离散数学 31集合概念表示法
离散数学课本定义和定理
第1章集合集合的基本概念1. 集合、元元素、有限集、无限集、空集2. 表示集合的方法:列举法、描述法3. 定义子集:给定集合A和B,如果集合A的任何一个元都是集合B中的元,则称集合A包含于B或B包含A,记为或,并称A为B的一个子集;如果集合A和B满足,但B中有元不属于A,则称集合A真包含于B,记为,并且称A为B的一个真子集;4. 定义幂集:给定集合A,以A的所有子集为元构成的一个集合,这个集合称为A的幂集,记为或集合的运算定义并集:设A和B是两个集合,则包含A和B的所有元,但不包含其他元的集合,称为A和B 的并集,记为.定义交集:A和B是两个集合,包含A和B的所有公共元,但不包含其他元的集合,称为A和B 的交集,记为.定义不相交:A和B是两个集合,如果它们满足,则称集合A和B是不相交的;定义差集:A和B是两个集合,属于A而不属于B的所有元构成集合,称为A和B的差集,记为.定义补集:若A是空间E的集合,则E中所有不属于A的元构成的集合称为A的补集,记为. 定义对称差:A和B是两个集合,则定义A和B的对称差为包含排斥原理定理设为有限集,其元素个数分别为,则定理设为有限集,其元素个数分别为,则定理设为有限集,则重要例题P11 例第2章二元关系关系定义序偶:若和是两个元,将它们按前后顺序排列,记为,则成为一个序偶;※对于序偶和,当且仅当并且时,才称和相等,记为定义有序元组:若是个元,将它们按前后顺序排列,记为,则成为一个有序元组简称元组;定义直接积:和是两个集合,则所有序偶的集合,称为和的直接积或笛卡尔积,记为.定义直接积:设是个集合,,则所有元组的集合,称为的笛卡尔积或直接积,记为.定义二元关系若和是两个集合,则的任何子集都定义了一个二元关系,称为上的二元关系;如果,则称为上的二元关系;定义恒等关系:设是上的二元关系,,则称是上的恒等关系;定义定义域、值域:若是一个二元关系,则称为的定义域;为的值域;定义自反:设是集合上的关系,若对于任何..,都有即则称关系是自反的;定义反自反:设是集合上的关系,若对于任何,都满足,即对任何都不成立,则称关系是反自反的;定义对称:设是集合上的关系,若对于任何,只要,就有,那么称关系是对称的;定义反对称:设是集合上的关系,若对于任何,只要并且时,就有,那么称关系是对称的;定义传递设是集合上的关系,若对于任何,只要并且时,就有,则称关系是传递的;定理设是集合上的关系,若是反自反的和传递的,则是反对称的;关系矩阵和关系图定义无定理无关系的运算定义连接:设为上的关系,为上的关系,则定义关系称为关系和的连接或复合,有时也记为.定义逆关系:设为上的关系,则定义的逆关系为为上的关系:.定理设和都是上的二元关系,则下列各式成立12345定理设为上的关系,为上的关系,则闭包运算定义自反闭包:设是集合上的二元关系,如果是包含的最小自反关系,则称是关系的自反闭包,记为.定义对称闭包:设是集合上的二元关系,如果是包含的最小对称关系,则称是关系的对称闭包,记为.定义传递闭包:设是集合上的二元关系,如果是包含的最小传递关系,则称是关系的传递闭包,记为或.定理设是集合上的二元关系,则(1)是自反的,当且仅当.(2)是对称的,当且仅当.(3)是传递的,当且仅当.定理设是集合上的二元关系,则. “恒等关系”定理设是集合上的二元关系,则. “逆关系”定理设是集合上的二元关系,则. “幂集”定理设是一个元集,是上的二元关系,则存在一个正整数,使得.等价关系和相容关系定义覆盖、划分:是一个集合,,如果,则称是的一个覆盖;如果,并且,则称是的一个划分,中的元称为的划分块;定义等价关系:设是上的一个关系,如果具有自反性、对称性和传递性三个性质,则称是一个等价关系;设是等价关系,若成立,则称等价于.定义等价类:设是上的一个等价关系,则对任何,令,称为关于的等价类,简称为的等价类,也可以简记为.定义同余:对于整数和正整数,有关系式:如果,则称对于模同余的,记作定义商集:设是上的一个等价关系,由引出的等价类组成的集合称为集合上由关系产生的商集,记为. “等价类的集合”定理若是上的一个等价关系,则由可以产生唯一的一个对的划分; “商集”定义相容关系:设是上的一个关系,如果是自反的和对称的,则称是一个相容关系;相容关系可以记为.所有的等价关系都是相容关系,但相容关系却不一定是等价关系;定义最大相容块:设是一个集合,是定义在上的相容关系;如果,中的任何两个元都有关系,而的每一个元都不能和中所有元具有关系,则称是的一个最大相容块;偏序关系定义偏序关系:是定义在集合上的一个关系,如果它具有自反性、反对称性和传递性,则称是上的一个偏序关系,简称为一个偏序,记为.更一般地讲,若是一个集合,在上定义了一个偏序,则我们用符号来表示它,并称是一个偏序集;定义全序/链:是一个偏序集,对任何,如果或这两者中至少有一个必须成立,则称是一个全序集或链,而称是上的一个全序或线性序;定义盖住:是一个偏序集,,若,并且不存在,使并且,则称盖住. “紧挨着”定义最小元、最大元:是一个偏序集,如果中存在有元,对任何都满足,则称是的最小元;如果中存在有元,对任何都满足,则称是的最大元; 定义极小元、极大元:是一个偏序集,如果,而中不存在元,使,则称是的极小元;如果,而中不存在元,使,则称是的极大元;定义上界、下界、上确界、下确界:是一个偏序集,,如果对于所有的,都有,则称是的一个上界;如果对于所有的,都有,则称是的一个下界;如果是的一个上界,对于的任一上界,都有,则称是的最小上界上确界. 如果是的一个上界,对于的任一上界,都有,则称是的最大下界下确界.定义良序集:设是一个偏序集,对于偏序,如果的每个非空子集都具有最小元,则称是一个良序集,而称是上的一个良序;每个良序集都是全序集;第3章函数和运算函数定义映射、象:关系定义在上,如果对于每一个.....,使,...,都有唯一的一个则称是从到的一个函数或映射,记为.称为函数的变元,称为变元在下的值或象,记为.注意:(1)定义域,而不是.(2)每一个,有唯一的,使. 多值函数不符合定义(3)值域.定义受限、扩展:若是从到的一个函数,,则也是一个函数,它定义于到,我们称它是在上的受限;如果是函数的一个受限,则称是的一个扩展;★定义映上、映内、一对一、一一对应:若,则的值域时,称函数是映上的或满射;如果的值域时,则称函数是映内的;如果,则有,则称是一对一的单射即时,有.如果映上的,又是一对一的,则称是一一对应的或双射;定义复合运算:若,则定义和的复合运算为:即.注:逆函数若要存在需要满足以下条件:1函数是映上的2函数必须是一对一的定义恒等函数函数称为恒等函数;定理,则的充分必要条件是,并且运算定义二目运算:若是一个集合,是从到的一个映射函数,则称为一个二目运算;一般地,若是从到的一个映射是正整数,则称是一个目运算;运算的封闭:运算的结果总是集合中的一个元,因此这个定义保证了运算的施行,这种情况又称为集合对于该种运算是封闭的;定义可交换:若是一个运算,对于任何,都有,则称运算是可交换的或者说,服从交换律.定义可结合:若是一个运算,对于任何,都有,则称运算是可结合的或者说,服从结合律.定义可分配:若是一个运算,是一个运算,对于任何,都有,则称运算对于运算是可分配的或者说,对于服从分配律定义左单位元、右单位元:设是上的一个运算,如果中存在有一个元,对于任何,有,则称是运算的左单位元;如果中存在有一个元,对于任何,有,则称是运算的右单位元;定理若是上的一个运算,和分别是它的左、右单位元,则,并且是唯一的因此,称为运算的单位元.定义左零元、右零元:设是上的一个运算,如果中存在有一个元,对于任何,有,则称是运算的左零元;如果中存在有一个元,对于任何,有,则称是运算的右零元.定义等幂:若是上的一个运算,,对于运算,有,则称元对于运算是等幂的;定义左逆元、右逆元:若是上的一个运算,它具有单位元,对于任何一个,如果存在有元,使,则称是的左逆元;如果存在有元,使,则称是的右逆元;定理若是上的一个运算,它具有单位元,并且是可结合...的,则当元可逆时,它的左、右逆元相等,并且唯一的此时称之为的逆元,并且记为.定义可消去:若是上的一个运算,对于任何,如果元满足:则;或则,则称元对于运算是可消去的;第4章无限集合基数★定义等势:若和是两个集合,如果在和之间可以建立一个一一....对应关系,则称集合和等势,并记为;定理令是由若干个集合为元所组成的集合,则上定义的等势关系是一个等价关系;定义有限集、无限集:若是一个集合,它和某个自然数集等势,则称是一有限集,不是有限集的集合称为无限集;定理有限集的任何子集都是有限集定理有限集不与其任何真子集等势定理自然数集是无限集可列集定义可列集:若是一个集合,它和所有自然数的集合等势,则称是一个可列集;可列集的基数用符号表示;定理若是一个集合,可列的充分必要条件是可以将它的元排列为的序列形式;定理任何无限集必包含有可列子集;定理可列集的子集是有限集或可列集记为:定理若是可列集,是有限集,并且,则是可列集记为:.定理若和都是可列集,并且,则是可列集记为:推论设都是可列集,则是可列集记为:定理设都是可列集,并且,则是可列集记为:推论设都是可列集,则是可列集.定理所有有理数的集合是可列集;不可列集定理区间中所有实数构成的集合是不可列的;定义连续基数:开区间中所有数组成集合的基数记为,具有基数的集合称为连续统,称为连续基数;推论:集合的基数也是.定理所有实数的集合是不可列的,它的基数是.定理对于任何数,若,则区间,以及都具有连续基数定理一个无限集和一个可列集作并集时,并集的基数等于集的基数;推论一个无限集和一个有限集的并集,其基数等于集的基数;基数的比较定义设集合的基数是.如果与的真子集等势,而和不等势,则称的基数小于的基数,记为.定理:是两个集合,若与的某一子集等势,与的某一子集等势,则.定理:是任意两个集合,的基数为,的基数为,则下列三个关系:中必有一个且只有个成立;定理:若是有限集的基数,则.定理:若是无限集合,则定理:若是可列个互不相交的集合,它们的基数都是,则的基数是记为:定理:可列集的幂集,其基数是记为:定理:若是一个集合,是的幂集,则.此定理说明:不存在最大的基数;补充:第5章形式语言文法和语言定义产生式:一个产生式或重写规则是一个有序对,通常写成,其中,是一个符号,而是一个符号的非空有限串,是这个产生式的左部,而是产生式的右部.产生式将简称为规则;定义非终极符号、字母表、终极符号、开始符号:一个文法是一个四元组.其中,是元语言的语法类或变元的集合,它生成语言的串,这些语法类或变元成为非终极符号,是符号的非空有穷集合,称为字母表,的符号称为终极符号.是之一,是词汇表的一个识别元素,称为开始符号.是产生式的集合;定义直接产生、直接推导,直接规约:设是一个文法,如果,而中有规则,就称串直接产生串,或称是直接推导出来的,或直接规约到,记为.定义产生、规约到、推导:设是一个文法,如果存在产生式序列,使得,而,就说产生规约到,或是的推导,记为.定义句型:令是一个文法,如果串可从开始符号推导出来,即如果,则称为一个句型;补充:若,则,其中是空串,不含空串文法的类型定义0-型文法:在上的0-型文法由以下组成:(1)不在中的不同符号的非空集合,称为变量表,它包含一个纲符号,称为开始变量; (2)产生式的有限集合;由产生的所有字集称为由产生的语言;定义0-型语言:在上可由某一0-型文法产生的字集称为0-型语言;定义1-型文法:如果在0-型文法中,对于中的每个产生式,要求,则这文法称为1-型文法或上下文敏感文法.定义2-型文法:设文法,对于中的每一个产生式有且有的人要求,则此文法叫2-型文法或前后文无关文法;定义3-型文法:设为一文法,又设中的每一个产生式都是或,其中和都是变量,而为终极符号,而此文法为3-型文法或正规文法;第1章代数系统代数系统的实例和一般性质定义代数系统:若是序偶,是一个非空集合,是定义在上的某些运算的非空集合,则称是一个代数系统,或称代数;代数系统的类型:(1)代数系统的类型是,其中代表目运算符; (2),分别为目运算符,则的类型为.同态和同构定义同态象、同态映射:和是两个同类型的代数系统,映射和也构成一一对应.如果对于任意目运算,及其对应的运算,当时,都有,则称代数是的同态象,称是从到的一个同态映射;定义同态象、同态映射:若和是两个同类型的代数系统,和都是二目运算,映射.如果对于任何,都有,则称是的一个同态象,称是从到的一个同态映射;注:如果就是,则映射是从到它自身;当上述条件仍然满足时,我们就称是的一个自同态映射;定义同构、同构映射、自同构映射:如果和是同态的,映射不仅是同态映射,而且是一一对应....的,则称和同构,称是从到的一个同构映射;如果就是,则称是上的一个自同构映射定义同余关系:设是一个代数系统,是上的一个等价关系,如果存在,当时,成立,则称是上的一个同余关系;定理:设~是上的一个等价关系,如果存在同态映射,使得当时,当且仅当,则~是上的同余关系;商代数与积代数定义子代数:设是一个代数系统,在运算下封闭的,则称是的一个子代数;定义直接积:设到是两个同类型的代数系统,如果对任意的和,定义运算于,称是和的直接积,称和为的因子;第2章半群和群半群和有幺半群定义半群、有幺半群:是一个非空集合,如果中定义了一个二目运算,对于任何,都有,则称是一个半群.如果半群中具有单位元,使得对任何,都有,则称是一个有幺半群;1是一个由有限个符号组成的集合,其中的元称为字母;表示所有的字构成的集合,表示非空串组成的集合;2自由半群:半群的各元相互间没有任何关系;说明:半群是一个定义了二目运算,并且服从结合律的代数系统;有幺半群则是具有单位元的半群;群和循环群定义群:在代数系统中,如果二目运算满足1对于任何,有;2中存在单位元,对任何,有;3对于任何,存在有逆元,使则称是一个群;注:对于群来说,单位元是唯一的,每个元的逆元也是唯一的;“存在逆元的有幺半群叫做群”定义阶数:若是一个群,当是有限集时,则称中元的个数为群的阶数,记为.定理若是一个群,,则,其中即.定义幂:是一个群,,则记个的积为,称为幂,记为表示单位元;定理指数律:若和是整数,则.定理若则定义次数:若是一个群,,使的最小正整数,称为元的次数;定理若是一个群,,的次数为,则都是中不同的元;定义循环群、生成元:由一个单独元素的一切幂所组成的群称为循环群,称为这个群的生成元;定理在阶数为的循环群,由生成元所产生的元次数为,即是生成元的充分必要条件是和互质;定理若和不是互质的,则的次数是,其中的是和的最小公倍数;定义阿贝尔群:如果群中的元对于运算满足交换律,则称这个群是一个阿贝尔群; “满足交换律的群叫做阿贝尔群”循环群是一个阿贝尔群;定理若和都是有限的阿贝尔群,定义则是一个阿贝尔群;最简单的一个阿贝尔群是群,为按位加二面体群、置换群二面体群是从图形的变换中到处,这些图形都是比较正规的图形;定理更一般地讲,定义置换:若是一个非空的有限集合,则上任何一个到它自身的一一对应的映射,都称为上的置换;定理两个置换的乘积仍是一个置换,并且置换的乘积服从结合律;的恒等映射也是一个置换称为单位置换;上所有置换的集合,对于置换乘法构成一个群,这个群称为对称群,记为,是中元的个数;定义阶置换群若是非空有限集合,是上的个置换所构成的群,则称是一个阶置换群; 定理任何一个阶群都同构于一个阶置换群;子群、群的同态定义子群:是一个群,,如果1单位元2若,则的逆元3若,则则称是的一个子群;定理是一个群,,是一个子群的充分必要条件是:若,则定义同态象、群同态映射:和是群,.若对任何,有群的同态映射具有下列性质:1将单位元映射为单位元2将逆元映射为逆元3对运算封闭,即对任何,有定理若和是群,是一个群同态映射,则将的子群映射为的子群;定义同态核:若是一个群同态映射,是的单位元,则中所有满足的元的集合,称为同态核,记为.定理同态核是一个子群;定理若是群的子群,则定义了上的一个划分因而也定义了上一个等价关系. 群子集:假定都是群中的元构成的集合称之为群子集,定义特别地,当是一元集时,我们简记为,则定理若是群的子群都是群的子群,则是一个群的充分必要条件是.陪集、正规子群、商群定义左陪集:若是群的子群,对于,称称为的一个左陪集. 定理若是群的子群,则的所有左陪集构成的一个划分;定理拉格朗日定理每个左陪集的元和中的元都是一样多;推论子群中元的个数一定是群中元的个数的因子;定义正规子群:若是群的子群,对于任何,都满足,则称是群的一个正规子群.一个阿贝尔群的任何子群都是正规子群;当是群的正规子群时,对于关于的陪集.定义运算为考虑所有关于的陪集组成的集合和运算构成的系统为一个群;这个群称为关于的商群,记为.定理若是从群到群的映上的同态映射,则核是正规子群,商群同构于.群同态基本定理:商群是由陪集构成的群,也是同余类的集构成的群,所以它同构于象代数,即同构于.如果群没有真正的正规子群,则该群为单群;正规群的任何子群都是正规子群;第3章格和布尔代数格定义格:表示一个偏序集,如果对于中的任何两个元和,在中都存在一个元是它们的上确界,存在一个元是它们的下确界,则称是一个格;对于中的元,它们的上确界常常记为,它们的下确界常常记为,前者又称为和析取或和或,后者又称为和的合取或积或或;定理若是一个格,则对于任何,有(1)的充分必要条件是.(2)的充分必要条件是.定理保序性若是一个格,则对于任何,当时,有引理若是一个格,,则定理分配不等式:若是一个格,则对于任何,定理模数不等式若是一个格,则对于任何,的充分必要条件是定理若是一个代数系统,和是上的二目运算,它服从交换律、结合律和吸收律.则是一个格.定义子格是一个格,,当且仅当对于运算和是封闭的,运算结果和在中相同时,则称代数系统是的一个子格;定义直接积若和是两个格,则称为这两个格的直接积,其中的运算和定义为:对于任何的,定义同态映射设和是两个格,.如果对任何,有则称是到的一个同态映射.特别地,当是一个一一对应时,称是一个同构映射,并且称格和同构的;如果是格上一个同态映射,则称是一个自同态映射.如果是一个同构映射,则称是一个自同构映射.定义完备:对于一个格,如果它的每一个非空子集在格中都具有一个上确界和下确界,则这个格称为完备的;显然每个有限的格都是完备的;对于一个格,它的上确界和下确界如果存在,我们称它们为这个格的边界,并分别记为1和0,因此有时这种格称为有界格;定义补元:是一个有界格,,如果存在元,使且,则称为的补元;定义补格:中的每个元都至少具有一个补元,则称这个格是一个补格;定义分配格:是一个格,如果对任何,有则称是一个分配格;定理任何两个分配格的直接积是分配格;定理若是一个分配格,则对于任何,如果,并且,则推论如果一个格是分配格,同时又是补格,则它的每一个元都具有唯一的一个补元;布尔代数定义布尔代数一个既是补格,又是分配格的格,称为布尔代数;定义对偶命题如果是一个布尔代数,是关于中变元的一个命题,它可以由中变元元通过运算来表示.如果对的表示式进行下列代换:代换为;代换为;代换0;0代换为1,则这样代换后也将得到一个命题,它成为命题的对偶命题,简称为对偶;定理对偶原理如果是一个命题,它在任何一个布尔代数中都成立,并且可以由运算来表示,则对它的对偶命题也在任何一个布尔代数中成立;定理对偶原理如果是一个命题,它在任何一个布尔代数中都成立,并且可以由运算和关系来表示,则将中的运算代换为;代换为;0代换为1,代换0;换为,换为,所得到的对偶命题也在任何一个布尔代数中成立;定理若和是两个布尔代数,是一个同态映射,则在中的同态象是的一个子布尔代数;定义基元:是一个布尔代数,,如果中不存在元,使,则称是的一个基元;如果对于任何都存在有基元,则称这个布尔代数是基元的; 定理若是一个布尔代数,,则下列命题是等价的;1是一个基元2对于所有的,若,则或3对于所有的,推论若和是不同的基元,定理是一个基元的布尔代数,是其基元的集合,对任一令,则,并且作为基元的析取式,这个表达式是唯一的;定理若是一个非空有限的布尔代数,是它的所有基元构成的集合,则同构.推论一个有限的布尔代数具有个元,其中的是它的基元的个数;推论对于任意正整数,具有个元的布尔代数是同构的;其他代数系统定义环若代数系统满足下列条件:1对于二目运算是一个可交换的加法群;2对于二目运算即乘法是封闭的;3乘法结合律成立,即对中任何三个元和,有4分配律成立,即对中任何元和,有则称是一个环;定义交换环一个环中的任何两个元,如果都满足,则称是一个交换环;定义逆元、零元一个环中如果存在有元,使得对中任何一个元都有,则称是的一个单位元;定义逆元、零元在一个有单位元的环里,如果和是环中的元,满足,则称是。
离散数学(chapter3集合的基本概念和运算)
以上运算律的证明思路:欲证P=Q,即证 x P x Q。
2013-7-10 离散数学
20
Байду номын сангаас
三、集合算律
证明分配律:A∪(B∩C) = (A∪B)∩(A∪C) 对x, x A∪(B ∩C) (x A ) (x B∩C )
(x A) (x B x C )
Z: 整数集合
Q: 有理数集合
R: 实数集合 C: 复数集合
: 空集(不含任何元素) E: 全集 (在某一问题中,含有所涉及的全部集合的集合。)
2013-7-10 离散数学 6
三、集合的表示方法
列出集合的所有元素,元素之间用逗号 1、列举法: 隔开。如A = { a, b, c } , B = { 1,2,4,6,7,9 } 用谓词概括该集合中元素的属性。 2、描述法: 如:A = { x | xZ 3 < x 6 } A = { x | P (x) },其中P (x)表示x满足的性质。 即A是由所有使P (x)为真的全体x构成。
2013-7-10 离散数学 3
§3.1 集合的基本概念
内容:集合,元素,子集,幂集等。 重点:(1) 掌握集合的概念及两种表示法, (2) 常见的集合N , Z, Q, R, C 和特殊集合 ,E, (3) 掌握子集及两集合相等的概念, (4) 掌握幂集的概念及求法。
2013-7-10 离散数学 4
2013-7-10
离散数学
8
四、集合之间的关系
3、真子集: B A。
B A B A B A
BABA B=A
4、幂 集:集合A的全体子集构成的集合,记作P (A)。 符号化为 P (A) = { x | x A} n 元集A的幂集P (A)含有2n个元素。
离散数学---集合
3、 幂集: 、 幂集:
定义: 是一个集合, 定义:设A是一个集合,由A的所有子集 是一个集合 的所有子集 组成的集合称为A的幂集 , 组成的集合称为 的幂集, 记 作 P(A)或 的幂集 或
。 2A。 。
该定义可以写作P(A)={u| 该定义可以写作P(A)={u|u⊆ A} P(A)={u 例如, 例如,A = {0, 1},则 , P(A) = { {}, {0}, {1}, {0, 1} }
定义: 定义:若A⊆ B且A ≠ B ,则称 A为 ⊆ 且 为 B的真子集。记 作 A ⊂ B ,或 B ⊃ A 的真子集。 的真子集 对一切x如果x 必有x 对一切x如果x∈A必有x∈B,并且存在一个 x0∈B且x0∉A。
三、特殊的集合
1、 空集: 、 空集: 定义: 不含任何元素的集合称为空集, 定义 : 不含任何元素的集合称为空集 , 记 作∅。 例如: 例如:Z={xx2+1=0,x∈R},这是空集。 ∈ ,这是空集。 定理:空集是任何集合的子集。 定理:空集是任何集合的子集。 证明: 证明: ∅ ⊆ A ⇔ ∀ x(x∈∅ x∈A) ⇔1 ∈∅ ∈
特定的一些集合的表示符号
自然数集N={0,1,2,…} , , , 自然数集 整数集合Z={…-2,-1,0,1,2,…} 整数集合 , , , , , 有理数集合Q={xx=P⁄⁄q,p,q∈Z} 有理数集合 , ∈ 实数集合R={ x x是实数 是实数} 实数集合 是实数 复数集合C={x x=a+bi,a,b∈R,i=复数集合C={x x=a+bi,a,b∈R,i=-1}
第三章 集合的基本概念
集合(set):集合是数学中最基本的概念之一, :集合是数学中最基本的概念之一, 集合 不能以更简单的概念来定义(define),只能给 , 不能以更简单的概念来定义 出它的描述(description)。一些对象的整体就 。 出它的描述 称为一个集合, 称为一个集合,这个整体的每个对象称为该 集合的一个元素 集合的一个元素(member或element)。 元素 或 。
离散数学第3章 集合
任取x, xX … xY (2) 证X=Y
方法一 分别证明 XY 和 YX 方法二 任取x,xX … xY
注意:在使用方法二的格式时,必须保证每步推理都是充分 必要的
27
第三章 集合
命题演算法
例3-3.2 证明A(AB) = A (吸收律)
元素a属于A,记作aA; 或者a不属于A,记作aA,也可以记作┓(aA)。
(4)任意性:集合的元素也可以是集合。 例:A={1,{2},2,{3,4},{6}} A=5,2A,{2}A,6A,{6}A
6
第三章 集合 例如:A={{a,b},d,{{b}}}。可以用一种树形图来表示这种
隶属关系,该图分层构成,每一层上的结点都表示一个集 合,它的儿子就是它的元素。 集合的树型层次结构
32
第三章 集合
§3-3-3 笛卡儿积
定义3-3.2 两个元素a,b组成二元组,若它们有次序 之别,称为二元有序组,或称为有序对或序偶,记为<a, b>,称a为第一分量,b为第二分量;若它们无次序区分, 称为二元无序组,或称为无序对,记为(a,b)。
有序对具有如下性质。 (1)有序性:当x≠y时<x,y>≠<y,x>。 (2)<x,y>与<u,v>相等的充分必要条件是
A
B
11
第三章 集合
§3-2 集合之间的关系
§3-2-1 集合之间的关系 (1)相等关系: • 两集合A和B相等,当且仅当它们有相同的元素。 • 若A与B相等,记为A=B;否则,记为A≠B。 • 可形式化为:A=B(x)(xAxB)。
12
第三章 集合
离散数学集合的表示方法
离散数学集合的表示方法离散数学是指以一定的符号系统来表示数学概念和数学运算的学科,其中最基本的概念是集合。
集合是一组独立的元素的有序集,也可以说是一类物体的总称,它可以用简单的符号表示。
这种表示方法在数学研究和计算上起着重要作用。
本文着重介绍离散数学集合的表示方法。
首先,在离散数学中,所有的集合都可以用符号表示,通常用大写字母代表集合,如A、B、C等。
确定集合的方法通常有三种:①通过给出其元素的方式,如表示集合A={1,3,5,7,9};②通过用公式表示法,如表示集合B={2n|n∈N,n≤5};③通过用符号表示,如表示集合C={x|x∈A,x>3}。
此外,在离散数学中,还有一些特殊的集合概念,包括空集、自身的集合、全集以及基本集合。
空集是指不包含元素的集合,它有一个特殊的符号,即;自身的集合,即一个集合的元素全部不在其他集合中,如集合A={1,2,3},则A∈A;全集是指包含所有元素的集合,标识符为G;基本集合是指包含元素的所有集合,标识符通常是N、Z、R等。
另外,集合运算也是离散数学中非常重要的概念,其中有一些重要的运算,如交集、并集、补集、差集等。
其定义和运算方法是:对于两个集合A={1,2,3}、B={2,4,6},交集A∩B={2},即A和B的交集,两个集合的公共元素;并集A∪B={1,2,3,4,6},即A和B的并集,包含A和B全部元素;补集A′={4,6},即在A中没有的元素;差集A-B={1,3},即A中有,而B中没有的元素。
总之,离散数学集合的表示方法有大写字母表示、公式表示法和符号表示,以及特殊的集合概念如空集、自身的集合、全集以及基本集合,以及交集、并集、补集、差集等重要的集合运算。
它们为离散数学的理解和应用提供了基础,同时也为计算机科学技术的发展提供了条件和依据。
离散数学 第七讲
康托尔(Cantor)9 3.1 集合的基本概念集合、元素、子集、包含、集合相等、真子集、空集、幂集、全集9 3.2 集合的基本运算并集、交集、相对补集、绝对补集、对称差、文氏图、算律、9 3.3 集合中元素的计数基数、有(无)穷集、包含排斥原理3.1 集合的基本概念9把具有共同性质的一些东西,汇集成一个整体,就形成一个集合。
9由确定的相互区别的一些对象组成的整体称为集合。
9可确定的可分辨的事物构成的整体。
例:教室内的桌椅、图书馆的藏书、全国的高等学校、自然数的全体、直线上的点、26个英文字母3.1 集合的基本概念集合的元素(member或element)9集合内的对象或单元称为元素。
9集合通常用大写英文字母标记。
例如,N代表自然数集合(包括0),Z代表整数集合,Q代表有理数集合,R代表实数集合,C代表复数集合。
趣味思考9任意自然数都可以表示为两个自然数的平方差吗?9请严谨、详细分析说明。
3.1 集合的基本概念集合的表示法列举法将集合中的元素一一列举,或列出足够多的元素以反映集合中元素的特征。
例如:V={a,e,i,o,u} 或B={1,4,9,16,25,36……}。
描述法通过描述集合中元素的共同特征来表示集合。
例如:V= {x| x是元音字母}B={x| x=a2, a是自然数}C= {x| x∈Z ∧3<x≤6},即C={4,5,6}3.1 集合的基本概念集合的表示9元素a属于集合A,记作a ∈A。
9元素a不属于集合A ,记作a ∉A3.1 集合的基本概念3.1 集合的基本概念集合的特征9确定性:任何一个对象,或者是这个集合的元素,或者不是,二者必居其一。
例如:A={x| x∈N ∧x<100},C={x| x是秃子}9互异性:集合中任何两个元素都是不同的,即集合中不允许出现重复的元素。
例如:集合A={a,b,c,c,b,d},应该是A={a,b,c,d}3.1 集合的基本概念集合的特征9无序性:集合与其中的元素的顺序无关。
离散数学 31集合概念表示法
两个集合A和B相等,记作A=B,两个集合 不相等,记作AB。 {0,1}={x|x(x2-2x+1)=0,x I} {0,1}{1,2}
➢2.包含关系(子集) ➢定义3-1.1 设A、B是任意两个集合,如果A的每一 个元素都是B的元素,则称集合A是集合B的子集合( 或子集,subsets),或称A包含在B内,记为AB ; 或称B包含A,记为BA 。 ➢即
所以|A1|+|A2|=|A1~A2|+|A1A2|+
|~A1A2|+|A1A2|
=|A1~A2|+|~A1A2|+2|A1A2|
而|A1~A2|+|~A1A2|+|A1A2|=|A1A2|
故|A1A2|=|A1|+|A2|-|A1A2|
例1:求从1到500的整数中,能被3或5除尽的数的个数。
3、差集、补集
定义3-2.3:设A、B是任意两个集合,所有属 于A而不属于B的元素组成的集合称为B对A 的补集,或相对补,(或A和B差集)记作A-B 。
A-B={x|xA∧xB} 文氏图
定义3-2.4:设E为全集,任一集合A关于E的补 ,称为A的绝对补,记作A。 A=E-A={x|xE∧xA}
文氏图
属于S,同样根据定义,S就 可以属说于,S这。一无悖论论如就何象都在平是静矛的盾的 数学。水面上投下了一块巨石,而
它所引起的巨大反响则导致了第 三次数学危机。
危机产生后,数学家纷纷提出自己的
解决方案:
人们希望能够通过对康托尔的集合论进行改造,通过 对集合定义加以限制来排除悖论,这就需要建立新 的原则。“这些原则必须足够狭窄,以保证排除一 切矛盾;另一方面又必须充分广阔,使康托尔集合 论中一切有价值的内容得以保存下来。”
《离散数学集合》课件
满射。
双射
03
如果一个映射既是单射又是满射,则称该映射为双射。
函数的基本性质
确定性
对于任意一个输入,函数只能有一个输出。
互异性
函数的输出与输入一一对应,没有重复的输 出值。
可计算性
对于任意给定的输入,函数都能计算出唯一 的输出值。
域和陪域
函数的输入值的集合称为函数的定义域,函 数输出的集合称为函数的陪域。
04
集合的运算性质
并集运算性质
并集的交换律
对于任意集合A和B,有A∪B=B∪A。
并集的幂等律
对于任意集合A,有A∪A=A。
并集的结合律
对于任意集合A、B和C,有 A∪(B∪C)=(A∪B)∪C。
并集的零律
对于任意集合A和空集∅,有A∪∅=ቤተ መጻሕፍቲ ባይዱ。
交集运算性质
交集的交换律
对于任意集合A和B,有A∩B=B∩A。
在数学中的应用
集合论
集合论是数学的基础,它为数学提供了基本的逻辑和概念 框架。通过集合,可以定义和讨论概念、关系和性质等。
概率论
在概率论中,集合用来表示事件,事件发生的概率可以定 义为该事件所对应的集合的元素个数与样本空间所对应的 集合的元素个数之比。
拓扑学
拓扑学是研究几何形状在大范围内变化的学科。在拓扑学 中,集合用来表示空间中的点、线、面等元素,以及它们 之间的关系。
THANKS FOR WATCHING
感谢您的观看
03
集合的分类
有穷集和无穷集
有穷集
集合中元素的数量是有限的,可以明 确地列举出集合中的所有元素。例如 ,集合{1, 2, 3}是一个有穷集。
无穷集
集合中元素的数量是无限的,无法列 举出集合中的所有元素。例如,自然 数集N={1, 2, 3,...}是一个无穷集。
离散数学 31集合概念表示法54页PPT
离散数学 31集合概念表示法
6
、
露
凝
无
游
氛
,
天
高
风
景
澈
。
7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8
、
吁
嗟
身
后
名
,
于
我
若
浮
烟
。
9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
▪பைடு நூலகம்
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
54
1
0
、
倚
南
窗
以
寄
傲
,
审
容
膝
之
易
安
。
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
集合的概念和表示法-PPT课件
首页
上页
返回
下页
结束
铃
7
离散数学 3.1 集合的概念及表示法
二、集合的表示法
2、描述集合中元素的方法
1) 列举法 b、部分列举法:
列举集合的部分元素,其他元素可从列举的元
素 归纳出来 , 用省略号代替。 例如A表示“全体小写英文字母”的集合, 则 A={a, b, … , y, z} 注: 列举法仅适用于描述元素个数有限的集合 或 元素具有明显排列规律的集合。
2019/3/28
首页
上页
返回
下页
结束
铃
6
离散数学 3.1 集合的概念及表示法
二、集合的表示法
2、描述集合中元素的方法
1) 列举法 a、全部列举法: 以任意顺序写出集合的所有元素, 元素间用逗号 并将其放在花括号内。 隔开, 例如“所有小于5的正整数”, 这个集合的元素为 1, 2, 3, 4, 再没有别的元素了。 如果把这个集合命名为A, 就可记为 A={1, 2, 3, 4}
2019/3/28
首页
上页
返回
下页
结束
铃
3
离散数学 3.1 集合的概念及表示法
一、集合的基本概念
3、集合的分类
1) 有限集合 集合的元素个数是有限的。
2) 无限集合 集合的元素个数是无限的。
2019/3/28
首页
上页
返回
下页
结束
铃
4
离散数学 3.1 集合的概念及表示法
二、集合的表示法
1、符号表示法
2019/3/28
首页
上页
返回
下页
结束
铃
12
离散数学第三章集合的基本概念和运算知识点总结
离散数学第三章集合的基本概念和运算知识点总结集合论部分第三章、集合的基本概念和运算3.1 集合的基本概念集合的定义与表⽰集合与元素集合没有精确的数学定义理解:⼀些离散个体组成的全体组成集合的个体称为它的元素或成员集合的表⽰列元素法A={ a, b, c, d }谓词表⽰法B={ x | P(x) }B 由使得P(x) 为真的x构成常⽤数集N, Z, Q, R, C 分别表⽰⾃然数、整数、有理数、实数和复数集合,注意0 是⾃然数.元素与集合的关系:⾪属关系属于∈,不属于?实例A={ x | x∈R∧x2-1=0 }, A={-1,1}1∈A, 2?A注意:对于任何集合A 和元素x (可以是集合),x∈A和x?A 两者成⽴其⼀,且仅成⽴其⼀.集合之间的关系包含(⼦集)A?B??x (x∈A→x∈B)不包含A?B??x (x∈A∧x?B)相等A = B?A?B∧B?A不相等A≠B真包含A?B?A?B∧A≠B不真包含A?B思考:≠和?的定义注意∈和?是不同层次的问题空集?不含任何元素的集合实例{x | x2+1=0∧x∈R} 就是空集定理空集是任何集合的⼦集Ax (x∈?→x∈A) ?T推论空集是惟⼀的.证假设存在?1和?2,则?1??2 且?1??2,因此?1=?2全集E 相对性在给定问题中,全集包含任何集合,即?A (A?E )幂集定义P(A) = { x | x?A }实例P(?) = {?},P({?}) = {?,{?}}P({1,{2,3}})={?,{1},{{2,3}},{1,{2,3}}}计数如果|A| = n,则|P(A)| = 2n3.2 集合的基本运算集合基本运算的定义??-~⊕并A?B = { x | x∈A∨x∈B }交A?B = { x | x∈A∧x∈B }相对补A-B = { x | x∈A∧x?B }对称差A⊕B = (A-B)?(B-A)= (A?B)-(A?B)绝对补~A = E-A⽂⽒图(John Venn)关于运算的说明运算顺序:~和幂集优先,其他由括号确定并和交运算可以推⼴到有穷个集合上,即A1?A2?…A n= {x | x∈A1∨x∈A2∨…∨x∈A n}A1?A2?…A n= {x | x∈A1∧x∈A2∧…∧x∈A n}某些重要结果A-B?AA?B ?A-B=?(后⾯证明)A?B=??A-B=A命题演算法证X?Y:任取x ,x∈X?… ?x∈Y 例3 证明A?B?P(A)?P(B)任取xx∈P(A) ?x?A?x?B ? x∈P(B)任取xx∈A ? {x}?A ? {x}∈P(A) ? {x}∈P(B){x}B x∈B包含传递法证X?Y:找到集合T 满⾜X?T 且T?Y,从⽽有X?Y例4 A-B ? A?B证A-B ? AA ? A?B所以A-B ? A?B利⽤包含的等价条件证X?Y:例5 A?C∧B?C ?A?B?C证A?C?A?C=CB?C?B?C=C(A?B)?C=A?(B?C)=A?C=C(A?B)?C=C ?A?B?C命题得证反证法证X?Y:欲证X?Y, 假设命题不成⽴,必存在x 使得x∈X 且x?Y. 然后推出⽭盾.例6 证明A?C ∧ B?C ? A?B?C证假设A?B ? C 不成⽴,则?x (x∈A?B∧x?C)因此x∈A 或x∈B,且x?C若x∈A, 则与A?C ⽭盾;若x∈B, 则与B?C ⽭盾.利⽤已知包含式并交运算:由已知包含式通过运算产⽣新的包含式X?Y ?X?Z?Y?Z, X?Z?Y?Z 例7 证明A?C?B?C ∧ A-C?B-C ? A?B证A?C?B?C,A-C ? B-C上式两边求并,得(A?C)?(A-C) ? (B?C)?(B-C)(AC)(A~C) (BC)(B~C)A(C~C) B(C~C)AE BEA B命题演算法证明X=Y:任取x ,x∈X ?… ?x∈Yx∈Y ?… ?x∈X或者x∈X ?… ? x∈Y例8 证明A?(A?B)=A (吸收律)证任取x,x∈A?(A?B) ? x∈A∨ x∈A?Bx∈A ∨ (x∈A ∧ x∈B) ? x∈A等式替换证明X=Y:不断进⾏代⼊化简,最终得到两边相等例9 证明A?(A?B)=A (吸收律)证(假设交换律、分配律、同⼀律、零律成⽴)A?(A?B)=(A?E)?(A?B) 同⼀律=A?(E?B) 分配律=A?(B?E) 交换律=A?E 零律=A 同⼀律反证法证明X=Y:假设X=Y 不成⽴,则存在x 使得x∈X且x?Y,或者存在x 使得x∈Y且x?X,然后推出⽭盾.例10 证明以下等价条件A?B ? A?B=B ? A?B=A ? A-B=?(1) (2) (3) (4)证明顺序:(1) ?(2), (2) ?(3), (3) ?(4), (4) ?(1)(1) ?(2)显然B?A?B,下⾯证明A?B?B.任取x,x∈A?B ? x∈A∨x∈B ? x∈B∨x∈B ? x∈B因此有A?B?B. 综合上述(2)得证.(2) ?(3)A=A?(A?B) ? A=A?B(将A?B⽤B代⼊)(3) ?(4)假设A-B≠?, 即?x∈A-B,那么x∈A且x?B. ⽽x?B ? x?A?B.从⽽与A?B=A⽭盾.(4) ?(1)假设A?B不成⽴,那么x (x∈A ∧ x?B) ? x∈A-B ? A-B≠?与条件(4)⽭盾.集合运算法证明X=Y:由已知等式通过运算产⽣新的等式X=Y ? X?Z=Y?Z, X?Z=Y?Z,X-Z=Y-Z 例11 证明A?C=B?C ∧ A?C=B?C ? A=B证由A?C=B?C 和A?C=B?C 得到(A?C)-(A?C)=(B?C)-(B?C)从⽽有A⊕C=B⊕C因此A⊕C=B⊕C ? (A⊕C)⊕C =(B⊕C)⊕CA⊕(C⊕C) =B⊕(C⊕C) ?A⊕?=B⊕?? A=B3.3 集合中元素的计数集合的基数与有穷集合集合A 的基数:集合A中的元素数,记作card A有穷集A:card A=|A|=n,n为⾃然数.有穷集的实例:A={ a,b,c}, card A=|A|=3;B={ x | x2+1=0, x∈R}, card B=|B|=0⽆穷集的实例:N, Z, Q, R, C 等包含排斥原理:定理设S 为有穷集,P1, P2, …, P m是m 种性质,A i 是S中具有性质P i的元素构成的⼦集,i=1, 2,…, m.则S中不具有性质P1, P2, …, P m 的元素数为证明要点:任何元素x,如果不具有任何性质,则对等式右边计数贡献为1,否则为0证设x不具有性质P1, P2, … , P m ,x?A i, i= 1, 2, … , mx?A i?A j, 1≤i < j ≤m…x?A1?A2?…?A m,x 对右边计数贡献为1 - 0 + 0 -0 + … + (-1)m· 0 = 1例1 求1到1000之间(包含1和1000在内)既不能被5 和6 整除,也不能被8 整除的数有多少个?解:S ={ x | x∈Z, 1≤x ≤1000 },如下定义S的3 个⼦集A, B, C:A={ x | x∈S, 5 | x },B={ x | x∈S, 6 | x },C={ x | x∈S, 8 | x }对上述⼦集计数:|S|=1000,|A|= ?1000/5? =200, |B|=?1000/6?=133,|C|= ?1000/8? =125,|A?B|= ?1000/30? =33, |B?C| = ?1000/40? =25,|B?C|= ?1000/24? =41,|A?B?C| = ?1000/120? =8,代⼊公式N = 1000-(200+133+125)+(33+25+41)-8=600例224名科技⼈员,每⼈⾄少会1门外语.英语:13;⽇语:5;德语:10;法语:9英⽇:2; 英德:4;英法:4;法德:4 会⽇语的不会法语、德语求:只会1 种语⾔⼈数,会3 种语⾔⼈数x+2(4-x)+y1+2=13x+2(4-x)+y2=10x+2(4-x)+y3=9x+3(4-x)+y1+y2+y3=19x=1, y1=4, y2=3, y3=2。
集合的概念与表示方法ppt课件
③互异性,即同一集合中的元素是互不相同的.
能够确定的不同的对象所构成的整体叫做集合(简称集)。
练习1
1、下列说法中,正确的有______.(填序号)
2
①单词 book 的所有字母组成的集合的元素共有 4 个;
②集合 M 中有 3 个元素 a,b,c,其中 a,b,c 是△ABC 的三
边长,则△ABC不可能是等腰三角形;
5
∉
A
集合与元素的关系
集合与元素的关系:
①属于,如果 a 是集合 A 的元素,就说 a 属于集合 A,记作a∈A
;
②不属于,如果 a 不是集合 A 中的元素,就说 a 不属于集合 A,记
作 a∉A.
0
∉
Ф
集合的三大特性
集合三要素:
①确定性,即同一集合中的元素必须是确定的;
②无序性,即同一集合中的元素之间不考虑顺序;
4
6
习题:
能正确表示集合 M={x∈R|0≤x≤2}和集合 N={x∈R|x2-x=0}
关系的Venn 图是(B)。
总结
集合
THANK YOU
习题:
1、被 3 除余 2 的正整数集合;
解:(1)
{x|x=3n+2,n∈N}
2、平面直角坐标系中坐标轴上的点组成的集合.
(2)
{(x,y)|xy=0}
三、韦恩图:用平面上封闭曲线的内部代表集合,这种图称
为韦恩图,一般画成椭圆或矩形.
问题3 使用韦恩图表示中0-10之间的偶数集合。
0
10
2
8ቤተ መጻሕፍቲ ባይዱ
集合
集合的概念与表示方法
你眼中的
集合
你眼中的
集合
第一章 离散数学
定义1-9 设有集合A、B,所有属于B而不属于
A的元素组成的集合,称为A相对于B的补集, 记作B-A。即
B A u | u B但u A
用文氏图表示为:(图中斜线部分即是)
B
B-A
例:A={2,5,6} B={3,4,2} B-A={3,4} 则 A-B={5,6}
A
定义1-10 集合A相对于全集合U的补集称为A的
{ }
定理1-2:设A是具有基数#A的有限集,则#(2A ) 2# A
分析:前面介绍了,A的子集是A的一部分,那么由 i A中i个元素组成的子集有C n个,若A有n个元素,于 是有:
C n 0 C n1 ... C n n 1 C n n 2n
(证明略)
例3、确定集合A={a,{a}}的幂集
A不够成一个集合,因为没有确定老的标准,50岁 以上的老,还是60岁以上的老呢?这需要一个确定的标 准,根据这个标准来判断一个55岁的中国人是否属于这 个集。
总之,任一个个体,对某一个集合而言, 或属于该集合,或不属于该集合。两者 必 居其一,不可兼得。
又如:
A={b,c} 是一个集合,但它是集合B 的元素,其中B={a,{b,c}}; A={b,c}是以一个整体作为B的元素。 另外,要将b,与{b} 区分开来,b∈{b}; b是一个个体,{b}是一个单元素的集合。
故 A C(由定义1-2)
综合(1)、(2)即知原结论成立。
1.3
一、幂集的定义
幂集
定义1-5:任给集合A,由A的所有子集组成的集合, 称为A的幂集。记作2A,即2A={s|s A}。 例1 A={1,2,3}
则 2A {,{1},{2},{3},{1, 2},{1,3},{2,3},{1, 2,3}} 例2 (1) A={a}
离散数学 教案 第3章 集合
当n无限增大时,可以记为
21
计算机科学与技术学院
Discrete Mathematics
例1 集合A={x-2<x<2,xR}, B={x0≤x≤4,xR}
求A∪B,A∩B 。 解:A∪B={x-2<x<2或0≤x≤4,xR} ={x-2<x≤4,xR} A∩B={x-2<x<2且0≤x≤4,xR} ={x0≤x<2,xR}
把集合的所有元素写在花括号内,元素之间用逗 号分开;一般用于有限集和有规律的无限集合。
2.描述法 用谓词来概括集合中元素的属性。通常用 { xA(x)}来表示具有性质A的一些对象组成的集合。
例:D={(x,y)x2+y2≤1∧x∈R∧y∈R}
西南科技大学
5
计算机科学与技术学院
Discrete Mathematics 常用集合的表示方法和表示符号 (1)自然数集N={0,1,2,…}
由定义可知,广义交和广义并是针对集族而言的, 对于非集族来说,其广义交和广义并为空集。
西南科技大学
25
计算机科学与技术学院
Discrete Mathematics 下面以n个集合为例说明:
例如:
西南科技大学
26
计算机科学与技术学院
Discrete Mathematics 可以把n个集合的并和交简记为: 和 ,即:
(2)整数集合I={…-2,-1,0,1,2,…}
(3)有理数集合Q={xx=Pq∧p,qZ}
(4)实数集合R={ x x是实数
(5)复数集合C={x x=a+bi∧a,bR∧i2=-1}
西南科技大学
6
计算机科学与技术学院
Discrete Mathematics
3. 归纳定义法
集合的基本概念(离散数学)
并集
01
并集是将两个或多个集合中的 所有元素合并到一个新集合中 。
02
并集运算可以用符号"∪"表示, 例如,A∪B表示集合A和集合B 的并集。
03
并集运算满足交换律和结合律, 即A∪B=B∪A, (A∪B)∪C=A∪(B∪C)。
交集
01
交集是两个或多个集合中共有的元素组成的集合。
02
交集运算可以用符号"∩"表示,例如,A∩B表示集合A和集合 B的交集。
集合的运算
并集
两个集合中所有元素的集合。
交集
两个集合中共有的元素组成的集合。
差集
从一个集合中去除另一个集合中的元素后得到的集合。
03
集合的性质
空集
定义
不含有任何元素的集合称为空集。记作∅。
性质
空集是任何集合的子集,即对于任意集合A,都有∅⊆A。
应用
在数学逻辑和集合论中,空集常用于作为其他集合的基底或参考点。
06
集合的应用
在数学中的应用
在概率论中的应用
集合是概率论的基本概念,用来 表示随机事件。概率论中的许多 概念,如事件的并、交、差等, 都是基于集合运算的。
在几何学中的应用
集合论为几何学提供了统一的数 学语言。在几何学中,点、线、 面等基本元素都可以被视为集合。
在逻辑学中的应用
集合论为逻辑学提供了形式化的 工具,使得逻辑推理更加严谨。 集合论中的集合关系和集合运算, 可以用来表示逻辑中的命题和推 理。
并集
两个或多个集合中所有元素的 集合。
集合
由确定的、不同的元素所组成 的总体。
子集
一个集合中的所有元素都属于 另一个集合,则称这个集合是 另一个集合的子集。
离散数学-3-1 集合的概念和表示法
3-1 集合的概念和表示法 授课人:李朔
Email:chn.nj.ls@
1
一、集合的概念
集合是不能精确定义的数学基本概念, 当我 们讨论某一类对象时,就把这一类对象的 全体称为集合。这些对象称为集合中元素。 元素也是抽象的,无法精确定义,可以认 为是存在于世界上的一切客观物体。 例如:地球上的人。
集合的元素又是能区分的,能区分的是指集合中的元素是 互不相同的。如果一个集合中有几个元素相同,算做一个。 例如集合1,2,3,3和1,2,3是同一集合, {a, b}, {a, a, b}与 {a,a,b,b,b} 是相同的集合。
集合的元素又是无序的,即1,2,3和3,1,2是同一集合。
4
一、集合的概念
2)描述法:用谓词概括该集合元素的属性。
B = { x P(x) } 表示B由使P(x)为真的x组成。
例: B={x x R 3 x ≤ 6 }, C={x x2=1}(={1,-1}) D={y| y是教室中所有听课的同学}
集合的元素必须是确定的。所谓确定的,是指任何一个对 象是不是集合的元素是明确的、确定的,不能模棱两可。 即对于集合A,任一元素a,要么a属于A,要么a不属于A, 两者必居其一。
集合的元素还可以允许是一个集合,如S= 1,2, 3, {a},a
5
二.集合之间的关系
集合之间有二种基本关系:
1)相等:两个集A,B称作相等,当且仅当A,B的元素完 全相同,记A=B,否则AB。(P82 外延性原理) 例 { {1, 2}, 4} {1, 2, 4} { 1, 3, 5 }={x x是正奇数} 2)子集(P83 定义3-1.1):A,B为两个集合,若A的每 个元素都是B的元素,称A为B的子集,或A包含在B内, 或B包含A,记AB或BA。 即 A B x(xAxB) 根据子集的定义,可立即有:对任意集合A,B,C: 1)AA; (自反性) 2)AB,BC则AC;(传递性)
离散数学知识点归纳
离散数学知识点归纳一、集合论。
1. 集合的基本概念。
- 集合是由一些确定的、彼此不同的对象组成的整体。
这些对象称为集合的元素。
例如,A = {1,2,3},其中1、2、3是集合A的元素。
- 集合的表示方法有列举法(如上述A的表示)和描述法(如B={xx是偶数且x < 10})。
2. 集合间的关系。
- 子集:如果集合A的所有元素都是集合B的元素,则称A是B的子集,记作A⊆ B。
例如,{1,2}⊆{1,2,3}。
- 相等:如果A⊆ B且B⊆ A,则A = B。
- 真子集:如果A⊆ B且A≠ B,则A是B的真子集,记作A⊂ B。
3. 集合的运算。
- 并集:A∪ B={xx∈ A或x∈ B}。
例如,A = {1,2},B={2,3},则A∪B={1,2,3}。
- 交集:A∩ B = {xx∈ A且x∈ B}。
对于上述A和B,A∩ B={2}。
- 补集:设全集为U,集合A相对于U的补集¯A=U - A={xx∈ U且x∉ A}。
二、关系。
1. 关系的定义。
- 设A、B是两个集合,A× B的子集R称为从A到B的关系。
当A = B时,R称为A上的关系。
例如,A={1,2},B = {3,4},R={(1,3),(2,4)}是从A到B的关系。
2. 关系的表示。
- 关系矩阵:设A={a_1,a_2,·s,a_m},B={b_1,b_2,·s,b_n},R是从A到B的关系,则R的关系矩阵M_R=(r_ij),其中r_ij=<=ft{begin{matrix}1,(a_i,b_j)∈ R0,(a_i,b_j)∉ Rend{matrix}right.。
- 关系图:对于集合A上的关系R,用节点表示A中的元素,若(a,b)∈ R,则用有向边从a指向b。
3. 关系的性质。
- 自反性:对于集合A上的关系R,如果对任意a∈ A,都有(a,a)∈ R,则R 是自反的。
例如,A={1,2,3},R = {(1,1),(2,2),(3,3)}是自反关系。
离散数学集合的基本概念(一)
离散数学集合的基本概念(一)离散数学集合的基本概念集合是离散数学中最基本的概念之一,它是由一些确定的、互不相同的对象组成的整体。
这些对象被称为集合的元素,可以是任何事物,比如数字、字母、人、动物等。
在集合中,元素的顺序和重复是无关紧要的。
集合的表示集合通常用大写字母表示,如A、B。
元素属于集合时,通常用小写字母表示,如a、b。
一个元素a属于某个集合A时,表示为a∈A。
不属于某个集合时表示为a∉A。
集合的表示形式1.列举法:通过逐个列举出集合中的元素来表示集合。
例如,集合A={1, 2, 3}表示A为包含元素1、2、3的集合。
2.描述法:通过描述元素的特征来表示集合。
例如,集合A={x|x为正整数,且x<4}表示A为包含不大于3的正整数的集合。
1.并集:将两个集合中的元素合并在一起,形成的新集合包含了两个集合中的所有元素,且没有重复。
用符号∪表示。
例如,A∪B 表示集合A和集合B的并集。
2.交集:求两个集合中共有的元素,形成的新集合包含了两个集合中的所有共有元素。
用符号∩表示。
例如,A∩B表示集合A和集合B的交集。
3.差集:求一个集合中去除另一个集合中的元素后的剩余元素。
用符号-表示。
例如,A-B表示集合A去除集合B的元素后的剩余元素。
4.补集:求一个集合关于全集的差集。
用符号’表示。
例如,A’表示集合A的补集。
集合的性质1.互斥性:两个集合没有共同的元素时,称为互斥的。
两个互斥的集合的交集为空集。
2.包含关系:一个集合包含另一个集合时,称为包含关系。
包含关系可以是真包含或假包含,当一个集合包含另一个集合且两者不相等时,称为真包含。
3.幂集:一个集合所有可能的子集的集合称为幂集。
离散数学中的集合理论在计算机科学、信息技术、逻辑学、概率论等领域有着广泛的应用。
集合的概念和基本操作可以用于解决各种问题,例如数据处理、算法设计、数据库管理等。
以上是对离散数学集合的基本概念及相关内容的简要介绍,希望可以对读者有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B (x)( x A x B) (x)( x B x A)
四、特殊的集合
1、空集
定义3-1.3:不含任何元素的集合称为空集,记作。 ={x|p(x)p(x)} 例如:X={x|x2+1=0,xR}是空集。 注意:{},{} 定理3-1.2:对于任意一个集合A,A。 证明:反证法,假设存在一个集合A,使得A为假。 则存在x且xA,这与空集的定义矛盾,所以A, 空集是任意集合的子集。
理发师悖论(罗素悖论)
20世纪英国著名哲学家、数学 家罗素提出一个著名的悖论 ——“理发师难题”,其内容如 下: 西班牙的塞维利亚有一个理发 师,这位理发师有一条极为 特殊的规定:他只给那些“不 给自己刮胡子”的人刮胡子。
罗素悖论
罗素构造了一个集合S:S由一 G.弗雷格在收到罗素介绍这一悖论 切不是自身元素的集合所组 的信后伤心地说: “一个科学家所遇 成。 到的最不合心意的事莫过于是在他 罗素问:S是否属于S呢? 的工作即将结束时,其基础崩溃了 。罗素先生的一封信正好把我置于 如果S属于S,根据S的定义,S 这个境地。 ” S;反之,如果S不 就不属于 属于S,同样根据定义,S就 属于S。无论如何都是矛盾的 可以说,这一悖论就象在平静的 。 数学水面上投下了一块巨石,而
4、对称差 定义3-2.5:设A、B是任意两个集合,集合A和B
的对称差,其元素或属于A,或属于B,但不能既 属于A又属于B,记作AB。
集合的分类
•空集和只含有有限多个元素的集合称为有限集 (finite sets),否则称为无限集(infinite sets)。 •有限集合中元素的个数称为集合的基数 (cardinality)。集合A的基数表示为 A。
二、集合的三种表示方式:
(l)列举法 将集合的元素列举出来。 (2)描述法 利用一项规则(一个谓词公式),描述集合 中的元素的共同性质,以便决定某一物体是否 属于该集合。 (3)归纳法 用递归方法定义集合。
2、并集 定义3-2.2:设任意两个集合A和B,所有属于A 或属于B的元素组成的集合,称为A和B的并集, 记作AB。 AB={x|x Ax B} 文氏图
举例
例1:A={1,2,3,4},B={2,4,5},AB={1,
2,3,4,5}
例2:设A是奇数集合,B是偶数集合,AB是整
1、列举法:将集合的元素列举出来 例:A={a,b,c,d},A1={1,3,5,7, 9,……} 使用列举法,须列出足够多的元素以反映集合中 成员的特征。如:B={2,4,8,……} 若x=2n,则 B={2,4,8,16,32,……} 若x=2+n(n-1),则 B={2,4,8,14,22,……} 2、描述法:A={x|P(x)}或A={x:P(x)} 例: C={x|1x5,xR}, D={(x,y)|x2+y21,x,yR} F={x|x是中国的一个省}
说明: 1、描述法中C={x|1x5,xR}与 C={y|1y5,xR}表示同一个集合。 2、集合中元素是无序的。{a,b,c},{b, c,a},{c,a,b}表示同一个集合。 3、集合中的元素可能也是集合,例:A={1, 2,{1},{1,2,3}},1A,{1}A。
三、集合的关系
推论:空集是唯一的。 证明:设1,2是两个空集,则12, 21,得1=2,所以空集是唯一的。
2、全集 定义3-1.4:在一定范围内,如果所有集合均是 某一集合的子集,则称该集合为全集。记作E。 E={x|p(x)p(x)} 3、幂集 定义3-1.5:给定集合A,由A的所有子集为元素 组成的集合称为A的幂集,记作(A)或2A。 (A)={u|uA} 例:设A={1,2,3},写出A的幂集(A)。 解:(A)={,{1},{2},{3},{1,2}, {1,3},{2,3},{1,2,3}}
数集合,AB=。
性质:
a)AA=A b)AE=E c)A=A d)AB=BA e)(AB)C=A(BC) f)AAB,BAB
举例
例题3:设AB,CD,求证ACBD。
证明:对任一x AC,则x A或x C, (1)若x A,则x B,故x B D ; (2)若x C,则x D,故x BD。 因此ACBD。
设A,B,C为任意集合,根据定义,显然有: 包含关系具有自反性:A A 包含关系具有传递性:若A B且B C,则A C。
注:可能AB或BA ,也可能两者均不成立,不 是两者必居其一。
例:A={1,2,3},B={1,2},C={1,3}, D={3},F={1,4},
则BA, CA, DC, FA
证明:若AB,对任意xA必有x B, (1)对任意x AB,则x A或x B,即x B, 所以AB B。 (2)又B AB ,因此得到AB=B 。 反之,若AB=B,因为A AB ,所以A B 。 同理可证得AB=A
3、差集、补集
定义3-2.3:设A、B是任意两个集合,所有属于 A而不属于B的元素组成的集合称为B对A的补集, 或相对补,(或A和B差集)记作A-B。 A-B={x|xA∧xB} 文氏图
一般地如果|A|=n,则: A的0元子集有Cn0=1个,即空集, 1元子集有Cn1个, 2元子集有Cn2个, …, n-1元子集有Cnn-1个, n元子集有Cnn个。 所以A的子集个数为:Cn0+Cn1+Cn2+…+Cnn=2n。 有: 定理3-1.3:如果有限集A有n个元素,其幂集 (A)有2n个元素。
3-1 集合的概念和表示法
一、集合的基本概念
集合是一些确定的、作为整体识别的、互相区别的 对象的总体。 组成集合的对象称为集合的成员(member)或元素 (element)。 一般用大写字母表示集合,用小写字母表示元素。 例如A表示一个集合,a表示元素,如果a是A的元素, 记为:aA,读作“a属于A”、“a是A的元素”、“a是A 的成员”、 “a在A之中”、“A 包含a”。 如果a不是A的元素,记为: aA ,读作“a不属于 A ”。
离 散 数 学
Discrete Mathematics
山东科技大学 信息科学与工程学院
集合论
十九世纪下半叶,康托尔创立了著名的 集合论,在集合论刚产生时,曾遭到 许多人的猛烈攻击。但不久这一开创 性成果就为广大数学家所接受了,并 且获得广泛而高度的赞誉。 数学家们发现,从自然数与康托尔集合 论出发可建立起整个数学大厦。因而 集合论成为现代数学的基石。
性质:
a)AA=A b)A= c)AE=A d)AB=BA e)(AB)C=A(BC) f)ABA,ABB
举例
例题4:设AB,求证ACBC。 证明:对任一个x AC,则x A且x C, 因为有AB,若x A,则x B, 所以x B且x C,故x BC。 因此ACBC。
它所引起的巨大反响则导致了第 三次数学危机。
危机产生后,数学家纷纷提出自己的 解决方案:
人们希望能够通过对康托尔的集合论进行改造,通过 对集合定义加以限制来排除悖论证排除一 切矛盾;另一方面又必须充分广阔,使康托尔集合 论中一切有价值的内容得以保存下来。” 1908年,策梅罗在这一原则基础上提出第一个公理 化集合论体系,后来经其他数学家改进,称为ZF 系统。这一公理化集合系统很大程度上弥补了康托 尔朴素集合论的缺陷。 公理化集合系统的建立,成功排除了集合论中出现的 悖论,从而比较圆满地解决了第三次数学危机。
定义3-2.4:设E为全集,任一集合A关于E的补, 称为A的绝对补,记作A。 A=E-A={x|xE∧xA} 文氏图
性质:
a)(A)=A b)E= c)=E d)AA=E e)AA=
定理3-2.4 设A,B为任意两个集合,则下列关系 式成立。 a)(AB)=AB b)(AB)=AB 定理3-2.5 设A,B为任意两个集合,则下列关系 式成立。 a)A-B=AB b)A-B=A-(AB) 定理3-2.6 设A,B,C为三个集合,则 A(B-C)=(AB)-(AC) 定理3-2.7 设A,B为任意两个集合,若AB,则 a)BA b)(B-A)A=B
例:A={a, },判断下列结论是否正确。 (1) A,(2) A,(3){}A (4){}A,(5)aA, (6) aA, (7){a}A, (8){a}A, 结论(1)、(2)、(3)、(5)、(8)正确。
3-2 集合的运算及其性质
一、集合的运算
1、交 定义3-2.1:设任意两个集合A和B,由A和B的所 有共同元素组成的集合,称为A和B的交集,记为 AB。 AB={x|xAxB}
文氏图
举例
例1:A={0,2,4,6,8,10,12},B={1,2, 3,4,5,6},AB={2,4,6} 例2:设A是平面上所有矩形的集合,B是平面上 所有菱形的集合,AB是所有正方形的集合。 例3:设A是所有能被K整除的整数的集合,B是 所有能被L整除的整数的集合,AB是所有能被K 与L最小公倍数整除的整数的集合。
定理3-2.2 设A,B为任意两个集合,则下 列吸收律成立。 a)A(AB)=A b)A(AB)=A
证明: a)A(AB)=(AE)(AB) =A(EB)=AE=A b)A(AB)=(AA)(AB) =A(AB)=A
定理3-2.3 AB,当且仅当AB=B或 AB=A。
集合论
第3章 集合和关系 第4章 函数
第三章 集合与关系
本章主要讲授集合论的基本知识,包括集合 运算、包含排斥原理、笛卡尔积、关系及其性质、 关系的运算、特殊关系(包括等价关系、相容关 系、序关系)等。 重点是集合的运算、关系及其表示、关系 的性质、关系的闭包、等价关系、偏序关系。 难点是关系的性质、等价关系、偏序关系的证明。
定理3-2.1 设A,B,C为三个集合,则下列分配律成立。 a)A(BC)=(AB)(AC) b)A(BC)=(AB)(AC)
证明: a)设S= A(BC),T= (AB)(AC),若x S,则x A且x BC,即x A且 x B或 x A且 x C, x AB或x AC即x T,所以S T。 反之,若x T,则x AB或x AC, x A且 x B或 x A且 x C,即x A且x BC,于是x S,所以TS。 因此,S=T。 b)证明完全与a)类似。