新湘教版八年级下册第1章直角三角形数学教案2014-2-16
湘教版八下数学1直角三角形小结与复习教学设计
湘教版八下数学1直角三角形小结与复习教学设计一. 教材分析湘教版八下数学第1章直角三角形是整个初中数学的重要内容之一。
本章主要让学生掌握直角三角形的性质,包括勾股定理、直角三角形的边角关系等,以及直角三角形的应用。
在学习过程中,学生需要通过观察、思考、实践等方式,发现直角三角形的内在规律,提高解决问题的能力。
二. 学情分析学生在学习本章内容前,已经掌握了锐角三角形和钝角三角形的相关知识,对三角形的基本概念有一定的了解。
但部分学生对直角三角形的性质和应用还比较陌生,需要通过实例和练习来进一步理解和掌握。
三. 教学目标1.理解直角三角形的性质,掌握勾股定理及其应用。
2.能运用直角三角形的性质解决实际问题。
3.培养学生的观察能力、思考能力和实践能力。
四. 教学重难点1.重点:直角三角形的性质,勾股定理的应用。
2.难点:勾股定理的证明,直角三角形在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生观察、思考、发现直角三角形的性质。
2.运用实例讲解法,让学生通过实际问题理解勾股定理的应用。
3.采用小组合作学习法,培养学生的团队协作能力。
六. 教学准备1.准备相关教学PPT,展示直角三角形的性质和应用实例。
2.准备一些实际问题,用于课堂练习和巩固。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题——直角三角形。
例如:在建筑工地,测量工人需要测量一条长为3米的直角边和一条长为4米的直角边,如何计算斜边的长度?引导学生思考直角三角形的性质。
2.呈现(10分钟)教师通过PPT展示直角三角形的性质,包括勾股定理、直角三角形的边角关系等。
同时,结合实例讲解勾股定理的应用,让学生理解并掌握。
3.操练(10分钟)教师提出一些有关直角三角形的练习题,让学生独立完成。
题目难度可适当调整,以适应不同学生的需求。
教师在过程中给予个别指导,帮助学生巩固所学知识。
4.巩固(5分钟)教师学生进行小组讨论,分享各自在练习中的心得体会,互相解答疑问。
湘教版八年级下册数学教案设计:第一章直角三角形式全章小结与复习
知识的系统化和结构化。
教学过程
问题导入
引入课题:直角三角形小结与复习
请回忆一下,本章我们学习了哪些知识?提到了哪些数学思想?。
自学指导
学生自学教材P27内容,回忆相关知识。
合作交流
一、知识结构图:
二、练习应用:
1、直角三角形性质:
教材P28复习题1 A组T1、T2;P30 C组T11;T12
2、直角三角形判定:
八年级(下册)数学教案
课题
直角三角形式全章小结与复习
课时安排
2课时
教学
目标
1、熟练掌握直角三角形性质和判定;掌握角平分线性质和判定;并应用解决简单几何问题。 2、本章知识的系统化和结构化。 3、培养学生小结归纳能力,逻辑推理能力,渗透相关的数学思想。
重点
进一步理解本章概念、性质并掌握相关推理证明方法。
教材P28复习题1 A组T4、T5
3、直角三角形全等判定:
教材P29复习题1 A组T6、T5;B组T8、T9;P
4、角平分线性质和判定:
教材P29复习题1 A组T7;B组T10;
小结归纳
学生完成(除知识点外,主要是数学的思想方法,如:类比、整体换元等)
作业布置
必做:学法P15~P16基础巩
八年级数学下册第1章直角三角形章末复习教案湘教版
章末复习【知识与技能】1。
系统了解本章的知识体系及知识内容.2。
在熟练掌握直角三角形相关概念的基础上,进一步熟悉掌握直角三角形性质与判定的应用。
3.在掌握角平分线性质及其逆定理的基础上将知识融汇贯通,进行一些提高训练。
4。
培养对知识综合掌握、综合运用的能力。
【过程与方法】复习梳理本章的主要知识点,及应注意的问题。
通过典型例题讲解和对应练习,使学生对本章知识达标。
【情感态度】主动参与、积极探索、合作交流,发挥学习中主人翁意识,感受成功的乐趣,激发学生的学习兴趣,培养学生的动手操作能力和解决问题的能力。
【教学重点】勾股定理及其逆定理,直角三角形的性质和判定,角平分线性质与判定在解决实际问题中的作用。
【教学难点】综合运用直角三角形相关知识解决问题。
一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,展示结构框图,让学生对本章所学知识有个系统地把握.教学时,可以边回顾边建立结构图,逐步加深印象.二、释疑解惑,加深理解1.“斜边、直角边定理”是判定两个直角三角形全等所独有的,在运用该判定定理时,要注意全等的前提条件是两个直角三角形.2.本章的互逆定理:直角三角形的性质和判定定理,勾股定理及其逆定理,角平分线的性质定理及其逆定理等,注意它们之间的区别与联系。
3。
数形结合的思想:勾股定理体现了由形到数,而勾股定理的逆定理体现了由数到形.三、典例精析,复习新知例1 如图,在△ABC中,∠ACB=90°,CD是AB边上的高,图中与∠A互余的角有()A。
0个 B.1个C。
2个 D.3个【分析】由“直角三角形的两锐角互余",可找出与∠A互余的角。
∵∠ACB=90°,CD是AB边上的高,∴∠A+∠B=90°,∠A+∠ACD=90°,∴与∠A互余的角2个,故选C。
例2 如图,一棵树在一次强台风中,从离地面5m处折断,倒下的部分与地面成30°角,如图所示,这棵树在折断前的高度是()A.10m B。
数学湘教版八年级下册第1章直角三角形 教案
1.1.1 直角三角形的性质教学目标知识与技能:1.理解并掌握直角三角形的判定定理和斜边上的中线性质定理。
2.能运用直角三角形的判定与性质,解决有关的问题。
过程与方法:通过对几何问题的“操作—探究—讨论—交流—讲评”的学习过程,提高分析问题和解决问题的能力。
情感、态度与价值观:感受数学活动中的多向思维、合作交流的价值,主动参与数学思维与交流活动。
教学重点:直角三角形斜边上的中线性质定理的推导与运用。
教学难点:“操作—探究—讨论—交流—讲评”得出直角三角形斜边上的中线性质定理。
教学过程一、教学引入1、三角形的内角和是多少度。
学生回答。
2、什么是直角三角形?日常生活中有哪些物品与直角三角形有关?请举例说明。
3、 等腰三角形有哪些性质? 二、探究新知1、探究直角三角形的判定定理:⑴ 观察小黑板上的三角形,由∠A +∠B 的度数,能说明什么? ——两个锐角互余的三角形是直角三角形。
⑵ 讨论:直角三角形的性质和判定定理是什么关系? 2、探究直角三角形的性质:⑴ 学生画出直角三角形ABC 斜边的中线CD 。
⑵ 测量并讨论斜边上的中线的长度与斜边长度之间的关系。
⑶ 学生猜想:在直角三角形中斜边上的中线等于斜边的一半。
3、 共同探究:例 已知:在Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线。
求证:CD =12AB 。
[教师引导:数学方法——倒推法、辅助线]三、应用迁移 巩固提高练习:如果三角形一边上的中线等于这条边的一半,求证:这个三角形是直角三角形。
即已知CD 是△ABC 的AB 边上的中线,且CD =12AB 。
求证:△ABC 是直角三角形。
提示:倒推法,要证明△ABC 是直角三角形,只有通过定义和判定定理,定义与判定定理都与角有关系。
现在我们只有边的关系,我们学过的边与角能联系起来的就是等腰三角形。
还要找到与90°有关的角,但是我们只知道三角形的内角和为180°。
【最新湘教版精选】湘教初中数学八下《1.0第1章直角三角形》word教案 (2).doc
情感态度与价值观:主动参与、积极探索、合作交流,发挥学习中主人翁意识,感受成功的乐趣,激发学生的学习兴趣,培养学生的动手操作能力和解决问题的能力。
重点
勾股定理及其逆定理、直角三角形的性质和判定、角平分线性质与判定在解决实际问题中的作用
7.如图,,DG=EH, DG⊥DE, EH⊥HG,求证:DE=HG
6题7题
8.在△ABC中,∠A:∠B:∠C=1:2:3,最短的边长为5,则最长的边长为______
9.如图,在Rt△ABC中,∠C=90°,
∠CBA=60°,BD是△ABC的角平分线,
如果CD=3 ,则AC的长为________
10、如图,∠ACB=90°,CD⊥AB于D,AB=2BC,
直角三角形全章复习(二)
课题
直角三角形全章复习(二)
本课(章节)需10课时,本节课为第10课时,为本学期总第10课时
教学目标
知识与技能:1 .系统了解本章的知识体系及知识内容;2在熟练掌握直角三角形相关概念的基础上,进一步熟悉掌握直角三角形性质与判定的应用;3.在掌握角平分线性质及其逆定理的基础上将知识融汇贯通,进行一些提高训练;4、培养对 知识综合掌握、综合运用的能力。
4.已知如左下图,△ABC中,AB=AC,AD平分∠BAC,点E为AC的中点,请你写一个正确的结论:________________
5.如右上图,AC∥BD,∠A和∠ B的平 分线的平分线相交于E,
则∠ AEB等于多少度?为什么?
6 .如图,已知,AC , BD相交于点O, AC=BD,∠A=∠D=90 °,那么OB=OC吗?为什么?
难点
综合掌握、综合运用直角三角形相关知识
【最新湘教版精选】湘教初中数学八下《1.0第1章直角三角形》word教案 (1).doc
A、1 ,2 B、 C、9,12,15 D、6,7,8
2、下列条件中不能做出唯一直角三角形的是()
A、已知两直角边B、已知两锐角
C、已知一直角边和一锐角D、已知斜边和一直角边
3、一直角三角形的斜边长臂直角边大2,另一直角边长为6,则斜边长为。
4、在△ABC中AB=AC,AD是BC边上的中线,AB=13厘米,BC=10厘米,求AD的长
变式:此题中若把D是BC的中点改成AD是∠BAC的角平分线,其他条件不变,以上结论还成立吗?若AD是△ABC的高呢?
例3、如图,已知AB=CD,DE⊥AC,BF⊥AC,BF=DE,则AB与CD平行吗?请说明理由。
例4、在一棵树的5米高处有两只猴子,其中一只爬下树走到离树15米处的池塘A处,另一只爬到树顶后直接跃向池塘A处,如果两只猴子所经过的距离相等,问这棵树有多高?
难点
如何判定两个直角三角形全等
教学方法
课型
教具
教学过程:
1、知识梳理
1、直角三角形的两个锐角有什么关系?2、直角三角形斜边上的中线与斜边有什么关系?3、请用自己的语言叙述勾股定理及其逆定理。4、判断两个直角三角形全等的方法有哪些?
5、角平分线有哪些性质?
二、解题时应注意的问题
1、“斜边、直角边定理”是判断两个直角三角形全等所独有的,在运用该判断定理时,要注意全等的前提条件是两个直角三角形。2、要注意本章中的互逆命题,如直角三角形的性质和判定定理,勾股定理及其逆定理,角平分线的性质定理及其逆定理等,它们都是互逆定理。3、勾股定理及其逆定理都体现了数形结合的思想。勾股定理体现了由形到数,而勾股定理的逆定理是用代数方法来研究几何问题,体现了由数到形。
湘教版数学八年级下册 直角三角形的性质和判定教案与反思
第1章直角三角形路漫漫其修远兮,吾将上下而求索。
屈原《离骚》原创不容易,【关注】店铺,不迷路!1.1直角三角形的性质和判定(Ⅰ)第1课时直角三角形的性质和判定【知识与技能】1.体验直角三角形应用的广泛性,理解直角三角形的定义,进一步认识直角三角形.2.学会用符号和字母表示直角三角形.3.经历“直角三角形两个锐角互余”的探讨,掌握直角三角形两个锐角互余的性质.4.会用“两个锐角互余的三角形是直角三角形”这个判定方法判定直角三角形.5.理解和掌握直角三角形性质“斜边上的中线等于斜边的一半”.【过程与方法】通过动手,猜想发现直角三角形的性质,引导逆向思维,探索性质的推导方法——同一法.【情感态度】体会从“一般到特殊”的思维方法和“逆向思维”方法,培养逆向思维能力.【教学重点】直角三角形性质和判定的探索及应用.【教学难点】直角三角形性质“斜边上的中线等于斜边的一半”的判定探索过程.一、创设情境,导入新课问题什么叫直角三角形?从定义可以知道直角三角形具有一个角是直角的性质,要判断一个三角形是直角三角形需要判断这个三角形中有一个角是直角.直角三角形除了有一个角是直角这条性质外还有没有别的性质呢?判断一个三角形是直角三角形除了判断一个角是直角还有没有别的方法呢?这节课我们来探究这些问题.【教学说明】引导学生回忆,并巩固所学知识.从实际问题入手,激发学生的兴趣,注意新知识的连贯性.二、思考探究,获取新知问题1直角三角形两锐角互余思考如图,在Rt△ABC中,两锐角的和∠A+∠B=______.为什么?【教学说明】通过学生思考,总结归纳得出结果,培养学生分析问题和理解问题的能力.试试看:(1)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,若∠A=40°,则∠BCD=______..(2)在△ABC中,∠B=50°,高AD、CE交于H,则∠AHC=______..【教学说明】巩固所学内容,加强对直角三角形两角之间互余的理解.问题2利用两锐角互余判断三角形是直角三角形思考如图,在△ABC中,如果∠A+∠B=90°,那么△ABC是直角三角形吗?为什么?【教学说明】让学生明白两锐角互余的三角形是直角三角形,从而得到直角三角形一种判定方法.结论有两个锐角互余的三角形是直角三角形.试试看:如图,AB∥CD,∠A和∠C的平分线相交于H点,那么△AHC是直角三角形吗?为什么?【教学说明】让学生利用所学知识解决数学问题,逐步掌握解题技巧,培养学生的应用意识和能力.问题3直角三角形斜边上的中线等于斜边的一半的探索过程思考(1)按要求作图:画一个直角三角形,并作出斜边上的中线.(2)量一量各线段的长度.(3)猜想:你能猜想出什么结论?【教学说明】经历上面的探索过程,学生很容易得出结论,并能对所学知识行提炼和归纳.问题4教材第4页例题【教学说明】让学生明确直角三角形斜边上的中线等于斜边的一半这一定理的题设及结论可以相互变换,加深它们之间的区别与联系.三、运用新知,深化理解1.如果三角形的三个内角的比是4∶5∶9,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形2.在△ABC中,若∠A=∠B+∠C,则△ABC是_______.3.图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,将△ACD沿AC边折叠,使点D落在点E处.求证:E∥AB.【教学说明】由学生独立完成,加深对所学知识的理解和运用以及检查学生掌握情况,有困难的学生教师要及时指导,并及时纠正错误,给予矫正深化.答案:1.B2.直角三角形3.证明:∵△ACD沿AC边折叠,∴△ADC≌AEC,∴∠ACE=∠ACD,∵CDAB边上的中线,∠AB=90°,∴CD=AD,∴∠CAD=∠ACD,∴∠CAD=∠ACE,∴EC∥AB.四、师生互动,课堂小结通过今天的学习,你掌握了直角三角形的哪些性质和判定方法?还有什么值得与大家共同分享的?【教学说明】梳理学习内容、方法、思路,养成系统整理知识的习惯,形成知识体系,同学之间互相取长补短,达到共同提高.1.布置作业:习题1.1中的第1、2题2.完成练习册中本课时的练习.通过练习反馈的情况来看,学生对于利用已知条件判定一个三角形是否为直角三角形这一考点比较容易上手一些,而往往忽略在直角三角形中告诉斜边上的中点利用中线这一性质解决问题.在今后的教学中让学生不断强化提高这一点.【素材积累】阿达尔切夫说过:“生活如同一根燃烧的火柴,当你四处巡视以确定自己的位置时,它已经燃完了。
湘教版数学八年级下册第一章《直角三角形》说课稿
湘教版数学八年级下册第一章《直角三角形》说课稿一. 教材分析湘教版数学八年级下册第一章《直角三角形》是学生在学习了平面几何基本概念和性质的基础上进行的一章教学。
本章主要通过探讨直角三角形的性质和应用,使学生进一步理解和掌握勾股定理,提高解决实际问题的能力。
本章的主要内容包括直角三角形的定义,性质,分类,直角三角形的边角关系,勾股定理的证明及其应用等。
二. 学情分析学生在学习本章之前,已经掌握了平面几何的基本概念和性质,具备了一定的逻辑思维能力和空间想象能力。
但学生在学习过程中,可能对直角三角形的性质和应用的理解不够深入,对勾股定理的证明和应用可能存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的教学。
三. 说教学目标1.知识与技能:使学生理解和掌握直角三角形的定义和性质,能够熟练运用勾股定理解决实际问题。
2.过程与方法:通过观察,操作,探究等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。
四. 说教学重难点1.教学重点:直角三角形的定义和性质,勾股定理的证明和应用。
2.教学难点:勾股定理的证明,直角三角形在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导发现法,合作交流法等,激发学生的学习兴趣,培养学生的自主学习能力。
2.教学手段:利用多媒体课件,几何画板等教学工具,直观展示直角三角形的性质和应用,提高教学效果。
六. 说教学过程1.导入:通过生活中的实例,引导学生认识直角三角形,激发学生的学习兴趣。
2.新课导入:介绍直角三角形的定义和性质,引导学生通过观察,操作,探究等方法,发现和证明勾股定理。
3.应用拓展:通过解决实际问题,引导学生运用勾股定理,巩固所学知识。
4.课堂小结:对本节课的主要内容进行总结,加深学生对知识的理解。
5.布置作业:布置适量的练习题,巩固所学知识,提高学生的解题能力。
八年级数学下册第1章直角三角形1.2直角三角形的性质和判定(第3课时)教案(新版)湘教版
直角三角形的性质和判断1.知识与技术:理解并会证明勾股定理的逆定理;会应用勾股定理的逆定理判断一个三角形能否为直角三角形;知道什么叫勾股数,记着一些觉见的勾股数教2. 过程与方法:经过勾股定理与其逆定理的比较,提升学生的辨析能力;学经过勾目股定理及从前的知识联合起来综合运用,提升综合运用知识能力标3. 感情态度与价值观:经过自主学习的发展体验获取数学知识的感觉;经过知识的纵横迁徙感觉数学的辩证特点重1 、要点:勾股定理的逆定理及其应用点2、难点::勾股定理的逆定理及其应用难点教学察看、比较、合作、沟通、探究策略教学活动课前、课中反省1、新课背景知识复习:勾股定理的内容、文字表达、符号表述、图形2、逆定理的获取( 1)让学生用文字语言将上述定理的抗命题表述出来经过勾股定理与其( 2)学生自己证明逆定理的比较,提逆定理:假如三角形的三边长a、 b、 c 有下边关系: a2+b2=c2 ,高学生的辨析能那么这个三角形是直角三角形力;经过勾股重申说明:定理及从前的知识( 1)勾股定理及其逆定理的差别联合起来综合运勾股定理是直角三角形的性质定理,逆定理是直角三角形的判断定用,提升综合运用理.知识能力( 2)判断直角三角形的方法:①角为900②垂直③勾股定理的逆定理2 、定理的应用-判断由线段a,b,c构成的三角形能否是直角三角形。
a=6, b=8, c=10;a=12, b=15, c=20.如图 1-21 ,在△ ABC中,已知 AB=10,BD=6, AD=8,AC=17. 求 DC的长。
练习:增补:1、假如一个三角形的三边长分别为a2 =m2-n2 ,b=2mn, c=m2+n2(m>n)则这三角形是直角三角形证明:∵a2+b2=( m2-n2)2 +(2mn)2=m4+2m2n2+n4= (m2+n2)2∴ a2+b2=c2, ∠C= 900,AB= 3,BC=4,CD= 12,2、已知:如图,四边形 ABCD中,∠ B=AD= 13 求四边形 ABCD的面积解:连接ACB AB 3 BC4∴∴AC= 5∵∴∴∠ ACD=900以上习题,分别由学生先思虑,而后回答.师生共同增补完美.(教师做总结)4、讲堂小结:(1)逆定理应用时易出现的错误分不清哪一条边作斜边(最大边)(2)判断能否为直角三角形的一种方法:联合勾股定理和代数式、方程综合运用.5、部署作业:增补:如图,已知:CD⊥ AB 于 D,且有求证:△ ACB为直角三角形证明:∵ CD⊥AB∴又∵∴∴△ ABC为直角三角形课后反思。
湘教版八年级数学下册第1章《直角三角形》教案
湘教版八年级数学下册第1章《直角三角形》教案1.1直角三角形的性质和判定(Ⅰ)第1课时直角三角形的性质和判定1.掌握“直角三角形两个锐角互余”,并能利用“两锐角互余”判断三角形是直角三角形;(重点)2.探索、理解并掌握“直角三角形斜边上的中线等于斜边的一半”的性质.(重点、难点)一、情境导入在小学时我们已经学习过有关直角三角形的知识,同学们可以用手上的三角板和量角器作直角三角形,并和小组成员一同探究直角三角形的性质.二、合作探究探究点一:直角三角形两锐角互余如图,AB∥DF,AC⊥BC于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°解析:∵AC⊥BC于C,∴△ABC是直角三角形,∴∠ABC=90°-∠A=90°-20°=70°,∴∠ABC=∠1=70°,∵AB∥DF,∴∠1+∠CEF=180°,即∠CEF=180°-∠1=180°-70°=110°.故选A.方法总结:熟知直角三角形两锐角互余的性质,并准确识图是解决此类题的关键. 探究点二:有两个角互余的三角形是直角三角形如图所示,已知AB ∥CD ,∠BAF =∠F ,∠EDC =∠E ,求证:△EOF 是直角三角形.解析:三角形内角和定理是解答有关角的问题时最常用的定理,是解决问题的突破口,本题欲证△EOF 是直角三角形,只需证∠E +∠F =90°即可,而∠E =12(180°-∠BCD ),∠F =12(180°-∠ABC ),由AB ∥CD 可知∠ABC +∠BCD =180°,即问题得证. 证明:∵∠BAF =∠F ,∠BAF +∠F +∠ABF =180°,∴∠F =12(180°-∠ABF ).同理,∠E =12(180°-∠ECD ).∴∠E +∠F =180°-12(∠ABF +∠ECD ).∵AB ∥CD ,∴∠ABF +∠ECD =180°.∴∠E +∠F =180°-12×180°=90°,∴△EOF 是直角三角形. 方法总结:由三角形的内角和定理可知一个三角形的三个内角之和为180°,如果一个三角形中有两个角的和为90°,可知该三角形为直角三角形.探究点三:直角三角形斜边上的中线等于斜边的一半如图,△ABC 中,AD 是高,E 、F 分别是AB 、AC 的中点.(1)若AB =10,AC =8,求四边形AEDF 的周长;(2)求证:EF 垂直平分AD .解析:(1)根据直角三角形斜边上的中线等于斜边的一半可得DE =AE =12AB ,DF =AF =12AC ,再根据四边形的周长的公式计算即可得解;(2)根据“到线段两端点距离相等的点在线段的垂直平分线上”证明即可.(1)解:∵AD 是高,E 、F 分别是AB 、AC 的中点,∴DE =AE =12AB =12×10=5,DF =AF =12AC =12×8=4,∴四边形AEDF 的周长=AE +DE +DF +AF =5+5+4+4=18;(2)证明:∵DE =AE ,DF =AF ,∴E 是AD 的垂直平分线上的点,F 是AD 的垂直平分线上的点,∴EF 垂直平分AD .方法总结:当已知条件含有线段的中点、直角三角形等条件时,可联想直角三角形斜边上的中线的性质,连接中点和直角三角形的直角顶点进行求解或证明.探究点四:直角三角形性质的综合运用 【类型一】 利用直角三角形的性质证明线段关系如图,在△ABC 中,AB =AC ,∠BAC =120°,EF 为AB 的垂直平分线,交BC于F ,交AB 于点E .求证:FC =2BF .解析:根据EF 是AB 的垂直平分线,联想到垂直平分线的性质,因此连接AF ,得到△AFB 为等腰三角形.又可求得∠B =∠C =∠BAF =30°,进而求得∠F AC =90°.取CF 的中点M ,连接AM ,就可以利用直角三角形的性质进行证明.证明:如图,取CF 的中点M ,连接AF 、AM .∵EF 是AB 的垂直平分线,∴AF =BF .∴∠BAF=∠B .∵AB =AC ,∠BAC =120°,∴∠B =∠BAF =∠C =12(180°-120°)=30°.∴∠F AC =∠BAC -∠BAF =90°.在Rt △AFC 中,∠C =30°,M 为CF 的中点,∴∠AFM =60°,AM =12FC =FM .∴△AFM 为等边三角形.∴AF =AM =12FC .又∵BF =AF ,∴BF =12FC ,即FC =2BF .方法总结:当已知条件中出现直角三角形斜边上的中线时,通常会运用到“直角三角形斜边上的中线等于斜边的一半”这个性质,使用该性质时,要注意找准斜边和斜边上的中线.【类型二】 利用直角三角形的性质解决实际问题如图所示,四个小朋友在操场上做抢球游戏,他们分别站在四个直角三角形的直角顶点A 、B 、C 、D 处,球放在EF 的中点O 处,则游戏________(填“公平”或“不公平”).解析:游戏是否公平就是判断点A 、B 、C 、D 到点O 的距离是否相等.四个直角三角形有公共的斜边EF ,且O 为斜边EF 的中点.连接OA 、OB 、OC 、OD .根据“直角三角形斜边上的中线等于斜边的一半”的性质可知,OA =OB =OC =OD =12EF ,即点A 、B 、C 、D到O 的距离相等.由此可得出结论:游戏公平.方法总结:题目中如果出现“直角三角形”和“中点”这两个条件时,应连接直角顶点与斜边中点,再利用“斜边上的中线等于斜边的一半的性质”解题. 【类型三】 利用直角三角形性质解动态探究题如图所示,在Rt △ABC 中,AB =AC ,∠BAC =90°,O 为BC 的中点.(1)写出点O 到△ABC 的三个顶点A 、B 、C 的距离的数量关系;(2)如果点M 、N 分别在线段AB 、AC 上移动,移动中保持AN =BM .请判断△OMN 的形状,并证明你的结论.解析:(1)由于△ABC 是直角三角形,O 是BC 的中点,得OA =OB =OC =12BC ;(2)由于OA 是等腰直角三角形斜边上的中线,因此根据等腰直角三角形的性质,得∠CAO =∠B =∠45°,OA =OB ,又AN =MB ,所以△AON ≌△BOM ,所以ON =OM ,∠NOA =∠MOB ,于是有∠NOM =∠AOB =90°,所以△OMN 是等腰直角三角形.解:(1)连接AO .在Rt △ABC 中,∠BAC =90°,O 为BC 的中点,∴OA =12BC =OB =OC ,即OA =OB =OC ;(2)△OMN 是等腰直角三角形.理由如下:∵AC =BA ,OC =OB ,∠BAC =90°,∴OA=OB ,∠NAO =12∠CAB =∠B =45°,AO ⊥BC ,又AN =BM ,∴△AON ≌△BOM ,∴ON =OM ,∠NOA =∠MOB ,∴∠NOA +∠AOM =∠MOB +∠AOM ,∴∠NOM =∠AOB =90°,∴△MON 是等腰直角三角形.方法总结:解决动态探究性问题,要把握住动态变化过程中的不变量,比如角的度数、线段的长和不变的数量关系,比如斜边上的中线等于斜边的一半,直角三角形两锐角互余.三、板书设计1.直角三角形的性质性质一:直角三角形的两锐角互余;性质二:直角三角形斜边上的中线等于斜边的一半.2.直角三角形的判定方法一:一个角是直角的三角形是直角三角形;方法二:两锐角互余的三角形是直角三角形.通过练习反馈的情况来看,学生对于利用已知条件判定一个三角形是否为直角三角形这一考点比较容易上手一些,而往往忽略在直角三角形中告诉斜边上的中点利用中线这一性质解决问题.在今后的教学中应让学生不断强化提高这一点.第2课时 含30°锐角的直角三角形的性质及其应用1.理解并掌握含30°锐角的直角三角形的性质;(重点)2.能利用含30°锐角的直角三角形的性质解决问题.(难点)一、情境导入用两个全等的含30°角的直角三角尺,你能拼出一个等边三角形吗?说说理由,并把你的发现和大家交流一下.二、合作探究探究点一:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半等腰三角形的一个底角为75°,腰长4cm ,那么腰上的高是________cm ,这个三角形的面积是________cm 2.解析:因为75°不是特殊角,但是根据“三角形内角和为180°”可知等腰三角形的顶角为30°,依题意画出图形,则有∠A =30°,BD ⊥AC ,AB =4cm ,所以BD =2cm ,S △ABC =12AC ·BD =12×4×2=4(cm 2).故答案为2,4. 方法总结:作出准确的图形、构造含30°角的直角三角形是解决此题的关键.探究点二:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°如图所示,在四边形ACBD 中,AD ∥BC ,AB ⊥AC ,且AC =12BC ,求∠DAC 的度数.解析:根据题意得∠CBA =30°,由平行得∠BAD =30°,进而可得出结论.解:∵AB ⊥AC ,∴∠CAB =90°.∵AC =12B BC ,∴∠CBA =30°.∵AD ∥BC ,∴∠BAD =30°,∴∠CAD =∠CAB +∠BAD =120°.方法总结:如果题中出现直角三角形及斜边是直角边的两倍可直接得出30°的角,再利用相关条件求解.探究点三:含30°锐角的直角三角形性质的应用如图,某船于上午11时30分在A 处观测到海岛B 在北偏东60°方向;该船以每小时10海里的速度向东航行到C 处,观测到海岛B 在北偏东30°方向;航行到D 处,观测到海岛B 在北偏西30°方向;当船到达C 处时恰与海岛B 相距20海里.请你确定轮船到达C 处和D 处的时间.解析:根据题意得出∠BAC ,∠BCD ,∠BDA 的度数,根据直角三角形的性质求出BC 、AC 、CD 的长度.根据速度、时间、路程关系式求出时间.解:由题意得∠BCD =90°-30°=60°,∠BDC =90°-30°=60°.∴∠BCD =∠BDC =60°,∴△BCD 为等边三角形.在△ABD 中,∵∠BAD =90°-60°=30°,∠BDC =60°,∴∠ABD =90°,即△ABD 为直角三角形,∴∠ABC =30°.∵BC =20海里,∴CD =BD =20海里.又∵BD =12AD ,∴AD =40海里.∴AC =AD -CD =20(海里).∵船的速度为每小时10海里,因此轮船从A 处到C 处的时间为2010=2(h),从A 处到D 处的时间为4010=4(h).∴轮船到达C 处的时间为13时30分,到达D 处的时间为15时30分. 方法总结:方位角是遵循“上北下南左西右东”的原则,弄清楚方位角是解决这类题的关键,再利用含30°角的直角三角形的性质解题.三、板书设计1.含30°锐角的直角三角形的性质(1)在直角三角形中,30度的角所对的边等于斜边的一半;(2)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°.2.含30°锐角的直角三角形的性质的应用.在教学中,应该要注意强调这两个性质都是在直角三角形中得到的,如果是一般三角形是不能得到的;两边的二倍关系是斜边和直角边之间的关系,不是两直角边的关系,这在教学中要注意强调,这是学生常犯的错误.1.2直角三角形的性质和判定(Ⅱ)第1课时勾股定理1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)2.掌握勾股定理,并应用它解决简单的计算题;(重点)3.了解利用拼图验证勾股定理的方法.(难点)一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】直接运用勾股定理已知:如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,CD⊥AB于D,求:(1)AC的长;(2)S△ABC;(3)CD的长.解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据CD·AB=BC·AC即可求出CD.解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12(cm);(2)∵S△ABC=12CB·AC=12×5×12=30(cm2);(3)∵S△ABC=12AC·BC=12CD·AB,∴CD=AC·BCAB=6013(cm).方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,根据面积相等得出一个方程,再解这个方程即可.【类型二】分类讨论思想在勾股定理中的应用在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC周长.解析:本题应分△ABC为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况:(1)当△ABC为锐角三角形时,如图①所示,在Rt△ABD中,BD=AB2-AD2=152-122=9,在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC的周长为15+13+14=42;(2)当△ABC为钝角三角形时,如图②所示,在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=9-5=4,∴△ABC 的周长为:15+13+4=32,∴△ABC的周长为32或42.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】勾股定理与等腰三角形的综合如图所示,已知△ABC中,∠B=22.5°,AB的垂直平分线分别交BC、AB于D 、F点,BD=62,AE⊥BC于E,求AE的长.解析:欲求AE,需与BD联系,连接AD,由线段垂直平分线的性质可知AD=BD.可证△ADE是等腰直角三角形,再利用勾股定理求AE的长.解:如图所示,连接AD.∵DF是线段AB的垂直平分线,∴AD=BD=62,∴∠BAD =∠B=22.5°.∵∠ADE=∠B+∠BAD=45°,AE⊥BC,∴∠DAE=45°,∴AE=DE.由勾股定理得AE2+DE2=AD2,∴2AE2=(62)2,∴AE=622=6.方法总结:22.5°虽然不是特殊角,但它是特殊角45°的一半,所以经常利用等腰三角形和外角进行转换.直角三角形中利用勾股定理求边长是常用的方法.探究点二:勾股定理与图形的面积探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC绕其顶点A旋转90°得直角三角形AED,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE的面积等于Rt△BAE和Rt△BFE的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:任意的符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE的面积等于Rt△BAE和Rt△BFE的面积之和进行解答;方法2:根据△ABC和Rt△ACD的面积之和等于Rt△ABD和△BCD的面积之和解答.解:方法1:S正方形ACFD=S四边形ABFE=S△BAE+S△BFE,即b2=12c2+12(b+a)(b-a),整理得2b2=c2+b2-a2,∴a2+b2=c2;方法2:S四边形ABCD=S△ABC+S△ACD,S四边形ABCD=S△ABD+S△BCD,即S△ABC+S△ACD=S△ABD+S△BCD,即12B b2+12B a b=12B c2+12B a(b-a),整理得b2+ab=c2+a(b-a),b2+ab=c2+ab-a2,∴a2+b2=c2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.三、板书设计1.勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.2.勾股定理的应用3.勾股定理与图形的面积课堂教学中,要注意调动学生的积极性.让学生满怀激情地投入到学习中,提高课堂效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,可设计拼图活动,并自制精巧的课件让学生从图形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.第2课时勾股定理的实际应用1.熟练运用勾股定理解决实际问题;(重点)2.勾股定理的正确使用.(难点)一、情境导入如图,在一个圆柱形石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A 处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?二、合作探究探究点一:勾股定理在实际生活中的应用【类型一】勾股定理在实际问题中的简单应用如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米(假设绳子是直的,结果保留根号)?解析:开始时,AC =5米,BC =13米,即可求得AB 的值,6秒后根据BC 、AC 长度即可求得AB 的值,然后解答即可.解:在Rt △ABC 中,BC =13米,AC =5米,则AB =BC 2-AC 2=12米,6秒后,BC =13-0.5×6=10米,则AB =BC 2-AC 2=53米,则船向岸边移动距离为(12-53)米.方法总结:在实际生产生活中有很多图形是直角三角形或可构成直角三角形,在计算中常应用勾股定理.【类型二】 含30°或45°等特殊角的三角形与勾股定理的综合应用由于过度采伐森林和破坏植被,我国许多地区频频遭受沙尘暴的侵袭,今日A 市测得沙尘暴中心在A 市的正西方向300km 的B 处,以107km/h 的速度向南偏东60°的BF 方向移动,距沙尘暴中心200km 的范围是受沙尘暴影响的区域,问:A 市是否会受到沙尘暴的影响?若不会,说明理由;若会,求出A 市受沙尘暴影响的时间.解析:过点A 作AC ⊥BF 于C ,然后求出∠ABC =30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得AC =12AB ,从而判断出A 市受沙尘暴影响,设从D 点开始受影响,此时AD =200km ,利用勾股定理列式求出CD 的长,再求出受影响的距离,然后根据时间=路程÷速度计算即可得解.解:如图,过点A 作AC ⊥BF 于C ,由题意得,∠ABC =90°-60°=30°,∴AC =12AB =12×300=150(km),∵150<200,∴A 市受沙尘暴影响,设从D 点开始受影响,则AD=200km.由勾股定理得,CD =AD 2-AC 2=2002-1502=507 (km),∴受影响的距离为2CD =1007km ,受影响的时间位1007÷107=10(h).方法总结:熟记“直角三角形30°角所对的直角边等于斜边的一半”这一性质,知道方向角如何在图上表示,作辅助线构造直角三角形,再利用勾股定理是解这类题的关键.探究点二:勾股定理在几何图形中的应用 【类型一】 利用勾股定理解决最短距离问题如图,长方体的长BE=15cm,宽AB=10cm,高AD=20cm,点M在CH上,且CM=5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点M,需要爬行的最短距离是多少?解:分三种情况比较最短距离:如图①(将正面与上面展开)所示,AM=102+(20+5)2=529,如图②(将正面与右侧面展开)所示,AM=202+(10+5)2=25(cm).∵529>25,∴第二种短些,此时最短距离为25cm;如图③(将正面与左侧面展开)所示,AM=(20+10)2+52=537(cm).537>25,∴最短距离为25cm.答:需要爬行的最短距离是25cm.方法总结:因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况:前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.【类型二】运用勾股定理与方程解决有关计算问题如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD 边上的B′处,点A的对应点为A′,且B′C=3,则AM的长是()A.1.5 B.2C.2.25 D.2.5解析:设AM=x,连接BM,MB′,在Rt△ABM中,AB2+AM2=BM2,在Rt△MDB′中,B′M2=MD2+DB′2,∵MB=MB′,∴AB2+AM2=BM2=B′M2=MD2+DB′2,即92+x2=(9-x)2+(9-3)2,解得x=2,即AM=2.故选B.方法总结:解题的关键是设出适当的线段的长度为x,然后用含有x的式子表示其他线段,然后在直角三角形中利用勾股定理列方程解答.【类型三】勾股定理与数轴如图所示,数轴上点A所表示的数为a,则a的值是()A.5+1 B.-5+1C.5-1D.5解析:先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A点的坐标.图中的直角三角形的两直角边为1和2,∴斜边长为12+22=5,∴-1到A的距离是5,那么点A所表示的数为5-1.故选C.方法总结:本题考查的是勾股定理和数轴的知识,解答此题时要注意,确定点A的符号后,点A所表示的数是距离原点的距离.三、板书设计1.勾股定理在实际生活中的应用2.勾股定理在几何图形中的应用就练习的情况来看,一方面学生简单机械地套用了“a2+b2=c2”,没有分析问题的本质所在;另一方面对于立体图形转化为平面问题在实际问题中抽象出数学模型还存在较大的困难,在今后的教学中要通过实例不断训练提高.第3课时勾股定理的逆定理1.能利用勾股定理的逆定理判定一个三角形是否为直角三角形;(重点)2.灵活运用勾股定理及其逆定理解决问题.(难点)一、情境导入古埃及人曾经用下面的方法画直角:将一根长绳打上等距离的13个结,然后如图那样用桩钉钉成一个三角形,他们认为其中一个角便是直角.你知道这是什么道理吗?二、合作探究探究点一:勾股定理的逆定理【类型一】勾股数判断下列几组数中,一定是勾股数的是()A.1,2, 3 B.8,15,17C.7,14,15 D.35,45,1解析:选项A不是,因为2和3不是正整数;选项B是,因为82+152=172,且8、15、17是正整数;选项C不是,因为72+142≠152;选项D不是,因为35与45不是正整数.故选B.方法总结:勾股数必须满足:①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是2.5、6.5不是正整数,所以它们不是勾股数;②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.【类型二】判断三角形的形状已知a,b,c为△ABC的三边,且满足(a-7)2+(b-24)2+(c-25)2=0.试判断△ABC 的形状.解析:可先确定a,b,c的值,然后再结合勾股定理的逆定理进行判断.解:由平方数的非负性,得a-7=0,b-24=0,c-25=0.∴a=7,b=24,c=25.又∵a2=72=49,b2=242=576,c2=252=625,∴a2+b2=c2.∴△ABC是直角三角形.方法总结:此题主要依据“若几个非负数的和为0,则这几个非负数同时为0”这一性质来确定a,b,c的值.该知识点在解题时会经常用到,应注意掌握.【类型三】利用勾股定理逆定理解决与角有关的问题在如图的方格中,△ABC的顶点A、B、C都是方格线的交点,则三角形ABC的外角∠ACD的度数等于()A.130°B.135°C.140°D.145°解析:∵AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,∴AC2=AB2+BC2,∴△ABC是等腰直角三角形,∵∠ACD是△ABC的外角,∴∠ACD=∠A+∠B=45°+90°=135°.故选B.方法总结:在网格图中求三角形的角度时可以运用勾股定理和一些特殊角的边角关系来解答,比如在直角三角形中30°所对的直角边是斜边的一半,45°的直角三角形中两直角边相等.【类型四】运用勾股定理的逆定理解决面积问题如图,在四边形ABCD中,∠B=90°,AB=8,BC=6,CD=24,AD=26,求四边形ABCD的面积.解析:连接AC,根据已知条件运用勾股定理的逆定理可证△ABC和△ACD为直角三角形,然后代入三角形面积公式将两直角三角形的面积求出来,两者面积相加即为四边形ABCD的面积.解:连接AC,∵∠B=90°,∴△ABC为直角三角形,∴AC2=AB2+BC2=82+62=102,∴AC=10,在△ACD中,∵AC2+CD2=100+576=676,AD2=262=676,∴AC2+CD2=AD2,∴△ACD为直角三角形,且∠ACD=90°,∴S四边形ABCD=S△ABC+S△ACD=12×6×8+12×10×24=144.方法总结:将求四边形面积的问题转化为求两个直角三角形面积和的问题,解题时要利用题目信息构造出直角三角形,如角度,三边长度等.探究点二:勾股定理逆定理的实际应用如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海,上午9时50分,我国反走私A艇发现正东方有一走私艇以13海里/时的速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B密切注意.反走私艇A和走私艇C的距离是13海里,A、B两艇的距离是5海里;反走私艇B距离C艇12海里,若走私艇C的速度不变,最早会在什么时候进入我国领海.解析:已知走私艇的速度,求出走私艇的距离即可得出走私艇所用的时间,即可得出走私艇何时能进入我国领海.所以现在的问题是得出走私艇的距离,根据题意,CE即为走私艇所走的路程,可知,△ABE和△EBC均为直角三角形,可分别解这两个直角三角形即可得出.解:设MN与AC相交于E,则∠BEC=90°,∵AB2+BC2=52+122=132=AC2,∴△ABC为直角三角形,且∠ABC=90°,由于MN⊥CE,所以走私艇C进入我国领海的最短距离是CE,由S△ABC=12AB·BC=12AC·BE,得BE=6013(海里),由CE2+BE2=BC2,即CE2+(6013)2=122,得CE=14413(海里),∴14413÷13=144169≈0.85(h)=51(min),9时50分+51分=10时41分.答:走私艇C最早在10时41分进入我国领海.方法总结:本题考查了对题意的准确把握和使用勾股定理解直角三角形,解题的关键是从实际问题中整理出几何图形.三、板书设计1.勾股定理的逆定理如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形2.利用勾股定理逆定理求角和线段的长3.利用勾股定理逆定理解决实际问题学生在练习的过程中很容易受到固定思维模式的限制,往往不找最长边而总是按照先后顺序来解题,这样很容易发生错误,再就是利用勾股定理的逆定理进行有关的证明不是很得法,需在以后的学习中逐步训练提高.1.3直角三角形全等的判定1.熟练掌握“斜边、直角边定理”,以及熟练地利用这个定理和判定一般三角形全等的方法判定两个直角三角形全等;(重点)2.熟练使用“分析综合法”探求解题思路.(难点)一、情境导入前面我们学习了判定两个三角形全等的四种方法——SAS、ASA、AAS、SSS.当然这些方法也适用于判定两个直角三角形全等,那么直角三角形的全等的判定还有其他的方法吗?二、合作探究探究点一:运用“HL”判定直角三角形全等如图所示,AD⊥BC,CE⊥AB,垂足分别为D、E,AD交CE于点F,AD=EC.求证:F A=FC.解析:要利用“等角对等边”证明F A=FC,需先证∠F AC=∠FCA,此结论可由三角形全等得到.证明:∵AD⊥BC,CE⊥AB,∴∠AEC=∠ADC=90°.∴在Rt△AEC和Rt△CDA中⎩⎪⎨⎪⎧EC=AD,CA=AC,∴Rt△AEC≌Rt△CDA(HL),∴∠F AC=∠FCA,∴F A=FC.方法总结:在运用HL判定两个直角三角形全等时,要紧紧抓住直角边和斜边这两个要点.探究点二:直角三角形判定方法的灵活应用【类型一】解决线段相等问题已知如图AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别为E、F.求证:CE=DF.解析:根据已知条件证明现有的Rt △ABC 与Rt △BAD 全等,得出线段和角相等,再证Rt △ACE 和Rt △BDF 全等,从而解决问题.证明:∵AC ⊥BC ,BD ⊥AD ,∴∠ACB =∠ADB =90°,在Rt △ABC 和Rt △BAD 中,⎩⎪⎨⎪⎧AB =BA ,BC =AD ,∴Rt △ABC ≌Rt △BAD (HL),∴AC =BD ,∠CAB =∠DBA ,∵CE ⊥AB ,DF ⊥AB ,∴∠CEA =∠DFB =90°,在△CAE 和△DBF 中,⎩⎪⎨⎪⎧∠CEA =∠DFB =90°,∠CAE =∠DBF ,AC =BD ,∴△CAE ≌△DBF (AAS),∴CE =DF .方法总结:一般三角形全等的判定方法仍然适用于直角三角形,因此判定直角三角形全等的方法有五种,不要只限于“HL ”.【类型二】 灵活选用判定方法解决线段和差问题已知,如图所示,AB =AC ,∠BAC =90°,AE 是过A 点的一条直线,且B 、C 在DE 的异侧,BD ⊥AE 于D ,CE ⊥AE 于E ,求证:BD =DE +CE .解析:先证△ABD ≌△ACE ,再根据等量代换得出结论.证明:∵BD ⊥AE 于D ,CE ⊥AE 于E ,∴∠ADB =∠AEC =90°,又∵∠BAC =90°,∴∠ABD +∠BAD =∠CAE +∠BAD ,∴∠ABD =∠CAE ,又∵AB =CA ,∴△ABD ≌△CAE ,∴BD =AE ,AD =CE ,∵AE =AD +DE ,∴BD =CE +DE .方法总结:当看到题目中要证线段和差关系时,而且这三边分别在两个全等三角形中时,可先判定两三角形全等,再证明线段关系.在证明全等时可灵活选用判定方法.探究点三:利用尺规作直角三角形已知:线段a ,如图.求作:Rt △ABC ,使BC =a ,AB =32a ,∠C =90°.解析:已知直角三角形的斜边和一条直角边,先考虑作出直角,然后截取直角边,再作出斜边即可.解:作法:如图所示,(1)作l2⊥l1于点C;(2)在l1上截取CB=a;(3)以点B为圆心,以32a的长为半径画弧,交l2于点A;(4)连接AB,Rt△ABC 即为所求.方法总结:尺规作图时,应养成先画草图的习惯,再根据草图分析作图的先后顺序.三、板书设计1.斜边、直角边定理斜边和一直角边对应相等的两个直角三角形全等(简称“HL”)2.直角三角形判定方法的灵活应用使用“HL”定理时,必须先得出两个直角三角形,然后证明斜边和一直角边对应相等.这在课堂教学中要反复强调,这是与前面四种方法的区别,是学生很容易犯的错误,同时学生利用尺规作直角三角形还不熟练,要注重培养他们的动手操作能力.1.4角平分线的性质1.理解并掌握角平分线的性质及判定;(重点)2.能够对角平分线的性质及判定进行简单应用.(难点)一、情境导入在S区有一个集贸市场P,它建在公路与铁路所成角的平分线上,要从P点建两条路,一条到公路,一条到铁路.问题1:怎样修建道路最短?问题2:往哪条路走更近呢?二、合作探究探究点一:角平分线上的点到角两边的距离相等【类型一】利用角平分线的性质求线段长。
湘教版八年级下册第1章直角三角形教案
教学目标:1、在现实情境中,通过具体的操作活动,了解直角三角形的判定定理和性质定理.2、会应用定理解决有关问题.教学重点: 直角三角形的判定定理和性质定理. 教学难点: 探索直角三角形的判定定理和性质定理. 教学过程:一. 回顾知识,引入课题.1. 三角形内角和 .2.三角形中线的定义 .3.若∠A :∠B:∠C=2:3:5,求△ABC 三个内角的度数4.直角三角形的定义二. 探索定理:提出问题:1. 如图,在Rt 三角形ABC 中,两锐角的和∠A+∠B=? 板书定理:直角三角形的两锐角互余2. 如图,在三角形ABC 中,两锐角的和∠A+∠B=090,那么△ABC 是直角三角形吗? 板书定理:有两个角互余的三角形是直角三角形.三.做一做,感受性质定理.1. 组织学生活动:画一个直角三角形,并作出斜边上的中线,量一量斜边和斜边上的中线的长度,你能发现什么结论?与同伴交流你的结论.四. 想一想,探究性质定理:2. 如图,在Rt △ABC 中,∠C=090,如果中线为CD,是否有CD=12AB,为什么?试说明道理. 3. 板书定理: 在直角三角形中,斜边上的中线等于斜边的一半. 4. 指出: (1) 定理的前提是直角三角形. (2) 同一法是一种推理的重要方法.5. 知识应用1 如图,Rt △ABC 中,CD 是斜边AB 上的中线,AB=8cm, 则 AD=____cm, BD=_____cm, CD=________cm2.如图,CD 是△ABC 的中线,∠ACB=90°,∠CDB=110°,则∠A=__________五.范例分析:P4例1: 1.你能写出上述命题的逆命题吗?2.如何证明?六. 课堂练习; P4 练习.七.小结 这节课我们学习了直角三角形的判定定理与性质定理及运用定理解决有关问题. 八. 作业: P7 1,2, 3.AB教学目标:1. 经历探索活动,了解直角三角形的两条性质.2. 在具体情景中会用定理解决简单的实际问题.教学重点:探索性质定理及运用来解决实际问题. 教学难点:性质定理的探索分析 教学过程:一. 知识回顾,引入新课.1. 直角三角形的性质和判定定理.2. 直角三角形斜边上的中线与斜边有何关系? 二. 出示情境问题,探索定理.1.如图,在Rt △ABC 中,∠BAC =090,如果∠A=030,那么BC 与斜边AB 有什么关系呢? (1) 用刻度尺量一量BC,AB 的长度 你有什么发现?你能作出怎样的猜想? (2) 怎样经推理论证你的发现是正确的? 启发提示学生作出辅助线定理:在直角三角形中,如果有一个锐角等于030,(3) 强调:定理的两个前提条件①在直角三角形中②有一个锐角是030 2. 反思问题:(1) 能不能有等边三角形的性质推导此定理? (2) 上图中,如果已知BC =12AB,那么∠A=030吗?教师活动:(1) 引导学生归纳定理并板书:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于030.(2)点评:定理的前提与前定理一样,必须“在直角三角形中”,与前定理的关系是交换了条件和结论.3应用(1)如图,在Rt △ABC 中,∠BCA=90°, CD ⊥AB, ∠BCD=30°,BC=2,则BD=______,AB=__________(2).如图,在△ABC 中,∠C=45°,∠BAC=105°, AD ⊥CB,DC=6,则AB=_________三.范例分析: 课本 P 5例2四. 课堂练习: 课本P 89练习. 补充:直角三角形中,两锐角的平分线相交所成的角的度数是_______________ 五. 小结:1. 本节课主要探索了直角三角形的两个性质定理及简单应用.2. 已学过的直角三角形的性质定理有:(1) 在直角三角形中,斜边上的中线等于斜边的一半.(2) 在直角三角形中,如果有一个锐角等于030,那么他它所对的直角边是斜边的一半. (3) 在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于030.六. 作业: 课本P7 习题 4.5BCB【教学目标】: (1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图 (3)在定理的证明中培养学生的拼图能力; (4)通过自主学习的发展体验获取数学知识的感受; (5)通过有关勾股定理的历史讲解,对学生进行德育教育. 【教学重点】:勾股定理及其应用【教学难点】:通过有关勾股定理的历史讲解,对学生进行德育教育 【教学方法】观察、比较、合作、交流、探索. 【教学过程】:一、复习与引入同学们,我们已经学过三角形的一些基本知识,如果一个三角形的两条边分别长3和4,你知道第三边的长吗?你知道第三边长的范围吗?2.如果又已知这两边的夹角是直角,那么第三边的长是多少?3.已知直角三角形的两边的长,如何求第三边的长呢?这节课就让我们一起来探讨这个问题.板书:直角三角形三边数量关系.二、定理的获得在纸上画出直角边长分别为3厘米和4厘米的直角三角形,量出斜边,这三边有怎样的数量关系? 再在纸上画出直角边长分别为5厘米和12厘米的直角三角形,量出斜边,这三边有怎样的数量关系? 让学生用文字语言将上述问题表述出来. 勾股定理:直角三角形两直角边的平方和等于斜边 的平方 强调说明:(1)勾――最短的边、股――较长的直角边、弦――斜边 (2)学生根据上述学习,提出自己的问题(待定)三、定理的证明方法方法一:将四个全等的直角三角形拼成如图1所示的正方形.方法二:如图所示将两个直角三角形拼成直角梯形以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明四、定理的应用(1).在△ABC 中,∠C=90° ①若a=3, b=5, 则c=________ ②若a=15, c=20, 则b=__________③a:b=3:4,c=30, 则a=_____,b=_______b ac C(图1)(2).在Rt △ABC 中,∠C=90°,AC=5, BC=24,求BC 边上的中线AD 的长。
湘教版 八年级数学下册 第1章 直角三角形 新教案设计
第1章直角三角形1.1 直角三角形的性质和判定(Ⅰ)第1课时直角三角形的性质和判定1.掌握“直角三角形的两个锐角互余”和“有两个角互余的三角形是直角三角形”两个定理.2.掌握直角三角形斜边上的中线的性质.3.利用直角三角形的性质和判定证明有关几何问题.阅读教材P2~4,完成预习内容.(一)知识探究1.如图,在Rt△ABC中.(1)若∠C=90°,由三角形内角和定理,得∠A+∠B+∠C=180°,即∠A+∠B+90°=180°.所以∠A+∠B=90°.(2)若∠A+∠B=90°,由三角形内角和定理,得∠A+∠B+∠C=180°,即∠C+90°=180°.所以∠C=90°.2.在Rt△ABC中,∠C=90°,CD为斜边AB的中线.若CD=4 cm,则AB=8__cm.小结:1.直角三角形的两个锐角互余.2.有两个角互余的三角形是直角三角形.3.直角三角形斜边上的中线等于斜边的一半.(二)自学反馈1.已知Rt△ABC,若∠C=90°,∠A=60°,则∠B=30°.2.已知△ABC,若∠A=40°,∠B=50°,则△ABC为直角三角形.3.在△ABC中,∠ACB=90°,CE是AB边上的中线,那么与CE相等的线段有AE,BE,若∠A=35°,则∠ECB=55°.活动1 小组讨论例1如图,在△ABC中,∠ACB=90°,CD是斜边AB上的高,那么(1)与∠B互余的角有∠A,∠BCD;(2)与∠A相等的角有∠BCD;(3)与∠B相等的角有∠ACD.例2 △ABC中,若∠A+∠B=∠C,则△ABC是(B)A.锐角三角形B.直角三角形C.钝角三角形 D.等腰三角形利用三角形的内角和是180°,即∠A+∠B+∠C=180°,又因为∠A+∠B=∠C,等量代换得到2∠C=180°,从而得出∠C=90°,所以选B.例3 如图,已知∠ABC=∠ADC=90°,E是AC中点.(1)求证:ED =EB ;(2)求证:∠EBD=∠EDB;(3)图中有哪些等腰三角形?解:(1)∵证明:∠ABC=∠ADC=90°,E 是AC 中点,∴DE =BE =12AC. (2)证明:由(1)得DE =BE ,∴∠EBD =∠EDB.(3)△ADE,△CDE ,△AEB ,△CEB ,△DEB.活动2 跟踪训练1.在△ABC 中,如果∠A=12∠B=13∠C,那么△ABC 是什么三角形? 解:设∠A=x ,那么∠B=2x ,∠C =3x.根据题意得x +2x +3x =180°.解得x =30°.∴∠A =30°,∠B =60°,∠C =90°.∴△ABC 是直角三角形.2.已知:如图,在△ABC 中,∠B =∠C,AD 是∠BAC 的平分线,E ,F 分别AB ,AC 的中点,求证:DE =DF.解:∵∠B=∠C,AD 是∠BAC 的平分线,∴AB =AC ,∠ADB =∠ADC=90°.∵E ,F 分别AB ,AC 的中点,∴ED =12AB ,DF ==12AC. ∴DE =DF.活动3 课堂小结1.直角三角形的性质与判定.2.直角三角形斜边上的中线的性质.第2课时 含30°角的直角三角形的性质及其应用1.掌握含30°角的直角三角形的相关性质.2.利用直角三角形的相关性质解决实际问题.阅读教材P4~6,完成预习内容.(一)知识探究1.在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半.2.在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°.(二)自学反馈1.在Rt △ABC 中,若∠C=90°,∠A =30°,AB =4,则BC =2.2.Rt △ABC 中,∠C =90°,若BC =12AB ,则∠A=30°. 3.Rt △ABC 中,∠C =90°,∠B =2∠A,∠B 和∠A 各是多少度?边AB 与BC 之间有什么关系?解:∠B=60°,∠A =30°,AB =2BC.活动1 小组讨论例1 如图,一棵大树在一次强台风中离地面5米处折断倒下,倒下部分与地面成30°夹角,这样的大树在折断前的高度为(B)A.10米B.15米C.25米D.30米例2 如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D为AB上的中点.请求出图中其他角的度数,找出相等的线段.解:∠ACD=30°,∠ADC =120°,∠BDC =∠BCD=∠B=60°;DC =BC =BD =AD.例3 如图,∠ACB =90°,∠B =30°,CD ⊥AB.求证:AD =14AB.证明:∵∠ACB=90°,∠B =30°,∴AC =12AB.∵CD⊥AB,∴∠CDB =90°. ∴∠DCB =60°.∵∠ACB =90°,∴∠ACD =30°.在Rt △ACD 中,∠ACD =30°,∠ADC =90°,∴AD =12AC =14AB.抓住含30°角的直角三角形的性质,把握30°角所对的直角边与斜边的关系.活动2 跟踪训练1.如图,为固定电线杆AC,在离地面高度为6 m的A处引拉线AB,使拉线AB与地面上的BC的夹角为30°,则拉线AB的长度为12__m.2.如图,AB∥CD,直线EF与AB,CD分别相交于E,F两点,EP平分∠A EF,过点F作FP⊥EP,垂足为P,若∠PEF =30°.(1)请求出∠PFC的度数;(2)与EF相等的线段有哪些?请证明.解:(1)∠PFC=60°.(2)EF=AF=AE.证明:∵EP平分∠AEF,FP⊥EP,∠PEF=30°,∴∠AFE=∠AEF=60°.∵∠AFE+∠AEF+∠EAF=180°,∴∠EAF=60°.∴△AEF为等边三角形.∴EF=AF=AE.活动3 课堂小结含30°角的直角三角形中存在线段的比例关系是证明线段倍数关系的重要途径.1.2 直角三角形的性质和判定(Ⅱ)第1课时勾股定理1.了解勾股定理的发现过程.2.掌握勾股定理的内容,并能进行相关计算.3.会用面积法证明勾股定理.阅读教材P9~11,完成预习内容.(一)知识探究如图是两个相同的直角三角形拼成的梯形ABCD,直角三角形的三边长分别是a,b,c.(1)请用不同的方法求梯形的面积; 解:方法一:根据梯形面积公式可知:S 梯形ABCD =12(a +b)(a +b)=12(a 2+2ab +b 2)=12a 2+ab +12b 2;方法二:S 梯形ABCD =S △ABE +S △ADE +S △CDE =12ab +12c 2+12ab =ab +12c 2.(2)由上述结果可知:a 2+b 2=c 2.小结:直角三角形的性质定理(勾股定理):直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即a 2+b 2=c 2. (二)自学反馈1.在直角三角形中,两条直角边的平方和等于斜边的平方. 2.在直角三角形中,两直角边分别为3,4,那么斜边为5.3.在直角三角形中,斜边为10,一直角边为6,则另一直角边为8.活动1 小组讨论例1 探究勾股定理:两直角边的平方和等于斜边的平方.如图,每个方格的面积均为1,请分别算出图中正方形A ,B ,C ,A ′,B ′,C ′的面积.解:S A =4,S B =9,S C =52-4×12×(2×3)=13,∴S A +S B =S C .S A ′=9;S B ′=25;S C ′=82-4×12×(5×3)=34,∴S A ′+S B ′=S C ′.所以直角三角形的两直角边的平方和等于斜边的平方.例2 在Rt △ABC 中,∠A ,∠B ,∠C 的对边为a ,b ,c ,∠C =90°. (1)已知a =3,b =4.则c =5. (2)已知c =25,b =15.则a =20.(3)已知c =19,a =13.则b (结果保留根号) (4)已知a∶b=3∶4,c =15,则b =12.利用方程的思想求直角三角形有关线段的长.活动2 跟踪训练 1.完成下列填空.(1)直角三角形两条直角边的长分别为6和8,则斜边上的中线为5.(2)在Rt △ABC 中,∠C =90°,∠A =30°,则 (3)在Rt △ABC 中,∠C =90°,AC =BC ,则AC∶BC∶AB AB =8,则AC AB =8,CD ⊥AB 于D ,则CD =4. 2.等边△ABC 的边长为a ,求等边△ABC 的高AD 和面积.解:作AD⊥BC 于BC 交于点D. ∵△ABC 为等边三角形, ∴AD 平分BC ,BD =12a.在Rt △ABD 中,AD 2=a 2-(12a)2=34a 2,∴AD =32a ,S =12·a·32a =34a 2. 活动3 课堂小结1.勾股定理的推导及内容. 2.勾股定理的简单运用.第2课时勾股定理的实际应用1.能运用勾股定理及直角三角形的判定条件解决实际问题.2.在运用勾股定理解决实际问题过程中,感受数学的“转化”思想,体会数学的应用价值.阅读教材P12~13,完成预习内容.(一)知识探究1.勾股定理的内容是:直角三角形两直角边的平方和等于斜边的平方.2.2的线段是直角边为正整数1,1的直角三角形的斜边.3.13的线段是直角边为正整数3,2的直角三角形的斜边.(二)自学反馈1.在一块平地上,张大爷家屋前9米远处有一棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时能砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答(A)A.一定不会B.可能会C.一定会 D.以上答案都不对2.如图,要制作底边BC的长为44 cm,顶点A到BC的距离与BC长的比为1∶4的等腰三角形木衣架,则腰AB的长至少需要结果保留根号的形式)3.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行10米.4.小军发现学校旗杆上端的绳子垂直到地面还多了1米,他把绳子斜着拉直,使下端刚好触地.此时绳子下端距旗杆底部5 m,那么旗杆的高度为多少 m?解:如图,设旗杆的高AB为x m,则绳子AC的长为(x+1) m.在Rt△ABC中,AB2+BC2=AC2,∴x2+52=(x+1)2,解得x=12.答:旗杆的高度为12 m.活动1 小组讨论例1如图,在垂直于地面的墙上距离地面2 m的A点处斜放一个长为2.5 m的梯子,由于不小心梯子在墙上下滑0.5 m到了A′点处,则梯子在地面上滑出的距离BB′的长度为(B)A.0.4 m B.0.5 m C.0.6 m D.0.7 m例2 印度数学家什迦逻(1141年~1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.解:设湖水深为x尺,则红莲总长为(x+0.5)尺,根据题意,得x2+22=(x+0.5)2.解得x=3.75.答:湖水深3.75尺.活动2 跟踪训练1.如图,有一个圆柱,它的高等于16 cm,底面半径等于4 cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处食物,需要爬行的最短路程是(π取3)(B)A.12 cm B.20 cm C.25 cm D.30 cm2.飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4 000米处,过了20秒,飞机距离这个男孩5 000米,飞机每小时飞行多少千米?解:540千米.求速度,要把20秒换算成小时,20秒=1180小时.3.小明的妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你能解释这是为什么吗?解:582+462=5 480;742=5 476,荧屏对角线大约为74厘米.售货员没有搞错.我们通常所说的29英寸或74厘米的电视机,是指其荧屏对角线的长度.活动3 课堂小结利用勾股定理实际问题时,要学会找出直角三角形中的边角关系,利用勾股定理的公式进行计算.第3课时勾股定理的逆定理1.理解勾股定理的逆定理的内容.2.理解勾股数的定义.2.能灵活运用勾股定理的逆定理解决实际问题.阅读教材P14~15,完成预习内容.(一)知识探究如图,△ABC的三边长分别为a,b,c,且满足a2+b2=c2,则△ABC是直角三角形.小结:1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边为c,那么a2+b2=c2;勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2;那么这个三角形是直角三角形.2.满足a2+b2=c2的三个正整数称为勾股数.(二)自学反馈下面以a,b,c为边长的△ABC是不是直角三角形?如果是,那么哪一个角是直角?(1)a=25,b=20,c=15;解:是;∠A=90°.(2)a=13,b=2,c=15;解:不是.(3)a=1,b=2,c=3;解:是;∠B=90°.(4)a∶b∶c=3∶4∶5解:是;∠C=90°.根据勾股定理逆定理,判断一个三角形是不是直角三角形,只要看两条较小线段的平方和是否等于最大边长的平方.大边对的是大角,即大边对的角是直角.活动1 小组讨论例1 以下各组数为边长,能组成直角三角形的是(C)A .5,6,7B .10,8,4C .7,25,24D .9,17,15例2 古希腊的哲学家柏拉图曾指出,如果m 表示大于1的整数,a =2m ,b =m 2-1,c =m 2+1,那么a ,b ,c 为勾股数.你认为对吗?如果对,你能利用这个结论得出一些勾股数吗?解:对.∵a 2+b 2=(2m)2+(m 2-1)2=4m 2+m 4-2m 2+1=m 4+2m 2+1=(m 2+1)2,而c 2=(m 2+1)2,∴a 2+b 2=c 2,即a ,b ,c 是勾股数.m =2时,勾股数为4,3,5;m =3时,勾股数为6,8,10;m =4时,勾股数为8,15,17.例3 如图所示,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算产量.小明找了一卷尺,测得AD =3 m ,AB =4 m ,BC =12 m ,CD =13 m ,且∠BAD=90°,求四边形ABCD 的面积.解:连接BD.∵在△ABD 中,AD =3 m ,AB =4 m ,∠BAD =90°,∴由勾股定理,得BD =AD 2+AB 2=32+42=5 (m).∵在△BCD 中,BD =5 m ,BC =12 m ,CD =13 m ,∴BD 2+BC 2=CD 2.∴△BCD 是直角三角形.∴四边形ABCD 的面积为S △ABD +S △BCD =12×3×4+12×5×12=36().活动2 跟踪训练1.如图所示,AD为△ABC的中线,且AB=13,BC=10,AD=12,则AC等于(D)A.10B.11C.12D.132.以下面各组正数为边长,能组成直角三角形的是(C)A.a-1,2a,a+1 B.a-1,2,a+1C.a-1,2a,a+1 D.a-1,2a,a+1a-b=0,则△ABC的形状为等腰直角三角形.3.已知a,b,c是△ABC的三边长,且满足关系式(a2+b2-c2)2+||4.某港口位于东西方向的海岸线上,“远航号”、“海天号”轮船同时离开港口,各自沿一固定方向航行,“远航号”每小时航行16海里,“海天号”每小时航行12海里,他们离开港口一个半小时后相距30海里,如果知道“远航号”沿东北方向航行,能知道“海天号”沿什么方向航行吗?解:根据题意,画图如下:PQ=16×1.5=24,PR=12×1.5=18,QR=30.∵242+182=302,即PQ2+PR2=QR2.∴∠QPR=90°.由“远航号”沿东北方向航向可知,∠QPS=45°,所以∠SPR=45°,即“海天号”沿西北方向航行.活动3 课堂小结1.勾股定理的逆定理.2.勾股数.3.勾股定理及其逆定理的应用:(1)判断三角形的形状;(2)用于求角度;(3)用于求边长;(4)用于求面积;(5)用于证垂直.1.3 直角三角形全等的判定1.理解判定两个直角三角形全等可用已经学过的全等三角形判定方法来判定.2.掌握判定直角三角形全等的一种特殊方法——“斜边、直角边”定理(即“HL”).阅读教材P19~20,完成预习内容.(一)知识探究1.判定两直角三角形全等的特殊方法指的是直角边、斜边(HL).2.直角三角形全等的判定方法有SSS、ASA、SAS、AAS、HL(用简写).(二)自学反馈1.如图,E,B,F,C在同一条直线上,若∠D=∠A=90°,EB=FC,AB=DF.则△ABC≌△DFE,全等的根据是HL.2.2.判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由.(1)一个锐角和这个角的对边对应相等;解:全等.理由:可用AAS证明其全等.(2)一个锐角和这个角的邻边对应相等;解:全等.理由;可用AAS或ASA证明其全等.(3)一个锐角和斜边对应相等;解:全等.理由;可用AAS证明其全等.(4)两直角边对应相等;解:全等.理由:可用SAS证明其全等.(5)一条直角边和斜边对应相等.解:全等.理由:可用HL证明其全等.3.下列说法正确的是(C)A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等直角三角形除了一般证全等的方法,“HL”可使证明过程简化,但前提是已知两个三角形是直角三角形,即在证明格式上表明“Rt△”.活动1 小组讨论例1已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC;(2)AD∥BC.证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°.在Rt△ABD与Rt△CDB中,∵AD=CB,BD=DB,∴Rt△ABD≌Rt△CDB(HL).∴AB=DC.(2)∵Rt△ABD≌Rt△CDB,∴∠ADB=∠CBD.∴AD∥BC.善于发现隐藏条件“公共边”.例2 已知:如图,AC=BD,AD⊥AC,BC⊥BD.求证:AD=BC.证明:连接CD.∵AD⊥AC,BC⊥BD,∴∠A=∠B=90°.在Rt△ADC和Rt△BCD中,∵AC=BD,DC=CD,∴Rt△ADC≌Rt△BCD(HL).∴AD=BC.活动2 跟踪训练1.已知:如图,AE⊥AB,BC⊥AB,AE=BA,ED=AC.求证:ED⊥AC.证明:∵AE⊥AB,BC ⊥AB ,AE =BA ,ED =AC ,∴Rt △AED ≌Rt △BAC(HL).∴∠E =∠CAB.∵∠E +∠EDA=90°,∴∠CAB +∠EDA=90°,∴∠DFA =90°.∴ED ⊥AC.2.已知,如图,DE ⊥AC ,BF ⊥AC ,AD =CB ,DE =BF.求证:AB∥DC.证明:∵DE⊥AC,BF ⊥AC ,AD =CB ,DE =BF ,∴Rt △AED ≌Rt △CFB.∴AE =CF.∴AF =CE.在Rt △ABF 和Rt △CDE 中,⎩⎪⎨⎪⎧AF =CE ,∠AFB =CED =90°,BF =DE ,∴Rt △ABF ≌Rt △CDE(SAS).∴∠BAF =∠DCE.∴AB ∥DC.活动3 课堂小结1.“HL”是证明两个直角三角形全等的特殊方法,它只对两个直角三角形有效,不适合一般三角形,但两个直角三角形全等的判定,也可以用前面的各种方法.2.证明两个直角三角形全等的方法有:SSS,SAS,ASA,AAS,HL.1.4 角平分线的性质第1课时角平分线的性质与判定1.掌握角平分线的性质,理解三角形的三条角平分线的性质.2.掌握角平分线的判定,熟练运用角的平分线的判定及性质解决问题.阅读教材P22~24,完成预习内容.(一)知识探究(1)角平分线的性质定理:角平分线上的点到角的两边的距离相等.(2)角平分线的性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(二)自学反馈1.如图,已知点P在∠AOB的平分线OC上,PF⊥OA,PE⊥OB,若PE=8,则PF的长(C) A.4 B.6 C.8 D.102.如图,AD⊥DC,AB⊥BC,若AB=AD,∠DAB=120°,则∠ACB的度数为(C)A.60° B.45° C.30° D.75°活动1 小组讨论例1 如图,已知∠C=90°,AD平分∠BAC,BD=2CD,若点D到AB的距离等于5 cm,则BC的长多少?解:过点D作DE⊥AB于E,∵点D到AB的距离等于5 cm,∴DE=5 cm.∵AD平分∠BAC,∠C=90°,∴DE=CD=5 cm.∵BD=2CD,∴BD=2×5=10 (cm).∴BC=CD+BD=5+10=15 (cm).角平分线的性质是证明线段相等的另一途径,通常能使证明过程简略.其前提条件有两条,角平分线和垂直.例2 已知:如图,△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F.求证:DE=DF.证明:在△ABD和△ACD中,∵AB=AC,AD=AD,BD=CD,∴△ABD≌△ACD(SSS).∴∠BAD=∠CAD.∵DE⊥AB,DF⊥AC,∴DE=DF.先利用等腰三角形顶角平分线、底边上的中线互相重合证得AD为顶角的平分线,然后运用角平分线的性质证DE=DF.例3 如图,在△ABC中,外角∠CBD和∠BCE的平分线BF,CF相交于点F.求证:点F在∠BAC的平分线上.证明:过点F作FM⊥BC于点M,FG⊥AB于点G,FH⊥AC于点H,∵BF,CF是∠CBD和∠BCE的平分线,∴FG=FM,FH=FM.∴FG=FH.∴点F在∠BAC的平分线上.活动2 跟踪训练1.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是(A)A.M点 B.N点 C.P点 D.Q点2.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°;②∠ADE=∠CDE;③DE =BE;④AD=AB+CD,四个结论中成立的是(A)A.①②④ B.①②③C.②③④D.①③3.如图,已知△ABC中,∠ABC与∠ACB的平分线交于点P,且PD,PE,PF分别垂直于BC,AC,AB于D,E,F三点.求证:PD=PE=PF.证明:∵BP是∠ABC的平分线,PF⊥AB,PD⊥BC,∴PF=PD.同理证得PE=PD.∴PD=PE=PF.角平线的性质是证线段相等的另一途径.活动3 课堂小结1.角平分线上的点到角的两边的距离相等.2.角的内部到角的两边距离相等的点在角的平分线上.第2课时角平分线的性质与判定的运用灵活运用角平分线的性质和判定解决问题.阅读教材P24~25,完成预习内容.(一)知识探究1.由教材P24“动脑筋”和P25例2可知,角平分线的性质是可用于证明线段之间的数量关系.2.由P25的“动脑筋”可知:三角形的三条角平分线相交于一点,并且这点到三边的距离相等.(二)自学反馈1.到三角形三边距离相等的点是(C)A.三条高的交点B.三条中线的交点C.三条角平分线的交点 D.不能确定2.如图所示,三条公路两两相交,交点分别为A,B,C,现计划修一个油库,要求到三条公路的距离相等,可供选择的地址有(D)A.一处B.二处C.三处D.四处3.如图,已知AB∥CD,AD⊥DC,AE⊥BC于点E,∠DAC=35°,AD=AE,则∠B等于(C)A.50° B.60° C.70° D.80°活动1 小组讨论例1 如图,D,E,F分别是△ABC三边上的点,CE=BF,△DCE和△DBF的面积相等,求证:AD平分∠BAC.证明:过点D 作DM⊥AB 于点M ,DN ⊥AC 于点N. ∵S △DCE =12CE·DN,S △DBF =12BF·DM,S △DCE =S △DBF ,∴12CE·DN=12BF·DM. ∵CE =BF , ∴DN =DM.∴点D 在∠BAC 的平分线上,即AD 平分∠BAC.例2 如图,在四边形ABCD 中,AB ∥CD ,点E 是BC 的中点,DE 平分∠ADC.求证:AE 是∠DAB 的平分线.证明:过点E 作EH⊥AB 于点H ,反向延长EH 交DC 的延长线于点G ,过点E 作EF⊥AD 于点F. ∵AB ∥CD ,EH ⊥AB , ∴EG ⊥DC ,∠GCE =∠B. ∵点E 是BC 的中点, ∴CE =BE.在△CGE 和△BHE 中, ⎩⎪⎨⎪⎧∠GCE=∠B,CE =EB ,∠CEB =∠BEH, ∴△CGE ≌△BHE(ASA).∵DE 平分∠ADC,∴GE =EF.∴EF =EH.∴AE 是∠DAB 的平分线.活动2 跟踪训练1.如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO ∶S △BCO ∶S △CAO 等于(C)A .1∶1∶1B .1∶2∶3C .2∶3∶4D .3∶4∶52.如图,OD 平分∠AOB,OA =OB ,P 是OD 上一点,PM ⊥BD 于点M ,PN ⊥AD 于点N.求证:PM =PN.证明:∵OD 平分∠AOB,∴∠1=∠2.在△OBD 和△OAD 中,⎩⎪⎨⎪⎧OB =OA ,∠1=∠2,OD =OD ,∴△OBD ≌△OAD(SAS).∴∠3=∠4.∵PM ⊥BD ,PN ⊥AD ,3.如图,四边形ABDC 中,∠D =∠B=90°,点O 为BD 的中点,且OA 平分∠BAC.求证:(1)OC 平分∠ACD;(2)OA⊥OC.证明:(1)过点O 作OE⊥AC 于E ,∵∠B =90°,OA 平分∠BAC,∴OB =OE.∵点O 为BD 的中点,∴OB =OD ,∴OE =OD.又∵∠D=90°,∴OC 平分∠ACD.(2)在Rt △ABO 和Rt △AEO 中,⎩⎪⎨⎪⎧AO =AO ,OB =OE ,∴Rt △ABO ≌Rt △AEO(HL).∴∠AOB =∠AOE.同理:∠COD=∠COE.∴∠AOC =∠AOE+∠COE=12×180°=90°. ∴OA ⊥OC.活动3 课堂小结角平分线的性质是证线段相等的常用方法之一,角平分线的性质与判定通常是交叉使用,做角的平分线或过角的平分线上一点做角两边的垂线段是常用辅助线之一.。
数学湘教版八年级下册第1章直角三角形1.2直角三角形的性质和判定Ⅱ教案
1.2.1 勾股定理的推导及应用教学目标知识与技能:1、了解勾股定理的文化背景,体验勾股定理的探索过程。
2、在勾股定理的探索过程中,体会数形结合思想,发展合情推理能力。
过程与方法:1、通过拼图活动,体验数学思维的严谨性,发展形象思维。
2、在探究活动中,学会与人合作,并在与他人的交流中获取探究结果。
情感、态度与价值观:1、通过对勾股定理历史的了解,感受数学文化,激发学习热情。
2、在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神。
教学重点:经历探索及验证勾股定理的过程。
教学难点:用拼图的方法证明勾股定理。
教学过程:1、课前探究知识储备请各个学习小组从网络或书籍上,尽可能多的寻找和了解验证勾股定理的方法,并填写探究报告。
《勾股定理证明方法探究报告》2、设置悬念引出课题提问:为什么我国科学家向太空发射勾股图试图与外星人沟通?为什么把这个图案作为2002年在北京召开的第24届国际数学家大会会徽?引出课题《勾股定理》3、画图实践大胆猜想沿着先人的足迹,开始勾股定理的探索之旅。
活动一:毕达哥拉斯是古希腊著名的数学家。
相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的三边的某种数量关系。
(1)同学们,请你也来观察下图中的地面,看看能发现什么?地面 图18.1-1(2)你能找出图18.1-1中正方形A ,B ,C 面积之间的关系吗?(3)图中由正方形A ,B ,C 所围成的等腰直角三角形的三边之间有什么特殊关系? 由等腰直角三角形中的发现,进一步提问:是否其余的直角三角形也有这个性质呢?学生们展开活动二:在方格纸上,画一个顶点都在格点上的直角三角形,并分别以这个直角三角形的各边为一边在三角形外作正方形(四人小组每组成员所画图形相同,派小组代表前边投影展示)。
a.可以怎样求以斜边为边的正方形面积?b.三个正方形的面积有何关系?c.直角三角形的三边长有何关系?d.请大胆提出你的猜想。
湘教版数学八年级下册第一章《直角三角形》教学设计
湘教版数学八年级下册第一章《直角三角形》教学设计一. 教材分析湘教版数学八年级下册第一章《直角三角形》是学生继七年级学习平面几何后,进一步深化对三角形性质的理解。
本章主要包括直角三角形的定义、性质、分类以及特殊直角三角形的应用。
通过本章的学习,学生能进一步掌握直角三角形的基本概念,探索其性质,并为后续学习勾股定理和三角函数打下基础。
二. 学情分析学生在七年级已经学习了平面几何的基本知识,对图形的性质和分类有一定的了解。
但是,对于直角三角形的特殊性质和应用,部分学生可能还存在模糊的认识。
因此,在教学过程中,需要关注学生的认知水平,引导学生从实际问题中发现直角三角形的性质,提高他们的空间想象能力和逻辑思维能力。
三. 教学目标1.理解直角三角形的定义和性质;2.学会运用直角三角形解决实际问题;3.培养学生的空间想象能力和逻辑思维能力;4.激发学生对数学的兴趣,提高学习积极性。
四. 教学重难点1.直角三角形的定义和性质;2.特殊直角三角形的应用;3.引导学生从实际问题中发现直角三角形的性质。
五. 教学方法1.情境教学法:通过生活实例引入直角三角形,激发学生的学习兴趣;2.探究式教学法:引导学生分组讨论,发现直角三角形的性质;3.案例教学法:分析实际问题,培养学生运用直角三角形解决问题的能力;4.数形结合教学法:利用图形直观展示直角三角形的性质,加深学生理解。
六. 教学准备1.教学课件:制作直角三角形的相关课件,包括图片、动画和例题;2.教学素材:收集与直角三角形相关的实际问题;3.学具:为学生准备直角三角板、尺子等学习工具。
七. 教学过程1.导入(5分钟)利用生活中的实例,如建筑工人测量高度、运动员投掷等,引导学生关注直角三角形在实际中的应用。
提问:这些实例中有什么共同特点?学生回答后,教师总结直角三角形的定义。
2.呈现(10分钟)展示直角三角形的图片,让学生观察并思考:直角三角形有什么特殊的性质?引导学生分组讨论,总结直角三角形的性质。
2014新湘教版八年级下册第1章直角三角形数学教案
第1章直角三角形§1.1直角三角形的性质和判定(Ⅰ)(第1课时)教学目标:1、掌握“直角三角形的两个锐角互余”定理。
2、掌握“有两个锐角互余的三角形是直角三角形”定理。
3、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。
4、巩固利用添辅助线证明有关几何问题的方法。
教学重点:直角三角形斜边上的中线性质定理的应用。
难点:直角三角形斜边上的中线性质定理的证明思想方法。
教学方法:观察、比较、合作、交流、探索.教学过程:一、复习提问:(1)什么叫直角三角形?(2)直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质?二、新授(一)直角三角形性质定理1请学生看图形:1、提问:∠A与∠B有何关系?为什么?2、归纳小结:定理1:直角三角形的两个锐角互余。
3、巩固练习:练习1(1)在直角三角形中,有一个锐角为520,那么另一个锐角度数(2)在Rt△ABC中,∠C=900,∠A -∠B =300,那么∠A= ,∠B= 。
练习2 在△ABC中,∠ACB=900,CD是斜边AB上的高,那么,(1)与∠B互余的角有(2)与∠A相等的角有。
(3)与∠B相等的角有。
(二)直角三角形的判定定理11、提问:“在△ABC中,∠A +∠B =900那么△ABC是直角三角形吗?”2、利用三角形内角和定理进行推理3、归纳:有两个锐角互余的三角形是直角三角形练习3:若∠A= 600,∠B =300,那么△ABC是三角形。
(三)直角三角形性质定理21、实验操作:要学生拿出事先准备好的直角三角形的纸片(l)量一量斜边AB的长度(2)找到斜边的中点,用字母D表示(3)画出斜边上的中线(4)量一量斜边上的中线的长度让学生猜想斜边上的中线与斜边长度之间有何关系?归纳:直角三角形斜边上的中线等于斜边的一半。
三、巩固训练:练习4:在△ABC中,∠ACB=90 °,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB= _________。
八年级数学下册 第1章 直角三角形 1.2 直角三角形的性质和判定(第5课时)教案 (新版)湘教版
1、将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数 6,8,10;9,12,15;12,16,20; …,则我们把3,4,5这样的勾股数称为基本勾股数,请你也写出三组基本勾股数,, .
2、若△ABC的三边a、b、c,满足a:b:c=1:1: ,则△ABC的形状为。
3、若三角形的两边长为4和5,要使其成为直角三角形,则第三边的长为
课后反思
直角三角形的性质和判定
教学目标
1、知识与技能:准确运用勾股定理及逆定理
2.过程与方法:经历勾股定理的应用过程,熟练掌握其应 用方法,应用“数形结合”的思想来解决
3.情感态度与价值观:培养合情推理能力,提高合作交流意识,体会勾股定理的应用
重点难点
1、重点:掌握勾股定理及其逆定理
2、难点:正确运用勾股定理及其逆定理
4、若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为.
三
师生小结
四.用
例1、如图,南北向MN为我国领 域,即MN以西为我国领海,以东为公海.上午9时50分,我反走私A艇发现正东方向有一走私艇C以13海里/时的速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B.已知A、C两艇的距离是13海里,A、B两艇的距离是5海里;反走私艇测得离C艇的距离是12海里.若走私艇C的速度不变,最早会在什么时间进入我国领海?
分析:
⑴移项,配成三个完全平方;
⑵三个非负数的和为0, 则都为0;
⑶已知a、b、c,利用勾股定理的逆定理判断三角形的形状为直角三角形 。
例3已知:如图,在△ABC中,CD是AB边上的高,且CD2=AD·BD。
求证:△ABC是直角三角形。
作业P17习题B组7、8、9题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章直角三角形§1.1直角三角形的性质和判定(Ⅰ)(第1课时)教学目标:1、掌握“直角三角形的两个锐角互余”定理。
2、掌握“有两个锐角互余的三角形是直角三角形”定理。
3、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。
4、巩固利用添辅助线证明有关几何问题的方法。
教学重点:直角三角形斜边上的中线性质定理的应用。
难点:直角三角形斜边上的中线性质定理的证明思想方法。
教学方法:观察、比较、合作、交流、探索.教学过程:一、复习提问:(1)什么叫直角三角形?(2)直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质?二、新授(一)直角三角形性质定理1请学生看图形:1、提问:∠A与∠B有何关系?为什么?2、归纳小结:定理1:直角三角形的两个锐角互余。
3、巩固练习:练习1(1)在直角三角形中,有一个锐角为520,那么另一个锐角度数(2)在Rt△ABC中,∠C=900,∠A -∠B =300,那么∠A= ,∠B= 。
练习2 在△ABC中,∠ACB=900,CD是斜边AB上的高,那么,(1)与∠B互余的角有(2)与∠A相等的角有。
(3)与∠B相等的角有。
(二)直角三角形的判定定理11、提问:“在△ABC中,∠A +∠B =900那么△ABC是直角三角形吗?”2、利用三角形内角和定理进行推理3、归纳:有两个锐角互余的三角形是直角三角形练习3:若∠A= 600,∠B =300,那么△ABC是三角形。
(三)直角三角形性质定理21、实验操作:要学生拿出事先准备好的直角三角形的纸片(l)量一量斜边AB的长度(2)找到斜边的中点,用字母D表示(3)画出斜边上的中线(4)量一量斜边上的中线的长度让学生猜想斜边上的中线与斜边长度之间有何关系?归纳:直角三角形斜边上的中线等于斜边的一半。
三、巩固训练:练习4:在△ABC中,∠ACB=90 °,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB= _________。
练习5:已知:∠ABC=∠ADC=90O,E是AC中点。
求证:(1)ED=EB(2)∠EBD=∠EDB(3)图中有哪些等腰三角形?练习6 已知:在△ABC中,BD、CE分别是边AC、AB上的高, M是BC的中点。
如果连接DE,取DE的中点 O,那么MO 与DE有什么样的关系存在?四、小结:这节课主要讲了直角三角形的那两条性质定理和一条判定定理?1、2、3、五、课后反思:§1.1直角三角形的性质和判定(Ⅰ)(第2课时)一、教学目标:1、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。
2、巩固利用添辅助线证明有关几何问题的方法。
3、通过图形的变换,引导学生发现并提出新问题,进行类比联想,促进学生的思维向多层次多方位发散。
培养学生的创新精神和创造能力。
4、从生活的实际问题出发,引发学生学习数学的兴趣。
从而培养学生发现问题和解决问题能力。
二、教学重点与难点:直角三角形斜边上的中线性质定理的应用。
直角三角形斜边上的中线性质定理的证明思想方法。
三、教学方法:观察、比较、合作、交流、探索.四、教学过程:(一)引入:如果你是设计师:(提出问题)2008年将建造一个地铁站,设计师设想把地铁站的出口建造在离附近的三个公交站点45路、13路、23路的距离相等的位置。
而这三个公交站点的位置正好构成一个直角三角形。
如果你是设计师你会把地铁站的出口建造在哪里?(通过实际问题引出直角三角形斜边上的中点和三个顶点之间的长度关系,引发学生的学习兴趣。
)动一动想一想猜一猜(实验操作)请同学们分小组在模型上找出那个点,并说出它的位置。
请同学们测量一下这个点到这三个顶点的距离是否符合要求。
通过以上实验请猜想一下,直角三角形斜边上的中线和斜边的长度之间有什么关系?(通过动手操作找到那个点,通过测量的结果让学生猜测斜边的中线与斜边的关系。
)(二)新授:提出命题:直角三角形斜边上的中线等于斜边的一半证明命题:(教师引导,学生讨论,共同完成证明过程)EDCBA推理证明思路: ①作点D 1 ②证明所作点D 1 具有的性质 ③ 证明点D 1 与点D 重合应用定理:例1、已知:如图,在△ABC 中,∠B=∠C ,AD 是∠BAC 的平分线,E 、F 分别AB 、AC 的中点。
求证:DE=DF分析:可证两条线段分别是两直角三角形的斜边上的中线,再证两斜边相等即可证得。
(上一题我们是两个直角三角形的一条较长直角边重合,现在我们将图形变化使斜边重合,我们可以得到哪些结论?) 练习变式:1、 已知:在△ABC 中,BD 、CE 分别是边AC 、AB 上的高,F 是BC 的中点。
求证:FD=FE 练习引申:(1)若连接DE ,能得出什么结论?(2)若O 是DE 的中点,则MO 与DE 存在什么结论吗?上题两个直角三角形共用一条斜边,两个直角三角形位于斜边的同侧。
如果共用一条斜边,两个直角三角形位于斜边的两侧我们又会有哪些结论? 2、已知:∠ABC=∠ADC=90º,E 是AC 中点。
你能得到什么结论?例2、求证:一个三角形一边上的中线等于这一边的一半,那么这个三角形是直角三角形。
P4 练习P4 2 (三)、小结:通过今天的学习有哪些收获? (四)、作业:P7 习题A 组 1、2FEDCBAFCB(五)、课后反思:§1.1直角三角形的性质和判定(Ⅰ)(第3课时)教学目标1、掌握直角三角形的性质“直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半”;2、掌握直角三角形的性质“直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30度”;3、能利用直角三角形的性质解决一些实际问题。
重点、难点重点:直角三角形的性质,难点:直角三角形性质的应用教学过程一、创设情境,导入新课1 直角三角形有哪些性质?(1)两锐角互余;(2)斜边上的中线等于斜边的一半2 按要求画图:(1)画∠MON,使∠MON=30°,(2)在OM上任意取点P,过P作ON的垂线PK,垂足为K,量一量PO,PK的长度,PO,PK 有什么关系?(3) 在OM上再取点Q,R,分别过Q,R作ON的垂线QD,RE,垂足分别为D,E,量一量QD,OQ,它们有什么关系?量一量RE,OR,它们有什么关系?由此你发现了什么规律?直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
为什么会有这个规律呢?这节课我们来研究这个问题.二、合作交流,探究新知1 探究直角三角形中,如果有一个锐角等于30°,那么它所对的直角边为什么等于斜边的一半。
如图,Rr△ABC中,∠A=30°,BC为什么会等于12ABCBAKOMB分析:要判断BC=12AB,可以考虑取AB的中点,如果如果BD=BC,那么BC=12AB,由于∠A=30°,所以∠B=60°,如果BD=BC,则△BDC一定是等边三角形,所以考虑判断△BDC是等边三角形,你会判断吗?由学生完成归纳:直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
这个定理的得出除了上面的方法外,你还有没有别的方法呢?先让学生交流,得出把△ABC沿着AC翻折,利用等边三角形的性质证明。
2 上面定理的逆定理上面问题中,把条件“∠A=30°”与结论“BC=12AB”交换,结论还成立吗?学生交流方法(1)取AB的中点,连接CD,判断△BCD是等边三角形,得出∠B=60°,从而∠A=30°(2)沿着AC翻折,利用等边三角形性质得出。
(3)你能把上面问题用文字语言表达吗?归纳:直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30度。
三、应用迁移,巩固提高1、定理应用例1、在△ABC中,△C=90°,∠B=15°,DE垂直平分AB,垂足为点E,交BC边于点D,BD=16cm,则AC的长为______例2、如图在△ABC中,若∠BAC=120°,AB=AC,AD ⊥AC于点A,BD=3,则BC=______.ED CA BA2 实际应用例3、(P5) 在A 岛周围20海里水域有暗礁,一轮船由西向东航行到O 处时,发现A 岛在北偏东60°的方向,且与轮船相距有触礁的危险吗?四、 课堂练习 ,巩固提高 P 6练习 1、2五、 反思小结,拓展提高直角三角形有哪些性质?怎样判断一个三角形是直角三角形? 六、作业布置: P7习题A 组 3、4东§1.2直角三角形的性质和判定(Ⅱ)(第4课时)勾股定理教学目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图(3)了解有关勾股定理的历史.(4)在定理的证明中培养学生的拼图能力;(5)通过问题的解决,提高学生的运算能力(6)通过自主学习的发展体验获取数学知识的感受;(7)通过有关勾股定理的历史讲解,对学生进行德育教育.教学重点:勾股定理及其应用教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育教学方法: 观察、比较、合作、交流、探索.教学过程:1、新课背景知识复习(1)三角形的三边关系(2)问题:直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?2、定理的获得让学生用文字语言将上述问题表述出来.勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方强调说明:(1)勾――最短的边、股――较长的直角边、弦――斜边(2)学生根据上述学习,提出自己的问题(待定)3、定理的证明方法方法一:将四个全等的直角三角形拼成如图1所示的正方形.方法二:将四个全等的直角三角形拼成如图2所示的正方形,方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明4、定理的应用练习P11例题1、已知:如图,在△ABC中,∠ACB=900,AB=5cm,BC=3cm,CD⊥AB 于D,求CD的长.解:∵△ABC是直角三角形,AB=5,BC=3,由勾股定理有∴又∠2=∠C∴CD的长是2.4cm例题2、如图,△ABC中,AB=AC,∠BAC=900,D是BC上任一点,求证:BD2+CD2=2AD2证法一:过点A作AE⊥BC于E则在Rt△ADE中,DE2+AE2=AD2又∵AB=AC,∠BAC=900∵BD2+CD2=(BE-DE)2+(CE+DE)2=BE2+CE2+2DE2=2AE2+2DE2=2AD2∴即BD2+CD2=2AD2证法二:过点D作DE⊥AB于E, DF⊥AC于F则DE∥AC,DF∥AB又∵AB=AC,∠BAC=900∴EB=ED,FD=FC=AE在Rt△EBD和Rt△FDC中 BD2=BE2+DE2 ,CD2=FD2+FC2在Rt△AED中,DE2+AE2=AD2∴BD2+CD2=2AD25、课堂小结:(1)勾股定理的内容(2)勾股定理的作用已知直角三角形的两边求第三边已知直角三角形的一边,求另两边的关系6、作业布置P16 习题A组 1、2、3课后反思:§1.2直角三角形的性质和判定(Ⅱ)(第5课时)勾股定理的逆定理教学目标:(1)理解并会证明勾股定理的逆定理;(2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;(3)知道什么叫勾股数,记住一些觉见的勾股数(4)通过勾股定理与其逆定理的比较,提高学生的辨析能力;(5)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识能力. (6)通过自主学习的发展体验获取数学知识的感受;(7)通过知识的纵横迁移感受数学的辩证特征.教学重点:勾股定理的逆定理及其应用教学难点:勾股定理的逆定理及其应用教学方法: 观察、比较、合作、交流、探索.教学过程:1、新课背景知识复习:勾股定理的内容、文字叙述、符号表述、图形2、逆定理的获得(1)让学生用文字语言将上述定理的逆命题表述出来(2)学生自己证明逆定理:如果三角形的三边长a、b、c 有下面关系:a2+b2=c2 ,那么这个三角形是直角三角形强调说明:(1)勾股定理及其逆定理的区别勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理.(2)判定直角三角形的方法:①角为900②垂直③勾股定理的逆定理2、定理的应用P15 例题3 判定由线段a,b,c组成的三角形是不是直角三角形。