各系统之间的干扰分析
超短波通信系统干扰问题分析及其应对策略
超短波通信系统干扰问题分析及其应对策略超短波通信系统作为一种传输速度快、信号传输稳定可靠的通信系统,被广泛应用于各个领域,如公共安全、铁路、气象、军事等。
然而,随着通信设备的增多,超短波通信系统面临着越来越严峻的干扰问题。
本文将分析超短波通信系统干扰问题及应对策略。
一、超短波通信系统干扰问题1.电磁干扰由于超短波通信系统的频率在300MHz-3GHz之间,这个频段被许多电子设备使用,如电视、微波炉、雷达、商业广播等,它们发出的电磁波会对超短波通信系统产生不同程度的干扰影响,影响通信效果。
2.天气干扰超短波通信系统的天线必须直接对准接收位置,如果有天气干扰就会影响信号的传输。
在雷暴、大雨、雾、雪等恶劣天气下,电离层中的天空波会受到天气条件的不同而发生改变,从而影响信号的传输。
3.建筑物遮挡超短波通信系统需要采用室外设备,如天线、转发器等,但这些设备往往会被建筑物、山、树等遮挡,导致信号衰减或者完全丧失,从而影响通信质量。
二、超短波通信系统应对策略1.调整工作频率超短波通信系统可以通过调整频率的方式避免或减少电磁干扰,但这需要进行其他联络系统,因为在使用频率带时必须遵循特定规定和协议。
2.选择合适的天线应该选择最适合工作环境的合适天线。
在建筑物中,可以采用高分辨率天线,而在山区或多树林的地区,可以采用大方向天线,以避免遮挡。
3.加强通信安全加强通信系统安全是应对干扰问题的一种重要策略。
可以采用加密技术、访问密码、密钥管理等安全措施,防止外部入侵和非法盗窃信息。
4.增强设备防护加强设备的防护工作可有效减少天气因素对通信设备的影响。
可以采用防水工艺和耐用的防水材料,对设备进行外壳加固和防雨处理,以提高设备的可靠性和耐用性。
5.有效维护设备保持设备干净、整洁、工作正常是有效应对干扰问题的另一项重要措施。
可以定期对设备进行维护和保养,及时修复设备故障,以保证通信系统设备的正常工作状态。
综上所述,随着超短波通信系统的不断应用,干扰问题日益突出。
GSM系统上行干扰分析
GSM系统上行干扰问题的分析GSM系统上行干扰问题的分析GSM移动通信技术在我国迅速发展,目前已经发展相当成熟的阶段,在实际的网络优化工作中,发现GSM 系统受到的上行干扰问题已经成为网络优化中一个不容忽视的重要问题。
上行干扰会使系统掉话率增加,减少基站的覆盖范围,降低通话质量,使网络指标和用户的通话质量受到严重影响。
摩托罗拉GSM系统中采用IOI指标来衡量系统受到上行干扰的程度。
IOI(Intereference on idle)表示话音信道在空闲模式下收到的上行噪声信号强度。
例如:如果某话音信道的IOI统计值为15,则表示系统在该时隙收到的上行干扰噪声电平为-110dbm-15=95dbm,-110dbm为系统的参考电平。
该统计指标是基于时隙统计的。
如果IOI统计大于10,一般认为基站受到较强的上行干扰,由此会产生掉话和话音质量差的情况,需要进行解决。
上行干扰分类及产生原因,解决方法:根据在实际网络优化工作中长期对IOI高问题的分析,基本上可以认为IOI高的原因可以分为以下几类:一、无线系统自身问题造成IOI高无线系统自身问题一般集中在天线器件、基站接收通路的问题上,由于基站子系统问题造成的上行干扰高存在以下规律:IOI统计值随话务量变化,话务量高时,IOI也随之增高,到了深夜话务量降低后,IOI统计恢复正常。
一般如果出现这样的规律,首先要考虑无线子系统的问题。
图1为正常情况下在基站接收到的GSM上行信号频谱(中国移动为890Mhz—909Mhz)。
图2为某基站高话务量时测试到的上行频谱。
从图2的频谱中可以明显看出,GSM200K的脉冲信号已经进乎方波,分不清信号与噪声的区别。
从指标和频谱上分析,基本上判断该小区的天线由于老化造成性能下降,引起上行信号干扰问题,更换新天线后,频谱恢复正常,IOI统计从忙时20左右降低到1左右,各项指标恢复正常。
除了天线问题引起上行干扰外,接收通路的器件老化、损坏也会造成频谱异常,具体问题需要现场测试分析解决。
DCS控制系统应用中的抗干扰问题分析
DCS控制系统应用中的抗干扰问题分析DCS控制系统是现代化工自动化生产中的重要组成部分,其应用范围涵盖了化工、石化、电力、冶金等多个行业领域。
在实际应用中,DCS控制系统经常会受到各种外部干扰的影响,这些干扰可能来源于电磁干扰、物理环境变化、人为操作等多个方面,严重干扰可能导致系统运行不稳定、控制失效甚至系统瘫痪。
如何在DCS控制系统应用中解决和抵御各种干扰问题,成为了当前工业控制系统领域中的研究热点之一。
本文将对DCS控制系统中的抗干扰问题进行分析,并提出相应的解决方案。
一、电磁干扰对DCS控制系统的影响电磁干扰是DCS控制系统中常见且严重的干扰源之一。
其种类包括电磁辐射干扰、传导干扰等。
电磁干扰可能来自于外部设备、电力线路、无线电信号、雷电等多个方面,其频率范围也十分广泛。
电磁干扰会对DCS控制系统的传感器、执行元件、通信线路等组成部分造成影响,导致控制系统的工作异常,甚至失效。
电磁干扰不仅会使得传感器接收的信号产生误差,还可能引起控制命令的传输错误,从而对整个生产过程产生严重的影响。
为了解决电磁干扰对DCS控制系统的影响,可以采取一系列的技术手段。
在系统设计阶段应该合理规划布置设备,避免将敏感的传感器和执行元件置于强电磁干扰源附近。
可以采用屏蔽措施,如使用屏蔽电缆、屏蔽罩等设备,阻隔外部电磁干扰。
还可以采用滤波器、隔离器等设备对信号进行处理,消除电磁干扰对系统的影响。
通过以上技术手段的综合应用,可以有效提高DCS控制系统对电磁干扰的抵御能力,保障系统的正常稳定运行。
除了电磁干扰外,物理环境变化也会对DCS控制系统产生一定的影响。
物理环境变化主要包括温度、湿度、气压等因素的变化,这些因素的变化可能会导致系统中的传感器、执行元件的性能产生变化,从而对控制系统的稳定性产生影响。
在特殊工业环境中,如高温、高湿或者腐蚀性环境下,物理环境变化对DCS控制系统的影响尤为突出。
针对物理环境变化对DCS控制系统的影响,可以采取一系列的防护措施。
控制系统的干扰
分类:内部干扰与外部干扰
内部干扰
指由系统内部元件或部件产生的干扰,如热噪声、电源波动 、机械振动等。这类干扰通常难以消除,但对某些系统来说 ,可以通过优化设计、选用更高质量的元件或部件来降低其 影响。
外部干扰
指由系统外部环境因素引起的干扰,如温度变化、湿度、压 力、光照、电磁噪声等。这类干扰通常难以预测和控制,但 对某些系统来说,可以通过采取适当的防护措施来减轻其影 响。
控制系统的干扰
目录
• 干扰的定义与分类 • 干扰对控制系统的影响 • 控制系统的抗干扰设计 • 干扰抑制技术 • 控制系统干扰实例分析 • 未来控制系统的抗干扰技术展望
01
干扰的定义与分类
定义
干扰是指对控制系统产生不良影响的 各类因素,这些因素可能导致系统输 出量的变化,从而影响系统的稳定性 、准确性和可靠性。
硬件抗干扰设计
电源滤波
通过在电源线路上加装滤波器, 减少电源线上的噪声干扰,保证 控制系统供电的稳定性。
接地设计
合理设计接地系统,降低电磁干 扰和静电干扰的影响,提高控制 系统的抗干扰能力。
信号线保护
选用屏蔽电缆,并采用合适的信 号线布局和走向,以减少外部电 磁场对信号线的干扰。
软件抗干扰设计
数字滤波
调节时间延长
干扰可能使控制系统调节时间延长, 影响系统对变化的响应速度和适应性。
安全影响
安全风险增加
干扰可能导致控制系统出现异常行为,如超调、失控等,增加设备损坏、生产事故等安全风险。
紧急情况处理不当
在紧急情况下,干扰可能导致控制系统无法及时、准确地响应,影响紧急情况的快速处理和应对。
03
控制系统的抗干扰设计
多制式室内分布系统干扰问题分析
Ⅳ一 r
接 收噪声 系数 (B d m)
表 3示 出的是各 系统 的干 扰容 限计算 值 。
8 6 1 Hz, 0 8 7 ~9 5M 171 -17 5 MHz T D-S DMA 19 0 2 C 0 ~19 0M Hz
= 一
3 OMHz ~1GHz l 27 ~1 . 5 GHz
-6 3 -6 3
1 Ok 0 Hz 1MHz
C MA 蜂 窝 D 发 信 机 8 6 8 1MHz 8 5 9 5MH 0 ~ 2 . 8 ~ 1 z
9 0~ 6 3 9 0 MHz 17- .2 GHz, , . 19 3 4~ . 3 GHz 35
3 MHz
日 厂__被 干扰 系统 的信道 带宽 表 2示 出 的是 根据 式 ( ) 出 的各 系统 对 其他 系 1得 统 的杂 散干扰 功率 。 12 杂散 干扰 容 限值 .. 3 不 同系统 的杂 散干 扰容 限值 取决 于该 系统 的热 噪
声、 干扰 保护及 接 收噪声 系数 , 计算公 式 为 其
的载波 功率 ,超 过 自身系 统所能 承受 的容 限会导 致接 收机过 载 , 大器 增益 被抑 制 , 备性 能下 降 。 放 设
其 他 1 1.5G ~ 27 Hz
-0 3
l z MH
出的是各 系统规 定 的杂散 干扰 。
1 . 杂散 干扰值 .2 2
各系 统对其 他 系统 的杂散 干扰 的计算 公 式为
-9 8 -3 0
1 okHz 0 1 MHz
1 . 杂散 干扰 最小 隔 离度 .4 2 根 据各 系统 的杂散 干 扰 值及 杂 散 干扰 容 限值 , 可 以得 出系统 之 间杂散 干扰 最小 隔离 度 , 计算公 式 为 其
TD-LTE(F)系统干扰问题分析
会 落在 T D — L T E规模 试验 中使用 的 F频段 ( 1 8 8 0~
l 9 0 0MHz ) 。
一
接头和跳线问题 引起互调 的小 区数为 3 个 ,占总小 区数
以下 因素将 会对 T D— L T E F频段 组网
一
7 … … … | | 骺Ⅳ ,
扰类型。
新 的频率 ,若这个新 的频率 正好落于某一个信道而为工 作于该信道的接收机所接收,即构成对该接收机的干扰 ,
成为互调干扰 。
干扰排查 测试 : 针对 深圳 T D — L T E扩大规模试验
网站点开展干扰排查,从 N I 统计分析网上最强干扰的
L T E站点,共选取现网至少 l 0个站 l 5 个扇区开展干扰 排查。测试方法包括 : T D— L T E天线扫频 、DC S / G S M
9 0
1 0 o l l 0
~
带来较大干扰 :
\
一
_ 更换 天 线Nt
闭DC S 站 NI
( 1 )现 网部分 2 G网络天馈 系统无源互
舅
∞
—
调指 标较差 ,带来 T D — L T E系统 的互调 干
ቤተ መጻሕፍቲ ባይዱ扰。
氍
Z
—
1 2 0
l 3 0 1 4 0
T D — L T E ( F ) 系统干扰 问题分析
王雷 ,张 海涛 ,吴祖辉 ,李 木荣
( 中 国移 动通信 集 团设计 院有 限公 司 ,北京 1 0 0 0 8 0 )
摘 要 T D L T E 采用F 频段 组网面临着较为复杂的干扰 问题 ,异系统干扰将会导致 系统吞 吐能力 的下降。本文对 T D L T E F 频段的干扰原因进行分析 ,并通过现网测试确认相关干扰源,最后提 出T D L T E 系统与其他各系 统的隔离度要求及F 频段天面规划设计流程。 关键 词 T D L T E ;F 频段 ;干扰 ;隔离度 T N 9 2 9 . 5 文献标 识码 A 文章编 号 1 0 0 8 — 5 5 9 9( 2 0 1 3 ) 0 9 — 0 0 4 2 0 6
35G频段无线接入系统的干扰分析
3.5GHz频段无线接入系统干扰分析自从2001年8月信息产业部以公开招标的方式作为试点分配以来,已顺利开展了三批3.5GHz频率招标发放工作,通过加大对地面固定接入频率的投放,3.5GHz系统使运营商增强了市场的快速接入反应的能力,但随之而来的问题就是如何科学有效地规避频率间的干扰。
在分析频率干扰之前,首先介绍抗频率干扰通常采用的五种方式。
频率隔离:通过规划不同的扇区、不同的远端站使用不同的频率来达到频率隔离的目的。
目前系统发信机的邻道功率指标和收信机的相邻信道选择性均可做到30dB左右,因此使用不同的频率是最好的抗干扰手段之一。
距离隔离:无线电波在传输中遇到不同介质的界面时会产生反射,导致反射损耗,在使用平面大地模型计算场强时,电波传播损耗与收发天线间距离的四次方成反比,即每倍程的电波传播损耗为12dB。
3.5GHz系统传输距离一般不超过10km,因此同频信号复用的距离越大,系统抗干扰的能力也就越强。
极化隔离:通过使用载波的不同极化方式来加大载波间的隔离度。
目前3.5GHz系统天线的极化隔离可以达到25dB左右。
方向隔离:通过使用扇区天线或定向天线的不同朝向来对载波发射和接收方向加以区分。
目前基站天线的前背比可达到25dB左右,远端站天线的前背比可达做到22dB左右。
其他:在实施中还可依据具体地形地物进行隔离以减少干扰,并通过调整基站发射功率、天线高度、天线倾角来控制基站覆盖范围以减少不同基站覆盖的交叠区和越区现象。
一、3.5GHz系统设备发射频谱模版分析目前,3.5GHz频段地面固定无线接入系统在每个城市中可使用的带宽为31.5MHz,被三家运营商平分后每个网络仅可使用10.5MHz的带宽来组网。
由于带宽窄、频点少,且每个网络所使用的频率中都有一部分与其他网络属于邻频,这就要求运营企业在进行频率规划时要着重考虑如何克服频率干扰问题。
以TDMA为工作方式的3.5GHz系统设备发射频谱模版,如图1以及表1至表4所示。
电力系统中的谐波与电磁干扰分析
电力系统中的谐波与电磁干扰分析导言:电力系统是现代社会运转的重要基础设施之一,但在其运行过程中,常常会面临谐波和电磁干扰的问题。
谐波是指电力系统中出现的频率是基波频率的整数倍的电压或电流成分,而电磁干扰则是指电力系统中的电磁波辐射对其他电子设备和通信系统的干扰。
本文将深入分析电力系统中的谐波和电磁干扰的原因、危害以及相应的解决方法。
一、谐波的形成和危害1. 谐波的形成谐波是由于非线性负荷在电力系统中的存在引起的。
非线性负荷如电子电器、电感、电容等设备,在工作时会产生非线性电流,在电源电压的作用下,会将谐波电流注入电力系统中。
这些谐波电流会使电力系统中的电流波形变成失真的非正弦波形。
2. 谐波的危害谐波对电力系统和设备都会造成一定的危害。
首先,谐波会引起电力系统中的电流和电压的失真,导致电能质量下降。
其次,谐波会引发电力系统中的共振问题,进而损坏电容器、互感器等设备。
此外,谐波还会导致电力系统中的电机运行不稳定,降低设备的寿命,甚至引起设备的故障和损坏。
因此,谐波问题应引起足够的重视。
二、电磁干扰的产生和危害1. 电磁干扰的产生电磁干扰是电力系统中的电磁波辐射对其他电子设备和通信系统的干扰。
电力系统中各种设备和传输线路中的电流和电压会产生电磁场,这些电磁场以无线电波的形式辐射出去,与其他设备和系统产生相互作用,引起电磁干扰问题。
2. 电磁干扰的危害电磁干扰会带来许多危害。
首先,电磁干扰会影响通信系统的正常运行,导致通信中断、信息传递错误等问题。
其次,电磁干扰会影响其他电子设备的正常工作,引起设备的故障和损坏。
此外,电磁干扰还可能对人体健康造成一定的影响,引起生理和心理方面的问题。
三、谐波和电磁干扰的解决方法为了解决电力系统中的谐波和电磁干扰问题,可以采取以下方法:1. 谐波的解决方法(1)降低非线性负荷的影响:通过选用低谐波电器设备、采用滤波电容器等措施来减少非线性负荷对电力系统的谐波注入。
(2)滤波器的应用:在电力系统中安装合适的谐波滤波器,可以过滤掉谐波成分,减少谐波的产生和传播。
不同移动通信系统之间的干扰成因分析及对策建议
不同移动通信系统之间的干扰成因分析及对策建议■杨海林一、引言随着我国无线电事业的迅猛发展,无线电新技术、新业务的广泛应用,各类无线电台(站)数量急剧增加,无线电干扰现象也日趋严重。
特别是移动通信从2G向3G发展的今天,新的移动网络快速发展,频谱资源日趋紧张,各种潜在的干扰源正以惊人的速度不断产生。
我国也是世界上唯一一个拥有各种移动通信系统的国家。
中国移动有GSM900、GSM1800、TD-SCDMA;中国联通有GSM900、GSM1800、WCDMA;中国电信有CDMA、CDMA2000、PHS。
三家移动运营商以不同的移动通信体制占用800~1000M,1.7~2.4G频谱。
由于不同运营商网络配置不当、盲目扩大网络覆盖范围,导致不同系统间产生干扰,同时由于各系统采用不同的复用方法来提高频谱效率,以增加系统容量,以及直放站的滥用,同时带来了同频干扰和邻频干扰。
另外,由于频率配置不科学从而产生互调干扰;由于采购成本的下降致使有一些设备存在很多问题,从而产生杂散干扰和谐波;对于同址的基站,由于各运营商的移动通信基站都架设在一个狭小楼顶上,天线的垂直和水平距离都达不到要求,经常是天线之间互相照射,从而产生阻塞干扰。
系统还存在由于电波传播的多径效应以及其它无线射频设备造成的干扰等。
无线干扰信号会给基站覆盖区域内的移动通信带来许多问题,如掉话、通话质量差、信道拥塞等;同时也影响到了航空通信、水上通信、高铁运行等业务安全,直接威胁到社会稳定、国家安全和人民生命财产的安全。
二、移动通信系统主要干扰源产生的原因移动网内主要干扰有同频干扰、邻频干扰、杂散干扰、阻塞干扰、互调干扰。
(一)同频干扰:是指无用信号的载频与有用信号的载频相同,并对接收同频有用信号的接收机造成的干扰。
产生原因主要为现在移动网一般采用频率复用的技术以增加频谱效率。
对于GSM网而言,在网络规模不断扩大的情况下,由于频率资源的限制,频率复用度必然增加。
室内分布多系统共存干扰分析
有效手段 ,主要用于数据业务的分流 ,有效减轻 G S M网络 的数 据业务压力 。在T D — L T E 正式商用后 ,还新增T D— L T E 的室 内覆
讨 相 应 的规 避措 施 与方 案 ,为 四 网融 合 室 内分 布 系统 建设 方 案 的
设 计 提供 建 议 。
1 室 分 多 系统干 扰 原理
扰 。它 与 被 干扰 系统 接 收机 的 带 外抑 制能 力 直接 相 关 ,涉 及干 扰 系统 的发 射机 功 率 、被 干扰 系 统接 收 机滤 波器 特 性 等 因素 。从 本 质 上来 说 ,在 只存在 有 用信 号 的情 况 下 ,如 果信 号过 强 也可 能 产
信 系统 共存 的 网络格 局 。为 了充 分保 障 用 户 的感 知 体验 , 实现 对 用 户业 务 的有 效 吸 收 ,必须 确保 各 制 式 通信 网络 良好 的 覆
盖 以及优 良的 网络 性 能 。本 文分 情 况详 细 分析 了室 内分 布 系统 中存 在 的各 种 干扰 ,并给 出 了相 应 的规避 措 施 与方 案 。
此 杂 散干 扰 对于 接 收机 来 说通 常 是无 能 为 力的 ,只 能通 过 在发 射 端 加装 滤 波 器等 手段 进 行规 避 。 杂 散 干 扰 对 被 干 扰 系 统 的 直 接 影 响 可 简 单 的 理 解 为 对 被 干 扰 系统 接 收机 底 噪 的抬 升 ,这 将使 得 接收 机 灵敏 度 降低 ,从而 影 响 上行 链 路 的覆 盖和 小 区边 缘 的终 端 发射 功 率 。 ( 2)杂 散 干扰 规 避 原 则 。 为了 防 止 干扰 系 统 的 杂散 信 号 对 接 收机 的 接 收灵敏 度 过 度 恶化 ,必 须 对杂 散 干. t f t  ̄ 行 规 避 ,限 制
中国移动4G网络系统干扰分析及解决方案
中国移动4G网络系统干扰分析及解决方案随着移动通信技术的不断发展,中国移动4G网络系统已经逐渐成为人们生活中不可或缺的一部分。
然而,随着4G用户数量的增加,网络干扰问题也逐渐暴露出来。
本文将对中国移动4G网络系统的干扰问题展开分析,并提出相应的解决方案。
一、干扰分析1. 频段干扰频段干扰是指不同频段之间相互干扰的现象。
由于中国移动4G网络使用了特定的频段进行通信,而无线电频率有限,因此频段干扰是一个不可忽视的问题。
频段干扰不仅会导致信号质量下降,还可能导致网络速度变慢甚至无法正常连接。
2. 邻频干扰邻频干扰是指邻近频段之间相互干扰的现象。
由于频段之间存在一定的重叠,邻频干扰是一个非常常见的问题。
当有多个基站同时向用户提供4G服务时,邻频干扰可能会导致网络性能下降,用户体验下降。
3. 多径干扰多径干扰是指信号在传播过程中经过多条路径到达接收器,造成相位差,进而导致干扰的现象。
由于信号的传播路径较多,多径干扰在城市等复杂环境中非常常见。
多径干扰会导致信号功率下降,影响网络的覆盖范围和稳定性。
二、解决方案1. 频段规划和管理为了减少频段干扰,中国移动可以进行频段规划和管理。
通过科学合理地规划频段的使用,避免相邻频段之间的重叠,从而减少干扰的发生。
此外,建立严格的频段管理制度,对使用频段的基站进行监控和管理,及时发现和解决干扰问题。
2. 技术优化中国移动可以通过技术优化来解决邻频干扰和多径干扰问题。
通过合理设置基站的传输功率和接收灵敏度,可以减少邻频干扰的发生。
此外,利用先进的信号处理算法和多天线技术,可以减少多径干扰对网络性能的影响。
3. 干扰源定位和屏蔽对于频段干扰的问题,中国移动可以利用干扰源定位技术来定位干扰源的具体位置,并采取相应的屏蔽措施。
通过精确定位干扰源,可以有效减少干扰对网络的影响,提高网络的稳定性和可用性。
4. 用户教育和管理除了技术手段外,中国移动还可以通过用户教育和管理来解决网络干扰问题。
室分系统干扰总结
室分系统干扰总结1. 简介室分系统(Distributed Antenna System,简称DAS)是一种用于扩展无线通信网络覆盖范围的技术。
它通过在建筑物内部布置一系列的天线和信号放大器,将信号覆盖到各个角落,提供更好的信号质量和稳定性。
然而,在实际应用中,室分系统也面临着一些干扰问题,本文将对室分系统的干扰问题进行总结和分析。
2. 室分系统的干扰类型2.1 外部干扰室分系统的外部干扰是指来自室分系统周围环境的干扰信号。
这些干扰信号可以是来自其他无线通信设备、电磁辐射干扰等。
外部干扰会对室分系统的信号传输和接收产生负面影响,降低通信质量。
2.2 内部干扰室分系统的内部干扰是指室分系统内部组件之间的相互影响产生的干扰。
主要包括信号源的串扰、不良连接引起的反射和漏泄等。
内部干扰可能导致信号衰减、失真和丢失,进而影响系统的性能和可靠性。
3. 室分系统干扰的原因分析3.1 外部干扰的原因分析外部干扰主要由以下几个方面的原因引起:•建筑物结构和材料:建筑物的结构和材料会对无线信号的传播产生影响,如金属结构会产生屏蔽效果,阻碍信号的传输,玻璃、混凝土等材料也会对信号的传播产生一定的干扰。
•其他无线通信设备:周围的其他无线通信设备,如无线路由器、蓝牙设备等,可能会与室分系统使用的频段发生干扰,造成信号质量下降。
•电磁辐射干扰:电子设备、电力设施等会产生电磁辐射,对室分系统产生干扰。
3.2 内部干扰的原因分析内部干扰主要由以下几个方面的原因引起:•信号源的串扰:室分系统中使用的信号源如果存在串扰问题,会导致不同信号之间相互干扰,降低系统的性能。
•不良连接引起的反射和漏泄:室分系统中的连接如果不良,会导致信号的反射和漏泄,降低信号传输的效率和质量。
4. 室分系统干扰的解决方法针对室分系统干扰问题,可以采取以下方法进行解决:4.1 外部干扰解决方法•优化建筑物结构和材料:选择合适的建筑材料和结构设计,减少对无线信号传播的干扰。
地铁无线通信系统干扰分析及抗扰措施
地铁无线通信系统干扰分析及抗扰措施摘要:目前城市地铁中的无线通信系统除了原有的无线专网外,,还有移动、联通以及电信等一些城市商用移动无线公网的引入。
由于地铁空间的局限性,使得通信多系统必须公共几条漏泄电缆来做电波的传输与辐射,各种各样的无线电频率必然会相互之间产生干扰。
因此,如何减少和避免多系统接入时的相互干扰问题是各系统正常工作的关键所在,具有非常重要的工程价值和现实意义。
本文主要对地铁无线通信多系统引入的干扰问题进行分析,并提出了实际的防治措施和解决办法。
关键词:地铁无线通信;多系统引入;干扰分析;措施中图分类号:e965 文献标识码:a 文章编号:引言地铁无线通信系统主要是由专网系统和公网系统组成。
专网主要是指无线调度通信子系统以及车辆段列检库无线通信子系统这两部分,它是地铁提高运营效率,确保地铁可以安全运行的必要保障,也是地铁应对突发事件的有效手段。
公网主要是指移动、联通以及电信等一些城市商用移动无线网络系统,它的功能主要是为人们乘坐地铁时的移动通信提供方便。
地铁无线通信专网与公网的引入涉及多个无线频率,因此必然会产生相互干扰问题,有效的解决该问题是保证地铁安全运营的重要前提。
2、干扰分析为了确保专网与公网能同时工作且相互无影响,必须对专网与公网之间是否存在干扰进行缜密的技术分析。
一方面,若通信系统之间存在干扰,就应在设计和施工阶段对其进行分析,并采取相应的措施,防止两者间干扰的出现。
另一方面,若出现干扰的可能性较小或者干扰可以控制,则应分析并弄清干扰的路由和干扰源,以提高整个系统的安装调试,进而提高整个工程质量。
2.1 同频干扰对于同频干扰的分析,首先需要弄清楚干扰源和干扰路由,还需要知道干扰源发射所产生的干扰功率以及基站可接收的干扰程度,最后,再确定各个环节对干扰的抑制能力。
只有这样,才能得出较为科学的分析结果。
2.2 互调干扰互调发生在非线性器件或者媒介的传播过程当中,互调干扰通常是指互调所产生的信号分量,这些新的分量落入有用信号频道之内就会产生干扰。
多系统合路干扰分析
多系统合路干扰分析多系统合路干扰(co-site interference)是指多个无线系统在同一地点共享同一个天线塔或基站时,由于它们之间的频率和功率参数之间的相互作用,导致彼此之间的信号质量降低。
这种干扰对于现代无线通信系统来说是一个重要的挑战,因为大多数地方都有多个系统同时部署。
在多系统合路干扰分析中,需要考虑以下几个方面:频率规划、功率控制、天线选择和信号处理。
首先,频率规划是解决多系统间干扰的关键。
不同的系统使用不同的频段,但可能存在重叠部分。
频率规划应该避免或最小化频段的重叠,以减少干扰的可能性。
频率规划也需要考虑到不同系统间的频率资源利用效率,以优化系统性能。
其次,功率控制对于减少多系统合路干扰也非常关键。
不同系统间的信号功率应该根据距离和频率资源的分配进行调整,以避免信号之间的相互干扰。
功率控制算法需要考虑到多个系统的功率分配和改变速率,以确保均衡的系统性能。
第三,天线选择也能对多系统合路干扰有所帮助。
合适的天线选择能够减小天线间的互反馈和共振效应,从而减少干扰。
合理的天线布局也能将天线所接收到的外来干扰最小化,提升系统的抗干扰性能。
最后,信号处理是解决多系统合路干扰的重要手段之一、信号处理算法可以通过时域和频域的处理来减小干扰的影响。
例如,通过滤波、均衡和前向纠错等技术来改善接收信号的质量。
除了以上技术,还有其他一些方法可以用于多系统合路干扰的分析和解决,例如系统间的协同工作、动态频谱分配和自适应调整等。
在实际应用中,需要综合考虑以上各个方面,并根据具体情况进行优化选择。
总结起来,多系统合路干扰分析是一个复杂的问题,需要综合考虑频率规划、功率控制、天线选择和信号处理等多个方面的因素。
通过合理的策略和技术手段,可以减少和解决多系统合路干扰,提高系统的性能和可靠性。
卫星通信的常见干扰分析和处理措施
卫星通信的常见干扰分析和处理措施卫星通信是连接世界各地的重要手段之一,但是,干扰也是常见的问题。
干扰会妨碍通信信号的传输,甚至会导致整个通信系统的故障。
为了保证卫星通信系统的正常运行,需要进行常见干扰分析和处理措施。
一、常见干扰分析目前,卫星通信系统中常见的干扰主要有以下几种:1. 自然干扰:如闪电、大气电暴等导致的电磁干扰、太阳风暴等引起的电离层扰动等。
2. 人为干扰:包括恶意干扰和无意中的干扰。
恶意干扰包括干扰源的人为恶意和恐怖主义行为;无意中的干扰包括各种电子设备、无线电、雷达等设备造成的干扰。
3. 天线干扰:当卫星通信信号经过天线时,会受到天线本身或周围环境中的反射物对信号的影响,导致信号损失或失真。
二、常见处理措施为了解决干扰问题,卫星通信系统需要采取不同的处理措施。
1. 采用数字信号处理技术:数字信号处理技术可以对信号进行滤波、降噪、去除干扰等处理,从而使信号质量得到改善。
2. 使用天线阵列系统:天线阵列可以提供更好的方向性和抗干扰能力,可以减少来自周围环境和其他信号源的干扰。
3. 设计高效的信号调制解调器:信号调制解调器可以对信号进行调制和解调,增强信号传输的稳定性和可靠性,从而减少干扰对信号传输的影响。
4. 提高发射功率:增加发射功率可以在一定程度上减少干扰的影响。
但是,这需要在保证安全性的前提下进行。
5. 统一卫星频段分配:在频段分配方面,应该采用国际统一的频段分配方式,以减少不必要的干扰。
6. 加强干扰监测和管理:采用现代化的监测手段,对卫星通信进行严密的监测和管理,及时发现和处理干扰问题。
综上所述,干扰是卫星通信系统中的常见问题,需要采取不同的处理措施来提高信号质量和稳定性。
随着技术的不断进步,相信卫星通信系统会越来越成熟、可靠。
DCS控制系统应用中的抗干扰问题分析
DCS控制系统应用中的抗干扰问题分析DCS控制系统是工业自动化控制的重要手段之一,广泛应用于各个领域,如化工、电力、生物制药、钢铁、水处理等。
在实际应用中,DCS控制系统往往会面临各种各样的干扰,如设备故障、电磁干扰、环境干扰等,这些干扰会使DCS控制系统输出错误的控制信号,导致生产出现问题。
因此,DCS控制系统中的抗干扰问题十分重要。
1.电磁干扰问题电磁干扰是指电磁场中的干扰信号对DCS控制系统产生的影响。
在DCS控制系统中,常见的电磁干扰源包括高压电场、电力设备、雷电等。
电磁干扰主要表现为控制信号失真、误差增大、噪声干扰等。
为了降低电磁干扰对系统的影响,应采用抗电磁干扰措施,如采用屏蔽电缆、增加信号放大器、加强接地等措施。
环境干扰是指环境中的温度、湿度、压力等因素对DCS控制系统产生的影响。
在有些场合下,如化工、电力电站等,环境的恶劣程度比较高,易受到污染、高温、高压等影响。
如果对DCS控制系统进行封闭式防护,可以有效降低环境干扰产生的影响。
3.设备故障问题设备故障是DCS控制系统中最常见的干扰源之一。
设备故障主要包括机械故障、电气故障、软件故障等。
当发生设备故障时,控制系统容易失去控制,导致生产事故。
为了防止设备故障对DCS控制系统的影响,应采用预防维护措施,加强设备检修、故障诊断和修理等工作。
4.人为操作失误问题人为操作失误是DCS控制系统中最容易发生的干扰源之一。
人为操作失误可能包括误操作、误判、误调或操作过程中的失误等,这些失误可能导致控制系统出现巨大的控制误差或设备故障。
为了避免人为操作失误对DCS控制系统的影响,应采用完善的操作规程、培训工作、设备锁定等措施,将操作失误减至最小。
综上所述,DCS控制系统应用中的抗干扰问题是一个综合性的问题,需要系统地研究各种干扰源对系统的影响,采取科学有效的抗干扰措施进行防范和整治,以确保系统稳定、安全、可靠地运行,为生产安全和质量提供有力保障。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.各系统之间的干扰分析1.1.需考虑的干扰类型由于各系统需要共址建设,为了保证各系统间不至于互相影响,需要对各系统间的干扰情况进行分析。
从形成机理的角度,系统之间的干扰可以分为杂散辐射、接收机互调干扰和阻塞干扰(由于一般系统之间的间隔频率可以大约工作带宽数倍,所以系统间一般不容易出现邻频干扰)。
1)杂散辐射(Spurious emissions)由于发射机中的功放、混频、滤波等器件工作特性非理想,会在工作带宽以外较宽的范围内产生辐射信号分量(不包括带外辐射规定的频段),包括电子热运动产生的热噪声、各种谐波分量、寄生辐射、频率转换产物以及发射机互调等。
3GPP 将该部分信号通归为杂散辐射,因为其分布带宽很广,也有文献称为宽带噪声(Wideband Noise)。
邻频干扰和杂散辐射不同,邻频干扰中所考虑的干扰发射机泄漏信号指的是:被干扰接收机所处频段距离干扰发射机工作频段较近,但尚未达到杂散辐射的规定频段的情况;根据3GPP TS25.105,杂散辐射适用于指配带宽以外、有效工作带宽2.5倍以上的频段;当两系统的工作频段相差带宽2.5倍以上时,滤波器非理想性将主要表现为杂散干扰。
2)接收机互调干扰包括多干扰源形成的互调、发射分量与干扰源形成的互调(TxIMD)、交叉调制(XMD)干扰3种。
多干扰源形成的互调是由于被干扰系统接收机的射频器件非线性,在两个以上干扰信号分量的强度比较高时,所产生的互调产物。
发射分量与干扰源形成的互调是由于双工器滤波特性不理想,所引起的被干扰系统发射分量泄漏到接收端,从而与干扰源在非线性器件上形成互调。
交叉调制也是由于接收机非线性引起的,在非线性的接收器件上,被干扰系统的调幅发射信号,与靠近接收频段的窄带干扰信号相混合,将产生交叉调制。
3)阻塞干扰阻塞干扰并不是落在被干扰系统接收带宽内的,但由于干扰信号功率太强,而将接收机的低噪声放大器(LNA)推向饱和区,使其不能正常工作。
被干扰系统可允许的阻塞干扰功率一般要求低于LNA的1dB压缩点10dB。
由于互调干扰主要出现在:有两个以上不同的频率作用于非线性电路或器件时,将由这两个频率互相调制而产生新的频率,若这个新频率正好落于某一个信道而为工作于该信道的接收机所接收时,此时所构成的接收机的干扰。
本次共址建设的多个系统只是共用铁塔、机房等公共设施,收发信机间并不共用电路或器件,所以不会直接共同作用在非线性器件上,间接落在某系统非线性器件上的不同频率分量一般强度不高,产生的新频率分量较微弱。
而且,互调干扰产物与各频率分配有关,可以通过频率规划(所分配频段内的频率调整),避免互调产物落在被干扰系统工作频点上。
所以,本方案可以不考虑互调干扰,重点分析杂散干扰和阻塞干扰,并且按照两者中受限的一种,分析共址时的干扰抑制方案;由于基站发射功率大、接收灵敏度高,所以本例中多系统共址时主要考虑基站与基站之间的干扰。
1.2.各系统间的隔离度分析为了避免异系统间干扰影响通信质量,一般要求不同系统的收发天线之间的耦合损耗大于发生会产生系统间干扰的最小门限,该耦合损耗就是隔离度。
考虑到不同型号、厂家、批次的设备在干扰抑制指标和滤波性能上可能存在的差异,在规划中主要按照体制标准所要求的规范值核算隔离度要求,以保证达到标准要求的设备都可以满足设计场景下的共址。
按照ETSI(GSM)、3GPP2(CDMA)、3GPP(WCDMA)以及STD28(PHS)标准中的要求,目前各主要通信系统有关杂散干扰抑制和灵敏度的参数指标(频率范围,注:GSM系统的杂散要求指标是按照我国原邮电部行业标准YDT883-1999取定的(高于ETSI 标准)。
按照以上的指标,可以对不同系统之间的隔离度要求进行计算;以下主要分析联通GSM900、GSM1800和3G(WCDMA)系统基站与其他系统之间的隔离度要求。
1)联通GSM900基站与其他系统基站之间的隔离度要求分别核算联通GSM900基站对其他系统的杂散干扰隔离度要求和阻塞干扰隔离度要求,以及其他系统基站对联通GSM900基站的杂散干扰隔离度要求和阻塞干扰按照上述核算结果,联通GSM900与CDMA800、WCDMA系统间是受制于CDMA、WCDMA 对GSM900的干扰,联通GSM900与TD-SCDMA、移动DCS1800系统间受制于GSM900的干扰。
其中,CDMA800与GSM900基站之间的隔离度要求最高,达到68dB;其他隔离度要求不高。
2)联通DCS1800基站与其他系统基站之间的隔离度要求分别核算联通GSM900基站对其他系统的杂散干扰隔离度要求和阻塞干扰隔离度要求,以及其他系统基站对联通GSM900基站的杂散干扰、阻塞干扰隔离度要求,按照上述核算结果,联通DCS1800与CDMA800、WCDMA系统间是受制于CDMA、WCDMA 对DCS1800的干扰,联通DCS1800与TD-SCDMA、移动GSM900的系统间干扰为其他系统受制于DCS1800的干扰。
其中,CDMA800与DCS1800基站之间的隔离度要求最高,达到68dB;其他隔离度要求不高。
3)联通3G(WCDMA)对其他系统的干扰联通有可能在明年部署3G系统,且选择在1920-1980MHz/2110-2170MHz部署WCDMA系统的可能性较大。
以下按照该情况考虑与其他系统之间的杂散和阻塞干按照上述核算结果,除了与CDMA800系统间是受制于CDMA对WCDMA的干扰以外,其他的均为其他系统受制于WCDMA的干扰。
其中,CDMA800与WCDMA基站之间的隔离度要求最高,达到70dB;其他隔离度要求不高。
1.3.各系统间的隔离距离要求为了实现上述的系统间隔离度,一般可以采用以下途径:1) 不同系统天线之间保持一定的距离,实现空间上的隔离;2)不同系统天线之间增加隔离物,增加天线之间的隔离;3)如果是杂散干扰受限,则在产生干扰的系统发射机侧增加滤波器减少杂散损耗,降低隔离度要求;4)如果是阻塞干扰受限,则在被干扰的系统接收机侧增加滤波器降低隔离度要求。
由于增加滤波器会导致发射或接收性能下降,而且增加了故障点、增大了系统建设成本,所以在可以通过隔离距离实现时,一般应优先考虑空间隔离距离实现隔离度。
天线空间隔离是使干扰系统的发射天线与被干扰系统的接收天线保持一定的物理空间距离(角度),从而使得发射天线的电波经空间衰减后到达接收天线端的电平强度小于系统间隔离的要求。
根据工程施工的实际环境,可以利用铁塔或天面的不同平台或不同位置进行天线的空间隔离,具体可以采用水平隔离、垂直隔离、混合隔离的方式。
下图是采用天线空间隔离的示意图。
图2 天线空间隔离示意图下表为对应的隔离距离计算公式。
其中,和均指干扰系统发射天线与被干扰系统接收天线连线方向上的增益,取值与收发天线型号和相互位置有关,若收发天线处于同一水平面,如两天线主瓣相对,则收发天线间相对增益为两天线最大辐射方向增益之和,如两天线主瓣相背,则为后瓣增益之和,如主瓣呈120度角,则介于两者之间;若两天线不在同一水平面,其天线增益需同时考虑方位角和倾角,一般需参考天线指标或通过测试确定。
在本例场景中,各系统将共址安装在同一铁塔上,则各系统天线间将通过垂直隔离距离满足隔离度。
按照3.2节分析得到的隔离度,利用上式计算得到联通各系根据以上核算结果:1)联通GSM900/GSM1800基站天线应距离移动GSM900和移动GSM1800天线0.5m、0.8m以上,距离TD-SCDMA天线1.1米以上,距离CDMA天线3.3米以上。
2)联通WCDMA基站天线应距离移动GSM900和移动GSM1800天线1m、1.7m以上,距离TD-SCDMA天线2.3米以上,距离CDMA天线3.7米以上。
需要说明的是,以上CDMA与联通GSM900系统间的隔离距离是按照联通909MHz 起点计算的,当CDMA与移动GSM900系统共址时,由于从890MHz开始,隔离度要求提高88dB,则CDMA与移动GSM900的天线垂直隔离距离要求达到11米。
考虑以上的隔离要求,建议铁塔改造按照3米一个平台进行设计,除了重点考虑将CDMA与移动GSM900分开设置在间隔3个以上的平台外,其他系统一般可以满足隔离要求(WCDMA系统需要和TD-SCDMA系统间隔1个平台)。
以上的隔离距离核算都是按照各系统分别使用天线考虑的;如果要节省天线安装位置,可以采用多频段天线,此时要求系统共用天线前采用多频段合路器实现以上的隔离度。
考虑到多频段天线不利于各系统分别调整方向角和下倾,不利于运行维护和优化,因此建议尽可能不要多系统共用天线。
随着网络客户容量的增加,数据业务的飞速发展,网络的干扰等级在上升,网络的质量在下降,但为吸收网络的话务量和满足客户的各类业务的需求,网络产品(900M、1800M、TD、WCDMA、CDMA2000)越来越多。
为不浪费资源,政府出台了节能号召,共建共享成为快速补点建设的一个手段,但在共建共享时,是否考虑到天线的隔离度问题,因天线的隔离度不足,将产生同系统、异系统的干扰,加快网络质量的恶化。
现对天馈系统对铁塔设计的技术要求总结如下:(1)水平隔离度中国移动的GSM900M、GSM1800M和TD-SCDMA可共用一层平台;中国联通需求的GSM900M、GSM1800M、WCDMA可共用一层平台;中国电信需求的CDMA和CDMA2000按照目前规范定义的指标计算不能共平台,但考虑到设备实现比规范定义的指标要严格,因此存在共平台的可能,且这两个系统为电信单一运营商,可通过其他技术手段实现共平台。
各系统水平隔离度参见表1。
表1 各系统水平隔离度要求(单位:米)干扰系统GSM900M GSM1800M TD-SCDMA WCDMA CDMA2000 CD MAGSM900M 1.30.30.211.348.5GSM1800M 1.30.6 1.5 5.948.5TD-SCDMA0.30.6* 4.752.7WCDMA0.2 1.5***CDMA200011.3 5.9 4.7**CDMA48.548.552.7**说明:上表中标*代表水平隔离距离要求过大,远超出天面空间尺寸,需采取其他隔离措施。
(2)垂直隔离度各系统之间垂直隔离度仅CDMA与CDMA2000之间要求为8.2米,其余标准化设计的平台间距均满足垂直隔离要求。
各系统水平隔离度参见表2。
表2各系统垂直隔离度要求(单位:米)干扰系统GSM900M GSM1800M TD-SCDMA WCDMA CDMA2000CDMA GSM900M0.60.30.3 1.7 3.7GSM1800M0.60.30.30.9 3.7TD-SCDMA0.30.3 3.60.8 2.5WCDMA0.30.3 3.6 3.8 1.9CDMA2000 1.70.90.8 3.88.2CDMA 3.7 3.7 2.5 1.98.2即在网络建设的初期,关注共建共享问题,使天线的隔离度尽量能满足要求,减小隔离度不足对网络的影响。