高中数学 正弦函数的图像

合集下载

人教版高中数学必修第一册5.4.1正弦函数、余弦函数的图象 (课件)

人教版高中数学必修第一册5.4.1正弦函数、余弦函数的图象 (课件)

1. 通过做正弦、余弦函
数、余弦函数图象的步骤,掌握“五点法”画 数的图象,培养直观想象
出正弦函数、余弦函数的图象的方法.(重点) 素养.
2.正、余弦函数图象的简单应用.(难点)
2.借助图象的综合应用,
3.正、余弦函数图象的区别与联系.(易混点) 提升数学运算素养.
栏目导航

主PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛:
化学课件:/kejian/huaxue/ 生物课件:/kejian/she ngwu/
地理课件:/kejian/dili/
历史课件:/kejian/lish i/
y=sin
x(x∈R)的图象平移得到的原
因是什么?
语文课件:/kejian/yuw en/ 数学课件:/kejian/shuxue/
英语课件:/kejian/ying yu/ 美术课件:/kejian/me ishu/
科学课件:/kejian/kexue/ 物理课件:/kejian/wul i/
PPT教程: /powerpoint/ 范文下载:/fanwen/ 教案下载:/jiaoan/ PPT课件:/kejian/ 数学课件:/kejian/shu xue/ 美术课件:/kejian/me ishu/ 物理课件:/kejian/wul i/ 生物课件:/kejian/she ngwu/ 历史课件:/kejian/lish i/
1.了解由单位圆和正、余弦函数定义画正弦函 PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/

正弦函数图像课件

正弦函数图像课件

y=sinx
终边相同角的同一三角函数值相等
即: sin(x+2k)=sinx, kZ
x[0,2]
y=sinx
f (x 2k ) f (x) 利用图象平移
xR
y=sinx x[0,2]
y
y=sinx xR
1
-4 -3
-2
- o
-1
函数y=sinx, xR的图象
2
3
4
正弦曲线
5 6 x
3)作正弦函数的简图(在精确度要求不太高时)
y 1
(0,0)o
2
-1
( 2 ,1)
2
五点画图法
( ,0)
3 2
3
( 2 ,-1)
( 2 ,0)
2
x
五点法
x
3
0
2
2
2
0
1
0
-1
0
y=sinx
4)函数的图象变换
y x2
向右平移 一个单位
y
(x
1)2
向下平移 一个单位
y (x 1)2 1
y
o1
x
-1
四. 解题示范
例1:用五点法作函数y=1+sinx, [0,2]的图象
x
0
2
y=sinx 0
1
3
2
2
0
-1
0
1
2
1
y=1+sin
0
1
x
. 2
y=1+sinx, x[0,2]
1.
.
.

.
o
/2
3/2
作函数 y sin x , x [0,2 ] 的图象

5.4.1正弦函数、余弦函数的图象-【新教材】人教A版高中数学必修第一册课件

5.4.1正弦函数、余弦函数的图象-【新教材】人教A版高中数学必修第一册课件
y sin x经过怎样的变换而得到.
x
0
2
3 2
2
sin x 0 1 0 1 0
sin x 0 1 0 1 0
1 sin x 1 0 1 2 1
y 2
1
o
2
2
-1
y sin x
y sin x y 1 sin x
y 1 sin x
3
2
x
2
y sin x
【课堂小结】
1.代数描点法(误差大)
2
-4 -3
-2
1- o-1234
5 6 x
函数y cos x x R的图象余弦曲线
正弦曲线
-2
-
余弦曲线
-2
-
y y sinx , x R
1
x
o
2 3
4
-1
y 1 y cosx , x R
o
2
3
x
-1
“五点法”画正弦、余弦函数图象:
探究3:在作出正弦函数的图象时,我们应抓住哪 些关键点?
2
-1 6
6
y1 2
3
2
x
2
则解集是{x | +2k x 5 +2k ,k Z}.
6
6
课堂练习:
(1)与y cos x图象相同的是( D )
A.y cos x,x R B.y sin( x)
C.y sin( 3 x) D.y sin( 3 x)
2
2
(2)利用五点法作出y 1 sin x,x [0,2 ] 的简图,并说明y 1 sin x,x [0,2 ]是由
例2.画出函数 y cos x,x [0,2 ] 的简图:

5.4.1正弦函数、余弦函数的图像-【新教材】人教A版高中数学必修第一册课件

5.4.1正弦函数、余弦函数的图像-【新教材】人教A版高中数学必修第一册课件

立德树人 和谐发展
你能根据诱导公式,以正弦函数的图象为基础,通
过适当的图形变换得到余弦函数的图象吗?
由未知向已知转
y


由诱导公式y=
,将正弦函数的图象向左平移 2 个单位即可得到余弦函数的图象.
1
-4
-3
-2
-
o

2
3
4
5
6
x
6
x
-1
正弦曲
线
正弦函数的图象

形状完全一样
y=cosx与 y=sin(x+ ), xR图象相同 只是位置不同
正弦曲线
6
x
学习新知
立德树人 和谐发展
函数y=sinx,x∈R的图象叫做正弦曲线,正弦曲线的散布
有什么特点? 是一条“波浪起伏”的连续光滑曲线
-6π -5π-4π-3π -2π
1 y
π
-π O
-1




你能画出函数y=|sinx|,x∈[0,2π]的图象吗?
y
1
O
-1
π

x
6πx
合作探究
立德树人 和谐发展
(2)y= -cosx,x [0, 2 ]
(2)按五个关键点列表
3
2
x
0

2
cosx
1
0
-1
0
1
-cosx
-1
0
1
0
-1

2
y=-cosx x [0,2 ]
y
1

o
-1 ●


2

高中数学新课标三角函数课件三角函数的图象与性质课时

高中数学新课标三角函数课件三角函数的图象与性质课时
结论:正弦函数是奇函数余弦函数是偶函 数
新课讲解.
例4.下列函数是奇函数的为: D
例5.试判断函数 f(x)1sinxcosx
在下列区间上的奇偶性 1sinxcosx
(1)x (. ).......(2)x [. ]
22
22
注意大前提:定义域关于原点对称
今日作业 书本P46.A组3.10 B组3+附加 附加.判断下列函数的奇偶性
2
七 .ysin x和 ycox的 s 图像性质 : 的研究思想 (1)充分利--用 --数 图 形 像 结合的思想
(2)ysin x,ycox与 syAsin x(),yAcosx ()间的换
正切函数的性质与图像
1正切曲线图象如何作:
几何描点法利用三角函数线
思考:画正切函数选取哪一段好呢画多长一段呢
1
-2 -
o
-1
2 3
y y=cosx
1
-2
- -1
2 3
4 5 4 5
6 x 6 x
五.定义域 、值域及取到最值时相应的x的集合:
ysinx:定义域为R,值域[1,1]
最大值1,此时x2k;最小值-1,此时x2k;
2
2
ycosx:定义域为R,值域[1,1]
最大值1,此时x2k;最小值-1,此时x2k;
1
-4 -3
-2
- o
-1
3
2
x
2
正弦曲 线
2
3
4
5 6 x
正弦、余弦函数的图象
如何由正弦函数图像得y 到余弦函数图像
1
-4 -3
-2
- o
-1
2
3
4

最新正弦函数余弦函数的图像课件(全)上课用

最新正弦函数余弦函数的图像课件(全)上课用
1-
-
-
1)
与x轴的交点 (2 ,1)
o
-1 -

6

3

2
2 3
5 6

7 6
4 3
3 2
5 3
11 6
2
3 ( ( , 0 ) 2 ,0) 2 x 图象的最低点 ( ,1)
5
-
2 ]的简图 例1:(1)画出y=1+sinx , x∈[0,
x
sinx
1 sinx
1
- cosx - 1
y 1
0
1
0
-1
y cosx , x [0,2π]
π 2 3π 2
O
π
2π x
-1
y cosx , x [0,2π]
3.用五点法画出y=2sinx,x∈[0, ]的简图
解:(1)列表
(2)描点作图 Y 2 1 0
x y=2sinx
0
0
2 2 0
3 2
2
0 0 1

2
π
0 1
3π 2
2π 0 1
1
-1 0
2 y
1. o -1
.
π 2
2
y 1 sinx, x [0,2 π ]
.
.

. 3π
2
2
x
y sinx, x [0,2π]
(2)画出y=-cosx , x∈[0,2]的简图
x 0 π 2 π 3π 2 2π
cosx 1
0
-1
0

6

,1)
o
-1 -

3

【高中数学精品课件】正弦函数的图象及性质

【高中数学精品课件】正弦函数的图象及性质

探究性质
观察正弦函数图象,你发现了哪些性质?
探究余弦函数
诱导公式:
cos x sin( )
思考: 能否由正弦函数图象导出余弦
函数图象?
探究余弦函数
y1-4 -3源自-2- o-1
正弦函数的图象
y=cosx=sin(x+ ), xR
2
余弦函数的图象
y
1
-4 -3
-2
- o
-1
2
3
4
5 6 x
正弦曲线
正弦函数的图象及性质
复习回顾 1.任意角的正弦函数如何定义? 2.如何探究函数的性质?
探索新知
如何画出正弦函数 y sin x 的图象?
动态生成
探究一 利用三角函数线生成正弦函数 y sin x, x 0,2 的图象. 探究二
由 y sin x, x 0,2 图象生成正弦函数 y sin x , x R 图象.
探究二:如何由 y sin x, x 0,2 的图象得
到 y sin x在 x R上的图象?
y 正弦曲线
-4 -3
-2
1
- o
-1
2
3
4
5 6 x
sin(x+2)=sin x
周期函数:
对于函数 f (x) ,如果存在一个非零常数 T ,使得当 x 取定义域内的每一个值时,
都有 f (x+T)=f (x) ,则称函数 f (x) 为周期函数, T 为函数的周期.
形状完全一样 只是位置不同
余弦曲线
2
3
4
5 6 x
数学活动
数学活动
试作出函数 y=1+sinx, x∈[0, 2π]上的简图.

正弦函数的图像课件(用)

正弦函数的图像课件(用)
正弦函数的图像 课件
PPT,a click to unlimited possibilities
汇报人:PPT
添加目录标题 课件概述
正弦函数基础 知识
正弦函数的图 像绘制
正弦函数图像 的变换与性质
正弦函数的应 用实例
总结与回顾
添加章节标题
课件概述
适用对象:高中生
课件简介
教学目标:掌握正弦函数的图 像特点,理解其性质和应用
信号的滤波:正弦函数可以 作为滤波器的一种基础波形
信号的表示:正弦函数可以 用来表示周期信号
信号的调制:正弦函数可以用 于调制信号,例如在无线通信

总结与回顾
知识点总结
正弦函数的定义 与性质
正弦函数的图像 与特点
正弦函数的应用 与实例
回顾与总结:加 深对正弦函数的 理解和掌握
回顾与思考题
正弦函数的定义和性质 正弦函数的图像特点和绘制方法 正弦函数的应用和实际意义 回顾与思考:如何更好地理解和掌握正弦函数的图像?
感谢观看
汇报人:PPT
设置x的范围:例 如x = np.linspace(-2 * pi, 2 * pi, 1000)
绘制图像:例如 plt.plot(x, y)
正弦函数图像的变换与 性质
振幅变换与周期变换
振幅变换:改变正 弦函数的幅度大小, 图像形状不变
周期变换:改变正 弦函数的周期,图 像形状不变
振幅与周期的关系 :振幅越大,周期 越短;振幅越小, 周期越长
振幅与周期变换的 应用:在信号处理 、电子工程等领域 有广泛的应用
相位变换的方法
相位变换
相位变换对函数图像的影响
相位的概念
相位变换在实际问题中的应 用

高中数学 1.4.1正弦函数、余弦函数的图象课件 新人教A版必修4

高中数学 1.4.1正弦函数、余弦函数的图象课件 新人教A版必修4

讲授新课
2. 用五点法作正弦函数和余弦函数的简 图 (描点法): 正弦函数y=sinx,x∈[0, 2]的图象中, 五个关键点是哪几个? 3 (0,0), ( ,1), ( ,0), ( ,1), ( 2 ,0) 2 2
思考 5 :在函数 y=sinx ,x∈[0 , 2π ] 的 图象上,起关键作用的点有哪几个?
小结:
这两个图象关于x轴对称.
讲授新课 探究4.
如何利用y=cos x,x∈[0, 2]的图 象,通过图形变换(平移、翻转等)来得 到y=2-cosx,x∈[0, 2]的图象?
讲授新课 探究4.
如何利用y=cos x,x∈[0, 2]的图 象,通过图形变换(平移、翻转等)来得 到y=2-cosx,x∈[0, 2]的图象?
线两种方法,求满足下列条件的x的集合:
课堂小结
1. 正弦、余弦曲线几何画法和五点法;
2. 注意与诱导公式,三角函数线的知识
的联系.
不用作图, 你能判断函数 和y=cosx的图象有何关系吗?请在同一坐 标系中画出它们的简图, 以验证你的猜想.
小结:
讲授新课 探究5.
不用作图, 你能判断函数 和y=cosx的图象有何关系吗?请在同一坐 标系中画出它们的简图, 以验证你的猜想.
小结:
这两个函数相等,图象重合.
讲授新课
思考题. 分别利用函数的图象和三角函数
y 1 -6π -4π -5π -3π -1 -2π -π
O
π 2π
3π 4π
5π 6π x
思考8:你能画出函数y=|sinx|, x∈[0,2π ]的图象吗?
y 1
O -1
π

x
思考 5 :函数 y=cosx ,x∈[0 , 2π ] 的图 象如何?其中起关键作用的点有哪几个?

数学》必修④第一章正弦函数的图像(共21张PPT)

数学》必修④第一章正弦函数的图像(共21张PPT)
2.通过练习检测学生对知识的掌握情况: 可能出现问题:不会找五个点; 几何作图不够美观
3.根据学生在课后作业情况,查漏补缺。
谢谢
华侨中学 苏育亮
播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行动,行动会变成习惯,习惯会变成性格。性 制,会变成生活的必需品,不良的习惯随时改变人生走向。人往往难以改变习惯,因为造习惯的就是自己,结果人又成为习惯的奴隶!人生重要的不是你从哪里来,而是你 时侯,一定要抬头看看你去的方向。方向不对,努力白费!你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向。人只要不失去 这个世界唯一不变的真理就是变化,任何优势都是暂时的。当你在占有这个优势时,必须争取主动,再占据下一个优势,这需要前瞻的决断力,需要的是智慧!世上本无移 是:山不过来,我就过去。人生最聪明的态度就是:改变可以改变的一切,适应不能改变的一切!亿万财富不是存在银行里,而是产生在人的思想里。你没找到路,不等于 什么,你必须知道现在应该先放弃什么!命运把人抛入最低谷时,往往是人生转折的最佳期。谁能积累能量,谁就能获得回报;谁若自怨自艾,必会坐失良机人人都有两个 一个是心门,成功的地方。能赶走门中的小人,就会唤醒心中的巨人!要想事情改变,首先自己改变,只有自己改变,才可改变世界。人最大的敌人不是别人,而是自己, 1、烦恼的时候,想一想到底为什么烦恼,你会发现其实都不是很大的事,计较了,就烦恼。我们要知道,所有发生的一切都是该发生的,都是因缘。顺利的就感恩,不顺 渡寒潭,雁过而潭不留影;风吹疏竹,风过而竹不留声。”修行者的心境,就是“过而不留”。忍得住孤独;耐得住寂寞;挺得住痛苦;顶得住压力;挡得住诱惑;经得起 子;担得起责任;1提得起精神。闲时多读书,博览凝才气;众前慎言行,低调养清气;交友重情义,慷慨有人气;困中善负重,忍辱蓄志气;处事宜平易,不争添和气; 泊且致远,修身立正气;居低少卑怯,坦然见骨气;卓而能合群,品高养浩气淡然于心,自在于世间。云淡得悠闲,水淡育万物。世间之事,纷纷扰扰,对错得失,难求完 反而深陷于计较的泥潭,不能自拔。若凡事但求无愧于心,得失荣辱不介怀,自然落得清闲自在。人活一世,心态比什么都重要。财富名利毕竟如云烟,心情快乐才是人生 在路上,在脚踏实地的道路上;我们的期待在哪里?在路上,在勤劳勇敢的心路上;我们的快乐在哪里?在路上,在健康阳光的大道上;我们的朋友在哪里?在心里,在真 钟,对自己负责;善于发现看问题的角度;不满足于现状,别自我设限;勇于承认错误;不断反省自己,向周围的成功者学习;不轻言放弃。做事要有恒心;珍惜你所拥有 学会赞美;不找任何借口。与贤人相近,则可重用;与小人为伍,则要当心;只满足私欲,贪图享乐者,则不可用;处显赫之位,任人唯贤,秉公办事者,是有为之人;身 则可重任;贫困潦倒时,不取不义之财者,品行高洁;见钱眼开者,则不可用。人最大的魅力,是有一颗阳光的心态。韶华易逝,容颜易老,浮华终是云烟。拥抱一颗阳光 随缘。心无所求,便不受万象牵绊;心无牵绊,坐也从容,行也从容,故生优雅。一个优雅的人,养眼又养心,才是魅力十足的人。容貌乃天成,浮华在身外,心里满是阳 飞,心随流水宁。心无牵挂起,开阔空净明。幸福并不复杂,饿时,饭是幸福,够饱即可;渴时,水是幸福,够饮即可;裸时,衣是幸福,够穿即可;穷时,钱是幸福,够 畅即可;困时,眠是幸福,够时即可。爱时,牵挂是幸福,离时,回忆是幸福。人生,由我不由天,幸福,由心不由境。心是一个人的翅膀,心有多大,世界就有多大。很 的环境,也不是他人的言行,而是我们自己。人心如江河,窄处水花四溅,宽时水波不兴。世间太大,一颗心承载不起。生活的最高境界,一是痛而不言,二是笑而不语。 人生的幸福在于祥和,生命的祥和在于宁静,宁静的心境在于少欲。无意于得,就无所谓失去,无所谓失去,得失皆安谧。闹市间虽见繁华,却有名利争抢;田园间无争, 和升平,最终不过梦一场。心静,则万象皆静。知足者常在静中邂逅幸福。顺利人生,善于处理关系;普通人生,只会使用关系;不顺人生,只会弄僵关系。为人要心底坦 脑清醒,不为假象所惑。智者,以别人惨痛的教训警示自己;愚者,用自己沉重的代价唤醒别人。对人多一份宽容,多一份爱心;对事多一份认真,多一份责任;对己多一 长,志不可满,乐不可极,警醒自己。静能生慧。让心静下来,你才能看淡一切。静中,你才会反观自己,知道哪些行为还需要修正,哪些地方还需要精进,在静中让生命 觉悟。让心静下来,你才能学会放下。你放下了,你的心也就静了。心不静,是你没有放下。静,通一切境界。人与人的差距,表面上看是财富的差距,实际上是福报的差 实际上是人品的差距;表面上看是气质的差距,实际上是涵养的差距;表面上看是容貌的差距,实际上是心地的差距;表面上看是人与人都差不多,内心境界却大不相同, 很重要的一件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运, 这样一想、一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往 太阳就要光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏 件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运,有时候其实 一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往是失败的开 光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏实。以平 在危险面前,平常心就是勇敢;在利诱面前,平常心就是纯洁;在复杂的环境面前,平常心就是保持清醒智慧。平常心不是消极遁世,而是一种境界,一种积极的人生。不 一个有价值的人而努力。命运不是机遇,而是选择;命运不靠等待,全靠争取。成熟就是学会在逆境中保持坚强,在顺境时保持清醒。时间告诉你什么叫衰老,回忆告诉你 要外来的赞许时,心灵才会真的自由。你没那么多观众,别那么累。温和对人对事。不要随意发脾气,谁都不欠你的。现在很痛苦,等过阵子回头看看,会发现其实那都不 交。人有绝交,才有至交学会宽容伤害自己的人,因为他们很可怜,各人都有自己的难处,大家都不容易。学会放弃,拽的越紧,痛苦的是自己。低调,取舍间,必有得失 错误面前没人爱听那些借口。慎言,独立,学会妥协的同时,也要坚持自己最基本的原则。付出并不一定有结果。坚持可能会导致失去更多过去的事情可以不忘记,但一定 作一个最好的打算和最坏的打算。做一个简单的人,踏实而务实。不沉溺幻想。不庸人自扰。不说谎话,因为总有被拆穿的一天。别人光鲜的背后或者有着太多不为人知的 学习。不管学习什么,语言,厨艺,各种技能。注意自己的修养,你就是孩子的第一位老师。孝顺父母。不只是嘴上说说,即使多打几个电话也是很好的。爱父母,因为他 爱的最无私的人。

人教版正弦函数、余弦函数的图像-河南省新乡市第一中学高中数学(共17张PPT)教育课件

人教版正弦函数、余弦函数的图像-河南省新乡市第一中学高中数学(共17张PPT)教育课件





之前有个网友说自己现在紧张得不得了 ,获得 了一个 大公司 的面试 机会, 很不想 失去这 个机会 ,一天 只吃一 顿饭在 恶补基 础知识 。不禁 要问, 之前做 什么去 了?机 会当真 就那么 少?在 我看来 到处都 是机会 ,关键 看你是 否能抓 住。运 气并非 偶然, 运气都 是留给 那些时 刻准备 着的人 的。只 有不断 的积累 知识, 不断的 进步。 当机会 真的到 来的时 候,一 把抓住 。相信 学习真 的可以 改变一 个人的 运气。
O MA x
三角函数
三角函数线
正弦函数 余弦函数 正切函数
sin=MP cos=OM
tan=AT
正弦线MP 余弦线OM 正切线AT
4.问题与思考
4.回顾三角函数的定义
三角函数
定义域
sin
cos
tan
R
R
{ | k , k Z}
2
值域
[-1,1] [-1,1] R
那我们是如何研究一个函数的?


学习重要还是人脉重要?现在是一 个双赢 的社会 ,你的 价值可 能更多 的决定 了你的 人脉, 我们所 要做的 可能更 多的是 专心打 造自己 ,把自 己打造 成一个 优秀的 人、有 用的人 、有价 值的人 ,当你 真正成 为一个 优秀有 价值的 人的时 候,你 会惊喜 地发现 搞笑人 脉会破 门而入 。从如 下方 面改进 :1、专 心做可 以提升 自己的 事情; 2、学 习并拥 有更多 的技能 ;3、成 为一个 值得交 往的人 ;4学 会独善 其身, 尽量少 给周围 的人制 造麻烦 ,用你 的独立 赢得尊 重。
凡 事 都 是 多 棱 镜 , 不 同 的 角度 会

人教版高中数学正弦函数、余弦函数的图像(共21张PPT)教育课件

人教版高中数学正弦函数、余弦函数的图像(共21张PPT)教育课件

0
1
0
-1
0
y=-sin x
0
-1
0
1
0
描点得y=-sin x的图象
y y=sin x x∈[0,2π]
1
. . .π
0
2
-y1=-sin x x∈[0,2π]
. . 3
2

x
(2) 列表:
x
0
2
y=sin x
0
1
3
2
2
0
-1
0
y=1+sin x
1
2
1
0
1
描点得y=1+sin x的图象 y=1+sin x x∈[0,2π] y
图象的最低点(
3
2,
1)
图象的最高点(0,1) (2,1)
y co x ,x s0 ,2
图象与x轴的交点(
2
,0)
(
3 2
,0)
图象的最低点(,1)
三、例题分析
例 用“五点法”画出下列函数在区间[0,2π]的简图。
(1)y=-sin x; (2)y=1+sin x.
解 (1)列表:
x
0
3
2
2
2
y=sin x
y
1
4
3
2
7
5
3
2
2
2
0
2
2
-1
2
3 2
3
4
5
7
x
2
2
y=sin x, x∈R
3.函数 ycox,sxR的图象:
由诱导公式 ycoxssinx () 可以看出:

【课件】正弦函数、余弦函数的图象课件高一上学期数学人教A版(2019)必修第一册

【课件】正弦函数、余弦函数的图象课件高一上学期数学人教A版(2019)必修第一册


光滑的曲线连接起来。
在精度要求不高的情况下作函数y=sinx,x∈[0,2]的
图象,只要先作出这五个点,然后用光滑的曲线连接
起来即可,这种作图法叫“五点画图法”即“五点法”
新知引入
余弦函数的图像又是怎样的呢?如何作出来?
回忆正弦函数和余弦函数的哪些关系,能否通过图
形变换,将正弦函数的图象变换为余弦函数的图象?
与正弦曲线具有相同形状的“波浪起伏”的连续光滑曲线.
你会用五点法作出余弦函数的图像吗?
选哪个区间上的五点?观察下图,探索分析。
不难发现,自变量在[-,]这一周内的图像,更靠近原点,且在
对称性、增减性等方面,更具有特点,所以图像更具有代表性。
新知引入
类似于用“五点法”画正弦函数图象,找出余弦函数
变换得到y=1+sinx,x∈[0,2]的图象吗?
先认真观察右图变化
对于任意一个x0∈[0 ,2]
设y1=sinx0, y2=1+sinx0
y2-y1=1
即函数y=sinx,x∈[0,2]
的图象的每一点向上平移
一个单位就得到y=1+sinx,
x∈[0,2]的图象
图5.4-6
Flash
动画
巩固与练习

对于函数y=cosx,由诱导公式cosx=sin(x+ )得,


y= cosx=sin(x+ ) ,x∈R.


而函数y=sin(x+ ) ,x∈R的图象和正弦函数y=sinx,x∈R

的图像又有怎么的关系?
新知引入

y=sin(x+ )

y=sinx,
1、①与②两函数的图像形状相同;

高中数学课件-第一章 正弦函数的图像与性质

高中数学课件-第一章  正弦函数的图像与性质

周期函数:f(x+T)=f(x) 最小正周期:所有周期中最小的正数
y 1
4 x
y 1
函 数 y= sinx (k∈z)
性质
定义域
x∈ R
值域 最值及相应的 x
的集合
周期性 奇偶性
单调性
[-1,1]
x= 2kπ+
π
2

ymax=1
x=2kπ-
π
2
时 ymin=-1
周期为T=2π
奇函数
当函当数xx∈ ∈是[[22增kkππ加+- 的ππ22,,,22kkππ++
例2.画出y=1+sinx , x∈[0, ]的简图
解:(2)
x
0
π 2
π
3π 2
2
sinx 0
1
0
-1
0
1sinx 1
2
1
0
1
y. 1.
y 1 sinx,x [0,2π]
.
.
o -1
.
π 2
3π 2
2
x
y sinx,x [0,2π]
3. 作出下列函数的图象
y 3 sin x x [0 , 2 ]
求函数y=2+sinx的最大值、最小值和周期,并求这个函数取 最大值、最小值的x值的集合。
解: ymax 2 sin x max 2 1 3
ymin 2 sin x min 2 (1) 1 周期T 2
使y=2+sinx取得最大值的x的集合是:
x
x
2
2k , k
Z
使y=2+sinx取得最小值的x的集合是:

5..4.1正弦函数、余弦函数的图象 课件

5..4.1正弦函数、余弦函数的图象 课件
弦函数的图象?
高中数学必修第一册
知识小结
3.函数 = , ∈ 的图象:
余弦函数的图象叫做余弦曲线,它是与正弦函数具有相同形状的“波
浪起伏”的连续光滑曲线.
高中数学必修第一册
问题探究
探究:8.类似于“五点法”作正弦函数的图象,如何作出余弦
函数的图象?
高中数学必修第一册
问题探究
探究:8.类似于“五点法”作正弦函数的图象,如何作出余弦
(1) = 1 + , ∈ [0,2];
x
0

2

3
2
2
sin x
0
1
0
-1
0
1 sin x
1
2
1
0
1
高中数学必修第一册
典例精析
例1 画出下列函数的简图:
(2) = −, ∈ [0,2].
x
0

2

3
2
2
cos x
1
0
-1
0
1
cos x
-1
0
1
0
-1
往往起重要的作用.你能画出函数 = , ∈ [0,2]图象的
简图吗?在确定图象形状时,应抓住哪些关键点?
五点(画图)法:
高中数学必修第一册
问题探究
探究:7.由三角函数的定义可知,正弦函数、余弦函数是一对
密切关联的函数.你认为应该利用正弦函数和余弦函数的哪些
关系,通过怎样的图形变换,才能将正弦函数的图象变换为余
R
R
[-1,1]
[-1,1]
奇偶性
奇函数
偶函数
对称中心
对称轴
高中数学必修第一册
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

o
6
3
2
2 3
5
7
6
6
4 3
3 2
5 3
11 6
2
x
-1 -
-
-
正弦函数的图象
正弦曲线
y
1-
-
-
6
4
2
o
-1-
2
4
6
x
因为终边相同的角的三角函数值相同,所以y=sinx的图象在……,
4 ,2 , 2 ,0, 0,2 , 2 ,4 , …与y=sinx,x∈[0,2π]的图象相同
四、五点作图法
y
-4 -3
-2
1
- o
-1
2
3
4
5 6 x
正弦函数的图象
y=cosx=sin(x+ ), xR
2
余弦函数的图象
y
正弦曲线
形状完全一样 只是位置不同
余弦曲线
-4 -3
-2
1
- o
-1
2
3
4
5 6 x
七、课堂小结
1、正弦函数的几何作图法。
2、正弦函数的五点作图法,掌握五点 选取的技巧。
3、巩固图象的平移,以及灵活运用数 形结合法。
( 2 ,0)
y
(五点作图法)
图象的最高点 ( ,1)
1-
与x轴的交点 2
(0,0) ( ,0) (2 ,0)
-
-1
o
6
3
2
2 3
5 6
7 6
4 3
3 2
5 3
11 6
2
x
图象的最低点
(
3 2
,1)
-1 -
简图作法 (1) 列表(列出对图象形状起关键作用的五点坐标) (2) 描点(定出五个关键点)
如何作出正弦函数的图象(在精确度 要求不太高时)?
y
五点画图法
1
(
2
,1)
( 2 ,1)
( ,0)
( 2 ,0)
(
(0,0)o
(0,0)
2
2
(0,0)
-1
(0,0)
(0,0)
(0,0)
(0,0)
五点法——
(0,0)
(0,0)
2
(
,1)
(
2 ,1)
(
2
,1)
( 2 ,1)
( 2 ,1)
( (
2
2
,1)
,1)
,0) 3
(
2
( ,0) 2
(
((((((,0,,00),0,),()003)2))(32,(-312,(1)32),1((3,)3(21(23(323)2,2,1-,,-)1,-1-1)1)))
2 ,0) x
2 ,0)
( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0)
教学评价
• 1:教材地位; • 2:教学重难点; • 3:教学方法; • 4:教学程序设计; • 5:学生评价。
八、作业布置
教材 P25 练习题;
课后练习:
(1).y 3 sin x, x [0, 2 ]
(2).y sin(x ), x [ , 3 ]
4
44
(3) 连线(用光滑的曲线顺次连结五个点)
五、例 题
例1、画出函数 y 1 sin x, x [0,2 ]的简图。
解:按五个关键点列表:
x
0
2
y
1
2
1
y 2
1.
.
.
.
.
o
2
3 2
2
01
x
六、练 习
1、
画出函数
y
sin(x
), x [
2
2
,
3
2
]
解:按五个关键点列表:
x+
2
2
0
2
y
0
1
0
-1
y
. .1 . .
. o 2 -1
2
3 2
2
的简图。
2
3
2
0
x
2.用”五点法”作出y=2sin2x的图像时,首先
应描出的五个点的横坐标可以是( B )
A)0, 2
,
,
3
2
, 2
B)0, 4
, 2
,
3
4
,
C)0, , 2 ,3 , 4
D)0,
6
,
3
,
2
,
2
3
正弦函数的图像与余弦函数的图像
三角函数线是
有向线段!
正弦线 MP 余弦线 OM 正切线 AT
思考:在直角坐标系中如何作点( ,sin )? 33
y
P
C(
3
,
sin
3
)
x
MO
三、正弦函数的图象几何作法
函数 y sin x, x 0,2 图象的几何作法
P1
6
o1
M-11 A
y
1p1/
作法: (1) 等分 (2) 作正弦线 (3) 平移 (4) 连线
(1) 列表 y sin x, x 0,2
x0
6
3
2 5
236
7 4 3
6
3
2
5 3
11 6
2
y0
1 2
3 2
1
3 2
1 2
0
1 2
3 2
1
3 2
1 2
0
(2) 描点 y
1-
-
0
2
1 -
(3) 连线
3 2
2
x
二、三角函数线
sinα= MP cosα= OM
tanα= AT
-1
y
T
P
α
0
M A(1,0)x
正弦函数的图象
以 最 简 单 的 方 法,获 取 最 大 的 效 果
一、正弦函数的定义
实 一 一对应 数
唯一确定



多对一 值
任意给定的一个实数x,有唯一确定的值sinx 与之对应。由这个法则所确定的函数 y=sinx 叫做正弦函数,其定义域为R。 思考:它的图象是怎样的,又有什么特点呢?
用描点法作出函数图象的主要步骤是怎样的?
相关文档
最新文档