误,符合题意;②由等圆的定义可知,半径相等的两个圆面积相等、周长相等,所以为等圆,故此选项正确,不符合题意;③过圆心的线段是直径,根据圆的直径的含义可知:通过圆心的线段,因为两端不一定在圆上,所以不一定是这个圆的直径,故此选项错误,符合题意;④长度相等的弧不为等弧,因为等弧就是能够重合的两个弧,而长度相等的弧不一定是等弧,所以等弧一定是同圆或等圆中的弧,故此选项错误,符合题意.4.【答案】半径解:战国时期的《墨经》一书中记载:“圜(圆),一中同长也”.表示圆心到圆上各点的距离都相等,即半径都相等;5.【答案】16解:设圆A的半径为a,圆B的半径为b.由题意2πa=4×2πb,∴a=4b,∴⊙A的面积:⊙B的面积=π•(4b)2:πb2=16:1.6.【答案】2解:如图所示:到点A的距离为5cm的点有2个.7.解:这样的圆能画2个.如图:作AB的垂直平分线l,再以点A为圆心,3cm为半径作圆交l于O1和O2,然后分别以O1和O2为圆心,以3cm为半径作圆,则⊙O1和⊙O2为所求圆.8.解:(1)连OB,如图,∵AB=OC,OB=OC,∴AB=BO,∴∠AOB=∠1=∠A=20°;(2)∵∠2=∠A+∠1,∴∠2=2∠A,∵OB=OE,∴∠2=∠E,∴∠E=2∠A,∴∠DOE=∠A+∠E=3∠A=60°.◆提升题1.【答案】D解:设面积是S L A长方形的一边长x,则另一边长为Sx,则周长L B=2(x+Sx),∵(x+Sx)2≥0,∴x+Sx≥∴L B≥即L B L C=2π,L C<L A<L B.2.【答案】C解:设⊙O1的半径是r,则⊙O2的半径是r,⊙O的半径是2r.则延“8字型”线路行驶时:路线长是4πr.同样按“圆”形线行驶的路线长4πr.因而两人同时到达.3.【答案】191解:一条弦将圆分成1+1=2部分,二条弦将圆分成1+1+2=4部分,三条弦将圆分成1+1+2+3=7部分,四条弦将圆分成1+1+2+3+4=11部分,…n 条弦将圆分成1+1+2+3+…+n =1+()12n n +部分,当n =19时,1+()12n n +=191部分. 4.【答案】π解:将硬币沿数轴正方向滚动一周,点A 恰好与数轴上点A '重合,则转过的距离是圆的周长是π,因而点A '对应的实数是π.5.解:3+2=5(厘米),(3.14×52)÷(3.14×22)=52÷22=254, (12×3.14×52﹣12×3.14×32﹣12×3.14×22)÷(3.14×32) =[12×(52﹣32﹣22)]÷32=6÷9=23. 答:最外侧大圆的面积是半径为2厘米的小圆面积的254倍,阴影部分的面积是半径为3厘米的圆的面积的23. 6.解:(1)由题意得到圆M 的半径为(6﹣4)÷2=1,则12C S π=. (2)2193322A C S S ππ+=⨯=,∴43A S π=.∵212553522B A C S S S ππ++=⨯=, ∴85B S π=,∴SA :SB=5:6.。

2020-2021学年北师大版九年级数学下册第三章 3.5确定圆的条件 同步练习题(含答案)

2020-2021学年北师大版九年级数学下册第三章 3.5确定圆的条件 同步练习题(含答案)

2020-2021学年北师大版九年级数学下册第三章 3.5确定圆的条件同步练习题A组(基础题)1.如图,在5×5的正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是( )A.点P B.点Q C.点R D.点M2.在同一平面上有A,B,C三点,若经过A,B,C这三点画圆,则可画( )A.0个 B.1个C.0个或1个D.无数个3.如图,AC,BE是⊙O的直径,弦AD与BE相交于点F,则下列三角形中,外心不是点O的是( )A.△ABE B.△ACF C.△ABD D.△ADE4.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( )A.第①块 B.第②块C.第③块D.第④块5.有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A的度数.”嘉嘉的解答为:画△ABC以及它的外接圆⊙O,连接OB,OC,如图,由∠BOC=2∠A=130°,得∠A =65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是( )A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值6.若一个直角三角形的两条直角边长分别为7 cm 和24 cm ,则这个三角形的外接圆的直径长为_____cm.7.已知圆的半径是6,则圆内接正三角形的边长是_____.8.已知直线l :y =x -4,点A(1,0),点B(0,2),设点P 为直线l 上一动点,则当点P 的坐标为_____时,过P ,A ,B 不能作出一个圆.9.小明家的房前有一块矩形的空地,空地上有三棵树A ,B ,C ,小明想建一个圆形花坛,使三棵树都在花坛的边上.(1)请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹);(2)若在△ABC 中,AB =8米,AC =6米,∠BAC =90°,试求小明家圆形花坛的面积.B 组(中档题)10.如图,在△ABC 中,∠A =60°,BC =5 cm.能够将△ABC 完全覆盖的最小圆形纸片的直径是_____11.(2020·成都树德中学二诊)如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB 于点D.若BC =6,sin ∠BAC =35,则AC =_____,CD =_____12.如图,在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE ︵(可以是劣弧、优弧或半圆)上的所有点都在△ABC 的内部或边上,则称DE ︵为△ABC 的中内弧,例如,图中DE ︵是△ABC 其中的某一条中内弧.若在平面直角坐标系中,已知点F(0,4),O(0,0),H(4,0),在△FOH 中,M ,N 分别是FO ,FH 的中点,则△FOH 的中内弧MN ︵所在圆的圆心P 的纵坐标m 的取值范围是_____13.如图,已知锐角△ABC的外接圆圆心为O,半径为R.(1)求证:ACsinB=2R;(2)若在△ABC中,∠A=45°,∠B=60°,AC=3,求BC的长及sinC的值.14.已知:如图1,在△ABC中,BA=BC,D是平面内不与A,B,C重合的任意一点,∠ABC=∠DBE,BD=BE.(1)求证:△ABD≌△CBE;(2)如图2,当点D是△ABC的外接圆圆心时,请判断四边形BECD的形状,并证明你的结论.C组(综合题)15.如图,在正方形ABCD中,AB=42,E,F分别为BC,AD上的点,过点E,F的直线将正方形ABCD的面积分为相等的两部分,过点A作AG⊥EF于点G,连接DG,则线段DG 的最小值为_____.参考答案2020-2021学年北师大版九年级数学下册第三章 3.5确定圆的条件同步练习题A组(基础题)1.如图,在5×5的正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是(B)A.点P B.点Q C.点R D.点M2.在同一平面上有A,B,C三点,若经过A,B,C这三点画圆,则可画(C)A.0个 B.1个C.0个或1个D.无数个3.如图,AC,BE是⊙O的直径,弦AD与BE相交于点F,则下列三角形中,外心不是点O的是(B)A.△ABE B.△ACF C.△ABD D.△ADE4.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是(B)A.第①块 B.第②块C.第③块D.第④块5.有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A的度数.”嘉嘉的解答为:画△ABC以及它的外接圆⊙O,连接OB,OC,如图,由∠BOC=2∠A=130°,得∠A =65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是(A)A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值6.若一个直角三角形的两条直角边长分别为7 cm和24 cm,则这个三角形的外接圆的直径长为25cm.7.已知圆的半径是6,则圆内接正三角形的边长是8.已知直线l:y=x-4,点A(1,0),点B(0,2),设点P为直线l上一动点,则当点P的坐标为(2,-2)时,过P,A,B不能作出一个圆.9.小明家的房前有一块矩形的空地,空地上有三棵树A,B,C,小明想建一个圆形花坛,使三棵树都在花坛的边上.(1)请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹);(2)若在△ABC中,AB=8米,AC=6米,∠BAC=90°,试求小明家圆形花坛的面积.解:(1)用尺规作出AB,AC的垂直平分线,交于O点,以O为圆心,OA长为半径作出⊙O,⊙O即为花坛的位置,如图.(2)∵∠BAC=90°,AB=8米,AC=6米,∴BC=10米.∴△ABC外接圆的半径为5米.∴小明家圆形花坛的面积为25π平方米.B组(中档题)10.如图,在△ABC中,∠A=60°,BC=5 cm.能够将△ABC完全覆盖的最小圆形纸片311.(2020·成都树德中学二诊)如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB于点D.若BC =6,sin ∠BAC =35,则AC CD =9013.12.如图,在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE ︵(可以是劣弧、优弧或半圆)上的所有点都在△ABC 的内部或边上,则称DE ︵为△ABC 的中内弧,例如,图中DE ︵是△ABC 其中的某一条中内弧.若在平面直角坐标系中,已知点F(0,4),O(0,0),H(4,0),在△FOH 中,M ,N 分别是FO ,FH 的中点,则△FOH 的中内弧MN ︵所在圆的圆心P 的纵坐标m 的取值范围是m ≤1或m ≥2.13.如图,已知锐角△ABC 的外接圆圆心为O ,半径为R. (1)求证:ACsinB=2R ;(2)若在△ABC 中,∠A =45°,∠B =60°,AC =3,求BC 的长及sinC 的值.解:(1)证明:连接AO 并延长交⊙O 于点D ,连接CD , ∵AD 为直径, ∴∠ACD =90°.在Rt △ACD 中,sin ∠ADC =AC AD =AC2R ,∵∠B =∠ADC ,∴sinB =AC2R .∴ACsinB=2R. (2)由(1)知AC sinB =2R ,同理可得AB sin ∠ACB =BC sin ∠BAC=2R. ∴2R =3sin60°=2.∴BC =2R ·sin ∠BAC =2sin45°= 2. 作CE ⊥AB ,垂足为E , ∴BE =BC ·cosB =2cos60°=22, AE =AC ·cos ∠BAC =3cos45°=62. ∴AB =AE +BE =62+22. ∴sin ∠ACB =AB 2R =6+24.14.已知:如图1,在△ABC 中,BA =BC ,D 是平面内不与A ,B ,C 重合的任意一点,∠ABC =∠DBE ,BD =BE.(1)求证:△ABD ≌△CBE ;(2)如图2,当点D 是△ABC 的外接圆圆心时,请判断四边形BECD 的形状,并证明你的结论.解:(1)证明:∵∠ABC =∠DBE , ∴∠ABD =∠CBE.又∵BA =BC ,BD =BE , ∴△ABD ≌△CBE(SAS). (2)四边形BECD 是菱形.证明:∵△ABD ≌△CBE ,∴AD =CE. ∵点D 是△ABC 的外接圆圆心, ∴AD =BD =CD.又∵BD =BE ,∴BD =BE =EC =CD. ∴四边形BECD 是菱形.C 组(综合题)15.如图,在正方形ABCD 中,AB =42,E ,F 分别为BC ,AD 上的点,过点E ,F 的直线将正方形ABCD 的面积分为相等的两部分,过点A 作AG ⊥EF 于点G ,连接DG ,则线段DG的最小值为。

北师大版九年级数学下《3.1圆》同步习题含答案

北师大版九年级数学下《3.1圆》同步习题含答案

九年级数学下册第三章圆 3.1圆同步俩习题一、选择题(7分×3=21分)1.如图,一枚直径为4cm的圆形古钱币沿着直线滚动一周,圆心移动的距离是( )A.2πcm B.4πcm C.8πcm D.16πcm2.在直角坐标系中,⊙A、⊙B的位置如图所示,下列四个点中,在⊙A 外部且在⊙B内部的是()A.(1,2) B.(2,1) C.(2,-1) D.(3,1)3.如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2.设弦AP 的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是()二、填空题(7分×4=28分)4.如图,AB为⊙O的直径,点C、D在⊙O上.已知∠BOC=70°,AD∥OC,则∠AOD=_____________.,第4题图),第5题图)5.如图,半圆的直径AB=____________.6.下列图形中:①平行四边形;②矩形;③菱形;④正方形;⑤等腰梯形.其中四个顶点在同一圆上的有___________(只填序号即可).7.在同一平面内,点P到圆上的点的最大距离为10cm,最小距离为4cm,则此圆的半径为_________________.三、解答题(14分+17分+20分=51分)8.如图所示,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,且AE=BF.请你找出线段OE与OF的数量关系,并给予证明.9.如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线相交于点E.已知AB=2DE,∠E=18°.试求∠AOC的度数.10.如图所示,在⊙O上有一点C(C不与A、B重合),在直径AB上有一个动点P(P不与A、B重合).试判断PA、PC、PB的大小关系,并说明理由.答案:1. B2. C3. A4. 40°5. 226. ②④⑤7. 4cm或3cm8. 解:OE=OF.证明:连接OA、OB,∵OA、OB是⊙O的半径,∴OA=OB,∴∠OBA=∠OAB,又∵AE=BF,∴△OAE≌△OBF,∴OE=OF.9. 解:连接OD,∵AB=2DE,AB=2OD,∴OD=DE,∴∠DOE=∠E,∴∠ODC=2∠E=36°,∵OC=OD,∴∠C=∠ODC=36°,∴∠AOC=∠C-∠E=54°10. 解:当点P与点O重合时,P A=PB=PC,当点P在OA上时,P A<PC<PB.理由:连接OC,在△POC中,OC-OP<PC<OP+OC,∵OA=OB=OC,∴OA-OP<PC<OP+OB,∴P A<PC<PB,同理,当P点在OB上时,PB<PC<P A.。

九年级数学下册 3.1 圆同步练习 (新版)北师大版

九年级数学下册 3.1 圆同步练习 (新版)北师大版

3.1圆一、选择题1.在△ABC中,∠C=90°,AB=3 cm,BC=2 cm,以点A为圆心、2 cm为半径作圆,则点C和⊙A的位置关系是 ( )A.点C在⊙A上 B.点C在⊙A外C.点C在⊙A内 D.不能确定2.⊙O的半径为5,圆心O的坐标为(0,0),点P的坐标为(4,2),则点P与⊙O的位置关系是 ( )A.点P在⊙O内 B.点P在⊙O上C.点P在⊙O外 D.点P在⊙O上或⊙O外3.线段AB=10 cm,在以AB为直径的圆上,到点A的距离为5 cm的点有( )A.1个 B.2个 C.3个 D.4个4.已知⊙P的半径为5,圆心P的坐标为(1,2),点Q的坐标为(0,5),则点Q( )A.在⊙P外 B.在⊙P上 C.在⊙P内 D.不能确定5.已知⊙O的半径为8 cm,A为线段OP的中点,且OP=16 cm,则点A与⊙O的位置关系是 ( )A.点A在⊙O内 B.点A在⊙O上C.点A在⊙O外 D.不能确定6.如果一个直角三角形的两条直角边AB=8 cm,BC=6 cm,若以点B为圆心,以某一直角边长为半径画圆,则 ( )A.若点A在⊙B上,则点C在⊙B外B.若点C在⊙B上,则点A在⊙B外C.若点A在⊙B上,则点C在⊙B上D.以上都不正确7.正方形ABCD的边长为2cm, A'、B'、C'、D'分别为AB、BC、CD、DA的中点,以AC, BD 的交点O为圆心, 以1cm为半径,则A'、B'、C'、D'四个点在O上的点的个数为[ ]A .1B .2C . 3D .48. ⊙O 的半径为10cm, A 是⊙O 上一点, B 是OA 中点, C 点和B 点的距离等于5cm, 则C 点和⊙O 的位置关系是 [ ]A .C 在⊙O 内B .C 在⊙O 上C .C 在⊙O 外D .C 在⊙O 上或C 在⊙O 内二、填空题9.在△ABC 中,∠C =90°,∠B =60°,AC =3,以C 为圆心,r 为半径作⊙C ,如果点B 在圆内,而点A 在圆外,那么r 的取值范围是10、若O 的半径为4cm,点A 到圆心O 的距离为3cm ,则点A 与O 的位置关系是11、如图所示,在ABC 中,AB 为O 的直径,60,70B C ∠=︒∠=︒,则BOD ∠的度数是 度.12.已知⊙O 的直径为2cm ,点A 在⊙O 上,则线段OA 的长为______cm .13. △ABC 中,∠C =90°, AC =3 , BC =4 , CD 交AB 于D , 以点C 为圆心, 以R 长为半径作圆, 使D 点在此圆内,则R 的范围是______________.14. 菱形ABCD 的对角线相交于O 点,AC =5cm ,DB =8cm ,以O 为圆心,以3cm 的长为半径作⊙O ,则点A 在⊙O ______, 点B 在⊙O ______.15. △ABC 中, ∠C =90°, AB =4cm, BC =2cm, 以点A 为圆心, 以3.4cm 的长为半径画圆, 则点C 在⊙O _____________, 点B 在⊙O ____________. 三、解答题:16、如图所示,AB 是O 的直径,,C D 是O 上的两点,且.AC CD =(1)求证//OC BD ;(2)若BC 将四边形OBDC 分成面积相等的两个三角形,试确定四边形OBDC 的形状.17.已知点A到⊙O上各点的距离中,最大值为7 cm,最小值为1 cm,求⊙O的半径.18、爆破时,导火索燃烧时的速度是每秒0.9厘米,点导火索的人需要跑到离爆破点120米以外的安全区域.如果这根导火索的长度为18厘米,那么点导火索的人每秒跑6.5米是否安全?19.如图3-12所示,A,B是两座现代城市,C是一个古城遗址,C城在A城的北偏东30°,在B城的北偏西45°,且C城与A城相距120千米,B城在A城的正东方向.以C为圆心,60千米为半径的圆形区域内有古迹和地下文物.现要在A,B两城市间修建一条笔直的高速公路.(1)请你计算公路的长度;(结果保留根号)(2)请你分析这条公路有没有可能对文物古迹造成损毁.参考答案1.B[提示:以A 为圆心、2.5 cm 为半径的圆与以AB 为直径的圆相交于两点.]2.A[提示:∵PQ =29)61()02(22=-+->5,∴点Q 在⊙P 外.]3.B[提示:OA =r =4.]4.B[提示:由勾股定理可知AC =5>2,即d >r .]5.A[提示:OP =202422=+<5,即d <r .]6.B[提示:按题中的数量关系作图观察.]7.D8.D 9.3<r <3[提示:由锐角三角函数可求得BC =3,依题意可求r 的取值范围.]10.解:若点A 在⊙O 内,则半径=(7+1)÷2=8÷2=4(cm);若点A 在⊙O 外,则半径=(7-1)÷2=3(cm).11、A 分析 本题考查点和圆的位置关系,由于点A 到圆心的距离小于半径,所以点A 在O 内.故选A .12、100分析 本题综合考查三角形内角和定理及同圆中同弧所对的圆心角、圆周角的关系,由60,70B C ∠=︒∠=︒,可知50A ∠=︒,由同圆或等圆中同弧所对的圆周角等于这条弧所对的圆心角的一半可知2250100BOD A ∠=∠=⨯︒=︒.故填100.13.22 14.大于512 15. 内、外16. 外,外17、分析 本题考查弦、弧以及圆周角、圆心角之间的关系. 证明:(1),AC CD =∴弧AC 与弧CD 相等,.ABC CBD ∴∠=∠又,,OC OB OCB OBC =∴∠=∠,//.OCB CBD OC BD ∴∠=∠∴(2)由(1)知//,OC BD 不防设平行线OC 与BD 间的距离为h , 又O 11,22BC DBC S OC h S BD h =⨯=⨯, BC 将四边形OBDC 分成面积相等的两个三角形,即OBC DBC SS =,,OC BD ∴=∴四边形OBDC 为平行四边形. 又,OC OB =∴四边形OBDC 为菱形.18、分析 爆破时的安全区域是以爆破点为圆心,120米为半径的圆的圆外部分. 解:导火索燃烧的时间为9.018=20(秒),人跑的路程为20×6.5=130(米). ∵130米>120米,∴点导火索的人是安全的.【解题策略】 解此题的关键是求人跑的路程,再与120米相比较.19.解:(1)作CD ⊥AB ,垂足为点D .在Rt △ACD 中,∵∠CAD =90°-30°=60°,∴CD =AC ·sin 60°=120×36023= (千米),AD =AC ·cos 60°=120×21=60(千米).在Rt △BCD 中,∵∠CBD =∠BCD =45°,∴BD =CD =360(千米).∴AD +BD =60+360=60(3+1)(千米),∴公路长为60(3+1)千米.(2)∵CD =360>60,∴此公路不会对文物古迹造成损毁.。

2021-2022学年北师大版九年级数学下册第三章 圆同步训练试题(含答案及详细解析)

2021-2022学年北师大版九年级数学下册第三章 圆同步训练试题(含答案及详细解析)

北师大版九年级数学下册第三章圆同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,⊙O是正五边形ABCDE的外接圆,点P是AE的一点,则∠CPD的度数是()A.30°B.36°C.45°D.72°2、已知⊙O的半径为4,点P在⊙O外部,则OP需要满足的条件是()A.OP>4 B.0≤OP<4 C.OP>2 D.0≤OP<23、如图,直径AB=6的半圆,绕B点顺时针旋转30°,此时点A到了点A',则图中阴影部分的面积是()A .3πB .34πC .πD .3π4、下列说法正确的是( )A .相等的圆心角所对的弧相等,所对的弦相等B .平分弦的直径垂直于弦,并且平分弦所对的弧C .等弧所对的圆心角相等,所对的弦相等D .圆是轴对称图形,其对称轴是任意一条直径5、已知⊙O 的半径为3cm ,在平面内有一点A ,且OA =6cm ,则点A 与⊙O 的位置关系是( )A .点A 在⊙O 内 ;B .点A 在⊙O 上;C .点A 在⊙O 外;D .不能确定.6、如图,正ABC 的边长为3cm ,边长为1cm 的正RPQ 的顶点R 与点A 重合,点P ,Q 分别在AC ,AB 上,将RPQ 沿着边AB ,BC ,CA 连续翻转(如图所示),直至点P 第一次回到原来的位置,则点P 运动路径的长为( )A .cm πB .2cm πC .3cm πD .6cm π7、如图,四边形ABCD 内接于O ,若四边形ABCO 是菱形,则D ∠的度数为( )A .45°B .60°C .90°D .120°8、如图,一块直角三角板的30°角的顶点P 落在⊙O 上,两边分别交⊙O 于A ,B 两点,连结AO ,BO ,则∠AOB 的度数是( )A .30°B .60°C .80°D .90°9)A .2B .3C .4D .510、圆O 的半径为5cm ,点A 到圆心O 的距离OA =4cm ,则点A 与圆O 的位置关系为( )A .点A 在圆上B .点A 在圆内C .点A 在圆外D .无法确定第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,点N 是直线5y x =-+上动点,M 是C 上动点,若点C 的坐标为()2,0-,且C 与y 轴相切,则MN 长度的最小值为____________.2、在△ABC 中,AB = AC ,以AB 为直径的圆O 交BC 边于点D .要使得圆O 与AC 边的交点E 关于直线AD 的对称点在线段OA 上(不与端点重合),需满足的条件可以是 _________ .(写出所有正确答案的序号)①∠BAC > 60°;②45° < ∠ABC < 60°;③BD > 12AB ;④12AB < DE . 3、若一个正多边形的边长等于它的外接圆的半径,则这个正多边形是正______边形.4、一块直角三角板的30°角的顶点A 落在O 上,两边分别交O 于B 、C 两点,若弦BC 长为4,则O 的半径为______.5、已知O 、I 分别是△ABC 的外心和内心,∠BIC =125°,则∠BOC 的大小是 ___度.三、解答题(5小题,每小题10分,共计50分)1、如图,在Rt ABC 中,90ACB ∠=︒,CD 平分ACB ∠.P 为边BC 上一动点,将DPB 沿着直线DP 翻折到DPE ,点E 恰好落在CDP 的外接圆O 上.(1)求证:D 是AB 的中点.(2)当60BDE ∠=︒,BP =DC 的长.(3)设线段DB 与O 交于点Q ,连结QC ,当QC 垂直于DPE 的一边时,求满足条件的所有QCB ∠的度数.2、如图,在▱ABCD中,∠D=60°,对角线AC⊥BC,⊙O经过点A、点B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.(1)求证:EC是⊙O的切线;O的半径.(2)若AD=3、如图1,抛物线y=ax2﹣2ax+b(a<0)与x轴交于A、B两点(A点在B点的左边),与y轴的正半轴交于点C,顶点为D,OB=OC=3OA.(1)求抛物线解析式;(2)如图2,点E的坐标为(0,7),若过点E作一条直线与抛物线在对称轴右侧有且只有一个交点H,直线y=kx﹣2k﹣5(k≠0)与抛物线交于F、G两点,求当k为何值时,△FGH面积最小,并求出面积的最小值;(3)如图3,已知直线l:y=2x﹣1,将抛物线沿直线l方向平移,平移过程中抛物线与直线l相交于E、F两点.设平移过程中抛物线的顶点的横坐标为m,在x轴上存在唯一的一点P,使∠EPF=90°,求m的值.4、如图,AB是⊙O的直径,点C是圆上一点,弦CD⊥AB于点E,且DC=AD,过点A作⊙O的切线,过点C作DA的平行线,两直线交于点F,FC的延长线与AB的延长线交于点G.(1)求证:FG 是⊙O 的切线;(2)求证:四边形AFCD 是菱形.5、已知:A ,B 是直线l 上的两点. 求作:ABC ,使得点C 在直线l 上方,且AC =BC ,30ACB ∠=︒.作法:①分别以A ,B 为圆心,AB 长为半径画弧,在直线l 上方交于点O ,在直线l 下方交于点E ; ②以点O 为圆心,OA 长为半径画圆;③作直线OE 与直线l 上方的⊙O 交于点C ;④连接AC ,BC .ABC 就是所求作的三角形.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接OA ,OB .∵OA =OB =AB , ∴OAB 是等边三角形.∴60AOB ∠=︒.∵A ,B ,C 在⊙O 上,∴∠ACB =12∠AOB ( )(填推理的依据).∴30ACB ∠=︒.由作图可知直线OE 是线段AB 的垂直平分线,∴AC =BC ( )(填推理的依据). ∴ABC 就是所求作的三角形.-参考答案-一、单选题1、B【分析】连接OC ,OD .求出∠COD 的度数,再根据圆周角定理即可解决问题;【详解】解:如图,连接OC ,OD .∵五边形ABCDE 是正五边形,∴∠COD =3605︒=72°, ∴∠CPD =12∠COD =36°,故选:B【点睛】本题主要考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2、A【分析】点在圆外,则点与圆心的距离大于半径,根据点与圆的位置关系解答.【详解】解:∵⊙O 的半径为4,点P 在⊙O 外部,∴OP 需要满足的条件是OP >4,故选:A .【点睛】此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.3、D【分析】阴影面积为旋转后'A B 为直径的半圆面积加旋转后扇形面积减去旋转前AB 为直径的半圆面积,则阴影面积为旋转后的扇形面积,由扇形面积公式计算即可.【详解】∵直径AB =6的半圆,绕B 点顺时针旋转30°∴A'B ABA'AB S S S S =+-阴影为直径的半圆扇形为直径的半圆又∵'AB A B =∴A'B AB S S =为直径的半圆为直径的半圆∴ABA'S S =阴影扇形∵AB =6,∠ABA ’=30° ∴223063360360ABA'n r S S π︒⋅π⋅====π︒︒阴影扇形 故答案为:D .【点睛】 本题考查了扇形面积公式的应用,扇形面积公式为2360n r π︒,由旋转的性质得出阴影面积为扇形面积是解题的关键.4、C【分析】根据圆心角、弧、弦的关系对AC 进行判断;根据垂径定理的推论对B 进行判断;根据对称轴的定义对D 进行判断.【详解】解:A 、在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦相等,所以本选项错误;B 、平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以本选项错误;C 、等弧所对的圆心角相等,所对的弦相等,所以本选项正确;D 、圆是轴对称图形,其对称轴是任意一条直径所在的直线,所以本选项错误;故选:C .【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理.5、C【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d >r 时,点在圆外;当d =r 时,点在圆上;当d <r 时,点在圆内判断出即可.【详解】解:∵⊙O 的半径为3cm ,OA =6cm ,∴d >r ,∴点A 与⊙O 的位置关系是:点A 在⊙O 外,故选:C .【点睛】本题主要考查了对点与圆的位置关系的判断.关键要记住若半径为r ,点到圆心的距离为d ,则有:当d >r 时,点在圆外;当d =r 时,点在圆上,当d <r 时,点在圆内.6、B【分析】从图中可以看出在AB 边,翻转的第一次是一个120度的圆心角,半径是1,第二次是以点P 为圆心,所以没有路程,同理在AC 和BC 上也是相同的情况,由此求解即可.【详解】解:从图中可以看出在AB 边,翻转的第一次是一个120度的圆心角,半径是1,所以弧长=1201180⨯π,第二次是以点P 为圆心,所以没有路程,在BC 边上,第一次1201180⨯π,第二次同样没有路程,AC 边上也是如此,点P 运动路径的长为1201180⨯π×3=2π. 故选:B .【点睛】本题主要考查了等边三角形的性质,求弧长,解题的关键在于能够根据题意得到P 点的运动轨迹.7、B【分析】设∠ADC=α,∠ABC=β,由菱形的性质与圆周角定理可得18012,求出β即可解决问题.【详解】解:设∠ADC=α,∠ABC=β;∵四边形ABCO是菱形,∴∠ABC=∠AOCβ=;∴∠ADC=12β;四边形ABCD为圆的内接四边形,∴α+β=180°,∴18012,解得:β=120°,α=60°,则∠ADC=60°,故选:B.【点睛】该题主要考查了圆周角定理及其应用,圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.8、B【分析】延长AO交⊙O于点D,连接BD,根据圆周角定理得出∠D=∠P=30°,∠ABD=90°,由直角三角形的性质可推得AB=BO=AO,然后根据等边三角形的判定与性质可以得解.【详解】解:如图,延长AO交⊙O于点D,连接BD,∵∠P=30°,∴∠D=∠P=30°,∵AD是⊙O的直径,∴∠ABD=90°,∴AB=12AD=AO=BO,∴三角形ABO是等边三角形,∴∠AOB=60°,故选B.【点睛】本题考查圆的综合应用,熟练掌握圆周角定理、圆直径的性质、直角三角形的性质、等边三角形的判定和性质是解题关键.9、B【分析】如图,O为正三角形ABC的外接圆,过点O作OD⊥AB于点D,连接OA,再由等边三角形的性质,可得∠OAB=30°,12AD AB,然后根据锐角三角函数,即可求解.【详解】解:如图,O为正三角形ABC的外接圆,过点O作OD⊥AB于点D,连接OA,根据题意得:OA,∠OAB =30°,12AD AB =, 在Rt AOD △中,3cos 2AD OA OAB =⋅∠== , ∴AB =3,即这个正三角形的边长是3.故选:B【点睛】本题主要考查了锐角三角函数,三角形的外接圆,熟练掌握锐角三角函数,三角形的外接圆性质是解题的关键.10、B【分析】根据点与圆的位置关系的判定方法进行判断.【详解】解:∵⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,即点A 到圆心O 的距离小于圆的半径,∴点A 在⊙O 内.故选:B .【点睛】本题考查了点与圆的位置关系:设⊙O 的半径为r ,点P 到圆心的距离OP =d ,则有点P 在圆外⇔d >r ;点P 在圆上⇔d =r ;点P 在圆内⇔d <r .二、填空题1-2 【分析】由图可知,当CN ⊥AB 且C 、M 、N 三点共线时,MN 长度最小,利用勾股定理求出CN 的长,故可求解.【详解】由图可知,当CN ⊥AB 且C 、M 、N 三点共线时,MN 长度最小∵直线AB 的解析式为5y x =-+当x =0时,y =5,当y =0时,x =5∴B (0,5),A (5,0)∴AO =BO ,△AOB 是等腰直角三角形∴∠BAO =90°当CN ⊥AB 时,则△ACN 是等腰直角三角形∴CN =AN∵C ()2,0-∴AC =7∵AC 2=CN 2+AN 2=2CN 2∴CN 当 C 、M 、N 三点共线时,MN 长度最小即MN =CN -CM -2-2.【点睛】此题主要考查圆与几何综合,解题的关键是根据题意找到符合题意的位置,利用等腰直角三角形的性质求解.2、②④【分析】将所给四个条件逐一判断即可得出结论.【详解】解:在ΔABC 中,AB AC =①当∠BAC > 60°时,若90BAC ∠=︒时,点E 与点A 重合,不符合题意,故①不满足;②当∠ABC 45≤︒时,点E 与点A 重合,不符合题意,当∠ABC 60>︒时,点E 与点O 不关于AD 对称,当4560ABC ︒<∠≤︒时,点E 关于直线AD 的对称点在线段OA 上,所以,当45° < ∠ABC < 60°时,点E 关于直线AD 的对称点在线段OA 上,故②满足条件;③当12AB BD AB ≤<时,点E 关于直线AD 的对称点在线段OA 上,故③不满足条件;④当12AB < DE 时,点E 关于直线AD 的对称点在线段OA 上,故④满足条件; 所以,要使得O 与AC 边的交点E 关于直线AD 的对称点在线段OA 上(不与端点重合),需满足的条件可以是45° < ∠ABC < 60°或12AB < DE故答案为②④【点睛】本题考查了圆周角定理,正确判断出每种情况是解答本题的关键.3、六【分析】由半径与边长相等,易判断等边三角形,然后根据角度求出正多边形的边数.【详解】解:当一个正多边形的边长与它的外接圆的半径相等时,画图如下:∵半径与边长相等,∴这个三角形是等边三角形,∴正多边形的边数:360°÷60°=6,∴这个正多边形是正六边形故答案为:六.【点睛】本题考查了正多边形和圆,等边三角形的性质和判定,结合题意画出合适的图形是解题的关键.4、4【分析】连接OB 、OC ,由题意易得∠BOC =60°,则有△BOC 是等边三角形,然后问题可求解.【详解】连接OB 、OC ,如图所示:∵∠A =30°,∴∠BOC =60°,∵OB =OC ,∴△BOC 是等边三角形,∵4BC =,∴4OB BC ==,即⊙O 的半径为4.故答案为:4.【点睛】本题主要考查圆周角定理,熟练掌握圆周角定理是解题的关键.5、140【分析】作ABC ∆的外接圆,根据三角形内心的性质可得:12IBC ABC ∠=∠,12ICB ACB ∠=∠,再由三角形内角和定理得出:70A ∠=︒,最后根据三角形外心的性质及圆周角定理即可得.【详解】解:如图所示,作ABC ∆的外接圆,∵点I 是ABC ∆的内心,∴BI ,CI 分别平分ABC ∠和ACB ∠, ∴12IBC ABC ∠=∠,12ICB ACB ∠=∠,∵125BIC ∠=︒,∴18012555IBC ICB ∠+∠=︒-︒=︒,∴()2110ABC ACB IBC ICB ∠+∠=∠+∠=︒,∴70A ∠=︒,∵点O 是ABC ∆的外心,∴2140BOC A ∠=∠=︒,故答案为:140.【点睛】题目主要考查三角形内心与外心的性质,三角形内角和定理等,理解题意,熟练掌握三角形内心与外心的性质是解题关键.三、解答题1、(1)证明见解析;(21;(3)当QC垂直于△DPE的一边时,∠QCB=15°或22.5°.【分析】(1)由翻折的性质可得∠B=∠DEP,再由∠DCP=∠DEP,即可得到∠B=∠DCP,CD=BD,再由角平分线的定义得到1==452B DCB ACB=︒∠∠∠,则∠BDC=90°,即可利用三线合一定理得到BD=AD,即D是AB的中点;(2)由△DPE是△DPB翻折得到,得到1302BDP EDP BDE∠=∠=∠=︒,如图所示,过点P作PF⊥AB于F,先利用勾股定理求出1BF PF==,得到22DP PF==,即可求出DF=1CD BD DF BF==+=;(3)分当CQ⊥DP时,当DE⊥CQ时,当PE⊥CQ时三种情况进行讨论求解即可得到答案.【详解】解:(1)∵△DPE是△DPB翻折得到,∴∠B=∠DEP,又∵∠DCP=∠DEP,∴∠B=∠DCP,∴CD=BD,∵∠ACB=90°,CD平分∠ACB,∴1==452B DCB ACB=︒∠∠∠=∠ A,∴∠BDC=90°,CA=CB,∴BD=AD(三线合一定理),∴D是AB的中点;(2)△DPE是△DPB翻折得到,∴1302BDP EDP BDE∠=∠=∠=︒,如图所示,过点P作PF⊥AB于F,∴∠PFB=∠PFD=90°,∴DP=2PF,∵∠B=45°,∴∠BPF=90°-∠B=45°,∴∠BPF=∠B,∴BF=PF,∵2222BF PF BP+==,∴1BF PF==,∴22DP PF==,∴DF∴1 CD BD DF BF==+=;(3)如图所示,当CQ⊥DP时,∵∠CDQ=90°,∴CQ 为圆O 的直径,∴由垂径定理可知DQ PQ =, ∴122.52DCQ PCQ DCB ∠=∠=∠=︒,即=22.5QCB ︒∠;如图所示,当DE ⊥CQ 时,设DE 与CQ 交于点F ,连接CE ,∵△DPE 是△DPB 翻折得到,∴QDP EDP ∠=∠,BD =DE ,又∵BD =CD ,∴CD =ED ,∴∠DEC =∠DCE ,∴∠DEC =∠DCP +∠ECP =∠ECP +45°,∵QDP QCP ∠=∠,ECP EDP ∠=∠,∴∠QCP =∠ECP ,∴∠DEC =∠QCP +45°,又∵CQ ⊥DE ,∴∠CFE =90°,∴∠FCE +∠FEC =90°,∴∠QCP+45°+∠QCP+∠ECP=90°,即3∠QCP+45°=90°,∴∠QCP=15°,即∠QCB=15°,∵当PE⊥CQ时,E点要在CD的下方,此时圆O与直线BD的交点在BD的延长线上,∴不存在PE⊥CQ这种情况,∴综上所述,当QC垂直于△DPE的一边时,∠QCB=15°或22.5°.【点睛】本题主要考查了折叠的性质,圆周角定理,垂径定理,直径所对的圆周角是直角,含30度角的直角三角形的性质,等腰直角三角形的性质与判定,勾股定理等等,解题的关键在于能够熟练掌握圆的相关知识.2、(1)见详解;(2)4.【分析】(1)连接OB,根据平行四边形的性质得到∠ABC=∠D=60°,求得∠BAC=30°,根据等腰三角形的性质和三角形的外角的性质得到∠ABO=∠OAB=30°,于是得到结论;,过O作OH⊥AM于H,则四边形OBCH是矩形,解直角(2)根据平行四边形的性质得到BC=AD三角形即可得到结论.【详解】(1)证明:连接OB,∵四边形ABCD是平行四边形,∴∠ABC=∠D=60°,∵AC ⊥BC ,∴∠ACB =90°,∴∠BAC =30°,∵BE =AB ,∴∠E =∠BAE ,∵∠ABC =∠E +∠BAE =60°,∴∠E =∠BAE =30°,∵OA =OB ,∴∠ABO =∠OAB =30°,∴∠OBC =30°+60°=90°,∴OB ⊥CE ,∴EC 是⊙O 的切线;(2)解:∵四边形ABCD 是平行四边形,∴BC =AD =23 ,过O 作OH ⊥AM 于H ,则四边形OBCH 是矩形,∴OH =BC∴OA =sin 60OH ︒=4, ∴ ⊙O 的半径为4.【点睛】本题考查了切线的判定,平行四边形的性质,矩形的判定和性质,正确的作出辅助线是解题的关键.3、(1)y =-x 2+2x +3;(2)k =-2,面积最小为(3)m 【分析】(1)令x =0,解得y =b ,求出OB =OC =b ,OA =13b ,得到A (-13b ,0),C (0,b ),B (b ,0),把A (-13b ,0),B (b ,0)代入y =ax 2﹣2ax +b 即可求解; (2)设直线EH 的解析式为y =nx +7,联立2723y nx y x x =+⎧⎨=-++⎩,得()2240x n x +-+=,根据直线EH 与函数只有一个交点,求出H (2,3),再得到直线GH 过定点M (2,-5),利用S △FGH =S △FMH +S △GMH =()1212MH x x ⨯-=4()12x x -,求出()12x x -的最小值即可求解; (3)当以EF 为直径的R 与x 轴相切时,x 轴上存在点P 即切点,使∠EPF =90°,设点E ,F 的坐标分别为F (x 1,y 1)、F (x 2,y 2),求出平移后的抛物线的解析式为y =-(x -m )2+2m +2,联立()22221y x m m y x ⎧=--++⎪⎨=-⎪⎩得到()2222230x m x m m -++--=,求出x 1+x 2=2m +2,x 1x 2=223m m --,y 1+y 2=4m -6,表示出点R (m -1,2m -3),求出()12x x -2,利用PR =12EF ,得到EF 2=4PR 2,列出关于m 的方程即可求解.【详解】(1)∵y =ax 2﹣2ax +b (a <0)与x 轴交于A 、B 两点(A 点在B 点的左边),与y 轴的正半轴交于点C ,令x =0,解得y =b∴CO =b∴OB =OC =b ,OA =13b ∴A (-13b ,0),C (0,b ),B (b ,0) 把A (-13b ,0),B (b ,0)代入y =ax 2﹣2ax +b 得22209302ab ab b ab ab b ⎧=++⎪⎨⎪=-+⎩,解得13a b =-⎧⎨=⎩ ∴抛物线解析式为y =-x 2+2x +3;(2)∵点E 的坐标为(0,7),可设直线EH 的解析式为y =nx +7联立2723y nx y x x =+⎧⎨=-++⎩,得()2240x n x +-+= ∵直线EH 与函数只有一个交点,且在对称轴右侧∴△=()224140n --⨯⨯=解得n 1=-2,n 2=6(舍去)∴直线EH 的解析式为y =-2x +7解方程2440x x -+=得x 1=x 2=2∴H (2,3)∵直线GH 解析式y =kx ﹣2k ﹣5=k (x -2)-5∴直线GH 过定点M (2,-5)如图,连接HM∵H (2,3)∴HM ⊥x 轴,MH =8设F (x 2,y 2)、G (x 1,y 1)联立()22523y k x y x x ⎧=--⎨=-++⎩,得到()22280x k x k +---= ∴x 1+x 2=2-k ,x 1x 2=-2k -8∵S △FGH =S △FMH +S △GMH =()1212MH x x ⨯-=4()12x x - 故当()12x x -最小时,S △FGH 最小∵()12x x -2=()()()()222121242428232x x x x k k k +-=----=++ 故当k =-2时,()12x x -2的最小值为32故()12x x -∴此时S △FGH 最小为4()12x x -=(3)当以EF 为直径的R 与x 轴相切时,x 轴上存在点P 即切点,使∠EPF =90° 如图,R 与x 轴相切时,切点为点P ,∵y =-x 2+2x +3=-(x -1)2+4设点E ,F 的坐标分别为F (x 1,y 1)、F (x 2,y 2),当平移后的抛物线的顶点的横坐标为m 时,则抛物线向右平移了m -1个单位,故相应地纵坐标向上平移了2(m -1)=个单位,则平移后的抛物线的解析式为y =-(x -m )2+4+2(m -1)=-(x -m )2+2m +2联立()22221y x m m y x ⎧=--++⎪⎨=-⎪⎩得到()2222230x m x m m -++--=∴x 1+x 2=2m +2,x 1x 2=223m m --∴y 1+y 2=2(x 1+x 2)-2=4m -6,则点R (m -1,2m -3),()12x x -2=()212124x x x x +-=(2m +2)2-4(223m m --)=16,PR =12EF 则EF 2=4PR 2∵EF 2=()12x x -2+()12y y -2=5()12x x -2=5×16=4PR 2∵PR =2m -3∴5×16=4×(2m -3)2解得m∴当m m【点睛】此题主要考查二次函数综合运用,解题的关键是熟知圆的切线的性质、勾股定理、二次函数的图像与性质、一元二次方程相关性质.4、(1)见解析;(2)见解析【分析】(1)连接OC 、AC ,证明△ACD 为等边三角形,得出∠ADC =∠DCA =∠DAC =60°,∠OCD =30°,由FG ∥DA ,得出∠DCF =180°-∠ADC =120°,则∠OCF =∠DCF -∠OCD =90°,即FG ⊥OC ,即可得出结论;(2)证明AF ∥DC ,由FG ∥DA ,得出四边形AFCD 是菱形.【详解】(1)证明:连接OC、AC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE,AD=AC,∵DC=AD,∴DC=AD=AC,∴△ACD为等边三角形,∴∠ADC=∠DCA=∠DAC=60°,∠DAB=∠BAC=30°,∴∠BOC=2∠BAC=60°,∴∠OCD=90°-60°=30°,∵FG∥DA,∴∠D=∠DCG=60°,∴∠OCG=∠DCG+∠OCD=60°+30°=90°,∴FG⊥OC,∵OC为⊙O的半径,∴FG是⊙O的切线;(2)证明:∵AF与⊙O相切,∴AF⊥AG,∵DC⊥AG,∴AF∥DC,∵FG∥DA,∴四边形AFCD为平行四边形.∵DC=AD,∴四边形AFCD是菱形.【点睛】本题考查了切线的判定与性质,菱形的判定与性质,等边三角形的性质,证明FG是⊙O的切线是解题的关键.5、(1)见解析;(2)同弧所对的圆周角等于圆心角的一半;线段垂直平分线上的点到这条线段两个端点的距离相等【分析】(1)根据题意补全图形;(2)根据同一个圆中,同弧所对的圆周角等于圆心角的一半,及垂直平分线上的点到两端点的距离相等即可.【详解】(1)作图正确;(2)证明:连接OA ,OB .∵OA =OB =AB , ∴OAB 是等边三角形.∴60AOB ∠=︒.∵A ,B ,C 在⊙O 上,∴∠ACB =12∠AOB (同弧所对的圆周角等于圆心角的一半)(填推理的依据).∴30ACB ∠=︒.由作图可知直线OE 是线段AB 的垂直平分线,∴AC =BC (线段垂直平分线上的点到这条线段两个端点的距离相等)(填推理的依据). ∴ABC 就是所求作的三角形,故答案是:同弧所对的圆周角等于圆心角的一半;线段垂直平分线上的点到这条线段两个端点的距离相等.【点睛】本题是圆的综合题、作图、考查了圆周角定理、垂直平分线、等腰三角形,解题的关键是熟练掌握圆周角定理及作图的基本能力.。

北师大版九年级数学下册 3.1 圆 同步练习

北师大版九年级数学下册 3.1 圆 同步练习

3.1 圆1.下列说法中,正确的是( )A 、弦是直径B 、半圆是弧C 、过圆心的线段是直径D 、圆心相同半径相同的两个圆是同心圆2、如图,在⊙O 中,点B 、O 、C 和点A 、O 、D 分别在同一条直线上,则图中有( )条弦A. 2B. 3C. 4D. 5 3、过圆内一点可以做圆的最长弦( )A. 1条B.2条C. 3条D. 4条4、设⊙O 的半径为r ,P 到圆心的距离为d 不大于r ,则点P 在( ) A. 在⊙O 内 B. 在⊙O 外 C. 不在⊙O 内 D.不在⊙O 外5、设⊙O 的半径为5,圆心的坐标为(0,0),点 P 的坐标为(4,-3),则点P 在( )。

A. 在⊙O 内 B. 在⊙O 外 C. 在⊙O 上 D.在⊙O 内或外6、如图点A 、D 、G 、B 在半圆上,四边形ABOC,DEOF,HMNO 均为矩形,设BC=a,EF=b,NH=c,则下列说法正确的是( )A. a >b >cB. a =b =cC. c >a >bD. b >c >a7、在⊿ABC 中,∠C=90°,AB =3cm ,BC =2cm,以点A 为圆心,以2.5cm 为半径作圆,则点C 和⊙A 的位置关系是( )A.C 在⊙A 上B.C 在⊙A 外C.C 在⊙A 内D.C 在⊙A 位置不能确定。

8、一个点到圆的最大距离为11cm ,最小距离为5cm,则圆的半径为( ) A.16cm 或6cm, B.3cm 或8cm C.3cm D.8cm 9、下列说法正确的是( )A 、两个半圆是等弧B 、同圆中优弧与半圆的差必是劣弧C 、长度相等的弧是等弧D 、同圆中优弧与劣弧的差必是优弧 10、(2008四川省资阳市)已知矩形ABCD 的边AB =15,BC =20,以点B 为圆心作圆,使A 、C 、D 三点至少有一点在⊙B 内,且至少有一点在⊙B 外,则⊙B 的半径r 的取值范围是 A .r >15 B .15<r <20 C .15<r <25 D .20<r <2511、如图,在Rt ABC △中,90ACB =∠,6AC =,10AB =,CD 是斜边AB 上的中线,以AC 为直径作⊙O ,设线段CD 的中点为P ,则点P 与⊙O 的位置关系是( ) A.点P 在⊙O 内 B.点P 在⊙O 上C.点P 在⊙O 外 D.无法确定 12、⊙O 直径为8cm ,有M 、N 、P 三点,OM=4cm ,ON=8cm ,OP=2cm ,则M 点在 ,N 点在圆 ,P 点在圆 。

北师大版九年级下册数学圆同步试卷

北师大版九年级下册数学圆同步试卷

北师大版九年级下册数学圆同步试卷一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,AC=8cm,AB=10cm,以C为圆心,以9cm长为直径的⊙C与直线AB的位置关系为()A.相交B.相离C.相切D.相离或相交2.如图,△ABC内接于⊙O,连接OA,OB,若∠C=35°,则∠OBA的度数是()A.60°B.55°C.50°D.45°3.P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知、的度数别为88°、32°,则∠P的度数为()A.26°B.28°C.30°D.32°4.已知,如图,∠AOB=∠COD,下列结论不一定成立的是()A.AB=CDB.=C.△AOB≌△CODD.△AOB、△COD都是等边三角形5.如图所示,△ABC的三个顶点在⊙O上,D是上的点,E是上的点,若∠BAC=50°.则∠D+∠E=()A.220°B.230°C.240°D.250°°6.下列说法中正确的个数有()①相等的圆心角所对的弧相等;②平分弦的直径一定垂直于弦;③圆是轴对称图形,每一条直径都是对称轴;④直径是弦;⑤长度相等的弧是等弧.A.1个B.2个C.3个D.4个7.如图,半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10 cm B.16 cm C.24 cm D.26 cm8.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则cos∠OBD=()A.B.C.D.9.如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A.6B.8C.5D.510.如图,AB是圆O的弦,AB=20,点C是圆O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN的最大值是()A.10B.5C.10D.20二.填空题(共10小题)11.平面内,到定点O的距离等于3 cm的点集合是.12.过圆内的一点(非圆心)有条直径.13.在⊙O中,弦AB的长恰好等于半径,弦AB所对的劣弧度数为.14.如图,A、B、C、D是⊙O上的四个点,若+=+,且弦AB=8,CD=4,则⊙O的半径为.15.如图是两个半圆,点O为大半圆的圆心,AB平行于半圆的直径且是大半圆的弦且与小半圆相切,且AB=24,则图中阴影部分的面积是.16.如图,半圆O的直径AB=8,半径OC⊥AB,D为弧AC上一点,DE⊥OC,DF ⊥OA,垂足分别为E、F,则EF的长.17.如图,⊙O的半径OA与弦BC交于点D.若OD=3,AD=2,BD=CD,则BC 的长为.18.如图,A是⊙O上一点,半径OC等于2,若∠ACD=45°,则弦AD的长是.19.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从点A出发沿着A→B→A方向运动,设运动时间为t(s)(0≤t<4),连接EF,当t值为s时,△BEF是直角三角形.20.如图点A,B在⊙O上,CD是它的直径,若∠B=25°,则∠ADC=度.三.解答题(共10小题)21.如图,圆中两条弦AB、CD相交于点E,且AB=CD,求证:EB=EC.22.如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连结AD、OD、OC.若的度数70°,且AD∥OC,求的度数.23.如图,已知⊙O的直径d=10,弦AB与弦CD平行,它们之间的距离为7,且AB=6,求弦CD的长.24.如图,⊙O的半径为6,点C在⊙O上,将圆折叠,使点C与圆心O重合,折痕为AB且点A、B在⊙O上,E、F是AB上两点(点E、F不与点A、B重合且点E在点F的右边),且AF=BE.(1)判定四边形OECF的形状;(2)当AF为多少时,四边形OECF为正方形?25.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,CE=2.(1)求AB的长;(2)求⊙O的半径.26.如图,在两个同心圆⊙O中,大圆的弦AB与小圆相交于C,D两点.(1)求证:AC=BD;(2)若AC=2,BC=4,大圆的半径R=5,求小圆的半径r的值;(3)若AC•BC等于12,请直接写出两圆之间圆环的面积.(结果保留π)27.如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=55°,∠ADC=50°,求∠CEB的度数.28.如图,在⊙O中,AB是⊙O的弦,CD是⊙O的直径,且AB⊥CD,垂足为G,点E在劣弧上,连接CE.(1)求证:CE平分∠AEB;(2)连接BC,若BC∥AE,且CG=4,AB=6,求BE的长.29.如图,AB是⊙O的直径.(1)用尺规作图的方法作出垂直平分半径OA的弦CD;(2)连接BC、BD,试判断△BCD的形状,并证明你的结论.30.如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,点G在直径DF的延长线上,∠D=∠G=30°(1)求证:=.(2)若CD=6,求GF的长.北师大版九年级下册数学圆同步试卷参考答案与试题解析一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,AC=8cm,AB=10cm,以C为圆心,以9cm长为直径的⊙C与直线AB的位置关系为()A.相交B.相离C.相切D.相离或相交【分析】此题首先应求得圆心到直线的距离d,据直角三角形的面积公式即可求得;若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.【解答】解:∵AC=8cm,AB=10cm,∴BC==6,S△ABC=AC×BC=×6×8=24,∴AB上的高为:24×2÷10=4.8,即圆心到直线的距离是4.8,∵r=4.5,∴4.8>4.5∴⊙C与直线AB相离,故选:B.【点评】本题主要考查了直线与圆的位置关系,根据三角形的面积求出斜边上的高的长度是解答此题关键.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2.如图,△ABC内接于⊙O,连接OA,OB,若∠C=35°,则∠OBA的度数是()A.60°B.55°C.50°D.45°【分析】由圆周角定理得出∠AOB=70°,然后由OA=OB,根据等边对等角的性质和三角形内角和定理,可求得∠OBA的度数.【解答】解:∵∠C=35°,∴∠AOB=70°,∵OA=OB,∴∠OAB=∠OBA=55°.故选:B.【点评】此题考查了圆周角定理与等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.3.P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知、的度数别为88°、32°,则∠P的度数为()A.26°B.28°C.30°D.32°【分析】先由圆周角定理求出∠A与∠ADB的度数,然后根据三角形外角的性质即可求出∠P的度数即可.【解答】解:∵和所对的圆心角分别为88°和32°,∴∠A=×32°=16°,∠ADB=×88°=44°,∵∠P+∠A=∠ADB,∴∠P=∠ADB﹣∠A=44°﹣16°=28°.故选:B.【点评】此题考查的是圆心角、弧、弦的关系及三角形外角的性质,解题的关键是:熟记并能灵活应用圆周角定理及三角形外角的性质解题.4.已知,如图,∠AOB=∠COD,下列结论不一定成立的是()A.AB=CDB.=C.△AOB≌△CODD.△AOB、△COD都是等边三角形【分析】根据圆心角、弧、弦之间的关系,由∠AOB=∠COD,可得弦相等,弧相等以及三角形全等.【解答】解:∵∠AOB=∠COD,∴AB=CD,=,∵OA=OB=OC=OD,∴△AOB≌△COD,∴ABC成立,则D不成立,故选:D.【点评】本题考查了弧,弦,圆心角之间的关系,三组量中,只要有一组相等,其余的都对应相等,是常见题型,比较简单.5.如图所示,△ABC的三个顶点在⊙O上,D是上的点,E是上的点,若∠BAC=50°.则∠D+∠E=()A.220°B.230°C.240°D.250°°【分析】连接OA、OB、OC,由圆心角、弧、弦的关系定理得出∠BOC=100°,得出∠AOB+∠AOC=260°,由圆周角定理得出∠D=(∠BOC+∠AOC),∠E=(∠BOC+∠AOB),即可得出结果.【解答】解:连接OA、OB、OC,如图所示:∵∠BAC=50°,∴∠BOC=2∠BAC=100°,∴∠AOB+∠AOC=360°﹣100°=260°,∵∠D=(∠BOC+∠AOC),∠E=(∠BOC+∠AOB),∴∠D+∠E=(∠BOC+∠AOC+∠BOC+∠AOB)=(260°+100°+100°)=230°.故选:B.【点评】本题考查了圆心角、弧、弦的关系定理、圆周角定理;熟练掌握圆心角、弧、弦的关系定理,由圆周角定理得出角之间的关系是解决问题的关键.6.下列说法中正确的个数有()①相等的圆心角所对的弧相等;②平分弦的直径一定垂直于弦;③圆是轴对称图形,每一条直径都是对称轴;④直径是弦;⑤长度相等的弧是等弧.A.1个B.2个C.3个D.4个【分析】根据圆周角定理、垂径定理、圆的性质、直径的性质、等弧的定义一一判断即可;【解答】解:①相等的圆心角所对的弧相等;错误.必须在同圆或等圆中;②平分弦的直径一定垂直于弦;错误,此弦不是直径;③圆是轴对称图形,每一条直径都是对称轴;错误,应该是每一条直径所在的直线都是对称轴;④直径是弦;正确;⑤长度相等的弧是等弧.错误.能够完全重合的两条弧是等弧;故选:A.【点评】本题考查圆周角定理、垂径定理、圆的性质、直径的性质、等弧的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.如图,半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10 cm B.16 cm C.24 cm D.26 cm【分析】首先构造直角三角形,再利用勾股定理得出BC的长,进而根据垂径定理得出答案.【解答】解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=8,OD=13,∴OC=5,又∵OB=13,∴Rt△BCO中,BC==12,∴AB=2BC=24.故选:C.【点评】此题主要考查了垂径定理以及勾股定理,得出AC的长是解题关键.8.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则cos∠OBD=()A.B.C.D.【分析】连接CD,可得出∠OBD=∠OCD,根据点D(0,3),C(4,0),得OD=3,OC=4,由勾股定理得出CD=5,再在直角三角形中得出利用三角函数求出cos ∠OBD即可.【解答】解:∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,连接CD,如图所示:∵∠OBD=∠OCD,∴cos∠OBD=cos∠OCD=.故选:C.【点评】本题考查了圆周角定理,勾股定理、以及锐角三角函数的定义;熟练掌握圆周角定理是解决问题的关键.9.如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A.6B.8C.5D.5【分析】延长AO交⊙O于点E,连接BE,由∠AOB+∠BOE=∠AOB+∠COD知∠BOE=∠COD,据此可得BE=CD=6,在Rt△ABE中利用勾股定理求解可得.【解答】解:如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD=6,∵AE为⊙O的直径,∴∠ABE=90°,∴AB===8,故选:B.【点评】本题主要考查圆心角定理,解题的关键是掌握圆心角定理和圆周角定理.10.如图,AB是圆O的弦,AB=20,点C是圆O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN的最大值是()A.10B.5C.10D.20【分析】连接OA、OB,如图,根据圆周角定理得到∠AOB=2∠ACB=90°,则OA=AB=20,再根据三角形中位线性质得到MN=AC,然后利用AC为直径时,AC的值最大可确定MN的最大值.【解答】解:连接OA、OB,如图,∴∠AOB=2∠ACB=2×45°=90°,∴△OAB为等腰直角三角形,∴OA=AB=×20=20,∵点M、N分别是AB、BC的中点,∴MN=AC,当AC为直径时,AC的值最大,∴MN的最大值为20.故选:D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了三角形中位线性质.二.填空题(共10小题)11.平面内,到定点O的距离等于3 cm的点集合是以点O为圆心,3cm为半径的圆.【分析】圆的定义是在同一平面内到定点距离等于定长的点的集合,所以到顶点O的距离等于3cm的点的集合是圆.【解答】解:根据圆的定义可知,到定点O的距离等于3cm的点的集合是以点O为圆心,3cm为半径的圆.故答案为:以点O为圆心,3cm为半径的圆【点评】本题考查了圆的定义,根据定义可知,初中阶段所研究的圆,指的是圆周,而不是圆面.12.过圆内的一点(非圆心)有且只有一条直径.【分析】根据直径的定义求解.【解答】解:过圆内的一点(非圆心)有且只有一条直径.故答案为且只有一.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).13.在⊙O中,弦AB的长恰好等于半径,弦AB所对的劣弧度数为60°.【分析】首先连接OA,OB,由⊙O的弦AB等于半径,可得△AOB是等边三角形,继而求得劣弧所对的圆心角的度数.【解答】解:如图,连接OA,OB,∵在⊙O中,弦AB的长等于半径,∴OA=AB=OB,∴△OAB是等边三角形,∴∠AOB=60°,∴劣弧所对圆心角度数是:60°.故答案为60°.【点评】此题考查了圆心角、弧、弦的关系以及等边三角形的判定与性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.14.如图,A、B、C、D是⊙O上的四个点,若+=+,且弦AB=8,CD=4,则⊙O的半径为2.【分析】易得弧AB,CD是一个半圆弧,我们将C点转到与A点重合处,那么O、B、D′就在一条直线上,而且是一直径,由圆心角、弧、弦的关系和勾股定理解答.【解答】解:∵+=+,∴弧AB,CD就是一个半圆弧,则B、O、D′就在一条直线上,而且BD′是一直径,∴∠D′AB=90°,弧AD′=弧CD,∴AD′=CD=4,在Rt△CAB中,由勾股定理得:BD′==4,∴OB=2,故答案是:2.【点评】本题考查了圆心角、弧、弦的关系,解题的关键是作辅助线,利用勾股定理求得该圆的直径.15.如图是两个半圆,点O为大半圆的圆心,AB平行于半圆的直径且是大半圆的弦且与小半圆相切,且AB=24,则图中阴影部分的面积是72π.【分析】将小圆向右平移,使两圆变成同心圆,连OB,过O作OC⊥AB于C点,根据垂径定理得AC=BC=12,根据切线的性质得OC为小圆的半径,而S阴影部分=S大半圆﹣S小半圆,利用圆的面积公式得到S阴影部分=π(OB2﹣OC2),利用勾股定理即可计算出阴影部分的面积.【解答】解:将小圆向右平移,使两圆变成同心圆,如图,连OB,过O作OC⊥AB于C点,则AC=BC=12,∵AB是大半圆的弦且与小半圆相切,∴OC为小圆的半径,∴S阴影部分=S大半圆﹣S小半圆=π•OB2﹣π•OC2=π(OB2﹣OC2)=πBC2=72π.故答案为72π.【点评】本题考查了在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等.也考查了垂径定理、切线的性质、勾股定理以及圆的面积公式.16.如图,半圆O的直径AB=8,半径OC⊥AB,D为弧AC上一点,DE⊥OC,DF ⊥OA,垂足分别为E、F,则EF的长4.【分析】连接OD,利用三个角是直角的四边形是矩形判定四边形DEOF是矩形,利用矩形的对角线相等即可得到所求结论.【解答】解:连接OD.∵OC⊥AB,DE⊥OC,DF⊥OA,∴∠AOC=∠DEO=∠DFO=90°,∴四边形DEOF是矩形,∴EF=OD.∵OD=OA∴EF=OA=4.故答案为:4.【点评】本题考查了垂径定理,矩形的判定与性质,解题的关键是利用矩形的判定方法判定四边形DFOE为矩形.17.如图,⊙O的半径OA与弦BC交于点D.若OD=3,AD=2,BD=CD,则BC 的长为8.【分析】利用垂径定理的推论得到OD⊥BC,然后利用勾股定理计算出BD,从而得到BC的长.【解答】解:∵BD=CD,∴OD⊥BC,在Rt△OBD中,∵OB=5,OD=3,∴BD==4,∴BC=2BD=8.故答案为8.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.18.如图,A是⊙O上一点,半径OC等于2,若∠ACD=45°,则弦AD的长是.【分析】连接OA、OD.构造直角三角形AOD,然后在直角三角形AOD中利用勾股定理求弦AD的长度.【解答】解:连接OA、OD.∵∠ACD=45°,∴∠AOD=90°(同弧所对的圆周角等于它所对的圆心角的一半);又∵⊙O的半径是2,∴OA=OD=OC=2,∴在直角三角形中,AD=2;故答案是:2.【点评】本题考查了圆周角定理、勾股定理.解答此题时,借助于辅助线OD、OA,构造直角三角形AOD是解题的关键所在.19.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从点A出发沿着A→B→A方向运动,设运动时间为t(s)(0≤t<4),连接EF,当t值为1或1.75或2.25或3s时,△BEF是直角三角形.【分析】如图,作FM⊥AB于M.由题意当点E运动到与O或M重合时,△EFB 是直角三角形,求出BM的值即可解决问题;【解答】解:如图,作FM⊥AB于M.∵AB是直径,∴∠ACB=90°,∵BC=2cm,∠B=60°,∴AB=2BC=4(cm),在Rt△FBM中,∵BF=CF=1cm.∴BM=BF=,由题意当点E运动到与O或M重合时,△EFB是直角三角形,∴时间t的值为1或1.75或2.25或3s时,△BEF是直角三角形.故答案为1或1.75或2.25或3.【点评】本题考查圆周角定理、解直角三角形、30度的直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.20.如图点A,B在⊙O上,CD是它的直径,若∠B=25°,则∠ADC=65度.【分析】先利用同弧或等弧所对的圆周角相等得到∠C=25°,然后利用直径所对的圆周角是直角得到∠CAD=90°,则利用互余可计算出∠ADC的度数.【解答】解:∵∠B=25°,∴∠C=25°,∵CD是直径,∴∠CAD=90°,∴∠ADC=90°﹣25°=65°.故答案为65.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.三.解答题(共10小题)21.如图,圆中两条弦AB、CD相交于点E,且AB=CD,求证:EB=EC.【分析】连接AD,依据AB=CD,即可得出=,进而得到∠BAD=∠CDA,可得AE=DE,再根据AB=CD,即可得到AE=CE.【解答】证明:如图,连接AD,∵AB=CD,∴=,∴﹣=﹣,即=,∴∠BAD=∠CDA,∴AE=DE,又∵AB=CD,∴AE=CE.【点评】本题考查的是圆心角、弧、弦的关系,掌握在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等是解题的关键.22.如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连结AD、OD、OC.若的度数70°,且AD∥OC,求的度数.【分析】利用圆心角的度数等于它所对的弧的度数得到∠AOC=70°,则利用平行线的性质得∠A=∠AOC=70°,然后根据等腰三角形的性质和三角形内角和计算出∠AOD=40°,从而得到的度数.【解答】解:∵的度数70°,∴∠AOC=70°,∵AD∥OC,∴∠A=∠AOC=70°,∵OA=OC,∴∠D=∠A=70°,∴∠AOD=180°﹣70°﹣70°=40°,∴的度数为40°.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.23.如图,已知⊙O的直径d=10,弦AB与弦CD平行,它们之间的距离为7,且AB=6,求弦CD的长.【分析】作OM⊥AB于M,ON⊥CD于N,连接OA、OC,根据垂径定理求出AM,根据勾股定理求出OM,根据题意求出ON,根据勾股定理、垂径定理计算即可.【解答】解:作OM⊥AB于M,ON⊥CD于N,连接OA、OC,则AM=AB=3,∵AB∥CD,∴点M、O、N在同一条直线上,在Rt△AOM中,OM==4,∴ON=MN﹣OM=3,在Rt△CON中,CN==4,∵ON⊥CD,∴CD=2CN=8.【点评】本题考查的是垂径定理和勾股定理的应用,掌握垂直于弦的直径平分这条弦是解题的关键.24.如图,⊙O的半径为6,点C在⊙O上,将圆折叠,使点C与圆心O重合,折痕为AB且点A、B在⊙O上,E、F是AB上两点(点E、F不与点A、B重合且点E在点F的右边),且AF=BE.(1)判定四边形OECF的形状;(2)当AF为多少时,四边形OECF为正方形?【分析】(1)四边形OECF为菱形,连接OC,交AB于点D,先由折叠的性质得到OD=CD,且OC垂直于AB,利用垂径定理得到D为AB的中点,利用等式的性质得到FD=ED,利用对角线互相平分的四边形为平行四边形得到OEFC为平行四边形,再由FD=ED,且OD垂直于EF,得到OE=OF,即可得到四边形OECF为菱形;(2)四边形OEFC要为正方形,必须FD=ED=OD=CD,由半径求出OD的长,得到DF的长,在直角三角形AOD中,利用勾股定理求出AD的长,由AD﹣DF 即可求出此时AF的长.【解答】解:(1)四边形OEFC为菱形,理由为:连接OC,交AB于点D,由折叠的性质得到OD=CD,OC⊥AB,则D为AB的中点,即AD=BD,∵AF=BE,∴AD﹣AF=BD﹣BE,即FD=ED,∴四边形OEFC为平行四边形,∵FD=ED,OD⊥EF,∴OE=OF,则四边形OEFC为菱形;(2)∵OD=DC=OC=3,∴在Rt△AOD中,根据勾股定理得:AD==3,要使四边形OEFC为正方形,必须FD=OD=3,则此时AF=AD﹣FD=3﹣3.【点评】此题考查了垂径定理,勾股定理,平行四边形、菱形、正方形的判定,熟练掌握垂径定理是解本题的关键.25.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,CE=2.(1)求AB的长;(2)求⊙O的半径.【分析】(1)只要证明△AOF≌△COE,推出CE=AF=2,再根据垂径定理可得B=2AF;(2)只要证明∠A=30°,可得cosA=,由此即可解决问题;【解答】解:(1)∵CD⊥AB,AO⊥BC∴∠AFO=∠CEO=90°,在△AOF和△COE中,,∴△AOF≌△COE,∴CE=AF,∵CE=2,∴AF=2,∵CD是⊙O的直径,CD⊥AB,∴,∴AB=4.(2)∵AO是⊙O的半径,AO⊥BC∴CE=BE=2,∵AB=4,∴,∵∠AEB=90°,∴∠A=30°,又∵∠AFO=90°,∴cosA===,∴,即⊙O的半径是.【点评】本题考查全等三角形的性质、垂径定理、锐角时函数等知识,解题的关键是正确寻找全等三角形解决问题,证明∠A=30°是解决问题2的关键.26.如图,在两个同心圆⊙O中,大圆的弦AB与小圆相交于C,D两点.(1)求证:AC=BD;(2)若AC=2,BC=4,大圆的半径R=5,求小圆的半径r的值;(3)若AC•BC等于12,请直接写出两圆之间圆环的面积.(结果保留π)【分析】(1)过O作OE⊥AB于点E,由垂径定理可知E为CD和AB的中点,则可证得结论;(2)连接OC、OA,由条件可求得CD的长,则可求得CE和AE的长,在Rt△AOE中,利用勾股定理可求得OE的长,在Rt△COE中可求得OC的长;(3)连接OA,OC,作OE⊥AB于点E,由垂径定理可得AE=BE.由勾股定理可得:OE2=OA2﹣AE2,OE2=OC2﹣CE2,继而可得OA2﹣OC2=AE2﹣CE2=(AE+CE)(AE﹣CE)=BC•AC=12,则可求得圆环的面积.【解答】(1)证明:过O作OE⊥AB于点E,如图1,由垂径定理可得AE=BE,CE=DE,∴AE﹣CE=BE﹣DE,∴AC=BD;(2)解:连接OC、OA,如图2,∵AC=2,BC=4,∴AB=2+4=6,∴AE=3,∴CE=AE﹣AC=3﹣2=1,在Rt△AOE中,由勾股定理可得OE2=OA2﹣AE2=52﹣32=16,在Rt△COE中,由勾股定理可得OC2=CE2+OE2=12+16=17,∴OC=,即小圆的半径r为;(3)解:连接OA,OC,作OE⊥AB于点E,如图2,由垂径定理可得AE=BE.在Rt△AOE与Rt△OCE中:OE2=OA2﹣AE2,OE2=OC2﹣CE2,∴OA2﹣AE2=OC2﹣CE2,∴OA2﹣OC2=AE2﹣CE2=(AE+CE)(AE﹣CE)=(BE+CE)•AC=BC•AC=12,∴OA2﹣OC2=12,∴圆环的面积为:πOA2﹣πOC2=π(OA2﹣OC2)=12π.【点评】此题考查了垂径定理与勾股定理的知识.此题难度适中,解题的关键是注意数形结合思想的应用,注意辅助线的作法.27.如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=55°,∠ADC=50°,求∠CEB的度数.【分析】连接BC,根据圆周角定理和三角形的内角和即可得到结论.【解答】解:连接BC,∵∠ADC=50°,∴∠ABC=∠ADC=50°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC=40°,∵∠ACD=55°,∴∠CEB=∠BAC+∠ACD=95°.【点评】本题考查了圆周角定理,熟练掌握同弧所对的圆周角相等,直径所对的圆周角等于90°.28.如图,在⊙O中,AB是⊙O的弦,CD是⊙O的直径,且AB⊥CD,垂足为G,点E在劣弧上,连接CE.(1)求证:CE平分∠AEB;(2)连接BC,若BC∥AE,且CG=4,AB=6,求BE的长.【分析】(1)根据垂径定理得到=.,然后根据圆周角定理得到∠AEC=∠BEC;(2)利用垂径得到BG=AG=3.∠BGC=90°,则利用勾股定理可计算出BC=5,然后证明∠BCE=∠BEC,从而得到BE的长.【解答】(1)证明:∵CD⊥AB,CD是直径,∴=.∴∠AEC=∠BEC;∴CE平分∠AEB;(2)解:∵CD⊥AB,∴BG=AG=3.∠BGC=90°,在Rt△BGC中,∵CG=4,BG=3,∴BC=5,∵BC∥AE,∴∠AEC=∠BCE.又∠AEC=∠BEC,∴∠BCE=∠BEC∴BE=BC=5.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.29.如图,AB是⊙O的直径.(1)用尺规作图的方法作出垂直平分半径OA的弦CD;(2)连接BC、BD,试判断△BCD的形状,并证明你的结论.【分析】(1)分别以点A、O为圆心,以大于OA的长的一半为半径画弧,交于两点,连接这两点并交于圆于点C、D;(2)由垂径定理可得到BC=BD和△ACD是等边三角形,再由圆周角得到∠D=∠A=60°,即可得到△BCD是等边三角形.【解答】解:(1)如图,线段CD就是所求作的弦;(2)△BCD是等边三角形,证明如下:连接AC、OC∵CD⊥AB,AB是⊙O的直径∴∴BC=BD∵CD垂直平分半径OA∴AC=OC∵OA=OC∴AC=OA=OC∴∠A=60°,又∵∠A和∠CDB同对弧BC∴∠CDB=∠A=60°∴△BCD是等边三角形.【点评】本题考查了中垂线的作法和垂径定理、圆周角定理、等边三角形的性质和判定.30.如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,点G在直径DF的延长线上,∠D=∠G=30°(1)求证:=.(2)若CD=6,求GF的长.【分析】(1)只要证明∠COF=∠COV=60°即可.(2)首先证明GF=CF,再在RT△CFD中利用勾股定理即可解决.【解答】解:(1)如图,连接OC、CF.∵AB是直径,AB⊥CD,∴BC弧=BD弧,∠OED=90°,∴∠BOD=∠COB,∵∠D=30°,∴∠DOE=∠AOF=∠BOC=60°,∴∠COF=60°,∴∠COF=∠COB=60°,∴=.(2)∵OC=OF,∠COF=60°∴△COF是等边三角形,∴∠OFC=60°,∵∠G=30°,∠OFC=∠G+∠FCG,∴∠FCG=30°,∴∠G=∠FCG,∴GF=CF,∵DF是直径,∴∠FCD=90°,∵∠D=30°,CD=6,DF=2CF,设CF=a,则DF=2a∴a2+36=4a2,∵a>0,∴a=2,∴GF=CF=2.【点评】本题考查圆周角定理、勾股定理、垂径定理等知识,利用垂径定理是解决问题的关键,学会把问题转化为特殊三角形,即问题特殊化,属于中考常考题型.。

北师大版九年级数学下册《3.1圆》同步练习题含答案

北师大版九年级数学下册《3.1圆》同步练习题含答案

北师大版九年级数学下册《3.1圆》同步练习题含答案学校:___________班级:___________姓名:___________考号:___________圆的有关概念1.“车轮为什么都做成圆形?”下面解释最合理的是()A.圆形是轴对称图形B.圆形特别美观大方C.圆形是曲线图形D.从圆心到圆上任意一点的距离都相等2.下列说法正确的是()A.大于半圆的弧叫做优弧B.长度相等的两条弧叫做等弧C.过圆心的线段是直径D.直径一定大于弦3.如图,A,B,C是☉O上三点,∠A=80°,∠C=60°,则∠B的大小为.4.(2024宿迁沭阳县月考)如图,在☉O中,AB是直径,CD是弦,延长AB,CD相交于点P,且AB=2DP,∠P=18°,求∠AOC的度数.点和圆的位置关系5.已知☉O的半径为3,当OP=5时,点P与☉O的位置关系为()A.点在圆内B.点在圆外C.点在圆上D.不能确定6.已知☉O的半径长为2,若OA=√5,则可以得到的正确图形可能是()A B C D7.(2024宜兴二模)已知☉O的半径为5 cm,A为线段OB的中点,当OB=9 cm时,点A与☉O的位置关系是.8.如图,已知矩形ABCD的边AB=3 cm,BC=4 cm,以点A为圆心,4 cm为半径作☉A,则点B,C,D与☉A 有怎样的位置关系?1.(2024大庆二模)已知☉O的半径是4,点P到圆心O的距离d为方程x2-4x+4=0的一个根,则点P 在()A.☉O的外部B.☉O的内部C.☉O上D.无法判断⏜上的点,连接AD并延长与OB的延长线交于点C,若CD=OA,∠O= 2.如图,在扇形AOB中,D为AB72°,则∠A的度数为()A.35°B.52.5°C.70°D.72°3.运动场上的环形跑道的跑道宽都是相同的,若一条跑道的两个边缘所在的环形周长的差等于12π m,则跑道的宽度为m.54.如图,CD是☉O的直径,∠EOD=84°,点A在DC的延长线上,AE交☉O于点B,且AB=OC,则∠A的度数是.5.如图,在平面直角坐标系中,有一圆弧经过三个点A,B,C,且点A,B,C的坐标分别为A(0,4),B(-4,4)C(-6,2).(1)该圆弧所在圆的圆心M的坐标为;(2)☉M的半径为;(3)点D(-5,-2)在☉M(填“内”“外”或“上”);(4)点O到☉M上最近的点的距离为.6.如图,AB是☉O的直径,CD是☉O的弦,AB,CD的延长线交于点E,若AB=2DE,∠C=40°,求∠E及∠AOC 的度数.7.(推理能力)如图,E是菱形ABCD内一点,∠BEC=90°,DF⊥CE,垂足为F,且DF=CE,连接AE.(1)求证:菱形ABCD是正方形;(2)当F是线段CE的中点时,求证:点F在以AB为半径的☉A上.参考答案课堂达标1.D解析:车轮都做成圆形,利用了圆心到圆上任意一点的距离都相等,即圆半径都相等,即车轮滚动时车轴到地面的距离不变,这样子车子才不会颠簸,车子才会更平稳.故选D.2.A解析:A.大于半圆的弧叫做优弧,原说法正确,符合题意;B.在同圆或等圆中长度相等的两条弧叫做等弧,原说法错误,不符合题意;C.过圆心的弦是直径,原说法错误,不符合题意;D.在同圆或等圆中,直径一定大于除直径外的弦,原说法错误,不符合题意.故选A.3.140°解析:连接OB,如图∵OA=OB∴∠A=∠OBA=80°.∵OB=OC∴∠OBC=∠C=60°∴∠ABC=∠OBA+∠OBC=80°+60°=140°.4.解:如图,连接OD∵AB=2DP=2OD,∠P=18°∴OD=DP∴∠DOP=∠P=18°.∵∠ODC是△OPD的外角∴∠ODC=∠P+∠DOP=18°+18°=36°.∵OD=OC∴∠OCD=∠ODC=36°∴∠COD=180°-36°-36°=108°∴∠AOC=180°-∠COD-∠DOP=180°-108°-18°=54°.5.B解析:∵OP=5,r=3∴OP>r则点P在☉O外.故选B.6.D解析:∵☉O的半径为2,OA=√5,且√5>2∴点A在圆外.故选D.7.点A在☉O内解析:∵A为线段OB的中点,∴当OB=9 cm时OB=4.5 cm.得OA=12∵r=5 cm,∴OA<r∴点A与☉O的位置关系是点A在☉O内.8.解:如图,连接AC∵AB=3 cm,BC=AD=4 cm∴AC=5 cm∴点B在☉A内,点D在☉A上,点C在☉A外.课后提升1.B解析:x2-4x+4=0可化为(x-2)2=0解得x=2∴OP=2.∵2<4∴点P在☉O内.故选B.2.D解析:连接OD,如图,设∠C的度数为n∵CD=OA=OD∴∠C=∠DOC=n∴∠ADO=∠DOC+∠C=2n.∵OA=OD∴∠A=∠ADO=2n.∵∠AOC+∠C+∠A=180°,∠AOC=72°∴72°+n+2n=180°解得n=36°∴∠A=2n=72°.故选D.解析:设运动场上的小环半径为r m,大环半径为R m,根据题意,得3.65π2π(R-r)=125解得R-r=65m.即跑道的宽度为654.28°解析:∵AB=OC,OC=OB∴AB=OB∴∠A=∠AOB.∵BO=EO∴∠BEO=∠EBO.由∠EBO是△ABO的外角,得∠EBO=∠A+∠AOB=2∠A∴∠BEO=∠EBO=2∠A.由∠DOE是△AOE的外角,得∠A+∠AEO=∠EOD即∠A+2∠A=84°∴∠A=28°.5.(1)(-2,0)(2)2√5(3)内(4)2√5-2解析:(1)如图,分别作AB,BC的垂直平分线,两直线交于点M则点M即为该圆弧所在圆的圆心由图形可知,点M的坐标为(-2,0).(2)☉M的半径长=√22+42=2√5.(3)MD=√(5-2)2+22=√13,√13<2√5∴MD<☉M的半径∴点D(-5,-2)在☉M内.(4)由题意可得,点O到☉M上最近的点在直线OM上∵☉M的半径长为2√5,OM=2∴点O到☉M上最近的点的距离为2√5-2.6.解:如图,连接OD∵OC=OD,∠C=40°∴∠ODC=∠C=40°.AB∵AB=2DE,OD=12∴OD=DE.∵∠ODC是△DOE的外角∠ODC=20°.∴∠E=∠EOD=12∵∠AOC是△COE的外角∴∠AOC =∠C +∠E =40°+20°=60°. 7.证明:(1)∵DF ⊥CE ∴∠CFD =90° ∴∠CDF +∠FCD =90°. ∵∠BEC =90° ∴∠BEC =∠CFD. ∵四边形ABCD 为菱形 ∴BC =CD.在Rt △BCE 和Rt △CDF 中 {BC =CD ,CE =DF ,∴Rt △BCE ≌Rt △CDF (HL) ∴∠BCE =∠CDF ∴∠BCE +∠FCD =90° ∴∠BCD =90°∴菱形ABCD 为正方形.(2)如图,连接AF ,ED∵四边形ABCD 为正方形 ∴∠ADC =90°,AD =CD. ∵F 为CE 的中点,DF ⊥CE ∴DF 是CE 的垂直平分线 ∴DE =DC =AD∴∠DAE =∠DEA ,∠DEC =∠DCE.∵∠DAE +∠DEA +∠ADE =180°,∠DEC +∠DCE +∠CDE =180° ∴∠AED =180°-∠ADE2∠DEC =180°-∠CDE2∴∠AEF =∠AED +∠DEC =180°-12(∠ADE +∠CDE )=180°-45°=135° ∴∠AEB =360°-135°-90°=135°∴∠AEF=∠AEB.∵△BCE≌△CDF∴BE=CF=FE.在△AFE和△ABE中{AE=AE,∠AEF=∠AEB, EF=EB,∴△AFE≌△ABE(SAS),∴AB=AF ∴点F在以AB为半径的☉A上.。

3.1圆-2020-2021学年北师大版九年级数学下册同步测试

3.1圆-2020-2021学年北师大版九年级数学下册同步测试

北师大版九年级数学下册第三章3.1 圆同步测试(原卷版)一.选择题1.已知⊙O的半径为3cm,PO=5cm,则下列说法正确的是( )A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定2.现有两个圆,⊙O1的半径等于篮球的半径,⊙O2的半径等于一个乒乓球的半径,现将两个圆的周长都增加1米,则面积增加较多的圆是()A.⊙O1B.⊙O2C.两圆增加的面积是相同的D.无法确定3.线段AB=10 cm,在以AB为直径的圆上,到点A的距离为5 cm的点有( )A.1个B.2个C.3个D.4个4.Rt⊙ABC中,⊙C=90°,AC=2,BC=4,如果以点A为圆心,AC为半径作⊙A,那么斜边中点D与⊙A的位置关系是( )A.点D在⊙A外B.点D在⊙A上C.点D在⊙A内D.无法确定5.如图是公园的路线图,⊙O1,⊙O2,⊙O两两相切,点A,B,O分别是切点,甲乙二人骑自行车,同时从点A出发,以相同的速度,甲按照“圆”形线行驶,乙行驶“8字型”线路行驶.若不考虑其他因素,结果先回到出发点的人是()A.甲B.乙C.甲乙同时D.无法判定6.如果一个直角三角形的两条直角边AB=8 cm,BC=6 cm,若以点B为圆心,以某一直角边长为半径画圆,则( )A.若点A在⊙B上,则点C在⊙B外B.若点C在⊙B上,则点A在⊙B 外C.若点A在⊙B上,则点C在⊙B上D.以上都不正确7.在10×10的正方形网格纸上,每个小正方形的边长都为1.如果以该网格中心为圆心,以5为半径画圆,那么在该圆周上的格点共有()A.4个B.8个C.12个D.16个8.中央电视台“开心辞典”栏目曾有这么一道题:圆的半径增加了一倍,那么圆的面积增加了()A.一倍B.二倍C.三倍D.四倍9.下列说法,正确的是( )A.半径相等的两个圆大小相等B.长度相等的两条弧是等弧C.直径不一定是圆中最长的弦D.圆上两点之间的部分叫做弦10.若⊙O所在的平面内上有一点P,它到⊙O上的点的最大距离是6,最小距离是2,则这个圆的半径为( )A.2 B.4 C.2或4 D.不能确定二.填空题11.线段AB=10cm,在以AB为直径的圆上到点A的距离为5cm的点有个.12.已知⊙O的直径为2cm,点A在⊙O上,则线段OA的长为______cm.13.战国时期数学家墨子撰写的《墨经》一书中,就有“圆,一中同长也”的记载,这句话里的“中”字的意思可以理解为.14.⊙ABC中, ⊙C=90°, AB=4cm, BC=2cm, 以点A为圆心, 以3.4cm的长为半径画圆, 则点C在⊙O_____________, 点B在⊙O____________.15.点A的坐标为(3,0),点B的坐标为(0,4),则点B在以A为圆心,6为半径的圆____________.16.已知,圆A的周长是圆B的周长的4倍,那么圆A的面积是圆B的面积的倍.17.在矩形ABCD中,BC=6,CD=8,以A为圆心画圆,且点D在⊙A内,点B 在⊙A外,则⊙A半径r的取值范围是____________.18.已知点A到⊙O上各点的距离中最大距离为6cm,最小距离为2cm,那么⊙O 的半径为________cm.三.解答题19.求证:直径是圆中最长的弦.20.实践探究:有一个周长62.8米的圆形草坪,准备为它安装自动旋转喷灌装置进行喷灌,现有射程为20米、15米、10米的三种装置,你认为应选哪种比较合适?安装在什么地方?21.设AB=3cm,画图说明:到点A的距离小于2cm,且到点B的距离大于2cm的所有点组成的图形.22.如图所示,一个半径为3cm,弧长为πcm的扇形,让弧在水平面上滚动,探究圆心O运动的路径特征及运动的距离.23.一张靶纸如图所示.靶纸上的1,3,5,7,9分别表示投中该靶区的得分数.小明、小华、小红3人各投了6次镖,每次镖都中了靶.最后他们是这样说的﹣﹣小明说:“我只得了8分.”小华说:“我共得了56分.”小红说:“我共得了28分.”他们可能得到这些分数吗?如果可能,请把投中的靶区在靶纸上表示出来(用不同颜色的彩笔画出来);如果不可能,请说明理由.24.一个塑料文具胶带如图所示,带宽为1cm,内径为4cm,外径为7cm,已知30层胶带厚1.5mm,则这卷胶带长多少m?(π≈3.14,结果保留4位有效数字)25.地球的赤道是个近似的圆形,赤道的半径约6378.2千米,假设有一根绳子沿地球赤道贴紧地面绕一周,现在将绳子增加6.28米,使绳子与地面之间钉均匀的缝隙,请问缝隙有多宽?一只高4厘米的蜗牛能否从该缝隙间爬过?(π取3.14)26.⊙ABC中,⊙C=90°,AC=4,BC=3,以点C为圆心,以R长为半径画圆,若⊙C与AB相交,求R的范围.北师大版九年级数学下册第三章3.1圆同步测试(解析版)一.选择题1.已知⊙O的半径为3cm,PO=5cm,则下列说法正确的是( )A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定解:由题意知⊙O的半径为3cm,PO=5cm,可知点P到圆心的距离大于r,故点P在圆外,故选B.2.现有两个圆,⊙O1的半径等于篮球的半径,⊙O2的半径等于一个乒乓球的半径,现将两个圆的周长都增加1米,则面积增加较多的圆是()A.⊙O1B.⊙O2C.两圆增加的面积是相同的D.无法确定解:设⊙O1的半径等于R,变大后的半径等于R′;⊙O2的半径等于r,变大后的半径等于r′,其中R>r.由题意得,2πR+1=2πR′,2πr+1=2πr′,解得R′=R+,r′=r+;所以R′﹣R=,r′﹣r=,所以,两圆的半径伸长是相同的,且两圆的半径都伸长.⊙⊙O1的面积=πR2,变大后的面积=,面积增加了﹣πR2=R+,⊙O2的面积=πr2,变大后的面积=,面积增加了=r+,⊙R>r,⊙R+>r+,⊙⊙O1的面积增加的多.故选:A.3.线段AB=10 cm,在以AB为直径的圆上,到点A的距离为5 cm的点有( )A.1个B.2个C.3个D.4个3.B解:OA=r=4.4.Rt⊙ABC中,⊙C=90°,AC=2,BC=4,如果以点A为圆心,AC为半径作⊙A,那么斜边中点D与⊙A的位置关系是( )A.点D在⊙A外B.点D在⊙A上C.点D在⊙A内D.无法确定解:根据勾股定理求得斜边AB==2,则AD=,⊙>2,⊙点在圆外.故选A.5.如图是公园的路线图,⊙O1,⊙O2,⊙O两两相切,点A,B,O分别是切点,甲乙二人骑自行车,同时从点A出发,以相同的速度,甲按照“圆”形线行驶,乙行驶“8字型”线路行驶.若不考虑其他因素,结果先回到出发点的人是()A.甲B.乙C.甲乙同时D.无法判定解:设⊙O1的半径是r,则⊙O2的半径是r,⊙O的半径是2r.则延“8字型”线路行驶时:路线长是4πr.同样按“圆”形线行驶的路线长4πr.因而两人同时到达.故选:C.6.如果一个直角三角形的两条直角边AB=8 cm,BC=6 cm,若以点B为圆心,以某一直角边长为半径画圆,则( )A.若点A在⊙B上,则点C在⊙B外B.若点C在⊙B上,则点A在⊙B 外C.若点A在⊙B上,则点C在⊙B上D.以上都不正确6.B解:按题中的数量关系作图观察.7.在10×10的正方形网格纸上,每个小正方形的边长都为1.如果以该网格中心为圆心,以5为半径画圆,那么在该圆周上的格点共有()A.4个B.8个C.12个D.16个解:假设网格中心圆心O为坐标原点,⊙该圆周上的格点共有(3,4),(4,3),(0,5),(5,0),(0,﹣5),(﹣5,0),(3,﹣4),(﹣3,4),(4,﹣3),(﹣4,3),(﹣3,﹣4),(﹣4,﹣3),⊙共有12个.故选:C.8.中央电视台“开心辞典”栏目曾有这么一道题:圆的半径增加了一倍,那么圆的面积增加了()A.一倍B.二倍C.三倍D.四倍解:设圆的原来的半径是R,增加1倍,半径即是2R,则增加的面积是4πR2﹣πR2=3πR2,即增加了3倍.故选:C.9.下列说法,正确的是( )A.半径相等的两个圆大小相等B.长度相等的两条弧是等弧C.直径不一定是圆中最长的弦D.圆上两点之间的部分叫做弦解:A.根据半径确定圆的大小,故正确;B.根据等弧的概念,长度相等的两条弧不一定能够重合,故错误;C.根据三角形的两边之和大于第三边,可以证明直径是圆中最长的弦,故错误;D.圆上任意两点间的部分叫弧,故错误.故选A.10.若⊙O所在的平面内上有一点P,它到⊙O上的点的最大距离是6,最小距离是2,则这个圆的半径为( )A.2 B.4 C.2或4 D.不能确定解:当这点在圆外时,则这个圆的半径是(6﹣2)÷2=2;当点在圆内时,则这个圆的半径是(6+2)÷2=4.故选C.二.填空题11.线段AB=10cm,在以AB为直径的圆上,到点A的距离为5cm的点有2个.解:如图所示:到点A的距离为5cm的点有2个.故答案为:2.12.已知⊙O的直径为2cm,点A在⊙O上,则线段OA的长为______cm.212.213.战国时期数学家墨子撰写的《墨经》一书中,就有“圆,一中同长也”的记载,这句话里的“中”字的意思可以理解为圆心.解:战国时期的《墨经》一书中记载:“圜(圆),一中同长也”.表示圆心到圆上各点的距离都相等,即半径都相等;故答案为:圆心14.⊙ABC中, ⊙C=90°, AB=4cm, BC=2cm, 以点A为圆心, 以3.4cm的长为半径画圆, 则点C在⊙O_____________, 点B在⊙O____________.14.外,外15.点A的坐标为(3,0),点B的坐标为(0,4),则点B在以A为圆心,6为半⊙可知点B在以A为圆心,6为半径的圆的内部.16.已知,圆A的周长是圆B的周长的4倍,那么圆A的面积是圆B的面积的16倍.解:设圆A的半径为a,圆B的半径为b.由题意2πa=4×2πb,⊙a=4b,⊙⊙A的面积:⊙B的面积=π•(4b)2:πb2=16:1.故答案为1617.在矩形ABCD中,BC=6,CD=8,以A为圆心画圆,且点D在⊙A内,点B 在⊙A外,则⊙A半径r的取值范围是____________.解答:⊙四边形ABCD是矩形,⊙AB=CD=8,AD=BC=6,⊙点D在⊙A内,点B在⊙A外,⊙6<r<8.18.已知点A到⊙O上各点的距离中最大距离为6cm,最小距离为2cm,那么⊙O 的半径为________cm.解:当点A在圆内时,最大距离为6cm,最小距离为2cm,则直径是8cm,因而半径是4cm;当点A在圆外时,最大距离为6cm,最小距离为2cm,则直径是4cm,因而半径是2cm.故答案为:4或2.三.解答题19.求证:直径是圆中最长的弦.解答:证明:如图,,⊙OA.OC.OB.OD是圆的半径,⊙OA=OB=OC=OD.⊙AB是圆的直径,⊙AB=OA+OB=OC+OD.⊙OC.OD.CD是三角形的三边,⊙OC+OD>CD.即AB>CD.20.实践探究:有一个周长62.8米的圆形草坪,准备为它安装自动旋转喷灌装置进行喷灌,现有射程为20米、15米、10米的三种装置,你认为应选哪种比较合适?安装在什么地方?解:设圆形草坪的半径为r,则由题意知,2πr=62.8,解得:r≈10m.所以选射程为10米的喷灌装置,安装在圆形草坪的中心处.21.设AB=3cm,画图说明:到点A的距离小于2cm,且到点B的距离大于2cm的所有点组成的图形.解:如图,分别以A、B为圆心,以2cm为半径画圆,阴影部分就是到点A的距离小于2cm,且到点B的距离大于2cm的所有点组成的图形(不包括边界).22.如图所示,一个半径为3cm,弧长为πcm的扇形,让弧在水平面上滚动,探究圆心O运动的路径特征及运动的距离.解:由题意得,弧AB的长是πcm,圆心O运动路径是一条线段,到平面的距离为3cm,路程为πcm.23.一张靶纸如图所示.靶纸上的1,3,5,7,9分别表示投中该靶区的得分数.小明、小华、小红3人各投了6次镖,每次镖都中了靶.最后他们是这样说的﹣﹣小明说:“我只得了8分.”小华说:“我共得了56分.”小红说:“我共得了28分.”他们可能得到这些分数吗?如果可能,请把投中的靶区在靶纸上表示出来(用不同颜色的彩笔画出来);如果不可能,请说明理由.解:由题意,投了6次镖,每次镖都中了靶,最高分为54,最低分为6,⊙不可能打的56分,8分,28分是可以得到的.8=5×1+1×3,28=4×5+1×7+1×1.24.一个塑料文具胶带如图所示,带宽为1cm,内径为4cm,外径为7cm,已知30层胶带厚1.5mm,则这卷胶带长51.81m.(π≈3.14,结果保留4位有效数字)解:4÷2=2(cm),7÷2=3.5(cm),胶带的体积是:π(3.52﹣22)•1=8.25πcm3=8.25π×10﹣6(m3),一米长的胶带的体积是:0.01×1×5×10﹣5=5×10﹣7(m3),因而胶带长是:(8.25π×10﹣6)÷(5×10﹣7)≈51.81(m).故答案为:51.81.25.地球的赤道是个近似的圆形,赤道的半径约6378.2千米,假设有一根绳子沿地球赤道贴紧地面绕一周,现在将绳子增加6.28米,使绳子与地面之间钉均匀的缝隙,请问缝隙有多宽?一只高4厘米的蜗牛能否从该缝隙间爬过?(π取3.14)解:6378.2千米=6378200米,4厘米=0.04米,赤道长=3.14×2×6378200=40055096米,缝隙宽=(3.14×2×6378200+6.28)÷(2×3.14)=6378201,6378201﹣6378200=1>0.04,所以一只高4厘米的蜗牛能从该缝隙间爬过.26.⊙ABC中,⊙C=90°,AC=4,BC=3,以点C为圆心,以R长为半径画圆,若⊙C与AB相交,求R的范围.解:作CD⊙AB于D.⊙⊙C=90°,AC=4,BC=3,由勾股定理得:AB===5;由面积公式得:×AC×BC=×AB×CD,⊙CD===2.4;⊙当2.4<R≤4时,⊙C与AB相交.。

北师大版九年级数学下册第三章《圆》3

北师大版九年级数学下册第三章《圆》3

北师大版九年级数学下册第三章《圆》3.1同步练习题(含答案)一、选择题1、已知⊙O 与点P 在同一平面内,若⊙O 的半径为5,线段OP 的长为4,则点P( ) A .在⊙O 上 B .在⊙O 内C .在⊙O 外D .在⊙O 上或在⊙O 内 2、下列说法错误的是( ) A .圆有无数条直径B .连接圆上任意两点之间的线段叫弦C .过圆心的线段是直径D .能够重合的圆叫做等圆 3、下列说法正确的是( ) A .相等的圆心角所对的弧相等B .在同圆中,等弧所对的圆心角相等C .在同圆中,相等的弦所对的弧相等D .相等的弦所对的圆心角相等4、如图,AB ,CD 是⊙O 的直径,AE ︵=BD ︵.若∠AOE =32°,则∠COE 的度数是( ) A .32°B .60°C .68°D .64°5、如图,在⊙O 中,AC ︵=2AB ︵,则以下数量关系正确的是( ) A .AB =ACB .AC =2ABC .AC <2ABD .AC >2AB6、如图,已知AD ︵=BC ︵,则AB 与CD 的关系为( ) A .AB =CDB .AB>CDC .AB<CD D .不能确定7、如图,在矩形ABCD 中,AB =8,BC =35,点P 在边AB 上,且BP =3AP.如果⊙P 是以点P 为圆心、PD 为半径的圆,那么下列判断正确的是( )A .点B ,C 均在⊙P 外B .点B 在⊙P 外,点C 在⊙P 内C .点B 在⊙P 内,点C 在⊙P 外D .点B ,C 均在⊙P 内二、填空题8、如图,在矩形ABCD 中,AB =4,AD =3,以顶点D 为圆心作半径为r 的圆.若要求另外三个顶点A ,B ,C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是____;9、已知点C 在线段AB 上,且0<AC <12AB.如果⊙C 经过点A ,那么点B 与⊙C 的位置关系是____.10、如图,AB 和DE 是⊙O 的直径,弦AC ∥DE.若弦BE =3,则弦CE =____.11、如图,已知BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB =60°,则∠COD 的度数是____12、如图,CD 是⊙O 的直径,∠EOD =84°,AE 交⊙O 于点B ,且AB =OC ,则∠A 的度数是____13、如图,AB 为⊙O 的直径,△PAB 的边PA ,PB 与⊙O 的交点分别为C ,D.若AC ︵=CD ︵=DB ︵,则∠P 的大小为____三、解答题14、如图,Rt △ABC 的两条直角边BC =3 cm ,AC =4 cm ,斜边AB 上的高为CD.若以点C 为圆心,分别以r 1=2 cm ,r 2=2.4 cm ,r 3=3 cm 为半径作圆,试判断点D 与这三个圆的位置关系.15、如图,小虎牵着小狗上街,小虎的手臂与绳共2.5 m(手臂与拉直的绳子在一条直线上),手臂肩部距地面 1.5 m .当小虎站立不动时,小狗在平整的地面上活动的最大区域是多少?并画出平面图.16、如图,以▱ABCD 的顶点A 为圆心,AB 为半径作⊙A ,交AD ,BC 于点E ,F ,延长BA 交⊙A 于点G.求证:GE ︵=EF ︵.17、如图,台风中心位于点P ,并沿东北方向PQ 移动,已知台风移动的速度为15千米/时,受影响区域的半径为100千米,B 市位于点P 的北偏东75°方向上,距离点P160千米处.(1)说明本次台风会影响B 市; (2)求这次台风影响B 市的时间.18、如图,已知AB 是⊙O 的直径,M ,N 分别是AO ,BO 的中点,CM ⊥AB ,DN ⊥AB.求证:AC ︵=BD ︵.19、如图,在⊙O 中,AC ︵=CB ︵,CD ⊥OA 于点D ,CE ⊥OB 于点E ,求证:AD =BE.参考答案一、选择题1、已知⊙O 与点P 在同一平面内,若⊙O 的半径为5,线段OP 的长为4,则点P(B) A .在⊙O 上 B .在⊙O 内C .在⊙O 外D .在⊙O 上或在⊙O 内 2、下列说法错误的是(C)A .圆有无数条直径B .连接圆上任意两点之间的线段叫弦C .过圆心的线段是直径D .能够重合的圆叫做等圆 3、下列说法正确的是(B)A .相等的圆心角所对的弧相等B .在同圆中,等弧所对的圆心角相等C .在同圆中,相等的弦所对的弧相等D .相等的弦所对的圆心角相等4、如图,AB ,CD 是⊙O 的直径,AE ︵=BD ︵.若∠AOE =32°,则∠COE 的度数是(D) A .32°B .60°C .68°D .64°5、如图,在⊙O 中,AC ︵=2AB ︵,则以下数量关系正确的是(C) A .AB =ACB .AC =2ABC .AC <2ABD .AC >2AB6、如图,已知AD ︵=BC ︵,则AB 与CD 的关系为(A) A .AB =CDB .AB>CDC .AB<CD D .不能确定7、如图,在矩形ABCD 中,AB =8,BC =35,点P 在边AB 上,且BP =3AP.如果⊙P 是以点P 为圆心、PD 为半径的圆,那么下列判断正确的是(C)A .点B ,C 均在⊙P 外B .点B 在⊙P 外,点C 在⊙P 内 C .点B 在⊙P 内,点C 在⊙P 外D .点B ,C 均在⊙P 内二、填空题8、如图,在矩形ABCD 中,AB =4,AD =3,以顶点D 为圆心作半径为r 的圆.若要求另外三个顶点A ,B ,C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是3<r <5;9、已知点C 在线段AB 上,且0<AC <12AB.如果⊙C 经过点A ,那么点B 与⊙C 的位置关系是点B 在⊙C 外.10、如图,AB 和DE 是⊙O 的直径,弦AC ∥DE.若弦BE =3,则弦CE =3.11、如图,已知BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB =60°,则∠COD 的度数是120°.12、如图,CD 是⊙O 的直径,∠EOD =84°,AE 交⊙O 于点B ,且AB =OC ,则∠A 的度数是28°.13、如图,AB 为⊙O 的直径,△PAB 的边PA ,PB 与⊙O 的交点分别为C ,D.若AC ︵=CD ︵=DB ︵,则∠P 的大小为60°.三、解答题14、如图,Rt △ABC 的两条直角边BC =3 cm ,AC =4 cm ,斜边AB 上的高为CD.若以点C 为圆心,分别以r 1=2 cm ,r 2=2.4 cm ,r 3=3 cm 为半径作圆,试判断点D 与这三个圆的位置关系.解:在Rt △ABC 中,根据勾股定理,得AB =5 cm ,则CD =AC ·BCAB=2.4 cm.①当r 1=2 cm 时,2.4>2,点D 在圆外; ②当r 2=2.4 cm 时,点D 在圆上; ③当r 3=3 cm 时,2.4<3,点D 在圆内15、如图,小虎牵着小狗上街,小虎的手臂与绳共2.5 m(手臂与拉直的绳子在一条直线上),手臂肩部距地面 1.5 m .当小虎站立不动时,小狗在平整的地面上活动的最大区域是多少?并画出平面图.解:小狗在地面上环绕的圆的半径为r = 2.52-1.52=2.0(m),S =πr 2=4π(m 2).故小狗在平整的地面上活动的最大区域是以2.0 m 为半径的圆,其面积为4π m 2.如图:16、如图,以▱ABCD 的顶点A 为圆心,AB 为半径作⊙A ,交AD ,BC 于点E ,F ,延长BA交⊙A 于点G.求证:GE ︵=EF ︵.证明:连接AF. ∵AB =AF ,∴∠ABF =∠AFB.∵四边形ABCD 是平行四边形, ∴AD ∥BC.∴∠DAF =∠AFB ,∠GAE =∠ABF. ∴∠GAE =∠EAF.∴GE ︵=EF ︵.17、如图,台风中心位于点P ,并沿东北方向PQ 移动,已知台风移动的速度为15千米/时,受影响区域的半径为100千米,B 市位于点P 的北偏东75°方向上,距离点P160千米处.(1)说明本次台风会影响B 市; (2)求这次台风影响B 市的时间.解:(1)作BH ⊥PQ 于点H , 在Rt △BHP 中,由条件知,PB =160千米,∠BPQ =75°-45°=30°, ∴BH =160sin30°=80千米<100千米. ∴本次台风会影响B 市. (2)若台风中心移动到P 1时,台风开始影响B 市,台风中心移动到P 2时,台风影响结束, 由(1)得BH =80千米,由条件得BP 1=BP 2=100千米, ∴P 1P 2=21002-802=120(千米).∴台风影响B 市的时间t =12015=8(小时).答:台风影响B 市的时间为8小时.18、如图,已知AB 是⊙O 的直径,M ,N 分别是AO ,BO 的中点,CM ⊥AB ,DN ⊥AB.求证:AC ︵=BD ︵.证明:连接OC ,OD ,∵AB 是⊙O 的直径,M ,N 分别是AO ,BO 的中点,∴OM =ON. ∵CM ⊥AB ,DN ⊥AB , ∴∠OMC =∠OND =90°.在Rt △OMC 和Rt △OND 中,⎩⎪⎨⎪⎧OM =ON ,OC =OD ,∴Rt △OMC ≌Rt △OND(HL). ∴∠COM =∠DON.∴AC ︵=BD ︵.19、如图,在⊙O 中,AC ︵=CB ︵,CD ⊥OA 于点D ,CE ⊥OB 于点E ,求证:AD =BE.证明:连接OC. ∵AC ︵=CB ︵,∴∠AOC =∠BOC. ∵CD ⊥OA ,CE ⊥OB , ∴∠CDO =∠CEO =90°.在△COD 和△COE 中,⎩⎪⎨⎪⎧∠DOC =∠EOC ,∠CDO =∠CEO ,CO =CO ,∴△COD ≌△COE(AAS).∴OD =OE.∵AO =BO ,∴AD =BE.。

2021-2022学年最新北师大版九年级数学下册第三章 圆同步练习练习题(精选)

2021-2022学年最新北师大版九年级数学下册第三章 圆同步练习练习题(精选)

北师大版九年级数学下册第三章圆同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点A,B,C都在⊙O上,连接CA,CB,OA,OB.若∠AOB=140°,则∠ACB为()A.40°B.50°C.70°D.80°2、如图,一个宽为2厘米的刻度尺(刻度单位:厘米).放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和8,那么玻璃杯的杯口外沿半径为()A .5厘米B .4厘米C .132厘米D .134厘米 3、已知在圆的内接四边形ABCD 中,∠A :∠C =3:1,则∠C 的度数是( )A .45°B .60°C .90°D .135°4、如图,有一个亭子,它的地基是边长为4m 的正六边形,则地基的面积为( )A .2 B .2 C .24m 2 D .25、如图,PA 是O 的切线,切点为A ,PO 的延长线交O 于点B ,若40P ∠=︒,则B 的度数为( ).A .20°B .25°C .30°D .40°6、如图,在Rt △ABC 中,∠ACB =90°,AB =5 cm ,BC =3 cm ,△ABC 绕AC 所在直线旋转一周,所形成的圆锥侧面积等于( )A .4πcm 2B .8πcm 2C .12πcm 2D .15πcm 27、如图,AB 是⊙O 的直径,BD 与⊙O 相切于点B ,点C 是⊙O 上一点,连接AC 并延长,交BD 于点D ,连接OC ,BC ,若∠BOC =50°,则∠D 的度数为( )A .50°B .55°C .65°D .75°8、如图,AB 是⊙O 的直径,弦CD AB ⊥,30CDB ∠=︒,CD =( )A .4πB .2πC .πD .23π 9、在△ABC 中,CA CB =,点O 为AB 中点.以点C 为圆心,CO 长为半径作⊙C ,则⊙C 与AB 的位置关系是( )A .相交B .相切C .相离D .不确定10、如图,面积为18的正方形ABCD 内接于⊙O ,则⊙O 的半径为( )A .32 BC .3D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,四个小正方形的边长都是1,若以O 为圆心,OG 为半径作弧分别交AB ,CD 于点E ,F ,则弧EF 的长是_________.2、如图,正五边形ABCDE 内接于⊙O ,作OF ⊥BC 交⊙O 于点F ,连接FA ,则∠OFA =_____°.3、已知某扇形的半径为5cm ,圆心角为120°,那么这个扇形的弧长为 _____cm .4、如图,以矩形ABCD 的对角线AC 为直径画圆,点D 、B 在该圆上,再以点A 为圆心,AB 的长为半径画弧,交AC 于点E .若2AC =,30BAC ∠=︒.则图中影部分的面积和为 __(结果保留根号和)π.5、在半径为3的圆中,60°的圆心角所对的劣弧长等于_____.三、解答题(5小题,每小题10分,共计50分)1、已知:如图,ABC ∆中,AB AC =,以AB 为直径的O 交BC 于点P ,PD AC ⊥于点D .(1)求证:PD 是O 的切线;(2)若120CAB ∠=︒,6AB =,求BC 的值.2、在一块大铁皮上裁剪如图所示圆锥形的烟囱帽,它的底面直径为80cm ,母线为50cm .,求裁剪的面积.3、如图,有一座圆弧形拱桥,桥下水面宽度AB 为12m ,拱高CD 为4m .(1)求拱桥的半径.(2)有一艘宽为7.8m 的货船,船舱顶部为长方形,并高出水面3m ,则此货船是否能顺利通过此圆弧形拱桥?并说明理由.4、阅读下列材料,完成相应任务:如图①,ABC 是⊙O 的内接三角形,AB 是⊙O 的直径,AD 平分BAC ∠交⊙O 于点D ,连接BD ,过点D 作⊙O 的切线,交AB 的延长线于点E .则CAD BDE ∠=∠.下面是证明CAD BDE ∠=∠的部分过程:证明:如图②,连接DO , AB 是⊙O 的直径,90ADB ∴∠=︒,ODA ∴∠+①________90=︒.(1) DE 为⊙O 的切线,90ODE ∴∠=︒,90ODB BDE ∴∠+∠=︒,(2)由(1)(2)得,②________________. AD 平分,BAC CAD OAD ∠∴∠=∠.,OA OD OAD ODA =∴∠=∠,CAD ∴∠=③________,CAD BDE ∴∠=∠.任务:(1)请按照上面的证明思路,补全证明过程:①________,②________,③________;(2)若5,2OA BE ==,求DE 的长.5、(问题背景)如图1,P 是等边△ABC 内一点,∠APB =150°,则PA 2+PB 2=PC 2.小刚为了证明这个结论,将△PAB 绕点A 逆时针旋转60°,请帮助小刚完成辅助线的作图;(迁移应用)如图2,D 是等边△ABC 外一点,E 为CD 上一点,AD ∥BE ,∠BEC =120°,求证:△DBE 是等边三角形;(拓展创新)如图3,EF=6,点C为EF的中点,边长为3的等边△ABC绕着点C在平面内旋转一周,直线AE、BF交于点P,M为PG的中点,EF⊥FG于F,FG=4√3,请直接写出MC的最小值.-参考答案-一、单选题1、C【分析】根据圆周角的性质求解即可.【详解】解:∵∠AOB=140°,根据同弧所对的圆周角是圆心角的一半,可得,∠ACB=70°,故选:C.【点睛】本题考查了圆周角定理,解题关键是明确同弧所对的圆周角是圆心角的一半.2、D【分析】根据题意先求出弦AC的长,再过点O作OB⊥AC于点B,由垂径定理可得出AB的长,设杯口的半径为r,则OB=r-2,OA=r,在Rt△AOB中根据勾股定理求出r的值即可.【详解】解:∵杯口外沿两个交点处的读数恰好是2和8,∴AC=8-2=6厘米,过点O作OB⊥AC于点B,则AB=12AC=12×6=3厘米,设杯口的半径为r,则OB=r-2,OA=r,在Rt△AOB中,OA2=OB2+AB2,即r2=(r-2)2+32,解得r=134厘米.故选:D.【点睛】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.3、A【分析】根据圆内接四边形的性质得出∠A+∠C=180°,再求出∠C即可.【详解】解:∵四边形ABCD是圆的内接四边形,∴∠A+∠C=180°,∵∠A :∠C =3:1,∴∠C =11+3×180°=45°, 故选:A .【点睛】本题考查了元内接四边形对角互补的性质,熟练掌握性质是解题的关键.4、D【分析】先根据等边三角形的性质求出△OBC 的面积,然后由地基的面积是△OBC 的6倍即可得到答案【详解】解:如图所示,正六边形ABCDEF ,连接OB ,OC ,过点O 作OP ⊥BC 于P ,由题意得:BC =4cm ,∵六边形ABCD 是正六边形,∴∠BOC =360°÷6=60°,又∵OB =OC ,∴△OBC 是等边三角形, ∴12cm 2BP BC ==,4cm OB BC ==,∴OP =,∴21=2OBC S BC OP ⋅△,∴2=6OBC ABCDEF S S △正六边形,故选D .【点睛】本题主要考查了正多边形和圆,等边三角形的性质与判定,勾股定理,熟知正多边形和圆的关系是解题的关键.5、B【分析】连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.【详解】解:连接OA,如图,∵PA是⊙O的切线,∴OA⊥AP,∴∠PAO=90°,∵∠P=40°,∴∠AOP=50°,∵OA=OB,∴∠B=∠OAB,∵∠AOP=∠B+∠OAB,∴∠B=12∠AOP=12×50°=25°.故选:B.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.6、D【分析】圆锥的侧面积S rl π=侧,确定r l 、的值,进而求出圆锥侧面积.【详解】解:S rl π=侧,35r BC l AB ====、23515cm S rl πππ∴==⨯⨯=侧故选D .【点睛】本题考察了圆锥侧面积.解题的关键与难点在于确定r l 、的值.7、C【分析】首先证明∠ABD =90°,由∠BOC =50°,根据圆周角定理求出∠A 的度数即可解决问题.【详解】解:∵BD 是切线,∴BD ⊥AB ,∴∠ABD =90°,∵∠BOC =50°,∴∠A =12∠BOC =25°,∴∠D =90°﹣∠A =65°,故选:C .【点睛】本题考查的是切线的性质、圆周角定理,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.8、D【分析】根据垂径定理求得CE =ED COE =60°.然后通过解直角三角形求得线段OC ,然后证明△OCE ≌△BDE ,得到=DEB CEO S S △△求出扇形COB 面积,即可得出答案.【详解】解:设AB 与CD 交于点E ,∵AB 是⊙O 的直径,弦CD ⊥AB ,CD∴CE =12CD CEO =∠DEB =90°,∵∠CDB =30°,∴∠COB =2∠CDB =60°,∴∠OCE =30°, ∴12OE OC ,∴1122BE OE OB OC ===, 又∵222OC CE OE =+,即22134OC OC =+ ∴2OC =,在△OCE 和△BDE 中,OCE BDE CEO DEB OE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△OCE ≌△BDE (AAS ),∴=DEB CEO S S △△∴阴影部分的面积S =S 扇形COB =260223603ππ⨯=, 故选D .【点睛】本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB 的面积是解此题的关键.9、B【分析】根据等腰三角形的性质,三线合一即可得CO AB ⊥,根据三角形切线的判定即可判断AB 是C 的切线,进而可得⊙C 与AB 的位置关系【详解】解:连接CO ,=,点O为AB中点.CA CB∴⊥CO ABCO为⊙C的半径,∴是C的切线,AB∴⊙C与AB的位置关系是相切故选B【点睛】本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.10、C【分析】连接OA、OB,则OAB为等腰直角三角形,由正方形面积为18,可求边长为2=18AB,进而通过勾股定理,可得半径为3.【详解】解:如图,连接OA,OB,则OA=OB,∵四边形ABCD是正方形,∴90AOB ∠=︒,∴OAB 是等腰直角三角形,∵正方形ABCD 的面积是18,∴2=18AB ,∴222+18OA OB AB ==,即:2218OA =∴3OA =故选C .【点睛】本题考查了正多边形和圆、正方形的性质等知识,构造等腰直角三角形是解题的关键.二、填空题1、23π 【分析】 先根据12OD OF =得出30OFD ∠=︒,同理可得出30OEA ∠=︒,进而得出60EOF ∠=︒,根据扇形的弧长公式计算即可.【详解】由题意可得:2OE OG OF === ∴12OD OF = ∴在Rt ODF 中,1sin 2OD OFD OF ∠== ∴30OFD ∠=︒同理可得:30OEA ∠=︒AB OG DC ∥∥30EOG OEA ∴∠=∠=︒,30FOG OFD ∠=∠=︒∴60EOF EOG FOG ∠=∠+∠=︒ ∴60221801803n r EF πππ⨯=== 故答案为:23π 【点睛】本题考查了扇形的弧长计算,以及直角三角形的性质,熟练掌握扇形的弧长计算公式和直角三角形中30角所对的直角边等于斜边的一半是解题关键.2、36【分析】连接OA ,OB ,OB 交AF 于J .由正多边形中心角、垂径定理、圆周角定理得出∠AOB =72°,∠BOF =36°,再由等腰三角形的性质得出答案.【详解】解:连接OA ,OB ,OB 交AF 于J .∵五边形ABCDE 是正五边形,OF ⊥BC , ∴1122BF CF BC AB ===, ∴∠AOB =3605︒=72°,∠BOF =12∠AOB =36°, ∴∠AOF =∠AOB +∠BOF =108°,∵OA =OF ,∴∠OAF =∠OFA =()()11118018010872222AOF ︒-∠=︒-︒=⨯︒=36°故答案为:36.【点睛】本题主要考查了园内正多边形中心角度数、垂径定理和圆周角定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧,垂径定理常与勾股定理以及圆周角定理相结合来解题.正n 边形的每个中心角都等于360n ︒. 3、103π 【分析】根据弧长公式代入求解即可.【详解】解:∵扇形的半径为5cm ,圆心角为120°, ∴扇形的弧长=120510=1803ππ︒⨯⨯︒. 故答案为:103π. 【点睛】 此题考查了扇形的弧长公式,解题的关键是熟练掌握扇形的弧长公式:180n r π,其中n 是扇形圆心角的度数,r 是扇形的半径.4、512π【分析】设AC 的中点为O ,连接OB ,先求出112BC AC ==,AB =1112212A C O B A B S S ∆=⨯⨯=△,1==2ADC ABC S S AB BC ⋅=△△,然后求出26013606BOC S ππ⨯==扇形,最后根据ADC AOB BOC S S S S S ∆∆=-++阴半圆扇形求解即可.【详解】解:设AC 的中点为O ,连接OB ,2AC =,四边形ABCD 是矩形,1OA OC OB ∴===,∠ABC =90°,又∵∠CAB =30°, ∴112BC AC ==,∴AB∴1112212A C O B A B S S ∆=⨯⨯=△,1==2ADC ABC S S AB BC ⋅=△△30BAC ∠=︒,60BOC ∴∠=︒,26013606BOC S ππ⨯∴==扇形,∴1152626412ADC AOB BOC ABES S S S S S ππππππ∆∆=-++-=-=阴半圆扇形扇形.故答案为:512π【点睛】本题主要考查了矩形的性质,扇形面积公式,解题的关键在于能够根据题意得到ADC AOB BOC S S S S S ∆∆=-++阴半圆扇形.5、π【分析】弧长公式为l =n 180r π,把半径和圆心角代入公式计算就可以求出弧长. 【详解】解:半径为3的圆中,60°的圆心角所对的劣弧长=603180π⨯=π, 故答案为:π.【点睛】本题主要考查了弧长计算,关键是掌握弧长计算公式.三、解答题1、(1)见解析;(2)BC =【分析】(1)根据等腰三角形的性质证得OPB C ∠=∠,进而证得OP ∥AC ,再根据平行线的性质和切线的判定即可证得结论;(2)连接AP ,根据圆周角定理和等腰三角形的性质可得90APB ∠=︒,BP CP =,30B ∠=︒,再根据含30°角的直角三角形性质求出BP 即可求解.【详解】(1)证明:AB AC =, B C ∴∠=∠,OP OB =,B OPB ∴∠=∠,OPB C ∴∠=∠,∴OP ∥AC ,PD AC ⊥,OP PD ∴⊥,又OP 是半径, PD ∴是O 的切线;(2)解:连接AP ,如图, AB 为直径,90APB ∴∠=︒,∵AB=AC ,∠CAB =120°, BP CP ∴=,(180120)230B ∠=-÷=︒, 在Rt△APB 中,6AB =,30B ∠=︒, 132AP AB ∴==,BP ∴=2BC BP ∴==【点睛】本题考查等腰三角形的性质、平行线的判定与性质、切线的判定、圆周角定理、含30°角的直角三角形性质、三角形内角和定理,熟练掌握这些知识的联系与运用是解答的关键.2、2000π 2cm【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则利用扇形的面积公式计算出圆锥的侧面积即可.【详解】 解:根据题意,圆锥的侧面积为:12×80π×50=2000π(cm 2).【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.3、(1)6.5米;(2)不能顺利通过,理由见解析【分析】(1)设圆心为O ,连接OC ,OB ,拱桥的半径r 米,作出相应图形,然后在RRRRRR 中,利用勾股定理求解即可得;(2)考虑当弦长为7.8时,利用(1)中结论,可得弦心距 5.2 6.543=<-+d ,即可得出结论.【详解】(1)如图所示,设圆心为O ,连接OC ,OB ,拱桥的半径r 米,在RRRRRR 中,2226(4)r r =+-,解得 6.5r =米;(2)当弦长为7.8时,弦心距 5.2 6.543==<-+d .∴此货船不能顺利通过此圆弧形拱桥.【点睛】题目主要考查圆的基本性质,垂径定理,求弦心距,勾股定理等,理解题意,作出相应辅助线,结合性质定理是解题关键.4、(1)ODB ∠,ODA BDE ∠=∠,ODA ∠;(2)DE =【分析】(1)由AB 是⊙O 的直径,得到ODA ∠+∠ODB 90=︒.再由DE 为⊙O 的切线,得到90ODB BDE ∠+∠=︒,即可推出∠ODA =∠BDE ,由角平分线的定义可得CAD OAD ∠=∠,由OA OD =,得到OAD ODA ∠=∠,即可证明CAD BDE ∠=∠;(2)在直角△ODE 中利用勾股定理求解即可.【详解】解:(1)如图②,连接DO , AB 是⊙O 的直径,90ADB ∴∠=︒,ODA ∴∠+∠ODB 90=︒.(1) DE 为⊙O 的切线,90ODE ∴∠=︒,90ODB BDE ∴∠+∠=︒,(2)由(1)(2)得,∠ODA =∠BDE . AD 平分BAC ∠,∴CAD OAD ∠=∠.OA OD =,OAD ODA ∠=∠∴CAD ∴∠=∠ODA ,CAD BDE ∴∠=∠.故答案为:① ODB ∠,② ODA BDE ∠=∠,③ ODA ∠;(2)DE 为O 的切线,90ODE ∴∠=︒.5OA =,5OD OB OA ∴===,2BE =,7OE OB BE ∴=+=.在Rt ODE △中,DE =【点睛】本题主要考查了切线的性质,角平分线的定义,等腰三角形的性质,直径所对的圆周角是直角,勾股定理等等,解题的关键在于能够熟练掌握切线的性质.5、(1)见解析;(2)见解析;(3)√21−√3【分析】(1)根据△PAB绕点A逆时针旋转60°作图即可;(2)由∠BEC=120°得∠BED=60°,由平行线的性质得∠ADE=∠BED=60°,由等边三角形的性质得∠BAC=∠ABC=∠ACB=60°,故可知A、D、B、C共圆,由圆内接四边形对角互补得出∠ADB=120°,故可求出∠BDE=60°,即可得证;(3)由CA=CE=CB=CF=3得A、E、B、F共圆C得出∠PAB=∠CBF=∠CFB,进而得出∠APF=∠ABC=60°,作△EPF的外接圆⊙Q,则∠EQF=120°,求出EQ,连接QG取中点N,由三角形中位线得MN,以点N为圆心MN为半径作⊙N,连接CN,与⊙N交于点R′,即CM最小为RR′=RR−RR,建立平面直角坐标系求出即可.【详解】(1)如图1所示,将△RRR绕点A逆时针旋转60°得△R′RR;(2)∵∠BEC=120°,∴∠BED=60°,∵RR∥RR,∴∠ADE=∠BED=60°,∵△ABC是等边三角形,∴∠BAC=∠ABC=∠ACB=60°,∴A、D、B、C共圆,如图2所示:∴∠ADB=120°,∵∠ADE=∠BED=60°,∴∠BDE=60°,∴△DBE是等边三角形;(3)如图3,∵CA=CE=CB=CF=3,∴A、E、B、F共圆C,∴∠PAB=∠CBF=∠CFB,∠ABF=∠ABC+∠CBF=∠PAB+∠APB,∴∠APF=∠ABC=60°,∵∠EPF=60°,EF=6,作△EPF的外接圆⊙Q,则∠EQF=120°,QC⊥EF,∴∠EQC=60°,∴RR=RR=RR=RRsin60°=√32=2√3,连接QG取中点N,则RR∥RR且RR=12RR=√3,以点N为圆心MN为半径作⊙N,连接CN,与⊙N交于点R′,即CM最小为RR′=RR−R′R=RR−RR,以点F为原点建立平面直角坐标系,R(−3,−√3),R(−3,0),R(0,−6√3),∴R(−32,−5√32),RR=√(32)2+(5√32)2=√21,∴CM最小为RR−RR=√21−√3.【点睛】本题考查等边三角形的判定与性质,解三角函数以及圆的性质,根据题意作出圆是解题的关键.。

【数学九年级下】北师大版九年级数学下册 圆 同步测试题

【数学九年级下】北师大版九年级数学下册 圆  同步测试题

8. 如图,将大小两块量角器的零度线对齐,且小量角器的中心 恰好在大量角器的圆周 上.设它们圆周的交点为 ,且点 在小量角器上对应的刻度为 ,那么点 在大量角
器上对应的刻度为( )
A.
B. 膐
C.
D. 膐
9. 如图中奥迪车商标的长为 膐ᨣ,宽为 膐 膐ᨣ,则 的值为( )
A.
B.
C.
D. 膐
10. 图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从 点到
三、 解答题 (本题共计 6 小题 ,共计 60 分 , ) 21. 如图,点 是线段 上的一点,分别以 、 、 为直径作半圆,求证:半圆
的长与半圆 的长之和等于半圆 的长.
22. 设 膐 膐ᨣ,作出满足下列要求的图形 (1)到点 的距离等于 膐ᨣ,且到点 的距离等于 膐ᨣ 的所有点组成的图形; (2)到点 的距离小于 膐ᨣ,且到点 的距离小于 膐ᨣ 的所有点组成的图形; (3)到点 的距离大于 膐ᨣ,且到点 的距离小于 膐ᨣ 的所有点组成的图形.
ᨣ; ᨣ;
及延长线分别交
于 、 ,过点 作一直线交
쳌.
圆 同步测试
知识点 1 圆的有关概念 1.下列条件中,能确定一个圆的是( ) A.以已知点 O 为圆心 B.以 1 cm 长为半径 C.经过已知点 A,且半径为 2 cm D.以点 O 为圆心,1 cm 长为半径 2.下列说法:①直径是弦;②弦是直径;③半圆是弧;④弧是半圆;⑤长度相等的 两条弧是等弧;⑥一条弦把圆分成两条弧,这两条弧一定是等弧.其中正确的说法有( ) A.2 个 B.3 个 C.4 个 D.5 个 3.如图 3-1-1,在⊙O 中,弦的条数是( ) A.2 B.3 C.4 D.以上均不正确
15. 已知线段 膐 膐ᨣ,则经过 , 两点的最小的圆的半径为________. 16. 两个圆的直径比是 繰 ,这两个圆的周长之比是________,面积比是________.

北师大版九年级下册数学 3.1圆 同步练习(含解析)

北师大版九年级下册数学 3.1圆 同步练习(含解析)

3.1圆同步练习一.选择题1.已知⊙O中,最长的弦长为16cm,则⊙O的半径是()A.4cm B.8cm C.16cm D.32cm2.已知⊙O的半径OA长为1,OB=,则可以得到的正确图形可能是()A.B.C.D.3.下列说法正确的是()A.弦是直径B.弧是半圆C.直径是圆中最长的弦D.半圆是圆中最长的弧4.下列说法:①直径是弦;②弦是直径;③半径相等的两个半圆是等弧;④长度相等的两条弧是等弧;⑤半圆是弧,但弧不一定是半圆.正确的说法有()A.1个B.2个C.3个D.4个5.到圆心的距离不大于半径的点的集合是()A.圆的外部B.圆的内部C.圆D.圆的内部和圆6.下列说法中,正确的是()A.弦是直径B.半圆是弧C.过圆心的线段是直径D.圆心相同半径相同的两个圆是同心圆7.如图,⊙O中,点A,O,D以及点B,O,C分别在一条直线上,图中弦的条数有()A.2条B.3条C.4条D.5条8.一个压路机的前轮直径是1.7米,如果前轮每分钟转动6周,那么这台压路机10分钟前进()米.A.51πB.102πC.153πD.204π9.如图,从A地到B地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是()A.猫先到达B地B.老鼠先到达B地C.猫和老鼠同时到达B地D.无法确定10.如图中正方形、矩形、圆的面积相等,则周长L的大小关系是()A.L A>L B>L C B.L A<L B<L C C.L B>L C>L A D.L C<L A<L B 二.填空题11.参加篝火晚会时,人们会自然围成一个圆,这是因为圆上任意一点到圆心的距离都,这个距离就是这个圆的.12.如果一个圆的周长为21.98厘米,那么这个圆的半径是厘米.13.如果圆的半径为3,则弦长x的取值范围是.14.如图,若点O为⊙O的圆心,则线段是圆O的半径;线段是圆O的弦,其中最长的弦是;是劣弧;是半圆.15.如图,在⊙O中,点A、O、D和点B、O、C分别在一条直线上,图中共有条弦,它们分别是.三.解答题16.已知:如图,AB是⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E,若AB=2DE,∠C=40°,求∠E及∠AOC的度数.17.如图,线段AB过圆心O,点A,B,C,D均在⊙O上,请指出哪些是直径、半径、弦,并把它们表示出来.18.如图所示,小丽家到学校有2条路线.分别以AB、BC和AC为直径的半圆弧,已知AB=8千米,BC=16千米.(1)比较①②两条路线,走哪条近;(2)如果AB=a,BC=b,那么①②两条路线的长度有什么变化呢?你得到什么样的结论?参考答案一.选择题1.解:∵最长的弦长为16cm,∴⊙O的直径为16cm,∴⊙O的半径为8cm.故选:B.2.解:∵⊙O的半径OA长1,若OB=,∴OA<OB,∴点B在圆外,故选:D.3.解:A、直径是弦,但弦不一定是直径,故错误,不符合题意;B、半圆是弧,但弧不一定是半圆,故错误,不符合题意;C、直径是圆中最长的弦,正确,符合题意;D、半圆是小于优弧而大于劣弧的弧,故错误,不符合题意,故选:C.4.解:①直径是弦,正确,符合题意;②弦不一定是直径,错误,不符合题意;③半径相等的两个半圆是等弧,正确,符合题意;④能够完全重合的两条弧是等弧,故原命题错误,不符合题意;⑤半圆是弧,但弧不一定是半圆,正确,符合题意,正确的有3个,故选:C.5.解:根据点和圆的位置关系,知圆的内部是到圆心的距离小于的所有点的集合;圆是到圆心的距离等于半径的所有点的集合.所以与圆心的距离不大于半径的点所组成的图形是圆的内部(包括边界).故选:D.6.解:A、直径是弦,但弦不一定是直径,故错误;B、半圆是弧,正确;C、过圆心的弦是直径,故错误;D、圆心相同半径不同的两个圆是同心圆,故错误,故选:B.7.解:图中的弦有AB,BC,CE共三条,故选:B.8.解:前轮的底面圆周长:π×1.7=1.7π(米),1.7π×6×10=102π(米)故选:B.9.解:以AB为直径的半圆的长是:π•AB;设四个小半圆的直径分别是a,b,c,d,则a+b+c+d=AB.则老鼠行走的路径长是:a+πb+πc+πd=π(a+b+c+d)=π•AB.故猫和老鼠行走的路径长相同.故选:C.10.解:设面积是S.则正方形的边长是,则周长L A=4==4;长方形的一边长x,则另一边长为,则周长L B=2(x+),∵(x+)2≥0∴x+≥2,∴L B≥4,即L B≥;圆的半径为,L C=2π×=,∵<,∴L C<L A<L B.故选:D.二.填空题11.解:参加篝火晚会时,人们会自然围成一个圆,这是因为圆上任意一点到圆心的距离都相等,这个距离就是这个圆的半径.故答案为:相等,半径.12.解:21.98÷3.14÷2=3.5(厘米)故答案为:3.5.13.解:圆的半径为3,则弦中最长的弦即直径的长度是6,因而弦长度的取值范围是0<x ≤6.故答案为:0<x≤6.14.解:如图,若点O为⊙O的圆心,则线段OA、OB、OC是圆O的半径;线段AC、AB、BC是圆O的弦,其中最长的弦是AC;、是劣弧;、是半圆.故答案为OA、OB、OC;AC、AB、BC;AC;、;、;15.解:图中的弦有AE,DC,AD共三条,故答案为:三,AE,DC,AD.三.解答题16.解:连接OD,∵OC=OD,∠C=40°,∴∠ODC=∠C=40°,∵AB=2DE,OD=AB,∴OD=DE,∵∠ODC是△DOE的外角,∴∠E=∠EOD=∠ODC=20°,∵∠AOC是△COE的外角,∴∠AOC=∠C+∠E=40°+20°=60°.17.解:直径有:直径AB;半径有:OA、OB、OC;弦有:弦CD、弦AB.18.解:(1)∵①路线的长=AC•π=(8+16)•π=12π,②路线的长=AB•π+BC•π=(AB+BC)π=AC•π=12π,∴两条路线相等;(2)∵①路线的长=AC•π=(a+b)•π=π,②路线的长=AB•π+BC•π=(AB+BC)π=(a+b)π,∴两条路线相等;结论:不论AB,BC的长度怎么变化那么①②两条路线长度仍然相等.。

北师大版九年级数学下册 同步练习圆

北师大版九年级数学下册 同步练习圆

《圆》同步练习◆选择题1.已知⊙O的半径为3cm,PO=5cm,则下列说法正确的是( )A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定2.若点A的坐标为(3,4),⊙A的半径5,则点P(6,3)的位置为( )A.P在⊙A内B.P在⊙A上C.P在⊙A外D.无法确定3.与圆心的距离不大于半径的点所组成的图形是( )A.圆的外部(包括边界) B.圆的内部(不包括边界)C.圆D.圆的内部(包括边界)4.Rt△A BC中,∠C=90°,AC=2,BC=4,如果以点A为圆心,AC为半径作⊙A,那么斜边中点D与⊙A的位置关系是( )A.点D在⊙A外B.点D在⊙A上C.点D在⊙A内D.无法确定5. 已知A为⊙O上的点,⊙O的半径为1,该平面上另有一点P,,那么点P与⊙O 的位置关系是( )A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定6.有一个矩形ABCD其长为4cm,宽为3cm,以D点为圆心作圆,使A,B,C三点其中有两点在圆内,一点在圆外,则⊙D的半径r的取值范围为( )A.3<r<4 B.3<r<5 C.4<r<5 D.4≤r≤57.在10×10的正方形网格纸上,每个小正方形的边长都为1.如果以该网格中心为圆心,以5为半径画圆,那么在该圆周上的格点共有()A.4个B.8个C.12个D.16个8.在以下所给的命题中,正确的个数为()①直径是弦;②弦是直径;③半圆是弧,但弧不一定是半圆;④半径相等的两个半圆是等弧;⑤长度相等的弧是等弧.A.1 B.2 C.3 D.49.⊙O中,直径AB=a,弦CD=b,则a与b大小为()A.a>b B.a≥b C.a<b D.a≤b10.下列说法,正确的是( )A.半径相等的两个圆大小相等B.长度相等的两条弧是等弧C.直径不一定是圆中最长的弦D.圆上两点之间的部分叫做弦11.半径为5的圆的一条弦长不可能是()A.3 B.5 C.10 D.1212.把圆的半径缩小到原来的14,那么圆的面积缩小到原来的( )A .12B .14C .18D .11613.若⊙O所在的平面内上有一点P,它到⊙O上的点的最大距离是6,最小距离是2,则这个圆的半径为( )A.2 B.4 C.2或4 D.不能确定14.有两个圆,⊙O1的半径等于地球的半径,⊙O2的半径等于一个篮球的半径,现将两个圆都向外膨胀(相当于作同心圆),使周长都增加1米,则半径伸长的较多的圆是( )A.⊙O1B.⊙O2C.两圆的半径伸长是相同的D.无法确定15.如图,⊙O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与⊙O的位置关系是()A.在⊙O内B.在⊙O上C.在⊙O外D.以上都有可能16.点A的坐标为(3,0),点B的坐标为(0,4),则点B在以A为圆心,6为半径的圆____________.17.半径为R的圆的周长是____________.18.已知扇形弧上连同两个端点共有4个点,将这4点与圆心连接,则共可得____________个扇形.19.在矩形ABCD中,BC=6,CD=8,以A为圆心画圆,且点D在⊙A内,点B在⊙A外,则⊙A半径r的取值范围是____________.◆填空题20.在矩形ABCD中,AB=8,AD=6,以A为圆心作圆,如果B,C,D三点中至少有一点在圆内,且至少有一点在圆外,则圆A的半径r的取值范围是____________.◆解答题21.如图,试表示到点P的距离等于2.5cm的点的集合.22.求证:直径是圆中最长的弦.23.已知线段AB=4cm,以3cm长为半径作圆,使它经过点A.B,能作几个这样的?请作出符合要求的图.24.(1)从A地到B地,某甲走直径AB上方的半圆途径;乙先走直径AC上方半圆的途径,再走直径CB下方半圆的途径,如图1,已知AB=40米,AC=30米,计算个人所走的路程,并比较两人所走路程的远近;25.如果用一根很长的绳子沿着地球赤道绕1圈,然后把绳子放长30m,想象一下,大象能否从绳圈与地球赤道之间的缝隙穿过?答案与解析◆选择题1. 答案:B解析:解答:由题意知⊙O的半径为3cm,PO=5cm,可知点P到圆心的距离大于r,故点P 在圆外,故选B.分析:判断一个点圆的位置关系,主要看该点到圆心的距离与半径之间的关系.2. 答案:A解析:解答:画出平面直角坐标系中A点和P点,连接AP,过A点作x轴的垂线,过P点作y轴的垂线交于B点,则AB=4﹣3=1,BP=6﹣3=3.在直角三角形ABP中,根据勾股定理AP=<5,故P在⊙A内.故选A.分析:本题运用勾股定理将AP的长求出,然后与半径的长进行比较,从而确定点与圆的位置关系.3.答案:D解析:解答:根据点和圆的位置关系,知圆的内部是到圆心的距离小于的所有点的集合;圆是到圆心的距离等于半径的所有点的集合.所以与圆心的距离不大于半径的点所组成的图形是圆的内部(包括边界).故选D.分析:理解圆上的点.圆内的点和圆外的点所满足的条件.4. 答案:A解析:解答:根据勾股定理求得斜边AB==2,则AD=,∵>2,∴点在圆外.故选A.分析:本题根据点到圆心的距离和圆的半径之间的数量关系,来判断点和圆的位置关系.5. 答案:D解析:解答:∵PA=,⊙O的直径为2∴点P的位置有三种情况:①在圆外,②在圆上,③在圆内.故选D.分析:要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系.6.答案:C解析:解答:∵三个点中,到圆心的距离最远的点是B,CD=5.∴要使A,B,C三点其中有两点在圆内,一点在圆外,则一定是点B在圆外,点A,C在圆内,∴⊙D的半径r的取值范围为4<r<5故选C.分析:要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系7. 答案:C解析:解答:假设网格中心圆心O为坐标原点,∴该圆周上的格点共有(3,4),(4,3),(0,5),(5,0),(0,﹣5),(﹣5,0),(3,﹣4),(﹣3,4),(4,﹣3),(﹣4,3),(﹣3,﹣4),(﹣4,﹣3),∴共有12个.故选:C.分析:根据已知得出5为半径画圆,得出所有符合要求的点的坐标即可得出答案8.答案:C解析:解答:根据直径和弦的概念,知①正确,②错误;根据弧和半圆的概念,知③正确;根据等弧的概念,半径相等的两个半圆一定能够重合,是等弧,④正确;长度相等的两条弧不一定能够重合,⑤错误.故选C.分析:理解直径和弦.弧和半圆之间的关系,理解等弧的概念9.答案:B解析:解答:直径是圆中最长的弦,因而有a≥b.故选B.分析:根据直径是弦,且是最长的弦,即可求解.10. 答案:A解析:解答:A.根据半径确定圆的大小,故正确;B.根据等弧的概念,长度相等的两条弧不一定能够重合,故错误;C.根据三角形的两边之和大于第三边,可以证明直径是圆中最长的弦,故错误;D.圆上任意两点间的部分叫弧,故错误.故选A.分析:理解等弧.直径.弦.弧的概念.11.答案:D解析:解答:因为圆中最长的弦为直径,所以弦长L≤10.故选D.分析:根据圆中最长的弦为直径求解.12. 答案:D解析:解答:设原来的圆的半径为r,则面积s1=πr2,∴缩小到原来的14后,22211()416S r rππ==∴2221111616rSS rππ==故选D.分析:本题考查了圆的面积公式,在公式中:圆的面积和半径的平方成正比.13. 答案:C解析:解答:当这点在圆外时,则这个圆的半径是(6﹣2)÷2=2;当点在圆内时,则这个圆的半径是(6+2)÷2=4.故选C.分析:此题主要考查点与圆的位置关系,解题的关键是注意此题应分为两种情况来解决.14. 答案:C解析:解答:设⊙O 1的半径等于R ,膨胀后的半径等于R ′;⊙O 2的半径等于r ,膨胀后的半径等于r ′,其中R >r .由题意得,2πR +1=2πR ′,2πr +1=2πr ′, 解得R ′=R +12π,r ′=r +12π; 所以R ′﹣R =12π,r ′﹣r =12π, 所以,两圆的半径伸长是相同的. 故选C .分析:本题考查圆的周长的计算公式.分别求出两圆半径的伸长量进行比较即可.15. 答案:A解析:解答:连接OM ,则在直角△OMA 中,根据勾股定理得到OA ==<5cm .因而点A 与⊙O 的位置关系是在⊙O 内.故选A .分析:本题应依据点到圆心的距离和半径的大小关系,来判断点与圆的位置关系.16.答案:内解析:解答:∵点A 的坐标为(3,0),点B 的坐标为(0,4),则AB =2234+=5<6, ∴可知点B 在以A 为圆心,6为半径的圆的内部.分析:本题考查了对点与圆的位置关系的判断.设点到圆心的距离为d ,则当d =R 时,点在圆上;当d >R 时,点在圆外;当d <R 时,点在圆内.17.答案:2πR解析:解答:由圆的周长公式得,半径为R 的圆的周长是2πR .分析: 根据圆的周长的计算公式可得到答案.18. 答案:6解析:解答:根据题意,可得的扇形有3个小扇形,两个大一点的扇形和最大的一个扇形,共有6个扇形.◆ 填空题分析:数扇形的个数,可以按照数线段条数的方法,如果一条线段上有n 个点,那么就有(1)2n n -条线段,也可以看作弧上的两点与圆心组成(1)2n n -个扇形. 19.答案:6<r <8解析:解答:∵四边形ABCD 是矩形,∴AB =CD =8,AD =BC =6,∵点D 在⊙A 内,点B 在⊙A 外,∴6<r <8.分析:点在圆内,到圆心的距离小于半径;点在圆外,到圆心的距离大于半径.20. 答案:6<r <10解析:解答:如图:在矩形ABCD 中AC =22AB AD +=2286+=100=10.由图可知圆A 的半径r 的取值范围应大于AD 的长,小于对角线AC 的长,即6<r <10.分析: 要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系,本题可由勾股定理等性质算出点与圆心的距离d .则d >r 时,点在圆外;当d =r 时,点在圆上;当d <r 时,点在圆内. 易21.答案:到点P的距离等于2.5cm 的点的集合是以点P 为圆心,2.5cm 为半径的圆 解析:解答:到点P 的距离等于2.5cm 的点的集合是以点P 为圆心,2.5cm 为半径的圆 分析:本题考查了圆的认识.22.答案:解答:证明:如图,,∵OA .OC .OB .OD 是圆的半径,∴OA =OB =OC =OD .∵AB 是圆的直径,∴AB =OA +OB =OC +OD .∵OC .OD .CD 是三角形的三边,∴OC +OD >CD .即AB >CD .解析: 分析:本题考查了圆的认识.根据直径与半径的关系,可得AB 与OA .OB 的关系,根据三角形三边的关系,可得OC .OD .CD 的关系,◆ 解答题23.答案:解答:这样的圆能画2个.作AB的垂直平分线l,再以点A为圆心,3cm为半径作圆交l于O1和O2,然后分别以O1和O2为圆心,以3cm为半径作圆,如图:则⊙O1和⊙O2为所求圆.解析:分析:先作AB的垂直平分线l,再以点A为圆心,3cm为半径作圆交l于O1和O2,然后分别以O1和O2为圆心,以3cm为半径作圆即可.24.答案:相等;解答:(1)BC=AB-AC=10,甲所走的路径长=12•2•π•2AB=12•2•π•402=20π(m),乙所走的路径长=12•2•π•2AC+12•2•π•2BC=12•2•π•302+12•π•102=20π(m),所以两人所走路程的相等;(2)如果甲.乙走的路程图改成图2,两人走的路程远近相同吗?答案:两人走的路程远近相同.理由如下:甲所走的路径长=12•2•π•2AB=12π•AB,乙所走的路径长=12•2•π•2AC+12•2•π•2CD+12•π•2BD=12π(AC+CD+DB)=12π•AB,即两人走的路程远近相同.解析:分析:(1)甲所走的路径长为以AB为直径的半圆长,乙所走的路径长为以AC和BC为直径的两个半圆长的和,然后根据圆的周长公式进行计算,再比较大小;(2)甲所走的路径长为以AB为直径的半圆长,乙所走的路径长为以AC.CD和DB为直径的三个半圆长的和,然后根据圆的周长公式分别计算他们所走的路径,再比较大小即可.型:解答题25.答案:解答:设地球半径为R,则:2πR+30=2π(R+h),h=15>4米.∴大象能从绳圈与地球赤道之间的缝隙穿过.解析:分析:解题的关键是根据题意设出地球的半径并表示出增长后的高度.。

2021-2022学年北师大版九年级数学下册-圆同步达标测评含答案

2021-2022学年北师大版九年级数学下册-圆同步达标测评含答案

2021-2022学年北师大版九年级数学下册《3.1圆》同步达标测评一.选择题(共8小题,满分32分)1.计算机处理任务时,经常会以圆形进度条的形式显示任务完成的百分比.下面是同一个任务进行到不同阶段时进度条的示意图:若圆半径为1,当任务完成的百分比为x时,线段MN的长度记为d(x).下列描述正确的是()A.d(25%)=1B.当x>50%时,d(x)>1C.当x1>x2时,d(x1)>d(x2)D.当x1+x2=100%时,d(x1)=d(x2)2.对于下列轴对称图形,判断正确的是()A.等腰三角形有2条对称轴 B.等边三角形有3条对称轴C.正方形有2条对称轴 D.圆有1条对称轴3.下列判断正确的是()A.两端点都在圆上的线段叫作直径 B.通过圆心的线段叫作直径C.在同一圆中,两端点都在圆上的线段中,最长的是直径D.所有圆的直径都相等4.如图,在⊙O中,AB是直径,AC是弦,连接OC,若∠ACO=25°,则∠BOC的度数是()A.40°B.50°C.55°D.60°5.图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB路线爬行,则下列结论正确的是()A.甲先到B点B.乙先到B点C.甲、乙同时到B D.无法确定6.下列说法正确的是()A.半圆是弧B.过圆心的线段是直径C.弦是直径D.长度相等的两条弧是等弧7.下列说法中,正确的个数有()(1)关于某直线对称的两个三角形是全等三角形(2)全等三角形是关于某直线对称的(3)两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧(4)有一条公共边的两个全等三角形关于公共边所在的直线对称(5)圆成轴对称,它有无数条对称轴(6)等腰三角形的角平分线、中线、高线互相重合A.4 B.3 C.2 D.18.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E 等于()A.42°B.28°C.21°D.20°二.填空题(共8小题,满分32分)9.如图是央行发布的建国70周年纪念银币的背面图案,这枚纪念币的周长是21.98厘米,它的直径是厘米,面积是平方厘米(π取3.14).10.过圆内一点(非圆心)有条弦,有条直径.11.已知圆中最长的弦为6,则这个圆的半径为.12.如图,△ABC中,∠ACB=90°,∠A=40°,以C为圆心、CB为半径的圆交AB于点D,则∠ACD=度.13.参加篝火晚会时,人们会自然围成一个圆,这是因为圆上任意一点到圆心的距离都,这个距离就是这个圆的.14.如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知AB=2DE,若△COD为直角三角形,则∠E的度数为°.15.有下列说法:①半径是弦;②半圆是弧,但弧不一定是半圆;③面积相等的两个圆是等圆,其中正确的是(填序号)16.如果一个圆的周长为21.98厘米,那么这个圆的半径是厘米.三.解答题(共8小题,满分56分)17.如图,CD是⊙O的直径,点A在DC的延长线上,∠A=20°,AE交⊙O于点B,且AB=OC.(1)求∠AOB的度数.(2)求∠EOD的度数.18.如图AB=3cm,用图形表示:到点A的距离小于2cm,且到点B的距离不小于2cm 的所有点的集合(用阴影表示,注意边界上的点是否在集合中,如果在,用实线表示,如果不在,则用虚线表示).19.已知:如图,AB是⊙O的直径,点C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AE=BF,AC与BD相等吗?为什么?20.已知点P、Q,且PQ=4cm,(1)画出下列图形:到点P的距离等于2cm的点的集合;到点Q的距离等于3cm的点的集合.(2)在所画图中,到点P的距离等于2cm,且到点Q的距离等于3cm的点有几个?请在图中将它们表示出来.21.已知半径为5的⊙O,点A是⊙O内的一点(点A与O不重合),过点A且不过点O 的直线与⊙O交于B,C两点,连接OB,OC,过A作OC的平行线交OB于点D.(1)请正确画出示意图;(2)证明:OD+DA为定值.22.已知:如图,AB是⊙O的直径,AC是⊙O的弦,AB=2,∠BAC=30°.在图中作弦AD,使AD=1,并求∠CAD的度数.23.已知线段AB=3cm,用图形表示到点A的距离小于2cm,且到点B的距离大于2cm 的所有点的集合.24.已知AB为⊙O的直径,弦ED与AB的延长线交于⊙O外一点C,且AB=2CD,∠C=25°,求∠AOE的度数.参考答案一.选择题(共8小题,满分32分)1.解:A、d(25%)=>1,本选项不符合题意.B、当x>50%时,0≤d(x)<2,本选项不符合题意.C、当x1>x2时,d(x1)与d(x2)可能相等,可能不等,本选项不符合题意.D、当x1+x2=100%时,d(x1)=d(x2),本选项符合题意.故选:D.2.解:A、等腰三角形有2条或3条对称轴,不符合题意;B、等边三角形有3条对称轴,符合题意;C、正方形有4条对称轴,不符合题意;D、圆有无数条对称轴,不符合题意.故选:B.3.解:A、两端点都在圆上且经过圆心的线段叫作直径,故不符合题意;B、经过圆心的弦叫直径,故不符合题意;C、在同一圆中,两端点都在圆上的线段中,最长的是直径,故符合题意;D、所有等圆的直径都相等,故不符合题意.故选:C.4.解:∵OA=OC,∴∠A=∠ACO=25°,∴∠BOC=∠A+∠ACO=25°+25°=50°.故选:B.5.解:π(AA1+A1A2+A2A3+A3B)=π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点.故选:C.6.解:A、半圆是弧,正确,符合题意;B、过圆心的弦是直径,故原命题错误,不符合题意;C、弦不一定是直径,故原命题错误,不符合题意;D、长度相等的两条弧不一定是等弧,故原命题错误,不符合题意.故选:A.7.解:(1)关于某直线对称的两个三角形是全等三角形,正确,符合题意;(2)全等三角形是关于某直线对称的,错误,不符合题意;(3)两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧,错误,不符合题意;(4)有一条公共边的两个全等三角形关于公共边所在的直线对称,错误,不符合题意;(5)圆成轴对称,它有无数条对称轴,正确,符合题意;(6)等腰三角形的顶角平分线、底边的中线、底边的高线互相重合,故错误,不符合题意,正确的有2个,故选:C.8.解:连接OD,如图,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,而OC=OD,∴∠C=∠1,∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=∠AOC=×84°=28°.故选:B.二.填空题(共8小题,满分32分)9.解:由题意得,直径=21.98÷3.14=7,面积=π×=π;故答案为:7,π.10.解:过圆内一点(非圆心)有无数条弦,有1条直径.11.解:∵圆中最长的弦为6,∴⊙O的直径为6,∴圆的半径为3.故答案为:3.12.解:∵△ABC中,∠ACB=90°,∠A=40°∴∠B=50°∵BC=CD∴∠B=∠BDC=50°∴∠BCD=80°∴∠ACD=10°.13.解:参加篝火晚会时,人们会自然围成一个圆,这是因为圆上任意一点到圆心的距离都相等,这个距离就是这个圆的半径.故答案为:相等,半径.14.解:∵AB是⊙O的直径,∵AB=2DO,而AB=2DE,∴DO=DE,∴∠DOE=∠E,∵△COD为直角三角形,而OC=OD,∴△COD为等腰直角三角形,∴∠CDO=45°,∵∠CDO=∠DOE+∠E,∴∠E=∠CDO=22.5°.故答案为22.5°.15.解:①半径是弦,错误,因为半径的一个端点为圆心;②半圆是弧,弧不一定是半圆,正确;③面积相等的两个圆是等圆,正确;正确的结论有②③.故答案为:②③.16.解:21.98÷3.14÷2=3.5(厘米)三.解答题(共8小题,满分556分)17.解:(1)连OB,如图,∵AB=OC,OB=OC,∴AB=BO,∴∠AOB=∠1=∠A=20°;(2)∵∠2=∠A+∠1,∴∠2=2∠A,∵OB=OE,∴∠2=∠E,∴∠E=2∠A,∴∠DOE=∠A+∠E=3∠A=60°.18.解:到点A的距离小于2cm,且到点B的距离不小于2cm的所有点的集合如图所示:19.解:AC与BD相等.理由如下:连接OC、OD,如图,∵OA=OB,AE=BF,∴OE=OF,∵CE⊥AB,DF⊥AB,∴∠OEC=∠OFD=90°,在Rt△OEC和Rt△OFD中,,∴Rt△OEC≌Rt△OFD(HL),∴∠COE=∠DOF,∴=,∴AC=BD.20.解:(1)到点P的距离等于2cm的点的集合图中⊙P;到点Q的距离等于3cm的点的集合图中⊙Q.(2)到点P的距离等于2cm,且到点Q的距离等于3cm的点有2个,图中C、D.21.解:(1)如图所示:(2)∵AD∥OC,∴△ABD∽△CBO,∴,∵OB=OC=5,∴,可得:OD+DA=5,即OD+DA为定值.22.解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=30°,∴BC=AB=1,∠B=60°,以A圆心BC长为半径画弧可得点D,再连接AD即可;∵AD=BC,∴=,∴∠DAB=∠B=60°,∴∠DAC=60°﹣30°=30°;同理可得:∠D′AC=60°+30°=90°;综上所述:∠CAD的度数为30°或90°.23.解:如图:阴影部分就是到点A的距离小于2cm,且到点B的距离大于2cm的所有点组成的图形(不含圆A上的点,不含圆B上的点)24.解:连接OD,如图,∵直径AB=2CD,∴OD=CD,∴∠DOC=∠C=25°,∴∠EDO=∠DOC+∠C=50°,∵OD=OE,∴∠E=∠EDO=50°,∴∠AOE=∠E+∠C=75°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《圆》分层练习
◆基础题
1.下列说法错误的是()
A.直径是圆中最长的弦B.长度相等的两条弧是等弧
C.面积相等的两个圆是等圆D.半径相等的两个半圆是等弧
2.把地球和篮球的半径都增加一米,那么地球和篮球的大圆的周长也都增加了,谁增加得多一些呢()
A.地球多B.篮球多C.一样多D.不能确定
3.如图,一枚半径为r的硬币沿着直线滚动一圈,圆心经过的距离是()
A.4πr B.2πr C.πr D.2r
4.已知线段AB长3厘米,经过A,B两点,以半径2厘米作圆,则()
A.可作1个B.可作2个C.可作无数个D.无法作出
5.到点O的距离等于8的点的集合是.
6.已知⊙O的半径为5cm,则圆中最长的弦长为cm.
7.过圆内的一点(非圆心)有条直径.
8.在同一平面内,1个圆把平面分成2个部分,2个圆把平面最多分成4个部分,3个圆把平面最多分成8个部分,4个圆把平面最多分成14个部分,那么10个圆把平面最多分成个部分.
9.已知线段AB=3cm,用图形表示到点A的距离小于2cm,且到点B的距离大于2cm 的所有点的集合.
10.实践探究:有一个周长62.8米的圆形草坪,准备为它安装自动旋转喷灌装置进行喷灌,现有射程为20米、15米、10米的三种装置,你认为应选哪种比较合适?安装在什么地方?
◆能力题
1.由所有到已知点O的距离大于或等于3,并且小于或等于5的点组成的图形的面积为()
A.4πB.9πC.16πD.25π
2.如图,在⊙O中,弦的条数是()
A.2 B.3 C.4 D.以上均不正确
3.下列说法:①弧分为优弧和劣弧;②半径相等的圆是等圆;③过圆心的线段是直径;
④长度相等的弧是等弧;⑤半径是弦,其中错误的个数为()
A.2 B.3 C.4 D.5
4.战国时的《墨经》就有“圆,一中同长也”的记载.它的意思是圆上各点到圆心的距离都等于.
5.已知,圆A的周长是圆B的周长的4倍,那么圆A的面积是圆B的面积的倍.6.线段AB=10cm,在以AB为直径的圆上,到点A的距离为5cm的点有个.
7.已知线段AB=4cm,以3cm长为半径作圆,使它经过点A、B,能作几个这样的?请作出符合要求的图.
8.如图,CD是⊙O的直径,点A在DC的延长线上,∠A=20°,AE交⊙O于点B,且AB=OC.
(1)求∠AOB的度数.
(2)求∠EOD的度数.
◆提升题
1.如图中正方形、矩形、圆的面积相等,则周长L的大小关系是()
A.L A>L B>L C B.L A<L B<L C C.L B>L C>L A D.L C<L A<L B
2.如图是公园的路线图,⊙O1,⊙O2,⊙O两两相切,点A,B,O分别是切点,甲乙二人骑自行车,同时从点A出发,以相同的速度,甲按照“圆”形线行驶,乙行驶“8字型”线路行驶.若不考虑其他因素,结果先回到出发点的人是()
A.甲B.乙C.甲乙同时D.无法判定
3.如图甲,圆的一条弦将圆分成2部分;如图乙,圆的两条弦将圆分成4部分;如图丙,圆的三条弦将圆分成7部分.由此推测,圆的四条弦最多可将圆分成11 部分;圆的十九条弦最多可将圆分成部分.
4.如图,A是硬币圆周上一点,硬币与数轴相切于原点O(A与O点重合).假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A恰好与数轴上点A′重合,则点A′对应的实数是.
5.如图所示,最外侧大圆的面积是半径为2厘米的小圆面积的几倍?阴影部分的面积是半径为3厘米的圆的面积的多少?
6.如图,圆心为点M的三个半圆的直径都在x轴上,所有标注A的图形面积都是S A,所有标注B的图形面积都是S B.
(1)求标注C的图形面积S C;
(2)求S A:S B.
答案和解析
◆基础题
1.【答案】B
解:A、直径是圆中最长的弦,所以A选项的说法正确;
B、在同圆或等圆中,长度相等的两条弧是等弧,所以B选项的说法错误;
C、面积相等的两个圆的半径相等,则它们是等圆,所以C选项的说法正确;
D、半径相等的两个半圆是等弧,所以D选项的说法正确.
2.【答案】C
解:根据圆的周长公式为2πr,假设地球的半径为R,篮球的半径为r,地球和篮球的半径都增加一米,那么地球和篮球的大圆的周长将变为:2π(R+1)和2π(r+1),即2π(R+1)=2πR+2π,2π(r+1)=2πr+2π,∴周长都增加了2π.
3.【答案】B
解:圆心经过的距离就是圆的周长,所以是2πr.
4.【答案】B
解:如图,分别以A、B为圆心、2cm为半径作圆,两圆相交于点C、D,然后分别以C、D为圆心,2cm为半径作圆,则⊙C和⊙D为所求.
5.【答案】以点O为圆心,以8为半径的圆
解:到点O的距离等于8的点的集合是:以点O为圆心,以8为半径的圆.
6.【答案】10
解:∵⊙O的半径为5cm,∴⊙O的直径为10cm,即圆中最长的弦长为10cm.
7.【答案】且只有一
解:过圆内的一点(非圆心)有且只有一条直径.
8.【答案】92
解:∵1个圆把平面分成部分=2,
2个圆把平面最多分成的部分=2+2=4,
3个圆把平面最多分成的部分=2+2+4=2+2(1+2)=8,
4个圆把平面最多分成的部分=2+2(1+2+3)=14,
∴10个圆把平面最多分成的部分=2+2(1+2+3+4+5+6+7+8+9)=92.
9.解:如图:
阴影部分就是到点A的距离小于2cm,且到点B的距离大于2cm的所有点组成的图形
10.解:设圆形草坪的半径为r,则由题意知,2πr=62.8,解得:r≈10m.
所以选射程为10米的喷灌装置,安装在圆形草坪的中心处.
◆能力题
1.【答案】C
解:由所有到已知点O的距离大于或等于3,并且小于或等于5的点组成的图形的面积是以5为半径的圆与以3为半径的圆组成的圆环的面积,即π×52﹣π×32=16π.2.【答案】C
解:如图,在⊙O中,有弦AB、弦DB、弦CB、弦CD.共有4条弦.
3.【答案】C
解:①根据半圆也是弧,故此选项错误,符合题意;
②由等圆的定义可知,半径相等的两个圆面积相等、周长相等,所以为等圆,故此选项正确,不符合题意;
③过圆心的线段是直径,根据圆的直径的含义可知:通过圆心的线段,因为两端不一定在圆上,所以不一定是这个圆的直径,故此选项错误,符合题意;
④长度相等的弧不为等弧,因为等弧就是能够重合的两个弧,而长度相等的弧不一定是等弧,所以等弧一定是同圆或等圆中的弧,故此选项错误,符合题意.
4.【答案】半径
解:战国时期的《墨经》一书中记载:“圜(圆),一中同长也”.表示圆心到圆上各点的距离都相等,即半径都相等;
5.【答案】16
解:设圆A的半径为a,圆B的半径为b.由题意2πa=4×2πb,∴a=4b,∴⊙A的面积:⊙B的面积=π•(4b)2:πb2=16:1.
6.【答案】2
解:如图所示:到点A的距离为5cm的点有2个.
7.解:这样的圆能画2个.如图:
作AB的垂直平分线l,再以点A为圆心,3cm为半径作圆交l于O1和O2,然后分别以O1和O2为圆心,以3cm为半径作圆,
则⊙O1和⊙O2为所求圆.
8.解:(1)连OB,如图,∵AB=OC,OB=OC,∴AB=BO,∴∠AOB=∠1=∠A=20°;
(2)∵∠2=∠A+∠1,∴∠2=2∠A,∵OB=OE,∴∠2=∠E,∴∠E=2∠A,∴∠DOE=∠A+∠E=3∠A=60°.
◆提升题
1.【答案】D
解:设面积是S S L A S16S S
长方形的一边长x,则另一边长为S
x
,则周长L B=2(x+
S
x
),∵(x+
S
x
)2≥0,∴x+
S
x
≥S∴L B≥S即L B16S;S
π
L C=2π
S
π
4S
π,4S
π
16S L C<L A<L B.2.【答案】C
解:设⊙O 1的半径是r ,则⊙O 2的半径是r ,⊙O 的半径是2r .则延“8字型”线路行驶时:路线长是4πr .同样按“圆”形线行驶的路线长4πr .因而两人同时到达.
3.【答案】191
解:一条弦将圆分成1+1=2部分,
二条弦将圆分成1+1+2=4部分,
三条弦将圆分成1+1+2+3=7部分,
四条弦将圆分成1+1+2+3+4=11部分,…
n 条弦将圆分成1+1+2+3+…+n =1+
()12n n +部分,当n =19时,1+()12n n +=191部分. 4.【答案】π
解:将硬币沿数轴正方向滚动一周,点A 恰好与数轴上点A '重合,则转过的距离是圆的周长是π,因而点A '对应的实数是π.
5.解:3+2=5(厘米),(3.14×52)÷(3.14×22)=52÷22=254
, (12×3.14×52﹣12×3.14×32﹣12
×3.14×22)÷(3.14×32) =[12×(52﹣32﹣22)]÷32=6÷9=23
. 答:最外侧大圆的面积是半径为2厘米的小圆面积的
254倍,阴影部分的面积是半径为3厘米的圆的面积的23
. 6.解:(1)由题意得到圆M 的半径为(6﹣4)÷2=1,则12C S π=
. (2)2193322A C S S ππ+=
⨯=,∴43A S π=.∵212553522B A C S S S ππ++=⨯=, ∴85B S π=,∴SA :SB=5:6.。

相关文档
最新文档