高考物理直线运动解题技巧及经典题型及练习题(含答案)

合集下载

高考物理直线运动常见题型及答题技巧及练习题(含答案)含解析

高考物理直线运动常见题型及答题技巧及练习题(含答案)含解析

高考物理直线运动常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试直线运动1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sg sμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+ 带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s =滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁2.某次足球比赛中,攻方使用“边路突破,下底传中”的战术.如图,足球场长90m 、宽60m.前锋甲在中线处将足球沿边线向前踢出,足球的运动可视为在地面上做匀减速直线运动,其初速度v 0=12m/s ,加速度大小a 0=2m/s 2.(1)甲踢出足球的同时沿边线向前追赶足球,设他做初速为零、加速度a 1=2m/s 2的匀加速直线运动,能达到的最大速度v m =8m/s.求他追上足球的最短时间.(2)若甲追上足球的瞬间将足球以某速度v 沿边线向前踢出,足球仍以a 0在地面上做匀减速直线运动;同时,甲的速度瞬间变为v 1=6 m/s ,紧接着他做匀速直线运动向前追赶足球,恰能在底线处追上足球传中,求v 的大小. 【答案】(1)t =6.5s (2)v =7.5m/s【解析】 【分析】(1)根据速度时间公式求出运动员达到最大速度的时间和位移,然后运动员做匀速直线运动,结合位移关系求出追及的时间.(2)结合运动员和足球的位移关系,运用运动学公式求出前锋队员在底线追上足球时的速度. 【详解】(1)已知甲的加速度为22s 2m/a =,最大速度为28m/s v =,甲做匀加速运动达到最大速度的时间和位移分别为:2228s4s 2v t a === 22284m 16m 22v x t ==⨯= 之后甲做匀速直线运动,到足球停止运动时,其位移x 2=v m (t 1-t 0)=8×2m =16m 由于x 1+x 2 < x 0,故足球停止运动时,甲没有追上足球 甲继续以最大速度匀速运动追赶足球,则x 0-(x 1+x 2)=v m t 2 联立得:t 2=0.5s甲追上足球的时间t =t 0+t 2=6.5s (2)足球距底线的距离x 2=45-x 0=9m 设甲运动到底线的时间为t 3,则x 2=v 1t 3 足球在t 3时间内发生的位移2230312x vt a t =- 联立解得:v =7.5m/s 【点睛】解决本题的关键理清足球和运动员的位移关系,结合运动学公式灵活求解.3.为提高通行效率,许多高速公路出入口安装了电子不停车收费系统ETC .甲、乙两辆汽车分别通过ETC 通道和人工收费通道(MTC)驶离高速公路,流程如图所示.假设减速带离收费岛口x =60m ,收费岛总长度d =40m ,两辆汽车同时以相同的速度v 1=72km/h 经过减速带后,一起以相同的加速度做匀减速运动.甲车减速至v 2=36km/h 后,匀速行驶到中心线即可完成缴费,自动栏杆打开放行;乙车刚好到收费岛中心线收费窗口停下,经过t 0=15s 的时间缴费成功,人工栏打开放行.随后两辆汽车匀加速到速度v 1后沿直线匀速行驶,设加速和减速过程中的加速度大小相等,求:(1)此次人工收费通道和ETC 通道打开栏杆放行的时间差t ∆ ; (2)两辆汽车驶离收费站后相距的最远距离x ∆ . 【答案】(1)17s ;(2)400m 【解析】 【分析】 【详解】172v =km/s=20m/s ,018v =km/s=5m/s ,236v =km/s=10m/s ,(1)两车减速运动的加速度大小为22120 2.5402()2(60)22v a d x ===+⨯+m/s 2,甲车减速到2v ,所用时间为101201042.5v v t a --===s , 走过的距离为1112201046022v v x t ++==⨯=m , 甲车从匀速运动到栏杆打开所用时间为12240()606022 210d x x t v +-+-===s 甲车从减速到栏杆打开的总时间为12426t t t =+=+=甲s 乙车减速行驶到收费岛中心线的时间为132082.5v t a ===s 从减速到打开栏杆的总时间为0315823t t t =+=+=乙s 人工收费通道和ETC 通道打开栏杆放行的时间差23617t t t ∆=-=-=乙甲s ;(2)乙车从收费岛中心线开始出发又经38t =s 加速到1 20v =m/s ,与甲车达到共同速度,此时两车相距最远.这个过程乙车行驶的距离与之前乙车减速行驶的距离相等40608022d x x =+=+=乙m, 从收费岛中心线开始,甲车先从010v =m/s 加速至1 20v =m/s ,这个时间为1 4t =s 然后匀速行驶()()113160208174480x x v t t t =++∆-=+⨯+-=甲m 故两车相距的最远距离为48080400x x x ∆=-=-=甲乙m .4.2018年12月8日2时23分,嫦娥四号探测器成功发射,开启了人类登陆月球背面的探月新征程,距离2020年实现载人登月更近一步,若你通过努力学习、刻苦训练有幸成为中国登月第一人,而你为了测定月球表面附近的重力加速度进行了如下实验:在月球表面上空让一个小球由静止开始自由下落,测出下落高度20h m =时,下落的时间正好为5t s =,则:(1)月球表面的重力加速度g 月为多大?(2)小球下落过程中,最初2s 内和最后2s 内的位移之比为多大?【答案】1.6 m/s2 1:4【解析】【详解】(1)由h=12g月t2得:20=12g月×52解得:g月=1.6m/s2(2)小球下落过程中的5s内,每1s内的位移之比为1:3:5:7:9,则最初2s内和最后2s内的位移之比为:(1+3):(7+9)=1:4.5.小球从离地面80m处自由下落,重力加速度g=10m/s2。

(物理)物理直线运动题20套(带答案)及解析

(物理)物理直线运动题20套(带答案)及解析

(物理)物理直线运动题20套(带答案)及解析一、高中物理精讲专题测试直线运动1.货车A 正在公路上以20 m/s 的速度匀速行驶,因疲劳驾驶,司机注意力不集中,当司机发现正前方有一辆静止的轿车B 时,两车距离仅有75 m .(1)若此时轿车B 立即以2 m/s 2的加速度启动,通过计算判断:如果货车A 司机没有刹车,是否会撞上轿车B ;若不相撞,求两车相距最近的距离;若相撞,求出从货车A 发现轿车B 开始到撞上轿车B 的时间.(2)若货车A 司机发现轿车B 时立即刹车(不计反应时间)做匀减速直线运动,加速度大小为2 m/s 2(两车均视为质点),为了避免碰撞,在货车A 刹车的同时,轿车B 立即做匀加速直线运动(不计反应时间),问:轿车B 加速度至少多大才能避免相撞. 【答案】(1)两车会相撞t 1=5 s ;(2)222m/s 0.67m/s 3B a =≈ 【解析】 【详解】(1)当两车速度相等时,A 、B 两车相距最近或相撞. 设经过的时间为t ,则:v A =v B 对B 车v B =at联立可得:t =10 s A 车的位移为:x A =v A t= 200 mB 车的位移为: x B =212at =100 m 因为x B +x 0=175 m<x A所以两车会相撞,设经过时间t 相撞,有:v A t = x o 十212at 代入数据解得:t 1=5 s ,t 2=15 s(舍去).(2)已知A 车的加速度大小a A =2 m/s 2,初速度v 0=20 m/s ,设B 车的加速度为a B ,B 车运动经过时间t ,两车相遇时,两车速度相等, 则有:v A =v 0-a A t v B = a B t 且v A = v B在时间t 内A 车的位移为: x A =v 0t-212A a tB 车的位移为:x B =212B a t 又x B +x 0= x A 联立可得:222m/s 0.67m/s 3B a =≈2.倾角为θ的斜面与足够长的光滑水平面在D 处平滑连接,斜面上AB 的长度为3L ,BC 、CD 的长度均为3.5L ,BC 部分粗糙,其余部分光滑。

高中物理直线运动题20套(带答案)含解析

高中物理直线运动题20套(带答案)含解析

高中物理直线运动题20套(带答案)含解析一、高中物理精讲专题测试直线运动1.A 、B 两列火车,在同一轨道上同向行驶, A 车在前,其速度v A =10m/s ,B 车在后,速度v B =30m/s .因大雾能见度很低,B 车在距A 车△s=75m 时才发现前方有A 车,这时B 车立即刹车,但B 车要经过180m 才能够停止.问: (1)B 车刹车后的加速度是多大?(2)若B 车刹车时A 车仍按原速前进,请判断两车是否相撞?若会相撞,将在B 车刹车后何时?若不会相撞,则两车最近距离是多少?(3)若B 车在刹车的同时发出信号,A 车司机经过△t=4s 收到信号后加速前进,则A 车的加速度至少多大才能避免相撞?【答案】(1)22.5m /s ,方向与运动方向相反.(2)6s 两车相撞(3)20.83/A a m s ≥【解析】试题分析:根据速度位移关系公式列式求解;当速度相同时,求解出各自的位移后结合空间距离分析;或者以前车为参考系分析;两车恰好不相撞的临界条件是两部车相遇时速度相同,根据运动学公式列式后联立求解即可.(1)B 车刹车至停下过程中,00,30/,180t B v v v m s S m ====由202BB v a s -=得222.5/2B B v a m s s=-=-故B 车刹车时加速度大小为22.5m /s ,方向与运动方向相反.(2)假设始终不相撞,设经时间t 两车速度相等,则有:A B B v v a t =+, 解得:103082.5A B B v v t s a --===- 此时B 车的位移:2211308 2.5816022B B B s v t a t m =+=⨯-⨯⨯= A 车的位移:10880A A s v t m ==⨯=因1(33333=-+= 设经过时间t 两车相撞,则有212A B B v t s v t a t +∆=+代入数据解得:126,10t s t s ==,故经过6s 两车相撞 (3)设A 车的加速度为A a 时两车不相撞 两车速度相等时:()A A B B v a t t v a t ''+-∆=+ 即:10()30 2.5A a t t t ''+-∆=- 此时B 车的位移:221,30 1.252B B B B s v t a t s t t =+=-''''即:A 车的位移:21()2A A A s v t a t t ''=+-∆要不相撞,两车位移关系要满足B A s s s ≤+∆解得20.83/A a m s ≥2.一种巨型娱乐器械可以使人体验超重和失重.一个可乘十多个人的环形座舱套装在竖直柱子上,由升降机送上几十米的高处,然后让座舱自由落下.落到一定位置时,制动系统启动,到地面时刚好停下.已知座舱开始下落时的高度为75m ,当落到离地面30m 的位置时开始制动,座舱均匀减速.重力加速度g 取102/m s ,不计空气阻力. (1)求座舱下落的最大速度; (2)求座舱下落的总时间;(3)若座舱中某人用手托着重30N 的铅球,求座舱下落过程中球对手的压力. 【答案】(1)30m/s (2)5s .(3)75N . 【解析】试题分析:(1)v 2=2gh; v m =30m/s⑵座舱在自由下落阶段所用时间为:2112h gt =t 1=3s 座舱在匀减速下落阶段所用的时间为:t 2=2hv ==2s 所以座舱下落的总时间为:t =t 1+t 2=5s⑶对球,受重力mg 和手的支持力N 作用,在座舱自由下落阶段,根据牛顿第二定律有mg -N =mg 解得:N =0根据牛顿第三定律有:N′=N =0,即球对手的压力为零 在座舱匀减速下落阶段,根据牛顿第二定律有mg -N =ma根据匀变速直线运动规律有:a =2202v h -=-15m/s 2解得:N =75N (2分)根据牛顿第三定律有:N′=N =75N ,即球对手的压力为75N 考点:牛顿第二及第三定律的应用3.如图,AB 是固定在竖直平面内半径R =1.25m 的1/4光滑圆弧轨道,OA 为其水平半径,圆弧轨道的最低处B 无缝对接足够长的水平轨道,将可视为质点的小球从轨道内表面最高点A 由静止释放.已知小球进入水平轨道后所受阻力为其重力的0.2倍,g 取10m/s 2.求:(1)小球经过B 点时的速率;(2)小球刚要到B 点时加速度的大小和方向; (3)小球过B 点后到停止的时间和位移大小.【答案】 (1)5 m/s (2)20m/s 2加速度方向沿B 点半径指向圆心(3)25s 6.25m 【解析】(1)小球从A 点释放滑至B 点,只有重力做功,机械能守恒:mgR=12mv B 2 解得v B =5m/s(2)小环刚要到B 点时,处于圆周运动过程中,222215/20/1.25B v a m s m s R ===加速度方向沿B 点半径指向圆心(3)小环过B 点后继续滑动到停止,可看做匀减速直线运动:0.2mg=ma 2, 解得a 2=2m/s 2222.5Bv t s a == 221 6.252s a t m ==4.质点从静止开始做匀加速直线运动,经4s 后速度达到,然后匀速运动了10s ,接着经5s 匀减速运动后静止求: (1)质点在加速运动阶段的加速度; (2)质点在第16s 末的速度; (3)质点整个运动过程的位移. 【答案】(1)5m/s 2 (2)12m/s (3)290m 【解析】 【分析】根据加速度的定义式得加速和减速运动阶段的加速度,根据匀变速运动的速度和位移公式求解。

高考物理直线运动解题技巧(超强)及练习题(含答案)及解析

高考物理直线运动解题技巧(超强)及练习题(含答案)及解析

高考物理直线运动解题技巧(超强)及练习题(含答案)及解析一、高中物理精讲专题测试直线运动1.倾角为θ的斜面与足够长的光滑水平面在D 处平滑连接,斜面上AB 的长度为3L ,BC 、CD 的长度均为3.5L ,BC 部分粗糙,其余部分光滑。

如图,4个“— ”形小滑块工件紧挨在一起排在斜面上,从下往上依次标为1、2、3、4,滑块上长为L 的轻杆与斜面平行并与上一个滑块接触但不粘连,滑块1恰好在A 处。

现将4个滑块一起由静止释放,设滑块经过D 处时无机械能损失,轻杆不会与斜面相碰。

已知每个滑块的质量为m 并可视为质点,滑块与粗糙面间的动摩擦因数为tan θ,重力加速度为g 。

求(1)滑块1刚进入BC 时,滑块1上的轻杆所受到的压力大小; (2)4个滑块全部滑上水平面后,相邻滑块之间的距离。

【答案】(1)3sin 4F mg θ=(2)43d L =【解析】 【详解】(1)以4个滑块为研究对象,设第一个滑块刚进BC 段时,4个滑块的加速度为a ,由牛顿第二定律:4sin cos 4mg mg ma θμθ-⋅=以滑块1为研究对象,设刚进入BC 段时,轻杆受到的压力为F ,由牛顿第二定律:sin cos F mg mg ma θμθ+-⋅=已知tan μθ= 联立可得:3sin 4F mg θ=(2)设4个滑块完全进入粗糙段时,也即第4个滑块刚进入BC 时,滑块的共同速度为v 这个过程, 4个滑块向下移动了6L 的距离,1、2、3滑块在粗糙段向下移动的距离分别为3L 、2L 、L ,由动能定理,有:214sin 6cos 32)4v 2mg L mg L L L m θμθ⋅-⋅⋅++=⋅( 可得:v 3sin gL θ=由于动摩擦因数为tan μθ=,则4个滑块都进入BC 段后,所受合外力为0,各滑块均以速度v 做匀速运动;第1个滑块离开BC 后做匀加速下滑,设到达D 处时速度为v 1,由动能定理:()22111sin 3.5v v 22mg L m m θ⋅=- 可得:1v 4sin gL θ=当第1个滑块到达BC 边缘刚要离开粗糙段时,第2个滑块正以v 的速度匀速向下运动,且运动L 距离后离开粗糙段,依次类推,直到第4个滑块离开粗糙段。

高考物理直线运动真题汇编(含答案)及解析

高考物理直线运动真题汇编(含答案)及解析

高考物理直线运动真题汇编(含答案)及解析一、高中物理精讲专题测试直线运动1.汽车在路上出现故障时,应在车后放置三角警示牌(如图所示),以提醒后面驾车司机,减速安全通过.在夜间,有一货车因故障停车,后面有一小轿车以30m/s 的速度向前驶来,由于夜间视线不好,驾驶员只能看清前方50m 的物体,并且他的反应时间为0.5s ,制动后最大加速度为6m/s 2.求:(1)小轿车从刹车到停止所用小轿车驾驶的最短时间;(2)三角警示牌至少要放在车后多远处,才能有效避免两车相撞.【答案】(1)5s (2)40m 【解析】 【分析】 【详解】(1)从刹车到停止时间为t 2,则 t 2=0v a-=5 s① (2)反应时间内做匀速运动,则 x 1=v 0t 1② x 1=15 m③从刹车到停止的位移为x 2,则x 2=2002v a -④x 2=75 m⑤小轿车从发现物体到停止的全部距离为 x=x 1+x 2=90m ⑥ △x=x ﹣50m=40m ⑦2.一位汽车旅游爱好者打算到某风景区去观光,出发地和目的地之间是一条近似于直线的公路,他原计划全程平均速度要达到40 km/h ,若这位旅游爱好者开出1/3路程之后发现他的平均速度仅有20 km/h ,那么他能否完成全程平均速度为40 km/h 的计划呢?若能完成,要求他在后的路程里开车的速度应达多少? 【答案】80km/h 【解析】本题考查匀变速直线运动的推论,利用平均速度等于位移除以时间,设总路程为s,后路程上的平均速度为v,总路程为s前里时用时后里时用时所以全程的平均速度解得由结果可知,这位旅行者能完成他的计划,他在后2s/3的路程里,速度应达80 km/h3.高铁被誉为中国新四大发明之一.因高铁的运行速度快,对制动系统的性能要求较高,高铁列车上安装有多套制动装置——制动风翼、电磁制动系统、空气制动系统、摩擦制动系统等.在一段直线轨道上,某高铁列车正以v0=288km/h的速度匀速行驶,列车长突然接到通知,前方x0=5km处道路出现异常,需要减速停车.列车长接到通知后,经过t l=2.5s 将制动风翼打开,高铁列车获得a1=0.5m/s2的平均制动加速度减速,减速t2=40s后,列车长再将电磁制动系统打开,结果列车在距离异常处500m的地方停下来.(1)求列车长打开电磁制动系统时,列车的速度多大?(2)求制动风翼和电磁制动系统都打开时,列车的平均制动加速度a2是多大?【答案】(1)60m/s(2)1.2m/s2【解析】【分析】(1)根据速度时间关系求解列车长打开电磁制动系统时列车的速度;(2)根据运动公式列式求解打开电磁制动后打开电磁制动后列车行驶的距离,根据速度位移关系求解列车的平均制动加速度.【详解】(1)打开制动风翼时,列车的加速度为a1=0.5m/s2,设经过t2=40s时,列车的速度为v1,则v1=v0-a1t2=60m/s.(2)列车长接到通知后,经过t1=2.5s,列车行驶的距离x1=v0t1=200m打开制动风翼到打开电磁制动系统的过程中,列车行驶的距离x2 =2800m打开电磁制动后,行驶的距离x3= x0- x1- x2=1500m;4.总质量为80kg的跳伞运动员从离地500m的直升机上跳下,经过2s拉开绳索开启降落伞,如图所示是跳伞过程中的v-t 图,试根据图象求:(g 取10m/s 2) (1)t =1s 时运动员的加速度和所受阻力的大小. (2)估算14s 内运动员下落的高度及克服阻力做的功. (3)估算运动员从飞机上跳下到着地的总时间.【答案】(1)160N (2)158; 1.25×105J (3)71s 【解析】 【详解】(1)从图中可以看出,在t =2s 内运动员做匀加速运动,其加速度大小为162t v a t ==m/s 2=8m/s 2 设此过程中运动员受到的阻力大小为f ,根据牛顿第二定律,有mg -f =ma 得f =m (g -a )=80×(10-8)N =160N (2)从图中估算得出运动员在14s 内下落了 39.5×2×2m =158m根据动能定理,有212f mgh W mv -= 所以有212f W mgh mv =-=(80×10×158-12×80×62)J≈1.25×105J(3)14s 后运动员做匀速运动的时间为 5001586H h t v '--==s =57s 运动员从飞机上跳下到着地需要的总时间 t 总=t +t ′=(14+57)s =71s5.(13分)如图所示,截面为直角三角形的木块置于粗糙的水平地面上,其倾角θ=37°。

物理直线运动专项习题及答案解析

物理直线运动专项习题及答案解析

物理直线运动专项习题及答案解析一、高中物理精讲专题测试直线运动1.某人驾驶一辆小型客车以v 0=10m/s 的速度在平直道路上行驶,发现前方s =15m 处有减速带,为了让客车平稳通过减速带,他立刻刹车匀减速前进,到达减速带时速度v =5.0 m/s .已知客车的总质量m =2.0×103 kg.求: (1)客车到达减速带时的动能E k ;(2)客车从开始刹车直至到达减速带过程所用的时间t ; (3)客车减速过程中受到的阻力大小f .【答案】(1)E k =2.5×104J (2)t =2s (3)f =5.0×103N 【解析】 【详解】(1) 客车到达减速带时的功能E k =12mv 2,解得E k =2.5×104 J (2) 客车减速运动的位移02v vs t +=,解得t =2s (3) 设客车减速运动的加速度大小为a ,则v =v 0-at ,f =ma 解得f =5.0×103 N2.如图所示,一圆管放在水平地面上,长为L=0.5m ,圆管的上表面离天花板距离h=2.5m ,在圆管的正上方紧靠天花板放一颗小球,让小球由静止释放,同时给圆管一竖直向上大小为5m/s 的初速度,g 取10m/s .(1)求小球释放后经过多长时间与圆管相遇?(2)试判断在圆管落地前小球能不能穿过圆管?如果不能,小球和圆管落地的时间差多大?如果能,小球穿过圆管的时间多长? 【答案】(1)0.5s (2)0.1s【解析】试题分析:小球自由落体,圆管竖直上抛,以小球为参考系,则圆管相对小球向上以5m/s 做匀速直线运动;先根据位移时间关系公式求解圆管落地的时间;再根据位移时间关系公式求解该时间内小球的位移(假设小球未落地),比较即可;再以小球为参考系,计算小球穿过圆管的时间.(1)以小球为参考系,则圆管相对小球向上以5m/s 做匀速直线运动,故相遇时间为: 0 2.50.55/hm t s v m s=== (2)圆管做竖直上抛运动,以向上为正,根据位移时间关系公式,有2012x v t gt =- 带入数据,有2055t t =-,解得:t=1s 或 t=0(舍去); 假设小球未落地,在1s 内小球的位移为22111101522x gt m ==⨯⨯=, 而开始时刻小球离地的高度只有3m ,故在圆管落地前小球能穿过圆管; 再以小球为参考系,则圆管相对小球向上以5m/s 做匀速直线运动, 故小球穿过圆管的时间00.5'0.15/L mt s v m s===3.如图所示,物体A 的质量1kg A m =,静止在光滑水平面上的平板车B ,质量为0.5kg B m =,长为1m L =.某时刻A 以04m/s v =向右的初速度滑上木板B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力F ,忽略物体A 的大小,已知A 与B 之间的动摩擦因素0.2μ=,取重力加速度210m/s g =.求: (1)若5N F =,物体A 在小车上运动时相对小车滑行的最大距离. (2)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件.【答案】(1)0.5m (2)1N≤F≤3N【解析】(1)物体A 滑上木板B 以后,作匀减速运动,有μmg=ma A 得a A =μg=2m/s 2木板B 作加速运动,有F+μmg=Ma B , 代入数据解得:a B =14m/s 2 两者速度相同时,有v 0-a A t=a B t , 代入数据解得:t=0.25s A 滑行距离:S A =v 0t-12a A t 2=4×0.25−12×2×116=1516m , B 滑行距离:S B =12a B t 2=12×14×116m=716m . 最大距离:△s=S A -S B =1516−716=0.5m (2)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:22201122A Bv v v L a a -=+又:011A Bv v v a a -= 代入数据可得:a B =6(m/s 2)由F=m 2a B -μm 1g=1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N .当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落. 即有:F=(m+m )a ,μm 1g=m 1a 所以:F=3N若F 大于3N ,A 就会相对B 向左滑下. 综上:力F 应满足的条件是:1N≤F≤3N点睛:牛顿定律和运动公式结合是解决力学问题的基本方法,这类问题的基础是分析物体的受力情况和运动情况,难点在于分析临界状态,挖掘隐含的临界条件.4.如图甲所示,质量m=8kg 的物体在水平面上向右做直线运动。

【物理】 物理直线运动专题练习(及答案)及解析

【物理】 物理直线运动专题练习(及答案)及解析

【物理】 物理直线运动专题练习(及答案)及解析一、高中物理精讲专题测试直线运动1.如图所示,在沙堆表面放置一长方形木块A ,其上面再放一个质量为m 的爆竹B ,木块的质量为M .当爆竹爆炸时,因反冲作用使木块陷入沙中深度h ,而木块所受的平均阻力为f 。

若爆竹的火药质量以及空气阻力可忽略不计,重力加速度g 。

求: (1)爆竹爆炸瞬间木块获得的速度; (2)爆竹能上升的最大高度。

【答案】(1)()2f Mg hM-(2)()2f Mg Mh m g - 【解析】 【详解】(1)对木块,由动能定理得:2102Mgh fh Mv -=-, 解得:()2f Mg hv M-=;(2)爆竹爆炸过程系统动量守恒,由动量守恒定律得:0Mv mv -'=爆竹做竖直上抛运动,上升的最大高度:22v H g'=解得:()2fMg MhH m g-=2.一个质点正在做匀加速直线运动,用固定在地面上的照相机对该质点进行闪光照相,闪光时间间隔为1s .分析照片得到的数据,发现质点在第1次、第2次闪光的时间间隔内移到了2m ;在第3次、第4次闪光的时间间隔内移动了8m ,由此可以求得( ) A .第1次闪光时质点的速度 B .质点运动的加速度 C .质点运动的初速度D .从第2次闪光到第3次闪光这段时间内质点的位移 【答案】ABD 【解析】 试题分析:根据得;,故B 不符合题意;设第一次曝光时的速度为v ,,得:,故A 不符合题意;由于不知道第一次曝光时物体已运动的时间,故无法知道初速度,故C 符合题意;设第一次到第二次位移为;第三次到第四次闪光为,则有:;则;而第二次闪光到第三次闪光的位移,故D 不符合题意考点:考查了匀变速直线运动规律的综合应用,要注意任意一段匀变速直线运动中,只有知道至少三个量才能求出另外的两个量,即知三求二.3.汽车在路上出现故障时,应在车后放置三角警示牌(如图所示),以提醒后面驾车司机,减速安全通过.在夜间,有一货车因故障停车,后面有一小轿车以30m/s 的速度向前驶来,由于夜间视线不好,驾驶员只能看清前方50m 的物体,并且他的反应时间为0.5s ,制动后最大加速度为6m/s 2.求:(1)小轿车从刹车到停止所用小轿车驾驶的最短时间;(2)三角警示牌至少要放在车后多远处,才能有效避免两车相撞.【答案】(1)5s (2)40m 【解析】 【分析】 【详解】(1)从刹车到停止时间为t 2,则 t 2=0v a-=5 s① (2)反应时间内做匀速运动,则 x 1=v 0t 1② x 1=15 m③从刹车到停止的位移为x 2,则x 2=2002v a -④x 2=75 m⑤小轿车从发现物体到停止的全部距离为 x=x 1+x 2=90m ⑥ △x=x ﹣50m=40m ⑦4.现有甲、乙两汽车正沿同一平直马路同向匀速行驶,甲车在前,乙车在后,当两车快要到十字路口时,甲车司机看到绿灯开始闪烁,已知绿灯闪烁3秒后将转为红灯.请问: (1)若甲车在绿灯开始闪烁时刹车,要使车在绿灯闪烁的3秒时间内停下来且刹车距离不得大于18m ,则甲车刹车前的行驶速度不能超过多少?(2)若甲、乙车均以v 0=15m/s 的速度驶向路口,乙车司机看到甲车刹车后也紧急刹车(乙车司机的反应时间△t 2=0.4s ,反应时间内视为匀速运动).已知甲车、乙车紧急刹车时的加速度大小分别为a 1=5m/s 2、a 2=6m/s 2 . 若甲车司机看到绿灯开始闪烁时车头距停车线L=30m ,要避免闯红灯,他的反应时间△t 1不能超过多少?为保证两车在紧急刹车过程中不相撞,甲、乙两车刹车前之间的距离s 0至少多大? 【答案】(1)(2)【解析】(1)设在满足条件的情况下,甲车的最大行驶速度为v 1根据平均速度与位移关系得:所以有:v 1=12m/s(2)对甲车有v 0△t 1+ =L代入数据得:△t 1=0.5s当甲、乙两车速度相等时,设乙车减速运动的时间为t ,即: v 0-a 2t=v 0-a 1(t+△t 2) 解得:t=2s 则v=v 0-a 2t=3m/s此时,甲车的位移为:乙车的位移为:s 2=v 0△t 2+=24m故刹车前甲、乙两车之间的距离至少为:s 0=s 2-s 1=2.4m .点睛:解决追及相遇问题关键在于明确两个物体的相互关系;重点在于分析两物体在相等时间内能否到达相同的空间位置及临界条件的分析;必要时可先画出速度-时间图象进行分析.5.如图所示,物体A 的质量1kg A m =,静止在光滑水平面上的平板车B ,质量为0.5kg B m =,长为1m L =.某时刻A 以04m/s v =向右的初速度滑上木板B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力F ,忽略物体A 的大小,已知A 与B 之间的动摩擦因素0.2μ=,取重力加速度210m/s g =.求: (1)若5N F =,物体A 在小车上运动时相对小车滑行的最大距离. (2)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件.【答案】(1)0.5m (2)1N≤F≤3N【解析】(1)物体A 滑上木板B 以后,作匀减速运动,有μmg=ma A得a A =μg=2m/s 2木板B 作加速运动,有F+μmg=Ma B , 代入数据解得:a B =14m/s 2 两者速度相同时,有v 0-a A t=a B t , 代入数据解得:t=0.25s A 滑行距离:S A =v 0t-12a A t 2=4×0.25−12×2×116=1516m , B 滑行距离:S B =12a B t 2=12×14×116m=716m . 最大距离:△s=S A -S B =1516−716=0.5m (2)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:22201122A Bv v v L a a -=+ 又:011A Bv v v a a -= 代入数据可得:aB =6(m/s 2)由F=m 2a B -μm 1g=1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N .当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落. 即有:F=(m+m )a ,μm 1g=m 1a 所以:F=3N若F 大于3N ,A 就会相对B 向左滑下. 综上:力F 应满足的条件是:1N≤F≤3N点睛:牛顿定律和运动公式结合是解决力学问题的基本方法,这类问题的基础是分析物体的受力情况和运动情况,难点在于分析临界状态,挖掘隐含的临界条件.6.如图所示为四旋翼无人机,它是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m=1 kg 的无人机,其动力系统所能提供的最大升力F=16 N ,无人机上升过程中最大速度为6m/s .若无人机从地面以最大升力竖直起飞,打到最大速度所用时间为3s ,假设无人机竖直飞行时所受阻力大小不变.(g 取10 m /s )2.求:(1)无人机以最大升力起飞的加速度;(2)无人机在竖直上升过程中所受阻力F f 的大小;(3)无人机从地面起飞竖直上升至离地面h=30m 的高空所需的最短时间. 【答案】(1)22/m s (2)4f N = (3)6.5s 【解析】(1)根据题意可得26/02/3v m s a m s t s∆-===∆ (2)由牛顿第二定律F f mg ma --= 得4f N =(3)竖直向上加速阶段21112x at =,19x m = 匀速阶段12 3.5h x t s v-== 故12 6.5t t t s =+=7.一物体从离地80m 高处下落做自由落体运动,g=10m/s 2,求 (1)物体下落的总时间: (2)下落3s 后还高地多高? 【答案】(1)4s (2)35m【解析】(1)根据212h gt =得,落地的时间4t s == (2)下落3s 内的位移23312h gt =则此时距离地面的高度h=H-h 3,联立得:h=35m8.我国ETC 联网正式启动运行,ETC 是电子不停车收费系统的简称.汽车分别通过ETC 通道和人工收费通道的流程如图所示.假设汽车以v 0=15m/s 朝收费站正常沿直线行驶,如果过ETC 通道,需要在收费线中心线前10m 处正好匀减速至v=5m/s ,匀速通过中心线后,再匀加速至v 0正常行驶;如果过人工收费通道,需要恰好在中心线处匀减速至零,经过20s 缴费成功后,再启动汽车匀加速至v 0正常行驶.设汽车加速和减速过程中的加速度大小均为1m/s 2,求:(1)汽车过ETC通道时,从开始减速到恢复正常行驶过程中的位移大小;(2)汽车过ETC通道比过人工收费通道节省的时间是多少.【答案】(1)210m(2)27s【解析】试题分析:(1)汽车过ETC通道:减速过程有:,解得加速过程与减速过程位移相等,则有:解得:(2)汽车过ETC通道的减速过程有:得总时间为:汽车过人工收费通道有:,x2=225m所以二者的位移差为:△=x2﹣x1=225m﹣210m=15m.(1分)则有:27s考点:考查了匀变速直线运动规律的应用【名师点睛】在分析匀变速直线运动问题时,由于这一块的公式较多,涉及的物理量较多,并且有时候涉及的过程也非常多,所以一定要注意对所研究的过程的运动性质清晰,对给出的物理量所表示的含义明确,然后选择正确的公式分析解题9.我国ETC(不停车电子收费系统)已实现全国联网,大大缩短了车辆通过收费站的时间,假设一辆家庭轿车以20m/s的速度匀速行驶,接近人工收费站时,轿车开始减速,至收费站窗口恰好停止,再用10s时间完成交费,然后再加速至20m/s继续行驶.若进入ETC通道.轿车从某位置开始减速至10m/s后,再以此速度匀速行驶20m即可完成交费,然后再加速至20m/s继续行驶.两种情况下,轿车加速和减速时的加速度大小均为2.5m/s2.求:(l)轿车从开始减速至通过人工收费通道再加速至20m/s的过程中通过的路程和所用的时间;(2)两种情况相比较,轿车通过ETC 交费通道所节省的时间. 【答案】(1)160m ,26s ;(2)15s ; 【解析】(1)轿车匀减速至停止过程20110280v ax x m -=-⇒=,01108v at t s -=-⇒=;车匀加速和匀减速通过的路程相等,故通过人工收费通道路程12160x x m ==; 所用时间为121026t t s =+=;(2)通过ETC 通道时,速度由20m/s 减至10m/s 所需时间t 2,通过的路程x 2102v v at -=-解得:24t s =221022v v ax -=-解得:26x m =车以10m/s 匀速行驶20m 所用时间t 3=2s ,加速到20m/s 所用的时间为t 4=t 2=4s ,路程也为x 4=60m ;车以20m/s 匀速行驶的路程x 5和所需时间t 5:5242020x x x x m =---=;5501x t s v == 故通过ETC 的节省的时间为:234515t t t t t t s ∆=----=;点睛:解决本题的关键理清汽车在两种通道下的运动规律,搞清两种情况下的时间关系及位移关系,结合匀变速直线运动的位移公式和时间公式进行求解.10.甲、乙两车在同一水平路面上做直线运动,某时刻乙车在前、甲车在后,相距s =6m ,从此刻开始计时,乙车做初速度大小为12m/s 加速度大小为1m/s 2的匀减速直线运动,甲车运动的s -t 图象如图所示(0-6s 是开口向下的抛物线一部分,6-12s 是直线,两部分平滑相连),求:(1)甲车在开始计时时刻的速度v 0和加速度a (2)以后的运动过程中,两车何时相遇? 【答案】(1)16m/s 2m/s 2 (2) 2s 6s 10s 相遇三次 【解析】 【详解】(1)因开始阶段s-t 图像的斜率逐渐减小,可知甲车做匀减速运动;由2012s v t at =-,由图像可知:t =6s 时,s =60m ,则60=6v 0 -12×a ×36;6s 末的速度68060m/s 4m/s 116v -==-;则由v 6=v 0-at 可得4=v 0-6a ;联立解得 v 0=16m/s ;a =2m/s 2(2)若甲车在减速阶段相遇,则:220011--22v t a t s v t a t +=甲甲乙乙,带入数据解得:t 1=2s ; t 2=6s ;则t 1=2s 时甲超过乙相遇一次,t 2=6s 时刻乙超过甲第二次相遇;因以后甲以速度v 甲=4m/s 做匀速运动,乙此时以v 乙=12-6×1=6m/s 的初速度做减速运动,则相遇时满足:21-2v t v t a t =甲乙乙 解得t =4s ,即在10s 时刻两车第三次相遇.。

高中物理直线运动题20套(带答案)含解析

高中物理直线运动题20套(带答案)含解析

高中物理直线运动题20套(带答案)含解析一、高中物理精讲专题测试直线运动1.如图所示,质量M=8kg的小车放在光滑水平面上,在小车左端加一水平推力F=8N,当小车向右运动的速度达到1.5m/s时,在小车前端轻轻地放上一个大小不计,质量为m=2kg 的小物块,物块与小车间的动摩擦因数为0.2,小车足够长.求:(1)小物块刚放上小车时,小物块及小车的加速度各为多大?(2)经多长时间两者达到相同的速度?共同速度是多大?(3)从小物块放上小车开始,经过t=1.5s小物块通过的位移大小为多少?(取g=10m/s2).【答案】(1)2m/s2,0.5m/s2(2)1s,2m/s(3)2.1m【解析】【分析】(1)利用牛顿第二定律求的各自的加速度;(2)根据匀变速直线运动的速度时间公式以及两物体的速度相等列式子求出速度相等时的时间,在将时间代入速度时间的公式求出共同的速度;(3) 根据先求出小物块在达到与小车速度相同时的位移,再求出小物块与小车一体运动时的位移即可.【详解】(1) 根据牛顿第二定律可得小物块的加速度:m/s2小车的加速度:m/s2(2)令两则的速度相等所用时间为t,则有:解得达到共同速度的时间:t=1s共同速度为:m/s(3) 在开始1s内小物块的位移m此时其速度:m/s在接下来的0.5s小物块与小车相对静止,一起做加速运动且加速度:m/s2这0.5s内的位移:m则小物块通过的总位移:m【点睛】本题考查牛顿第二定律的应用,解决本题的关键理清小车和物块在整个过程中的运动情况,然后运用运动学公式求解.同时注意在研究过程中正确选择研究对象进行分析求解.2.为确保行车安全,高速公路不同路段限速不同,若有一段直行连接弯道的路段,如图所示,直行路段AB限速120km/h,弯道处限速60km/h.(1)一小车以120km/h的速度在直行道行驶,要在弯道B处减速至60km/h,已知该车制动的最大加速度为2.5m/s2,求减速过程需要的最短时间;(2)设驾驶员的操作反应时间与车辆的制动反应时间之和为2s(此时间内车辆匀速运动),驾驶员能辨认限速指示牌的距离为x0=100m,求限速指示牌P离弯道B的最小距离.【答案】(1)3.3s(2)125.6m【解析】【详解】(1)120 120km/h m/s3.6v==,6060km/h m/s3.6v==根据速度公式v=v0-at,加速度大小最大为2.5m/s2解得:t=3.3s;(2)反应期间做匀速直线运动,x1=v0t1=66.6m;匀减速的位移:2202v v ax-=解得:x=159m则x'=159+66.6-100m=125.6m.应该在弯道前125.6m距离处设置限速指示牌.3.高速公路上行驶的车辆速度很大,雾天易出现车辆连续相撞的事故。

高考物理直线运动常见题型及答题技巧及练习题(含答案)含解析

高考物理直线运动常见题型及答题技巧及练习题(含答案)含解析

高考物理直线运动常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试直线运动1.如图所示,一木箱静止在长平板车上,某时刻平板车以a = 2.5m/s 2的加速度由静止开始向前做匀加速直线运动,当速度达到v = 9m/s 时改做匀速直线运动,己知木箱与平板车之间的动摩擦因数μ= 0.225,箱与平板车之间的最大静摩擦力与滑动静擦力相等(g 取10m/s 2)。

求:(1)车在加速过程中木箱运动的加速度的大小 (2)木箱做加速运动的时间和位移的大小(3)要使木箱不从平板车上滑落,木箱开始时距平板车右端的最小距离。

【答案】(1)(2)4s ;18m (3)1.8m【解析】试题分析:(1)设木箱的最大加速度为,根据牛顿第二定律 解得则木箱与平板车存在相对运动,所以车在加速过程中木箱的加速度为(2)设木箱的加速时间为,加速位移为。

(3)设平板车做匀加速直线运动的时间为,则达共同速度平板车的位移为则要使木箱不从平板车上滑落,木箱距平板车末端的最小距离满足考点:牛顿第二定律的综合应用.2.如图所示,某次滑雪训练,运动员站在水平雪道上第一次利用滑雪杖对雪面的作用获得水平推力84N F =而从静止向前滑行,其作用时间为1 1.0s t =,撤除水平推力F 后经过2 2.0s t =,他第二次利用滑雪杖对雪面的作用获得同样的水平推力,作用距离与第一次相同.已知该运动员连同装备的总质量为60kg m =,在整个运动过程中受到的滑动摩擦力大小恒为f 12N F =,求:(1)第一次利用滑雪杖对雪面作用获得的速度大小及这段时间内的位移大小.(2)该运动员(可视为质点)第二次撤除水平推力后滑行的最大距离.【答案】(1)1.2m/s 0.6m ; (2)5.2m 【解析】 【分析】 【详解】(1)根据牛顿第二定律得1f F F ma -=运动员利用滑雪杖获得的加速度为21 1.2m /s a =第一次利用滑雪杖对雪面作用获得的速度大小111 1.2 1.0m /s 1.2m /s v a t ==⨯=位移211110.6m 2x a t == (2)运动员停止使用滑雪杖后,加速度大小为220.2m /s f F a m==第二次利用滑雪杖获得的速度大小2v ,则2221112v v a x -=第二次撤除水平推力后滑行的最大距离22222v x a =解得2 5.2m x =3.如图甲所示,长为4m 的水平轨道AB 与半径为R=0.6m 的竖直半圆弧轨道BC 在B 处相连接,有一质量为1kg 的滑块(大小不计),从A 处由静止开始受水平向右的力F 作用,F 的大小随位移变化关系如图乙所示,滑块与AB 间动摩擦因数为0.25,与BC 间的动摩擦因数未知,取g =l0m/s 2.求:(1)滑块到达B 处时的速度大小;(2)滑块在水平轨道AB 上运动前2m 过程中所需的时间;(3)若滑块到达B 点时撤去力F ,滑块沿半圆弧轨道内侧上滑,并恰好能达到最高点C ,则滑块在半圆轨道上克服摩擦力所做的功是多少. 【答案】(1)210/m s (2)835s (3)5J 【解析】试题分析: (1)对滑块从A 到B 的过程,由动能定理得F 1x 1-F 3x 3-μmgx =12mv B 2得v B =210m/s . (2)在前2 m 内,由牛顿第二定律得F 1-μmg =ma 且x 1=12at 12 解得t 1=835s . (3)当滑块恰好能到达最高点C 时,有mg =m 2Cv R对滑块从B 到C 的过程,由动能定理得W -mg×2R =12mv C 2-12mv B 2 代入数值得W =-5 J即克服摩擦力做的功为5 J .考点:动能定理;牛顿第二定律4.如图所示,质量为M=8kg 的小车停放在光滑水平面上,在小车右端施加一水平恒力F ,当小车向右运动速度达 到时,在小车的右端轻轻放置一质量m=2kg 的小物块,经过t 1=2s 的时间,小物块与小车保持相对静止。

高考物理力学知识点之直线运动难题汇编附答案解析

高考物理力学知识点之直线运动难题汇编附答案解析

高考物理力学知识点之直线运动难题汇编附答案解析一、选择题1.一质点做直线运动的v -t 图像如图所示,下列关于该质点运动的描述错误的是( )A .1s-4s 内的位移大小为24mB .0-1s 内的加速度大小为8m/s 2C .4s 末质点离出发点最远D .0-1s 和4-6s 质点的运动方向相同2.随着无人机航拍风靡全球,每天都有新的航拍爱好者在社交媒体上分享成果.在某次航拍时,无人机起飞时竖直方向的速度随时间变化的规律如图所示,下列说法中正确的是( )A .无人机经5s 达到最高点B .无人机经15s 达到最高点C .无人机飞行的最大高度为75mD .无人机飞行的最大高度为90m3.物体做匀加速直线运动,相继经过两段距离为16 m 的路程,第一段用时4 s ,第二段用时2 s ,则物体的加速度是A .22m/s 3B .24m/s 3C .28m/s 9D .216m/s 9 4.如图所示为甲、乙两个质点沿同一方向做直线运动的位移—时间图像(x —t 图像),甲做匀速直线运动,乙做匀加速直线运动,t =4s 时刻图像乙的切线交时间轴t =1.5s 点处,由此判断质点乙在t =0时刻的速度是质点甲速度的( )A .15倍B .25倍C .38倍D .58倍 5.2020年是特殊的一年,无情的新冠病毒袭击了中国;经过全国人民的努力,受伤最深的武汉也在全国各界的支持下使疫情得到了控制。

在这场没有硝烟的战疫中涌现了大量最可爱的人,尤其是白衣天使和人民解放军。

在这场战疫中某次空军基地用直升飞机运送医护人员去武汉,为了保证直升机升空过程中医护人员不至于很难受,飞行员对上升过程某阶段加速度进行了相应操作。

操作的a t -图像如图所示(除ab 段曲线,其余段均为直线,取向上为正),则下列说法正确的是( )A .Oa 和ab 段医护人员处于超重状态,cd 段处于失重状态B .O 到d 整个过程医护人员均处于超重状态C .O 到d 过程速度增量小于20.5m/sD .根据上述图像可求出0~8s 这段时间直升机往上上升的高度6.一辆急救车快要到达目的地时开始刹车,做匀减速直线运动.开始刹车后的第1s 内和第2s 内位移大小依次为10m 和6m ,则刹车后4s 内的位移是A .16mB .18mC .32mD .40m7.汽车以10m/s 的速度在马路上匀速行驶,驾驶员发现正前方15m 处的斑马线上有行人,于是刹车礼让汽车恰好停在斑马线前,假设驾驶员反应时间为0.5s .汽车运动的v-t 图如图所示,则汽车的加速度大小为A .220/m sB .26/m sC .25/m sD .24/m s 8.物体由静止开始运动,加速度恒定,在第7s 内的初速度是2.1m/s ,则物体的加速度是( )A .0.3m/s 2B .0.35m/s 2C .2.1m/s 2D .4.2m/s 2 9.一物体在高处以初速度20m/s 竖直上抛,到达离抛出点15m 处所经历的时间不可能是( )A .1sB .2sC .3sD .()27s + 10.如图所示运动图象,表明物体不处于平衡状态的是( )A .B .C .D .11.质量m=1kg的物体在水平拉力F作用下沿水平面做直线运动,t=2s时撤去力F,物体速度时间图像如下,下列说法不正确的是A.前2s内与后4s内摩擦力的平均功率相同,两段的平均速度不同B.F:f=3:1C.全程合外力的功与合外力的冲量均为0D.4s时克服摩擦力做功的功率为12.5W12.从同一高度以相同的速率分别抛出质量相等的三个小球,一个竖直上抛,一个竖直下抛,另一个平抛,则它们从抛出到落地()A.运行的时间相等B.加速度不相同C.落地时的速度相同D.落地时的动能相等13.质量相等的甲、乙两物体放在光滑的水平地面上,分别在水平力F1、F2的作用下从同一地点,沿同一方向同时开始运动,图示为它们的v—t图像,则下列说法正确的是()A.在0~2s内,F1越来越大B.在4~6s内,乙在甲的前方C.在0~4s内,拉力对甲乙做功一样多D.在0~6s内两物体间的最大距离为8m14.某物体原先静止于一光滑水平面上,t=0时受水平外力作用开始沿直线运动,0~8s内其加速度a与时间t的关系如图所示,则下列说法正确的是()A.t=2s时,物体的速度大小为2m/sB.0~2s内,物体通过的位移大小为2mC.0~8s内物体的最大速度为7m/sD .物体在t =8s 时与在t =2s 时的运动方向相反15.2018年10月2日至7日,中国汽车摩托车运动大会在武汉体育中心举办。

高考物理新力学知识点之直线运动技巧及练习题附解析(5)

高考物理新力学知识点之直线运动技巧及练习题附解析(5)

高考物理新力学知识点之直线运动技巧及练习题附解析(5)一、选择题1.将甲乙两小球先后以同样的速度在距地面不同高度处竖直向上抛出,抛出时间相隔2s,它们运动的v-t图像分别如图中直线甲、乙所示。

则()A.t=4s 时,两球相对于各自抛出点的位移不相等B.t=3s 时,两球高度差一定为20mC.两球从抛出至落到地面所用的时间间隔相等D.甲、乙两球从抛出至达到最高点的时间间隔相等2.一质量为1kg的小球从空中下落,与水平地面相碰后弹到空中某一高度,此过程的v﹣t 图象如图所示.若不计空气阻力,取g=10m/s2,则由图可知()A.小球从高度为1m处开始下落B.小球在碰撞过程中损失的机械能为4.5JC.小球能弹起的最大高度为0.45mD.整个过程中,小球克服重力做的功为8J3.跳伞运动员以5 m/s的速度竖直匀速降落,在离地面h=10 m的地方掉了一颗扣子,跳伞运动员比扣子晚着陆的时间为(扣子受到的空气阻力可忽略,g取10 m/s2)( )A.2 s B.2sC.1 s D.(2-2) s4.如图所示为甲、乙两个质点沿同一方向做直线运动的位移—时间图像(x—t图像),甲做匀速直线运动,乙做匀加速直线运动,t=4s时刻图像乙的切线交时间轴t=1.5s点处,由此判断质点乙在t=0时刻的速度是质点甲速度的()A .15倍B .25倍C .38倍D .58倍 5.如图所示,四个相同的小球在距地面相同的高度以相同的速率分别竖直下抛,竖直上抛,平抛和斜抛,不计空气阻力,则下列关于这四个小球从抛出到落地过程的说法中正确的是( )A .每个小球在空中的运动时间相同B .每个小球落地时的速度相同C .重力对每个小球做的功相同D .重力对每个小球落地时做功的瞬时功率相同6.如图所示,直线a 与四分之一圆弧b 分别表示质点A 、B 从同一地点出发,沿同一方向做直线运动的v —t 图线。

当B 的速度为0时,A 恰好追上B ,则此时A 的速度为( )A .πm/sB .1.5πm/sC .3m/sD .6m/s 7.物体由静止开始运动,加速度恒定,在第7s 内的初速度是2.1m/s ,则物体的加速度是( )A .0.3m/s 2B .0.35m/s 2C .2.1m/s 2D .4.2m/s 2 8.一物体在高处以初速度20m/s 竖直上抛,到达离抛出点15m 处所经历的时间不可能是( )A .1sB .2sC .3sD .()27s + 9.如图所示,在离地面一定高度处把4个水果以不同的初速度竖直上抛,不计空气阻力,若1s 后4个水果均未着地,则1s 后速率最大的是( )A .B .C .D .10.假设在质量与地球质量相同,半径为地球半径两倍的天体上,发生的下列事件中,不可能的是( )A .跳高运动员的成绩会更好B .用弹簧秤称体重时,体重数值变小C .从静止降落的棒球落下的速度变慢D .用手投出的蓝球,水平方向的分速度变大11.疫情当前,无人驾驶技术在配送、清洁、消毒等方面的应用,节省人力的同时,也大幅降低了相关人员的感染风险,对疫情防控起到了积极作用。

高考物理直线运动解题技巧及经典题型及练习题(含答案)及解析

高考物理直线运动解题技巧及经典题型及练习题(含答案)及解析

高考物理直线运动解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试直线运动1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2.(1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N【解析】(1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即2202v v aL -=可解得:2201002v v L m a-== (2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:2C v N mg m R-= 从B 运动到C 由动能定理可知:221122C B mgh mv mv =-解得;3900N N =故本题答案是:(1)100L m = (2)1800I N s =⋅ (3)3900N N =点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小.2.一个质点正在做匀加速直线运动,用固定在地面上的照相机对该质点进行闪光照相,闪光时间间隔为1s .分析照片得到的数据,发现质点在第1次、第2次闪光的时间间隔内移到了2m ;在第3次、第4次闪光的时间间隔内移动了8m ,由此可以求得( ) A .第1次闪光时质点的速度B .质点运动的加速度C .质点运动的初速度D .从第2次闪光到第3次闪光这段时间内质点的位移【答案】ABD【解析】 试题分析:根据得;,故B 不符合题意;设第一次曝光时的速度为v ,,得:,故A 不符合题意;由于不知道第一次曝光时物体已运动的时间,故无法知道初速度,故C 符合题意;设第一次到第二次位移为;第三次到第四次闪光为,则有:;则;而第二次闪光到第三次闪光的位移,故D 不符合题意考点:考查了匀变速直线运动规律的综合应用,要注意任意一段匀变速直线运动中,只有知道至少三个量才能求出另外的两个量,即知三求二.3.如图所示,水平平台ab 长为20 m ,平台b 端与长度未知的特殊材料制成的斜面bc 连接,斜面倾角为30°.在平台b 端放上质量为5 kg 的物块,并给物块施加与水平方向成37°角的50 N 推力后,物块由静止开始运动.己知物块与平台间的动摩擦因数为0.4,重力加速度g =10 m/s 2,sin37°=0.6,求:(1)物块由a 运动到b 所用的时间;(2)若物块从a 端运动到P 点时撤掉推力,则物块刚好能从斜面b 端开始下滑,则aP 间的距离为多少?(物块在b 端无能量损失)(3)若物块与斜面间的动摩擦因数μbc =0.277+0.03L b ,式中L b 为物块在斜面上所处的位置离b端的距离,在(2)中的情况下,物块沿斜面滑到什么位置时速度最大?【答案】(1)5s (2)14.3m (3)见解析【解析】试题分析:(1)根据牛顿运动定律求解加速度,根据位移时间关系知时间;(2)根据位移速度关系列方程求解;(3)物体沿斜面下滑的速度最大时,须加速度为0,根据受力分析列方程,结合物块与斜面间的动摩擦因数μbc=0.277+0.03L b知斜面长度的临界值,从而讨论最大速度.解:(1)受力分析知物体的加速度为a1===1.6m/s2x=a1t2解得a到b的时间为t==5s(2)物体从a到p:=2a1x1物块由P到b:=2a2x2a2=μgx=x1+x2解得ap距离为x1=14.3m(3)物体沿斜面下滑的速度最大时,须加速度为0,即a==0μbc=0.277+0.03L b,联立解得L b=10m因此如斜面长度L>10m,则L b=10m时速度最大;若斜面长度L≤10m,则斜面最低点速度最大.答:(1)物块由a运动到b所用的时间为5s;(2)若物块从a端运动到P点时撤掉推力,则物块刚好能从斜面b端开始下滑,则间aP 的距离为14.3m;(3)斜面长度L>10m,则L b=10m时速度最大;若斜面长度L≤10m,则斜面最低点速度最大.【点评】本题考查的是牛顿第二定律及共点力平衡,但是由于涉及到动摩擦因数变化,增加了难度;故在分析时要注意物体沿斜面下滑的速度最大时,须加速度为0这个条件.4.如图,MN是竖直放置的长L=0.5m的平面镜,观察者在A处观察,有一小球从某处自由下落,小球下落的轨迹与平面镜相距d=0.25m,观察者能在镜中看到小球像的时间△t=0.2s.已知观察的眼睛到镜面的距离s=0.5m,求小球从静止开始下落经多长时间,观察者才能在镜中看到小球的像.(取g=10m/s2)【答案】0.275s ;【解析】试题分析:由平面镜成像规律及光路图可逆可知,人在A 处能够观察到平面镜中虚像所对应的空间区域在如图所示的直线PM 和QN 所包围的区域中,小球在这一区间里运动的距离为图中ab 的长度L /.由于⊿aA /b ∽MA /N ⊿bA /C ∽NA /D所以L //L=bA //NA /bA //NA /=(s+d )/s联立求解,L /=0.75m 设小球从静止下落经时间t 人能看到,则/2211()22L g t t gt =+⊿- 代入数据,得t=0.275s考点:光的反射;自由落体运动【名师点睛】本题是边界问题,根据反射定律作出边界光线,再根据几何知识和运动学公式结合求解;要知道当小球发出的光线经过平面镜反射射入观察者的眼睛时,人就能看到小球镜中的像.5.近年来隧道交通事故成为道路交通事故的热点之一.某日,一轿车A 因故障恰停在某隧道内离隧道入口50m 的位置.此时另一轿车B 正以v 0=90km/h 的速度匀速向隧道口驶来,轿车B 到达隧道口时驾驶员才发现停在前方的轿车A 并立即采取制动措施.假设该驾驶员的反应时间t 1=0.57s ,轿车制动系统响应时间(开始踏下制动踏板到实际制动)t 2=0.03s ,轿车制动时加速度大小a=7.5m/s 2.问:(1)轿车B 是否会与停在前方的轿车A 相撞?(2)若会相撞,撞前轿车B 的速度大小为多少?若不会相撞,停止时轿车B 与轿车A 的距离是多少?【答案】(1)轿车B 会与停在前方的轿车A 相撞;(2)10m/s【解析】试题分析:轿车的刹车位移由其反应时间内的匀速运动位移和制动后匀减速运动位移两部分构成,由此可得刹车位移,与初始距离比较可判定是否相撞;依据(1)的结果,由运动可判定相撞前B 的速度.(1)轿车B 在实际制动前做匀速直线运动,设其发生的位移为s 1,由题意可知:s 1=v 0(t 1+t 2)=15 m ,实际制动后,轿车B 做匀减速运动,位移为s 2, 由2022v as =代入数据得:s 2=41.7 m ,轿车A 离隧道口的距离为d =50 m ,因s 1+s 2>d ,故轿车B 会与停在前方的轿车A 相撞(2)设撞前轿车B 的速度为v ,由运动学公式得22002v v ax -=,代入数据解得:v =10m/s .点睛:本题主要考查相遇问题,关键要掌握刹车位移的判定:反应时间内的匀速运动位移;制动后匀减速运动位移.6.(8分)一个质量为1500 kg 行星探测器从某行星表面竖直升空,发射时发动机推力恒定,发射升空后8 s 末,发动机突然间发生故障而关闭;如图所示为探测器从发射到落回出发点全过程的速度图象;已知该行星表面没有大气,不考虑探测器总质量的变化;求:(1)探测器在行星表面上升达到的最大高度;(2)探测器落回出发点时的速度;(3)探测器发动机正常工作时的推力。

高考物理直线运动解题技巧及经典题型及练习题(含答案)含解析

高考物理直线运动解题技巧及经典题型及练习题(含答案)含解析

高考物理直线运动解题技巧及经典题型及练习题(含答案)含解析一、高中物理精讲专题测试直线运动1.现有甲、乙两汽车正沿同一平直马路同向匀速行驶,甲车在前,乙车在后,当两车快要到十字路口时,甲车司机看到绿灯开始闪烁,已知绿灯闪烁3秒后将转为红灯.请问:(1)若甲车在绿灯开始闪烁时刹车,要使车在绿灯闪烁的3秒时间内停下来且刹车距离不得大于18m,则甲车刹车前的行驶速度不能超过多少?(2)若甲、乙车均以v0=15m/s的速度驶向路口,乙车司机看到甲车刹车后也紧急刹车(乙车司机的反应时间△t2=0.4s,反应时间内视为匀速运动).已知甲车、乙车紧急刹车时的加速度大小分别为a1=5m/s2、a2=6m/s2 .若甲车司机看到绿灯开始闪烁时车头距停车线L=30m,要避免闯红灯,他的反应时间△t1不能超过多少?为保证两车在紧急刹车过程中不相撞,甲、乙两车刹车前之间的距离s0至少多大?【答案】(1)(2)【解析】(1)设在满足条件的情况下,甲车的最大行驶速度为v1根据平均速度与位移关系得:所以有:v1=12m/s(2)对甲车有v0△t1+=L代入数据得:△t1=0.5s当甲、乙两车速度相等时,设乙车减速运动的时间为t,即:v0-a2t=v0-a1(t+△t2)解得:t=2s则v=v0-a2t=3m/s此时,甲车的位移为:乙车的位移为:s2=v0△t2+=24m故刹车前甲、乙两车之间的距离至少为:s0=s2-s1=2.4m.点睛:解决追及相遇问题关键在于明确两个物体的相互关系;重点在于分析两物体在相等时间内能否到达相同的空间位置及临界条件的分析;必要时可先画出速度-时间图象进行分析.2.如图甲所示,质量m=8kg的物体在水平面上向右做直线运动。

过a点时给物体作用一个水平向右的恒力F并开始计时,在4s末撤去水平力F.选水平向右为速度的正方向,通过速度传感器测出物体的瞬时速度,所得v﹣t图象如图乙所示。

(取重力加速度为10m/s2)求:(1)8s 末物体离a 点的距离 (2)撤去F 后物体的加速度(3)力F 的大小和物体与水平面间的动摩擦因数μ。

高中物理高考物理直线运动解题技巧讲解及练习题(含答案)

高中物理高考物理直线运动解题技巧讲解及练习题(含答案)

高中物理高考物理直线运动解题技巧解说及练习题(含答案)一、高中物理精讲专题测试直线运动1.高铁被誉为中国新四大发明之一.因高铁的运转速度快,对制动系统的性能要求较高,高铁列车上安装有多套制动装置——制动风翼、电磁制动系统、空气制动系统、摩擦制动系统等.在一段直线轨道上,某高铁列车正以v0=288km/h 的速度匀速行驶,列车长忽然接到通知,前面 x0=5km 处道路出现异样,需要减速泊车.列车长接到通知后,经过t l=2.5s 将制动风翼翻开,高铁列车获取a2的均匀制动加快度减速,减速t2=40s后,列车1 =0.5m/s长再将电磁制动系统翻开,结果列车在距离异样处500m 的地方停下来.(1)求列车长翻开电磁制动系统时,列车的速度多大?(2)求制动风翼和电磁制动系统都翻开时,列车的均匀制动加快度a2是多大?【答案】( 1) 60m/s (2) 1.2m/s 2【分析】【剖析】(1)依据速度时间关系求解列车长翻开电磁制动系统时列车的速度;(2)依据运动公式列式求解翻开电磁制动后翻开电磁制动后列车行驶的距离,依据速度位移关系求解列车的均匀制动加快度.【详解】(1)翻开制动风翼时,列车的加快度为a1=0.5m/s2,设经过t2=40s 时,列车的速度为v1,则 v1 =v0-a1t 2=60m/s.(2)列车长接到通知后,经过 t 1=2.5s,列车行驶的距离 x1=v0t1 =200m 翻开制动风翼到翻开电磁制动系统的过程中,列车行驶的距离x2=2800m翻开电磁制动后,行驶的距离x3= x0- x1 - x2=1500m ;2.2018 年 12 月 8 日 2 时 23 分,嫦娥四号探测器成功发射,开启了人类登岸月球反面的探月新征程,距离2020 年实现载人登月更近一步,若你经过努力学习、勤苦训练有幸成为中国登月第一人,而你为了测定月球表面邻近的重力加快度进行了以下实验:在月球表面上空让一个小球由静止开始自由着落,测出着落高度h 20m时,着落的时间正好为t5s ,则:(1)月球表面的重力加快度g月为多大?(2)小球着落过程中,最先 2s 内和最后 2s 内的位移之比为多大?【答案】 1.6 m/s 21:4【分析】【详解】( 1)由 h = 1g 月 t 2得: 20= 122 2g 月 ×5解得: g 月= 1.6m/ s 2(2)小球着落过程中的 5s 内,每 1s 内的位移之比为 1:3:5:7:9 ,则最先 2s 内和最后 2s 内的位移之比为:( 1+3):( 7+9) =1:4.3. 在平直公路上,一汽车的速度为 15m/s 。

高考物理易错题专题三直线运动(含解析)及解析

高考物理易错题专题三直线运动(含解析)及解析

高考物理易错题专题三直线运动(含解析)及解析一、高中物理精讲专题测试直线运动1.货车A 正在公路上以20 m/s 的速度匀速行驶,因疲劳驾驶,司机注意力不集中,当司机发现正前方有一辆静止的轿车B 时,两车距离仅有75 m .(1)若此时轿车B 立即以2 m/s 2的加速度启动,通过计算判断:如果货车A 司机没有刹车,是否会撞上轿车B ;若不相撞,求两车相距最近的距离;若相撞,求出从货车A 发现轿车B 开始到撞上轿车B 的时间.(2)若货车A 司机发现轿车B 时立即刹车(不计反应时间)做匀减速直线运动,加速度大小为2 m/s 2(两车均视为质点),为了避免碰撞,在货车A 刹车的同时,轿车B 立即做匀加速直线运动(不计反应时间),问:轿车B 加速度至少多大才能避免相撞. 【答案】(1)两车会相撞t 1=5 s ;(2)222m/s 0.67m/s 3B a =≈ 【解析】 【详解】(1)当两车速度相等时,A 、B 两车相距最近或相撞. 设经过的时间为t ,则:v A =v B 对B 车v B =at联立可得:t =10 s A 车的位移为:x A =v A t= 200 mB 车的位移为: x B =212at =100 m 因为x B +x 0=175 m<x A所以两车会相撞,设经过时间t 相撞,有:v A t = x o 十212at 代入数据解得:t 1=5 s ,t 2=15 s(舍去).(2)已知A 车的加速度大小a A =2 m/s 2,初速度v 0=20 m/s ,设B 车的加速度为a B ,B 车运动经过时间t ,两车相遇时,两车速度相等, 则有:v A =v 0-a A t v B = a B t 且v A = v B在时间t 内A 车的位移为: x A =v 0t-212A a tB 车的位移为:x B =212B a t 又x B +x 0= x A 联立可得:222m/s 0.67m/s 3B a =≈2.如图所示,一木箱静止在长平板车上,某时刻平板车以a = 2.5m/s 2的加速度由静止开始向前做匀加速直线运动,当速度达到v = 9m/s 时改做匀速直线运动,己知木箱与平板车之间的动摩擦因数μ= 0.225,箱与平板车之间的最大静摩擦力与滑动静擦力相等(g取10m/s2)。

2025年高考物理总复习专题01 匀变速直线运动规律及多过程问题(附答案解析)

2025年高考物理总复习专题01 匀变速直线运动规律及多过程问题(附答案解析)

第1页(共24页)2025年高考物理总复习专题01匀变
速直线运动规律及多过程问题模型归纳1.匀变速直线运动的基本公式模型
题目中所涉及的物理
量(包括已知量、待求量
和为解题设定的中间
量)
没有涉及的物理量适宜选用的公式v 0、v 、a 、t
x [速度与时间的关系式]v =v 0+at v 0、a 、t 、x
v [位移与时间的关系式]x =v 0t +12at 2v 0、v 、a 、x
t [速度与位移的关系式]v 2-v 20=2ax v 0、v 、t 、x a [平均速度公式]x =v +v 02t 注:基本公式中,除时间t 外,x 、v 0、v 、a 均为矢量,可以用正、负号表示矢量的方向。

一般情况下,我们规定初速度的方向为正方向,与初速度同向的物理量取正值,与初速度反向的物理量取负值。

当v 0=0时,一般以a 的方向为正方向。

2.匀变速直线运动的两个重要推论
推论
公式适用情境(1)物体在一
段时间内的平v =v =利用平均速度求瞬时速度:v n =x n +x n +12T
=。

高中物理必考经典题型+解题技巧

高中物理必考经典题型+解题技巧

高中物理考试常见的类型总结下来有16种,怎样才能做好每一类型的题目呢?就是要掌握这16种常见题型的解题方法和思维模板!题型1:直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。

单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题.思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系。

题型2:物体的动态平衡问题题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题。

物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题。

思维模板:常用的思维方法有两种.(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化。

题型3:运动的合成与分解问题题型概述:运动的合成与分解问题常见的模型有两类。

一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解.思维模板:主要有两种情况。

(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等.(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。

高考物理直线运动题20套(带答案)

高考物理直线运动题20套(带答案)

高考物理直线运动题20套(带答案)一、高中物理精讲专题测试直线运动1.某型号的舰载飞机在航空母舰的跑道上加速时,发动机产生的最大加速度为5m/s2,所需的起飞速度为50m/s,跑道长100m.通过计算判断,飞机能否靠自身的发动机从舰上起飞?为了使飞机在开始滑行时就有一定的初速度,航空母舰装有弹射装置.对于该型号的舰载飞机,弹射系统必须使它具有多大的初速度?m s【答案】不能靠自身发动机起飞39/【解析】试题分析:根据速度位移公式求出达到起飞速度的位移,从而判断飞机能否靠自身发动机从舰上起飞.根据速度位移公式求出弹射系统使飞机具有的初速度.解:当飞机达到起飞速度经历的位移x=,可知飞机不能靠自身发动机从舰上起飞.根据得,=.答:飞机不能靠自身发动机从舰上起飞,对于该型号的舰载飞机,弹射系统必须使它具有40m/s的初速度.【点评】解决本题的关键掌握匀变速直线运动的速度位移公式,并能灵活运用,基础题.2.如图所示,一圆管放在水平地面上,长为L=0.5m,圆管的上表面离天花板距离h=2.5m,在圆管的正上方紧靠天花板放一颗小球,让小球由静止释放,同时给圆管一竖直向上大小为5m/s的初速度,g取10m/s.(1)求小球释放后经过多长时间与圆管相遇?(2)试判断在圆管落地前小球能不能穿过圆管?如果不能,小球和圆管落地的时间差多大?如果能,小球穿过圆管的时间多长?【答案】(1)0.5s(2)0.1s【解析】试题分析:小球自由落体,圆管竖直上抛,以小球为参考系,则圆管相对小球向上以5m/s做匀速直线运动;先根据位移时间关系公式求解圆管落地的时间;再根据位移时间关系公式求解该时间内小球的位移(假设小球未落地),比较即可;再以小球为参考系,计算小球穿过圆管的时间.(1)以小球为参考系,则圆管相对小球向上以5m/s做匀速直线运动,故相遇时间为: 0 2.50.55/h m t sv m s=== (2)圆管做竖直上抛运动,以向上为正,根据位移时间关系公式,有2012x v t gt =- 带入数据,有2055t t =-,解得:t=1s 或 t=0(舍去); 假设小球未落地,在1s 内小球的位移为22111101522x gt m ==⨯⨯=, 而开始时刻小球离地的高度只有3m ,故在圆管落地前小球能穿过圆管; 再以小球为参考系,则圆管相对小球向上以5m/s 做匀速直线运动, 故小球穿过圆管的时间00.5'0.15/L mt s v m s===3.2018年12月8日2时23分,嫦娥四号探测器成功发射,开启了人类登陆月球背面的探月新征程,距离2020年实现载人登月更近一步,若你通过努力学习、刻苦训练有幸成为中国登月第一人,而你为了测定月球表面附近的重力加速度进行了如下实验:在月球表面上空让一个小球由静止开始自由下落,测出下落高度20h m =时,下落的时间正好为5t s =,则:(1)月球表面的重力加速度g 月为多大?(2)小球下落过程中,最初2s 内和最后2s 内的位移之比为多大? 【答案】1.6 m/s 2 1:4 【解析】 【详解】(1)由h =12g 月t 2得:20=12g 月×52 解得:g 月=1.6m /s 2(2)小球下落过程中的5s 内,每1s 内的位移之比为1:3:5:7:9,则最初2s 内和最后2s 内的位移之比为:(1+3):(7+9)=1:4.4.如图所示为四旋翼无人机,它是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m=1 kg 的无人机,其动力系统所能提供的最大升力F=16 N ,无人机上升过程中最大速度为6m/s .若无人机从地面以最大升力竖直起飞,打到最大速度所用时间为3s ,假设无人机竖直飞行时所受阻力大小不变.(g 取10 m /s )2.求:(1)无人机以最大升力起飞的加速度;(2)无人机在竖直上升过程中所受阻力F f 的大小;(3)无人机从地面起飞竖直上升至离地面h=30m 的高空所需的最短时间. 【答案】(1)22/m s (2)4f N = (3)6.5s 【解析】(1)根据题意可得26/02/3v m s a m s t s∆-===∆ (2)由牛顿第二定律F f mg ma --= 得4f N =(3)竖直向上加速阶段21112x at =,19x m = 匀速阶段12 3.5h x t s v-== 故12 6.5t t t s =+=5.某运动员助跑阶段可看成先匀加速后匀速运动.某运动员先以4.5m/s 2的加速度跑了5s .接着匀速跑了1s .然后起跳.求: (1)运动员起跳的速度? (2)运动员助跑的距离? 【答案】(1)22.5m/s (2)78.75m【解析】(1)由题意知,运动员起跳时的速度就是运动员加速运动的末速度,根据速度时间关系知,运动员加速运动的末速度为:即运动员起跳时的速度为22.5m/s ;(2)根据位移时间关系知,运动员加速运动的距离为:运动员匀速跑的距离为:所以运动员助跑的距离为:综上所述本题答案是:(1)运动员将要起跳时的速度为22.5m/s ; (2)运动员助跑的距离是78.75m .6.如图所示,有一条沿顺时针方向匀速传送的传送带,恒定速度v=4m/s ,传送带与水平面的夹角θ=37°,现将质量m=1kg 的小物块轻放在其底端(小物块可视作质点),与此同时,给小物块沿传送带方向向上的恒力F=10N ,经过一段时间,小物块上到了离地面高为h=2.4m 的平台上.已知物块与传送带之间的动摩擦因数μ=0.5,(g 取10m/s 2,sin37°=0.6,cos37°=0.8).问:(1)物块从传送带底端运动到平台上所用的时间?(2)若在物块与传送带达到相同速度时,立即撤去恒力F ,计算小物块还需经过多少时间离开传送带以及离开时的速度? 【答案】(1)1.25s (2)2m/s【解析】试题分析: (1)对物块受力分析可知,物块先是在恒力作用下沿传送带方向向上做初速为零的匀加速运动,直至速度达到传送带的速度,由牛顿第二定律1cos37sin37ma F mg mg μ=+︒-︒(1分),计算得: 218/a m s = 110.5v t s a ==(1分)21112v x m a ==(1分)物块达到与传送带同速后,对物块受力分析发现,物块受的摩擦力的方向改向2cos37sin37ma F mg mg μ=-︒-︒(1分),计算得: 20a =4.0sin37hx m ==︒Q (1分)2120.75x x x t s v v-===(1分)得12 1.25t t t s =+= (1分) (2)若达到同速后撤力F ,对物块受力分析,因为sin37mg ︒> cos37mg μ︒,故减速上行 3sin37cos37ma mg mg μ=︒-︒(1分),得232/a m s =设物块还需t '离开传送带,离开时的速度为t v ,则22322t v v a x -=(1分),2/t v m s=(1分)3tv v t a -'=(1分)1t s '=(1分) 考点:本题考查匀变速直线运动规律、牛顿第二定律。

高考物理直线运动解题技巧及经典题型及练习题(含答案)

高考物理直线运动解题技巧及经典题型及练习题(含答案)

高考物理直线运动解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试直线运动1.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的图象如图所示取m/s2,求:(1)物体与水平面间的动摩擦因数;(2)水平推力F的大小;(3)s内物体运动位移的大小.【答案】(1)0.2;(2)5.6N;(3)56m。

【解析】【分析】【详解】(1)由题意可知,由v-t图像可知,物体在4~6s内加速度:物体在4~6s内受力如图所示根据牛顿第二定律有:联立解得:μ=0.2(2)由v-t图像可知:物体在0~4s内加速度:又由题意可知:物体在0~4s内受力如图所示根据牛顿第二定律有:代入数据得:F=5.6N(3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:【点睛】在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活处理.在这类问题时,加速度是联系运动和力的纽带、桥梁.2.如图所示,在沙堆表面放置一长方形木块A ,其上面再放一个质量为m 的爆竹B ,木块的质量为M .当爆竹爆炸时,因反冲作用使木块陷入沙中深度h ,而木块所受的平均阻力为f 。

若爆竹的火药质量以及空气阻力可忽略不计,重力加速度g 。

求: (1)爆竹爆炸瞬间木块获得的速度; (2)爆竹能上升的最大高度。

【答案】(1()2f Mg hM-2)()2f Mg Mh m g - 【解析】 【详解】(1)对木块,由动能定理得:2102Mgh fh Mv -=-, 解得:()2f Mg hv M-=(2)爆竹爆炸过程系统动量守恒,由动量守恒定律得:0Mv mv -'=爆竹做竖直上抛运动,上升的最大高度:22v H g'=解得:()2fMg MhH m g-=3.撑杆跳高是奥运会是一个重要的比赛项目.撑杆跳高整个过程可以简化为三个阶段:助跑、上升、下落;而运动员可以简化成质点来处理.某著名运动员,在助跑过程中,从静止开始以加速度2 m/s 2做匀加速直线运动,速度达到10 m/s 时撑杆起跳;达到最高点后,下落过程可以认为是自由落体运动,重心下落高度为6.05 m ;然后落在软垫上软垫到速度为零用时0.8 s .运动员质量m =75 kg ,g 取10 m/s 2.求: (1)运动员起跳前的助跑距离;(2)自由落体运动下落时间,以及运动员与软垫接触时的速度;(3)假设运动员从接触软垫到速度为零做匀减速直线运动,求运动员在这个过程中,软垫受到的压力.【答案】(1)运动员起跳前的助跑距离为25m ;(2)自由落体运动下落时间为1.1S ,以及运动员与软垫接触时的速度为11m/s ;(3)运动员在这个过程中,软垫受到的压力为1.8×103N . 【解析】 【详解】(1)根据速度位移公式得,助跑距离:x=22v a =21022⨯=25m (2)设自由落体时间为t 1,自由落体运动的位移为h :h=212gt 代入数据得:t =1.1s 刚要接触垫的速度v ′,则:v′2=2gh , 得v ′=2gh =210 6.05⨯⨯=11m/s(3)设软垫对人的力为F ,由动量定理得:(mg-F )t =0-mv ′ 代入数据得:F =1.8×103N由牛顿第三定律得对软垫的力为1.8×103N4.如图所示,一木箱静止在长平板车上,某时刻平板车以a = 2.5m/s 2的加速度由静止开始向前做匀加速直线运动,当速度达到v = 9m/s 时改做匀速直线运动,己知木箱与平板车之间的动摩擦因数μ= 0.225,箱与平板车之间的最大静摩擦力与滑动静擦力相等(g 取10m/s 2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理直线运动解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试直线运动1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sg sμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+ 带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s =滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁2.跳伞运动员做低空跳伞表演,当直升机悬停在离地面224m 高时,运动员离开飞机作自由落体运动,运动了5s 后,打开降落伞,展伞后运动员减速下降至地面,若运动员落地速度为5m/s ,取210/g m s =,求运动员匀减速下降过程的加速度大小和时间. 【答案】212.5?m/s a =; 3.6t s = 【解析】运动员做自由落体运动的位移为221110512522h gt m m ==⨯⨯= 打开降落伞时的速度为:1105/50/v gt m s m s ==⨯=匀减速下降过程有:22122()v v a H h -=-将v 2=5 m/s 、H =224 m 代入上式,求得:a=12.5m/s 2 减速运动的时间为:125053.6?12.5v v t s s a --===3.如图所示,一木箱静止在长平板车上,某时刻平板车以a = 2.5m/s 2的加速度由静止开始向前做匀加速直线运动,当速度达到v = 9m/s时改做匀速直线运动,己知木箱与平板车之间的动摩擦因数μ= 0.225,箱与平板车之间的最大静摩擦力与滑动静擦力相等(g取10m/s2)。

求:(1)车在加速过程中木箱运动的加速度的大小(2)木箱做加速运动的时间和位移的大小(3)要使木箱不从平板车上滑落,木箱开始时距平板车右端的最小距离。

【答案】(1)(2)4s;18m(3)1.8m【解析】试题分析:(1)设木箱的最大加速度为,根据牛顿第二定律解得则木箱与平板车存在相对运动,所以车在加速过程中木箱的加速度为(2)设木箱的加速时间为,加速位移为。

(3)设平板车做匀加速直线运动的时间为,则达共同速度平板车的位移为则要使木箱不从平板车上滑落,木箱距平板车末端的最小距离满足考点:牛顿第二定律的综合应用.4.一个质点正在做匀加速直线运动,用固定在地面上的照相机对该质点进行闪光照相,闪光时间间隔为1s.分析照片得到的数据,发现质点在第1次、第2次闪光的时间间隔内移到了2m;在第3次、第4次闪光的时间间隔内移动了8m,由此可以求得()A.第1次闪光时质点的速度B.质点运动的加速度C.质点运动的初速度D.从第2次闪光到第3次闪光这段时间内质点的位移【答案】ABD【解析】试题分析:根据得;,故B 不符合题意;设第一次曝光时的速度为v ,,得:,故A 不符合题意;由于不知道第一次曝光时物体已运动的时间,故无法知道初速度,故C 符合题意;设第一次到第二次位移为;第三次到第四次闪光为,则有:;则;而第二次闪光到第三次闪光的位移,故D 不符合题意考点:考查了匀变速直线运动规律的综合应用,要注意任意一段匀变速直线运动中,只有知道至少三个量才能求出另外的两个量,即知三求二.5.某汽车在高速公路上行驶的速度为108km/h ,司机发现前方有障碍物时,立即采取紧急刹车,其制动过程中的加速度大小为5m/s 2,假设司机的反应时间为0.50s ,汽车制动过程中做匀变速直线运动。

求: (1)汽车制动8s 后的速度是多少 (2)汽车至少要前行多远才能停下来? 【答案】(1)0(2)105m 【解析】 【详解】(1)选取初速度方向为正方向,有:v 0=108km/h=30m/s ,由v t =v 0+at 得汽车的制动时间为:003065t v v t s s a ---===,则汽车制动8s 后的速度是0; (2)在反应时间内汽车的位移:x 1=v 0t 0=15m ;汽车的制动距离为:0230069022t v v x t m m ++⨯=== . 则汽车至少要前行15m+90m=105m 才能停下来. 【点睛】解决本题的关键掌握匀变速直线运动的运动学公式和推论,并能灵活运用,注意汽车在反应时间内做匀速直线运动.6.一个物体从塔顶上自由下落,在到达地面前的最后1s 内通过的位移是整个位移的925,求塔高,取g =10m/s 2. 【答案】125m 【解析】 【分析】 【详解】设物体下落总时间为t ,塔高为h ,根据自由落体公式:212h gt =最后(t -1)s 下落的高度为:()21112h g t =- 位移间的关系为:11625h h = 联立解得:125h m =7.如图甲所示,长为4m 的水平轨道AB 与半径为R=0.6m 的竖直半圆弧轨道BC 在B 处相连接,有一质量为1kg 的滑块(大小不计),从A 处由静止开始受水平向右的力F 作用,F 的大小随位移变化关系如图乙所示,滑块与AB 间动摩擦因数为0.25,与BC 间的动摩擦因数未知,取g =l0m/s 2.求:(1)滑块到达B 处时的速度大小;(2)滑块在水平轨道AB 上运动前2m 过程中所需的时间;(3)若滑块到达B 点时撤去力F ,滑块沿半圆弧轨道内侧上滑,并恰好能达到最高点C ,则滑块在半圆轨道上克服摩擦力所做的功是多少. 【答案】(1)210/m s (2835s (3)5J 【解析】试题分析: (1)对滑块从A 到B 的过程,由动能定理得F 1x 1-F 3x 3-μmgx =12mv B 2得v B =10m/s . (2)在前2 m 内,由牛顿第二定律得F 1-μmg =ma 且x 1=12at 12 解得t 1835. (3)当滑块恰好能到达最高点C 时,有mg =m 2Cv R对滑块从B 到C 的过程,由动能定理得W -mg×2R =12mv C 2-12mv B 2 代入数值得W =-5 J即克服摩擦力做的功为5 J . 考点:动能定理;牛顿第二定律8.总质量为80kg 的跳伞运动员从离地500m 的直升机上跳下,经过2s 拉开绳索开启降落伞,如图所示是跳伞过程中的v-t 图,试根据图象求:(g 取10m/s 2) (1)t =1s 时运动员的加速度和所受阻力的大小. (2)估算14s 内运动员下落的高度及克服阻力做的功. (3)估算运动员从飞机上跳下到着地的总时间.【答案】(1)160N (2)158; 1.25×105J (3)71s 【解析】 【详解】(1)从图中可以看出,在t =2s 内运动员做匀加速运动,其加速度大小为162t v a t ==m/s 2=8m/s 2 设此过程中运动员受到的阻力大小为f ,根据牛顿第二定律,有mg -f =ma 得f =m (g -a )=80×(10-8)N =160N (2)从图中估算得出运动员在14s 内下落了 39.5×2×2m =158m根据动能定理,有212f mgh W mv -= 所以有212f W mgh mv =-=(80×10×158-12×80×62)J≈1.25×105J(3)14s 后运动员做匀速运动的时间为5001586H h t v '--==s =57s运动员从飞机上跳下到着地需要的总时间 t 总=t +t ′=(14+57)s =71s9.如图所示,质量为m=1kg 的滑块,在水平力F 作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端处与水平传送带相接(滑块经过此位置滑上皮带时无能量损失),传送带的运行速度为v 0=3m/s ,长为L=1.4m ,今将水平力撤去,当滑块滑到传送带右端C 时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数μ=0.25,g=10m/s2.求(1)水平作用力F的大小;(2)滑块开始下滑的高度h;(3)在第(2)问中若滑块滑上传送带时速度大于3m/s,求滑块在传送带上滑行的整个过程中产生的热量Q.【答案】(1)(2)0.1 m或0.8 m (3)0.5 J【解析】【分析】【详解】解:(1)滑块受到水平推力F、重力mg和支持力F N处于平衡,如图所示:水平推力①解得:②(2)设滑块从高为h处下滑,到达斜面底端速度为v下滑过程由机械能守恒有:,解得:③若滑块冲上传送带时的速度小于传送带速度,则滑块在带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有:④解得:⑤若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理有:⑥解得:⑦(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移:s =v 0t 由机械能守恒有:⑧⑨滑块相对传送带滑动的位移⑩ 相对滑动生成的热量⑪⑫10.“10米折返跑”的成绩反应了人体的灵敏素质.测定时,在平直跑道上,受试者以站立式起跑姿势站在起点终点线前,当听到“跑”的口令后,全力跑向正前方10米处的折返线,测试员同时开始计时.受试者到达折返线处时,用手触摸折返线处的物体(如木箱),再转身跑向起点终点线,当胸部到达起点终点线的垂直面时,测试员停表,所用时间即为“10米折返跑”的成绩,设受试者起跑的加速度为24m /s ,运动过程中的最大速度为4 m/s ,快到达折返线处时需减速到零,加速度的大小为28m /s .受试者在加速和减速阶段运动均可视为匀变速直线运动.问该受试者“10米折返跑”的成绩为多少秒?【答案】6.25s 【解析】 【分析】 【详解】对受试者,由起点终点线向折返线运动的过程中 加速阶段有m111s v t a == 1m 112m 2s v t ==减速阶段有m320.5s v t a == 3m 311m 2s v t ==匀速阶段有132m()1.75s l s s t v -+== 由折返线向起点终点线运动的过程中加速阶段有m411s v t a == 4m 412m 2s v t == 匀速阶段有45m2s l s t v -== 故受试者10米折返跑的成绩为12345 6.25s t t t t t t =++++=。

相关文档
最新文档