土壤学第九章 土壤养分(英文版)
土壤学英文词汇
土壤与土壤资源学常用专业词汇(一)土壤矿物质固氮菌diazotroph矿物mineral (四)土壤理化性质石英quartz 土壤物理性质soil physical properties 长石feldspar 质地texture岩石rock 粒组soil separate花岗岩granite 砂质sandy风化(作用) weather 壤质loam粘土clay(minerals) 粘质clay母质parent material /subsoil 粘重heavy苏达soda 砾石gravel石灰lime 土壤结构soil structure土壤soil 团粒granular土体solum 土壤孔隙系统soil pore system云母mica 孔隙度porosity(二)土壤有机质土壤容重bulk density/apparent density 有机质organic matter 土壤比重particle density泥炭peat 土壤湿度状况soil temperature regime 腐殖质humus 土壤通气性soil aeration凋落物litter 土壤水soil water林褥forest floor 土壤湿度soil moisture积累accumulate/deposit 含水量soil moisture content分解decomposition/decompose 水势water potential矿化mineralization 毛细作用capillary(三)土壤生物土壤颜色soil color土壤生物体soil organism 蒙塞尔土壤色卡土壤动物(区系) soil fauna Munsell Soil Color Chart细菌bacteria 土壤化学性质真菌fungi (pl of fungus) soil chemistry properties藻类algae 氧化-还原(作用) oxidation-reduction土壤植物(区系)soil microflora 胶体colloid蚯蚓earthworm 吸附adsorption蚁ant 阳离子交换量螨mite cation exchange capacity根际the rhizosphere 阴离子交换anion exchange根瘤root nodule/root tubercle 盐基饱和度salt base percentage/菌根mycorhiza base -saturation percentage土壤酶soil enzyme 土壤反应(pH) soil reaction(pH)酸性acid 不完全性肥料incomplete fertilizer酸度acidity 厩肥stable manure(长效肥料)碱化alkalinization 粪便excrement碱性的alkaline(碱土) 鸟粪guano /gwa:neu/碱度alkalinity 骨粉bone meal(六)养分、肥料及肥力堆(沤)制(作堆肥)compost土壤养分soil nutrient 草皮turf营养元素nutrient element 草炭peat大量元素macro-element 草木灰ash微量元素micro-/trace element 石灰lime氮nitrogen 石膏gypsum水解氮hydrolysable nitrogen 硝酸盐肥料nitrate硝态氮nitrate nitrogen 过磷酸盐肥料superphosphate氨态氮ammonium nitrogen 钾盐肥料kainite磷phosphorus (七)土壤发生与分布分类有效磷available phosphorus 风化作用weathering钾potassium 土壤发育(发生)钙calcium pedogenesis/soil development/genesis/formation 镁magnesium 土壤发生因素factor of soil development硫sulphur 土壤发育过程processes of铁iron 淋溶(作用)leaching/eluviation铝aluminium 沉积deposit锰manganese 淀积illuviate(soil 专用)土壤养分供应soil nutrient supply 沉淀(沉降)precipitation土壤肥力soil fertility (水)饱和saturate肥料fertilizer or manure 还原(条件)reduction or reducing condition 施肥fertilization or manure 潜育gleys吸收absorption or uptake 好气条件aerobics(pl)(condition)空中施肥(飞机)aerial fertilization 累积accumulation叶面施肥foliar fertilization 富集(积)enrichment/concentration缺乏deficiency 锈斑mottling缺氮nitrogen deficiency 杂色的、斑驳的mottled缺钾potassium deficiency 过滤percolate肥料效果re sp on se t o /e ffe ct of fe r tilizer 土壤剖面soil profile土壤植物诊断soil and plant diagnosis 剖面发育profile development可见症状visual symptom 发生层horizon(layer)化肥fertilizer 有机质层organic layer完全性肥料complete fertilizer 腐殖质层humus layer绿肥(作物)green-mature crops 矿质土层mineral horizonA、B、C层A、B、C horizon 土地经营land management淋溶层eluvial horizon 地力分级land classification淀积层illuvial horizon 立地site潜育层gleying horizon 立地指数site index土壤分布soil distribution 深翻ripping地带性土壤zonal soils 松土`scarifying /ai/非地带性土壤(在内)intrazonal soil 土壤改良soil reclamation/improvement 土壤带soil stripes /ai/ 土壤保持soil conservation土壤复域soil complex 荒地virgin land土壤分类soil classification 开荒reclamation土壤分类系统soil taxonomy/k`sc/ or system工程防治(水保)mechanical control 诊断层diagnostic horizon 生物防治(水保)biological control分类单元categories 沟渠clinch土纲soil order (九)地质地貌土类great group 风化残渣residue n.亚类group (subgroup)残积土residual soil淋溶土Alfisols 底土subsoil旱成土Aridisols 沉积物deposit sediment新成土Entisols 冲积物alluvial material有机土Histosols 冲积砂fluvial sand始成土Inceptisols 冲积土alluvial soil软土Mollisols 冰川glacier氧化土Oxisols 冻土glacial soil灰土(灰壤)Spodosols 松散岩石(母质)unconsolidated rocks 老成土Ultsols 非破碎岩石uncrambled rocks变性土V ertisols 山脉mountain range暗棕壤Dark Brown Forest Soil 山脊(山岭)mountain ridge草甸土Meadow soil 坡地slope沼泽土Bog soil 坡度falling gradient /ei/石质土Lithosol soil 陡steep / 缓gentle(八)土壤管理分水岭water shed耕作cultivate or tillage 谷地valley灌溉irrigation 盆地basin排水drain (n、-age)洼地low land or depression or loblolly放牧pasture 平原plain集约(精耕)intensive 平地flat land肥力保持maintain soil fertility 沙丘dune /ju:/轮作crop rotation 漫滩(泛湿地)floor plain排污waste discharge 山洪torrent沼泽(泥沼)marsh/swamp/bog 污水净化sewage purification人为搅动土disturbed soil 烂泥sludges(十)土壤环境学(化学)组成composition旱化drought or xeric 微生物转化microbiological transformation水淹flood or overflow 中毒水平toxic level侵蚀erosion 农药污染pesticide pollution可蚀性erodibility 杀虫剂pesticide生荒的virgin 杀菌剂细菌bactericide 真菌fungicide精耕的(集约)intensive 除草剂herbicide开垦reclamation 残留residue土壤改良soil improvementor amelioration/or amendment 降解、净化degradation v. -de硬化(板结)compact 富营养化eutrophia水利water conservancy 生物富集biotic-enrichment/beneficiation水土保持soil and water conservation 放射性物质(废物)radioactive wastes废气discharge or effluent gas废水sewage/effluent/waste water土壤污染soil pollution /contamination废渣fag end/waste slag/industrial sediment or waste 重金属heavy metal 工业三废three industrial waste元素element 环境保护environmental protection环境背景值(本底值)background levels 环境监测environmental monitoring汞mercury 环境危害environmental hazard镉cadmium 环境标准---- standard/criteria(评价)铅lead 环境评价--- criticize/assayment/evaluate污水/下水道sewage ;工业effluents 污水净化sewage purification污灌sewage farm 污染生物指数boitic index of pollution二氧化硫sulfur dioxide/dai`eksaid/ (十一)土壤分析常用词酸雨acid rain /precipitation 消化digestion大气沉降atmospheric deposition(fallout)稀释dilution环境污染物environmental pollutant 萃取extraction危害(危险)hazard 萃取剂extractant(剂)extract(物)剧毒highly toxic 渗透osmosis毒害、毒物poison 渗漏percolation浓缩、富集enrichment/concentrate 扩散diffusion工业废物(残渣)industrial sediment 过滤filter废物处理waste disposal 分析analysis 测定determination原子吸收光谱atomic absorption spectrometry分光计spectrometer蒸馏distillation光谱spectrum补遗词汇过磷酸钙superphosphate磷酸铵ammonium phosphate 氨ammonia尿素urea基肥base manure追肥top application or dressing 随机区组randomized blocks 腐熟well-composted堆腐compost .。
土壤学(第九章) 土壤养分循环
第二节 土壤磷(phosphor)和硫(sulfur)的循环
一、土壤磷的形态和数量
P2O5%=P%×2.291 P% = P2O5% ×0.44 我国土壤全磷(P)含量一般为0.2~1.1g/kg,并有从 南到北渐增的地域变化趋势。
(一)无机态磷
3种相互平衡的形态
溶解
吸附
矿物态
水溶态
吸附态
沉淀
解吸
h
(二)有机态磷 土壤有机磷含量变化大,一般占土壤表层全磷
的20~80%,随土壤有机质含量增加而增加。 有机磷一般需经矿化为无机磷后才能被植物吸
收利用。 1.植素类 植酸与钙、镁等离子结合而成。一般占土壤有
机磷总量的20~30%。
h
2.核酸类 含磷、氮的复杂有机化合物。多数报道占土壤有
机磷总量的1~10%。 3.磷脂类
h
(2)Fe—P(铁磷) 以粉红磷铁矿FePO4·2H2O为代表,溶度积=10-34.9
(3)Al—P(铝磷) 以磷铝石AlPO4·2H2O为代表,溶度积=10-30.5 Fe—P和Al—P的溶解度随pH升高而增大。
(4)O—P(闭蓄态磷) 氧化铁胶膜包被的磷酸盐,无效磷。当Fe2O3
胶膜还原溶解后,磷被释放。
四川耕地土壤全氮分级面积统计(第二次土壤普查资料)
土壤面 积构成 (%)
水田土壤
旱地土壤
土 壤 全 氮 分 级 (N,g/kg)
高
中等
较低
低
(>1.5) (1.5~1.0) (1.0~0.75) (≤0.75)
17.8
58.4
20.9
2.9
14.9
22.7
28.2
34.2
h
1. 无机态N 表土占1-2%,最多5-8%,底土可达30%。
土壤学 第9章土壤养分循环
第一节土壤氮素循环
SOIL NITROGEN CYCLING
土壤氮素循环
一、土壤氮的来源、形态和含量
Sources、 forms and content of Soil Nitrogen
1.含量
土壤中氮素的含量受自然因素(气候、地 形及植被)和农业措施(耕作、施肥、灌溉及 利用方式)的影响,变异性很大。我国耕地土 壤含N量一般都在0.02%-0.2%之间,高于 0.2%的很少,大部分低于0.1%。而华北、西 北大部分地区土壤耕层含N量不足0.1%;南方 土壤的含N量介于二者之间。(如表11-1)。
0.1%。
土壤养分三要素
氮、磷、钾称为“氮、磷、钾三要素” 或“肥料三要素”。简称土壤养分三要 素。其所以重要就在于必需经常调节其 供不应求的状况,而不是指它们在作物 营养中所起的作用。
土壤养分循环
指来自土壤的养分元素通常可以反复的再循环和利用,典 型的再循环过程。包括:
①生物从土壤中吸收养分;
植物吸收利用的土壤养分。
无效养分-不能被植物吸收利用的土壤养分。 土壤养分状况-是指土壤养分的含量、组成、形态 分布和有效性的高低。
作物所必需的营养元素
亚农(Arnon)1954年对植物“必需”的养料元素定了三 条标准: (1)如果缺少这种元素,植物就不能正常生长或不能完成 生命周期 (2)这种元素不能被其他元素所代替,它有其本身所具有
二、土壤N循环
(一)固氮作用 Nitrogen Fixation
N2 + 6H+ + 6e2NH3
1、共生固氮 Symbiotic nitrogen fixation
豆科植物: 固氮细菌(苜蓿根瘤菌、三叶草根瘤菌…) 豆科植物(紫花苜蓿、三叶草、大豆、苕子) 根瘤 豆科植物供养固氮细菌,固氮细菌固氮
《土壤学》第九章 主要土壤类型
–加强土壤耕作管理措施
–合理施肥,提高土壤肥力水平
–因土种植,发挥土壤潜力优势
–适当发展畜牧业,走农牧结合的道路
石灰性褐土上的肥城桃
生长在褐土上的小麦
(三) 红壤
中亚热带湿润季风气候,生 物富集和脱硅富铁铝化作用 下形成的地带性铁铝土 。土 壤红色或棕红色,酸性,有 机质含量较高,核块状结构 。
棕钙土 :温带干旱大陆性季 风气候、荒漠草原与草原化 荒漠下,弱腐殖质积累过程 与与弱粘化和铁质(红化) 过程形成的干旱土壤。土壤 呈碱性,有机质积累很少。
第三节 主要荒漠土壤
一、荒漠土壤类型和分布 二、荒漠土壤的共同特征 三、主要荒漠土壤类型简介
一、荒漠土壤类型和分布
中国的荒漠区面积很大,主要分布于内蒙古鄂尔 多斯高原西北部、宁夏西部、青海西北部、甘肃 河西走廊中、西段的祁连山山前平原和赤金盆地 西缘以及新疆全境。
为多。
3.形成过程
• 粘化过程:残积粘化及淋溶粘化同时进 行,有一深厚的粘化层。
• 钙化过程:CaCO3的淋溶,淀积明显, 土壤正处于脱钙阶段,沉积层中有菌丝 体,砂姜。
• 生物积累过程:比棕壤弱,
4.基本性状 • 褐土的典型剖面构型为Ah-Bt(Ca)-C-
R。 • 腐殖质层一般为10-15厘米,有机质含量
较高 • 粘化层明显,有钙积 • 中性-碱性反应 • 盐基饱和度大于80%。
石
济
灰
南
岩 风
黄 土 母
化
质
物 发
发 育 的
育
褐
的
土
褐 土
剖 面
剖
面
5.改良利用
• 光热条件较好,可两年三熟或一年两熟。可 种植小麦、玉米、甘薯、花生、棉花、烟草、 苹果等。主要问题是降水量偏少和降水量集 中、农业土壤有机质含量偏低。改良:
土壤学最新完整英文词汇
土壤与土壤资源学常用专业词汇(-土壤矿物质固氮菌diazotroph矿物mineral (四土壤理化性质石英quartz 土壤物理性质soil physical properties 长石feldspar 质地texture岩石rock 粒组soil separate花岗岩granite 砂质sandy风化(作用weather壤质loam粘土clay(minerals 粘质clay母质parent material /subsoil 粘重heavy苏达soda砾石gravel石灰lime 土壤结构soil structure土壤soil 团粒granular土体solum 土壤孔隙系统soil pore system云母mica孔隙度porosity(二土壤有机质土壤容重bulk density/apparent density 有机质organic matter 土壤比重particle density泥炭peat 土壤湿度状况soil temperature regime腐殖质humus 土壤通气性soil aeration凋落物litter 土壤水soil water林褥forest floor 土壤湿度soil moisture积累accumulate/deposit 含水量soil moisture content分解decomposition/decompose 水势water potential矿化mineralization 毛细作用capillary(三土壤生物土壤颜色soil color土壤生物体soil organism蒙塞尔土壤色卡土壤动物(区系soil fauna Munsell Soil Color Chart细菌bacteria 土壤化学性质真菌fungi (pl of fungus soil chemistry properties藻类algae 氧化-还原(作用oxidation-reduction 土壤植物(区系soil niicroflora 胶体colloid蚯蚓earthworm 吸附adsorption蚁ant阳离子交换量嫡mite cation exchange capacity根际the rhizosphere 阴离子交换anion exchange根瘤root nodule/root tubercle 盐基饱和度salt base percentage/ 菌根mycorhiza base -saturation percentage土壤酶soil enzyme 土壤反应(pH soil reaction(pH酸性acid不完全性肥料incomplete fertilizer酸度acidity厩肥stable manure(长效肥料碱化alkalinization 粪便excrement碱性的alkaline(碱土鸟粪guano /gwa:neu/碱度alkalinity 骨粉bone meal(六养分、肥料及肥力堆(氾制(作堆肥compost土壤养分soil nutrient 草皮turf营养元素nutrient element 草炭peat大量元素macro-element草木灰ash微量元素niicro-/trace element 石灰lime氮nitrogen 石膏gypsum水解氮hydrolysable nitrogen 硝酸盐肥料nitrate硝态氮nitrate nitrogen 过磷酸盐肥料superphosphate氨态氮ammonium nitrogen 钾盐肥料kainite磷phosphorus (七土壤发生与分布分类有效磷available phosphoius 风化作用weathering钾potassium 土壤发育(发生钙calcium pedogenesis/soil development/genesis/formation 镁magnesium 土壤发生因素factor of soil development 硫sulphur 土壤发育过程processes of铁iron 淋溶(作用leaching/eluviation铝aluminium 沉积deposit猛manganese 淀积illuviate(soil 专用土壤养分供应soil nutrient supply 沉淀(沉降precipitation土壤肥力soil fertility (水饱和saturate肥料fertilizer or manure 还原(条件reduction or reducing condition 施肥fertilization or manure 潜育gleys吸收absorption or uptake 好气条件aerobics (pl (condition 空中施肥(飞机aerial fertilization 累积accumulation叶面施肥foliar fertilization 富集(积enrichment/concentration缺乏deficiency 锈斑mottling缺氮nitrogen deficiency 杂色的、斑驳的mottled缺钾potassium deficiency 过滤percolate肥料效果re sp on se to /effe ct of ferti 1 i zer 土壤剖面soil profile土壤植物诊断soil and plant diagnosis 剖面发育profile development可见症状visual symptom 发生层horizon (layer化肥fertilizer 有机质层organic layer完全性肥料complete fertilizer腐殖质层humus layer绿肥(作物green-mature crops 矿质土层mineral horizonA、B、C 层A、B、C horizon 土地经营land management淋溶层eluvial horizon 地力分级land classification淀积层illuvial horizon 立地site潜育层gleying horizon 立地指数site index土壤分布soil distribution 深翻ripping地带性土壤zonal soils 松土'scarifying /ai/非地带性土壤(在内intrazonal soil 土壤改良soil reclamation/improvement 土壤带soil stripes /ai/ 土壤保持soil conservation土壤复域soil complex 荒地virgin land土壤分类soil classification 开荒reclamation土壤分类系统soil taxonomy/k"sc/ or system 工程防治(水保mechanical control 诊断层diagnostic horizon 生物防治(水保biological control 分类单元categories 沟渠clinch土纲soil order (九地质地貌土类great group 风化残渣residue n・亚类group (subgroup 残积土residual soil淋溶土Alfisols 底土subsoil旱成土Aridisols 沉积物deposit sediment新成土Entisols 冲积物alluvial material有机土Histosols 冲积砂fluvial sand始成土Inceptisols 冲积土alluvial soil软土Mollisols 冰川glacier氧化土Oxisols 冻土glacial soil灰土(灰壤Spodosols松散岩石(母质unconsolidated rocks老成土Ultsols非破碎岩石uncrambled rocks变性土V eilisols 山脉mountain range暗棕壤Dark Brown Forest Soil 山脊(山岭mountain ridge草甸土Meadow soil 坡地slope沼泽土Bog soil 坡度falling gradient /ei/石质土Lithosol soil 陡steep / 缓gentle(八土壤管理分水岭water shed耕作cultivate or tillage 谷地valley灌溉irrigation 盆地basin排水drain (n、-age 洼地low land or depression or loblolly 放牧pasture 平原plain集约(精耕intensive平地flat land肥力保持maintain soil fertility 沙丘dune /ju:/轮作crop rotation 漫滩(泛湿地floor plain排污waste discharge 山洪torrent沼泽(泥沼marsh/swamp/bog 污水净化sewage purification人为搅动土disturbed soil 烂泥sludges(+ 土壤环境学(化学组成composition旱化drought or xeric 微生物转化microbiological transformation水淹flood or overflow 中毒水平toxic level侵蚀erosion 农药污染pesticide pollution可蚀性erodibility 杀虫剂pesticide生荒的virgin杀菌剂细菌bactericide真菌fungicide精耕的(集约intensive除草剂herbicide开垦reclamation 残留residue土壤改良soil improvementor amelioration/or amendment B毎解、;争化degradation v. -de硬化(板结compact富营养化eutrophia水利water conservancy 生物富集biotic-enrichment/beneficiation水土保持soil and water conservation 放射性物质(废物radioactive wastes废气discharge or effluent gas废水sewage/effluent/waste water土壤污染soil pollution /contamination 废渣fag end/waste slag/industrial sediment or waste 重金属heavy metal 工业三废three industrial waste元素element 环境保护environmental protection环境背景值(本底值background levels 环境监测environmental monitoring汞mercury 环境危害environmental hazard镉cadmium 环境标准——standard/criteria(评价铅lead 环境评价■一criticize/assayment/evaluate污水 /下水道sewage ;工业effluents 污水净化sewage purification污灌sewage farm 污染生物指数boitic index of pollution 二氧化硫sulfurdioxide/dai'eksaid/ (------------------------- 土壤分析常用词酸雨acid rain /precipitation 消化digestion 大气沉降atmospheric deposition(fallout 稀释dilution 环境污染物environmental pollutant 萃取extraction 危害(危险hazard萃取剂extractant (剂extract (物剧毒highly toxic 渗透osmosis 毒害、毒物poison渗漏percolation浓缩、富集enrichment/concentrate 扩散diffusion工业废物(残渣industrial sediment 过滤filter废物处理waste disposal 分析analysis 测定determination原子吸收光谱atomic absorption spectrometry 分光计spectrometer 蒸镭distillation 光谱spectrum补遗词汇过磷酸钙superphosphate 磷酸钱ammonium phosphate 氨ammonia尿素urea基月巴base manure追肥top application or dressing 随机区组randomized blocks 腐熟well-composted 堆腐compost・。
土壤养分循环
矿物固定态铵离子的含量与土壤中其他交换性阳离子的种类和性质有关, 尤其与钾离子的含量关系密切。土壤的干湿交替、酸碱度等对铵的矿物 固定或固定态铵的释放也有直接的影响。
在某些森林土壤O层和A层中大约有一半的氮以固定态铵或者与腐殖质化 学结合态的形式被固定。
三、土壤中氮素的循环转化及其调节 (二)土壤氮素内部转化(氨化作用、硝化作用、固持) 一般把有机态氮转变成氨态氮和硝态氮的过程(氨化和硝化作用)统称 为矿化过程(nitrogen mineralization )。
核酸是一类含磷、氮的复杂有机化合物,是直接从生物残体特别是微生 物体中的核蛋白质分解出来的。经微生物酶系作用分解为磷酸盐后即可 为植物吸收。
3、磷脂类(不足1%)
一类不溶于水而溶于醇或醚类的含磷有机化合物,普遍存在于动植物及 微生物体内。磷脂类化合物经微生物分解转化为有效磷后才能被植物利 用。
二、土壤中磷素的存在形态及其有效性 土壤无机磷:(占土壤全磷2/3~3/4) 1、难溶类磷酸盐类 (1)磷酸钙(镁)类化合物(以Ca-P表示) 指磷酸根在土壤中与钙、镁等碱土金属离子以不同比例结合形成的一系 列不同溶解度的磷酸钙、镁盐类。它们是石灰性或钙质土壤中磷酸盐的 主要形态。 在我国北方石灰性土壤中常见的磷酸盐有磷灰石[ Ca5(PO4)·F]、羟基磷灰 石[ Ca5(PO4)3·OH]、磷酸三钙[ Ca3(PO4)2]和磷酸八钙[Ca8(PO4)6·5H2O]、磷 酸十钙[ Ca10(PO4)6·(OH)2 ]。
土壤学中英文对照名词
组成物质在水力、风力和重力等外营力作用下被破坏、土壤学中英文对照名词分散、搬运和沉积的过程及其与土壤性质和环境间相互关系的学科。
soil 土壤陆地表面由矿物质、有机物质、水、空气和01.023 水土保持soil and water 生物组成,具有肥力,能生长植物的未固结层。
conservation 研究防治水土流失、水土资源开发和持续利用,提高农业生产、soil science 研究土壤的形成、分类、分布、制土壤学保护和改善生态环境的综合性科学技术。
图和土壤的物理、化学、生物学特性、肥力特征以及土01.024 农业化学分析agrochemistry analysis 研究植物壤利用、改良和管理的科学。
-土壤-肥料体系中有关的植物组织成分和生化物质、侧重研究土壤的发生、演化、特发生土壤学pedology土壤养分和肥料性质等的化学、物理、物理化学测定原性、分类、分布和利用潜力的土壤学。
理、方法和测定数据处理等。
edaphology 侧重研究土壤的组成、性质及耕作土壤学01.025 土壤信息系统其与植物生长的关系,通过耕作管理提高土壤肥力和生soil information system, SIS应用计算机硬件和软件,储存、检索、分析、处理土壤信息产能力的土壤学。
的技术系统。
] 学soil geography 研究土壤的空间分布和组土壤地理[01.026 土壤遥感soil 合及其地理环境相互关系的学科。
remote sensing 应用各种控测器远距离收集土壤反射或发射的电磁波谱信号,] soil physics 研究土壤中物理现象或过程变成可以[土壤物理学直接识别的图像或供计算机分析的磁带数据的学科。
的学科。
02. 土壤发生、分类和制图02.001 土壤圈土壤化学soil chemistry 研究土壤中各种化学行为和过pedosphere地球表面与大气圈、水圈、生物圈及岩石圈相交界并进程的学科。
行物质循环、能量交换的圈层。
植物营养元素的土壤化学--绪论(英文和中文)
Lal R. J Plant Nutri. Soil Sci., 2010,1-12
The planet is warming due to increased concentrations of heat-trapping gases in our atmosphere.
Kalbitz K
施用肥料增加了二氧化碳的固定
人类活动与氮素固定
Mosier A R. Nutrient Cycling in Agroecosystems 2002, 63:101-116.
Figure 1. Global population trends from 1860 to 2000 (billions, left axis) and reactive nitrogen (Nr) creation (teragrams nitrogen [Tg N] per year, right axis). (Galloway,et al. BioScience,2003, 53(4))
Different forms of nutrients in soil are transformed under the influence of various biotic and environmental factors.
高等植物必需的营养元素(16+1 或+2) C,H,O,N,P,K,Ca,Mg,S,
Forms of nutrients in soil?
1) Nutrient in solution
2) Exchangeable nutrients
3) Non-exchangeable nutrients; 4) Nutrient in mineral (structure); 5) Nutrient in organic matter and microbial biomass.
土壤与肥料相关英文版的教材
土壤与肥料相关英文版的教材以下是为您生成的 20 个与土壤与肥料相关的英语释义、短语、单词、用法及双语例句:1. Soil (土壤)- 英语释义:The upper layer of the earth in which plants grow.- 短语:fertile soil (肥沃的土壤)、poor soil (贫瘠的土壤)- 单词用法:“Soil” 是不可数名词。
- 双语例句:The quality of the soil affects the growth of crops. (土壤的质量影响农作物的生长。
)2. Fertilizer (肥料)- 英语释义:A substance added to soil to make plants grow better.- 短语:chemical fertilizer (化肥)、organic fertilizer (有机肥)- 单词用法:“Fertilizer” 是可数名词。
- 双语例句:We need to apply some fertilizer to the garden. (我们需要给花园施些肥料。
)3. Compost (堆肥)- 英语释义:Decayed organic matter used as a fertilizer.- 短语:make compost (制作堆肥)- 单词用法:“Compost” 是不可数名词。
- 双语例句:Compost can improve the structure of the soil. (堆肥可以改善土壤结构。
)4. Nitrogen (氮)- 英语释义:A chemical element that is an important part of proteins and is needed for plant growth.- 短语:nitrogen fertilizer (氮肥)- 单词用法:“Nitrogen” 是不可数名词。
土壤学考试名词解释
第二章
1、名词解释 土壤有机质( Soil organic matter , SOM )是指存在于土壤中的所有含碳的有机物,包括 各种动植物残体,微生物体及其分解和合成的各类有机物质。 土壤腐殖质 (humus)是除未分解和半分解动、 植物残体及微生物体以外的有机物质的总称。 矿化作用 (mineralization) 土壤有机质在土壤微生物及其酶的作用下,氧化分解成二氧化碳 和水,并释放出其中的矿质养分的过程。 冻土效应 (effect of soil freezing) 土壤冰冻以后, 在其解冻后的最初 1~2 周内,二氧化碳和氨 释放量增多的现象。 干土效应( effect of soil drying ):土壤经过干燥后,在加水湿润的最初 1~2 周内,二氧化 碳和氨释放量增加的现象。 腐殖化过程 :(Humification) 动物、植物、微生物残体在微生物作用下,通过生化和化学作 用而形成腐殖质的过程。 激发效应 ** ( Priming effect):投入新鲜有机质或含氮物质而使土壤中原有机物质的分解速 率改变的现象。使分解速率增加的称正激发效应;降低的称负激发效应。
8、 盐基饱和度( BSP) 在土壤胶体上所吸附的阳离子中,盐基离子的数量占所吸附交换性 阳离子总量的百分比,叫盐基饱和度。
9、离子饱和度 percentage ion saturation 土壤中某一交换性阳离子占全部交换性阳离子的 百分数称为该交换性阳离子的饱和度。 Cation percent saturation
water
17、入渗率 infiltration rate 在土面保持有大气压下的薄水层,单位时间通过单位面积土壤 的水量。
土壤学专业英语
A1层AI horizonA2层A2 horizonABC型土ABC soilAC型土AC soilAG型土AG soilAo层Ao horizonAp层Ap horizonA层A horizonBC型土壤B C SoilB层B horizonC层C horizonG层G horizonH层H layerL层L layerpF曲线pF curvepF值pF valuepH值pH ValueU形沟蚀U-shaped gullyingV式节制坝V-type check dam V形沟蚀V-shaped gullingV形拖板V-dragX线分光分析X-ray spectrophyX线绕射分析X-xayd iffraction methody次量养分元素,Secondary nutrient element(即Secondary essential element 安定粒团Stable aggregate氨态氮Ammonieal nitrogen胺化作用Aminization暗Dark (指Soil colour暗渠排水Closed ditch drainage暗色火山灰土Ando soil白垩土Chalk soil白毛微法Cunninghemella plaque test斑点Mottling半定域土Semizonal soil半润度含水量Moisture content at 50% relative humidity半沼泽土Half bog soil (同Marsh border soil)榜纹Streak剥蚀作用Exfoliation保土坝Soil saving dam保土调查Soil conservation survey保土局Soil conservation service (U.S.D.A.)保土作物soil protective crop保土作物Soil conserving crop饱和度Degree of saturation饱和渗透度Saturated permeability饱和水流Saturated flow鲍氏单位(鲍尔)Baule's unit (haule)鲍氏生产律Baule s law of percentage yield 被护作物Cover crop崩积层Colluvium崩积土Colluvial soil边际地Manning's formula Marginal Land 变质多米高岭石Metahalloysite表层冲蚀Sheet erosion表土Surface soil表土截去Truncation冰川沈积Glacial drift冰积土Glacial soil冰沼土Tundra soil薄片状构造Laminar structure卜来水化云母Bravaisite不饱和水流Unsaturated flow不坚结Unconsolidated不自由水Unfree water不足供应Poverty adjustment残积土Residual soil槽式培段Channel-type terrace 草地Grass land草皮Sod草滩腐植土Marsh soil草原黑土Black prairie soil草原土Prairie soit颤动容积Oscilation volume超施石灰Overlim ing超效水Superavailable water超粘粒Ultra clay成熟剖面Mature profile成土母质Parent material成土因子Soil former成土作用Soil forming process 赤道聚钙土Equatorial pedoca] 冲积层Alluvium冲积扇Alluvial fan冲积土Alluvial soil冲蚀Erosion冲蚀比Erosion ratio冲蚀防治Erosion control冲蚀性Erosiveness冲刷Scouring虫泄Worm excretion虫穴Mole burrow出水口Outlet初步沟蚀Incipient gullying (即Finger gullying)锄力作用Dynamic process处女土Virgin soil穿透度Penetrability穿透计Penetr0meter垂距Vertical interval垂流涵洞坝Drop inlet dam次边际地Submarginal land次量要素Secondary product of weathering次生矿物Secondary mineral次生土Sedentary soil次生土Heterochronogenous soils次生土粒Secondary soils (同Heterochronogenous soils) 次生盐土Secondary soil particle次生砖红壤Secondary laterite粗糙系数Coefficient of roughness粗骨土Skelctal soil粗管状Tubular (指Pore space)粗砂壤土Coarse sand loam粗团率State of aggregation脆性Brittle (指Consistence)代换性盐基Replaceable bases单杆式霸Pole type brucn dam单粒构造Single grain structure单粒构造Primary particle structure单值测定Single value determination淡Weal (指Soil colour)淡栗钙土Light chestnut coloured soil氮肥Ammoniate氮化细菌Ammonifving bacteria氮化作用Ammonification氮素循环Nitrogen cycle弹性Elastic (指Consistence)弹性梳物养分Elastic plant nutrient当量碱度Equivalent basicity当量酸度Equivalent acidity稻田阶段Paddy terrace等电点Isoelectric point等电点Amphoteric point (同Isoeiectric point) 等电沈液Isoelectric precipitate等腐植质带Isohumus belt等高川作Contour listihg等高耕作Contour Planting (farming)等高间栽Contour strip cropping等高线Contour等高作沟Contour ridging (同Contour furrowing) 等高作沟Contour furrowing等力Isodynes等斜阶段Uniform terrace低腐植潜水灰壤Low humic glei soil狄屯高岭石Dickite底堆石Ground moraine底土Subsoil地臂冲蚀Geological erosion地景Land scape地力衰竭Soil exhaustion地势Relief地下灌溉Sub-irregation地下水Ground water地下水位Ground water table地形Topograph电导测定法Electro-conductivity method电解质Electrolyte电渗Electrophoresis (同Cataphoresis) 电渗Caraphoresis电透析Electrodyalysis电子显微法Electromicroscopy凋萎点Wilting point凋萎系数Wilting co-efficient跌水冲蚀Waterfall erosion碟状构造Platy structure定位Orientation定位吸着Oriented adsorption定域土,顾域土Zonal soil冻胀计Dilatometer动物穴Animal furrow豆科桢物Leguminous plant犊聚作用Accumulation短行Short row (同Point row)短行Point row断键水Broken bond water对称浓度Symmetry concentration对称值Symmetry value多孔状Porous (指Pore space)多铝蒙特石Bidellite多镁蒙特石,皂石Saponite多水高岭石Hailoysite多铁蒙特石,绿高岭石,硅铁石Nontronire多硅高岭石Anauxite遏渡域Transitional zone二层法(机械分析)Two layer method (mechanical analysis) 二电性Amphoteric character二甲苯当量Xylene equivalent二可性细菌Faeultntive bacteria二性胶体Ampholytoid矾斑Alum spot反附着作用Negative adsorption反吸收柞用Negative absorption泛域土Azonal soil方块构造Cubic like structure防风草带Shelter belt防风间栽Wind strip cropping防风林Wind break放牧地Grazing land放射菌Actinomycetes放射性迹示法Radioactivity tracer technique非共生好氧性固氮菌Azotobacter非共生嫌氧性固氮菌Closteridimn pasterianum 非交接性阴离子Non-exchangeable cation非气候性成土作用Aclimatic soil formation非石灰性土Non calcarious soil非微管孔度Non-capillary porosity非正常冲蚀Abnormal erosion (同Soil erosion) 非正常剖面Abnormal profile沸池石复合体Zeolitic complex沸泡石Zeolite沸泡状构造Vesicular structure分解变质Katamorphism分区轮牧法Rotational grazing分散Dispersion分散比Dispersion ratio分散剂Dispersing agent分散媒Dispersion medium分散体Dispersoid分散系Disperse system分散相Dispersed phase分水渠Diversion channel分水线Divide玢粒,粉砂Silt玢质粘壤土,粉砂粘壤土Silty clay loam粉红Pink (指Soil colour)粉质壤土,粉砂壤土Silty loam粉状构造Pulverulent stucture风成凸起Knob风化次生物Secondary saline soil风化度Degree of weathering风化作用Weathering风积土Regosol风积土Aeolian soil风蚀Wiod erosion风蚀沟Wind gully风刷池Blown out land蜂巢状构造Honey comb structure (即Cellula structure)夫来潜水灰壤Vlei soil浮秤法(机械分析) Hydrometer metnod (mechanical analysis) 复钙作用Recalcification腐枚质Humus腐泥土Muck腐生Saprophytic腐石Rigolith腐械质沸池石馥合体Humus zeolite complex 腐铀銴g Humus soil腐栈质聚硅土Humic siallite腐镇质硬盘Humus ortstien腐植化有机物Humified organic matter腐植化作用Humification腐植素Humin腐植酸Humic acid腐植质灰壤Humus podzol腐植质潜水灰壤Humic glei soil附着力Adsorbility附着作用Adsorption副样本Subsample"覆盖?" Mulch钙成土Calcimorphic (Calomorphic) soil钙化作用Calcification钙积层Caliche (同Bca horizon)钙积层Bca horizon钙粘土,钙粘粒Calc. ium clay钙质土Calcium soil"盖?" Ginger nut"盖洛?" Gedroizite竿底层Plow sole高岭石Kaolinite高岭石类Kaolinites高岭土Kaolin高岭土化作用Kaoiinization高山腐植土Alpine humus soil高山黑钙土Mountain chernozem高山灰化土Mountain podzolized soil" 高山栗钙土Mountain chestnut soil高山泥炭土Mountain peat高山土Alpine soil高山涯草原土Alpine meadow soil格形矿物Lattice minerals根孔Root hole根瘤Root nodule根瘤菌Nodule bacteria根瘤菌Bacterium radicicola根瘤细菌Rhizobium根溶性Root soluble根系Root system根域Root Zone耕作Tillage耕作层Plowing layer耕作性Tilth共生Symbiosis沟坚冲蚀Gully erosion沟蚀Gullying构造单位Structure unit构造剖面Structural profile构造形成力Structural capacity古土Fossil soil古土壤Relict soil古土壤Paleosol (同Relict soil)古土壤学Paleopedology谷A泥炭土Niederungsmoor ( 同Fen peat)谷A泥炭土Flachmoor (同Fenpeat)固氮菌Nitrogen fixing bacteria固氮菌土盘法Azotobacter soilplaque technique 固氮作用Nitrngen fixation固性Firm(指onsistence)关键墙段Key terrace灌溉Irrigation灌林灰壤Heath podzol灌林泥炭土Heath peat光能硝化作用Photonitrification广域Macrozone广域地势Macrorelief龟土Adobe soil国际土质分级International texture grades 过度放牧Over grazing过度武土Transitional soil过分消耗Luxury consumption海积土Marine soil海绵状Spongeous (指Pore space)海滩沈积Beach deposit海洋沈积Marine deposit旱境土Arid soil旱农制Dry farming好热性细菌Thermophile bacteria好氧性细菌Aerobic bacterial耗土作物Soil depleting crop合成变质Anamorphism河岸冲饪Stream bank erosion河成土Fluvial soil河床冲积土River wash核状构造Nutty sturcture核状沈积Concretionary deposit黑钙土Chernozem (Tschernozem)黑钙土Black earth ( 同Chernozem)黑棉土Regur黑棉土Black cotton soil黑泥炭土Black turf soil黑色石灰岩土Rendzina黑微法Aspergillus niger method横插式阻刷坝Crosswise brush type dam 横带间裁Strip cropping横渠Transverse channel洪积层Deluvium红漠钙土Red desert soil红壤Red loam红壤Lateritic soil红壤化作用Laterization红色草原土Red prairie soil红色栗钙土Reddish chestnut earth红色石灰岩土Terra rossa红棕钙土Reddish brown soil红棕色红壤Reddish brown leteritic soil 后硅作用Resilisification湖成泥炭土Lacustrine peat湖成沈积Lacustrine deposit湖成砖红壤Lake latefite湖积土Lacustrine soil互接种族Cross inoculation group互沈激理论Mutual precipitation theory 护膜胶体Dopplerite滑Slick (指Consistence)滑崩Slumping (同Slip)滑崩Slip滑崩冲蚀Slip erosion化学性风化作用Chemical weathering 化学性剖面Chemical profile化育性土类Genetic soil type化育因子Genetic factor还积土Transported soil还原作用Regradation缓动草带Buffer strip缓动能量Buffer capacity缓动曲线Buffer curve缓动作用Buffer action黄壤Yellow earth黄色准灰壤Yellow podzolic soil黄土Loess黄棕色红壤Yellowish brown lateritic soil灰分Ash灰钙土Sierozem灰钙土Grey soil (同Sierozem)灰钙土Gray earth灰化层PodzOlized horizon灰化红黄壤,红黄准灰壤Reddish yellow podzolic soil 灰化土壤Podzolized soil灰化作用Podzolization灰黄色Grayish yellow灰壤Podzol灰色Gray灰色森林土Gray forest soil灰色准灰壤Gray podzolic (wooded) soil灰棕准灰壤,灰棕壤Gray brown podzolic soil混凝土节制坝Concret dam活性酸度Acidity,active火山土Volcanic soil基层Substratum机械分部Mechanical separate机械分析Mechanical analysis机械洗出作用Mechanical eluviation机械组成Mechanical composition积水Water logging极细砂Very fine sand集流时间Time of concentration集水面积Drainage area寄生Parasitic加速冲蚀Accelerated erosion (同Soil erosion)钾钠风化比Shifting value假比重Apparent specific gravity假比重Apparent density (lg] Apparent specifi gravity) 假粒团False aggregate坚结Indurated (指Consistence)坚结物质Consolidated material监生植物Halophytic vegetation监育土Halogenic (Halomorphic) soil剪断力Shear碱班Alkali spot碱度Alkalinity碱土Solonetz碱土Black alkali soil (同Solonetz)碱土Alkali soil碱土(匈牙利名) Szik soil碱土化作用Solonization碱土化作用Atkalization碱土退化作用Solotization碱性湿草原土Alkaline meadow soil碱性土Alkaline soil渐斜阶段Variable grade terrace降水强度Rainfall intensity降水强度频率曲线Rainfall intensity frequency curve 降水效力指数P-E index交换常数Exchange constant交换恒温式Exchange isotherm交换能量Exchangeable capacity交换性气Exchangeable hydrogen交换性酸度Acidity,exchangeable交换性盐基Exchangeable bases交换性阴离子Exehangeableanion胶结Cementation (指Consistence)胶结剂Cementing agent 胶粒Colloidal particle 胶略水Gel water"胶溶化Peptize胶溶剂Peptizing age。
第九章 土壤酸碱性和氧化还原反应
二.土壤酸度
1、 交换性酸 用中性盐溶液如1mol.L-1 KCL浸提土壤,土壤胶体表 面吸附的铝离子与氢离子进入溶液产生的酸。 2、水解性酸 用弱酸强碱盐溶液,如pH8.2的1mol.L-1 NaOAc溶 液浸提而产生的酸。
二.土壤酸度
(三)土壤酸化
是指在自然和人为条件下土壤pH下降的过程。 1、土壤酸化过程实质 2、土壤酸化的成因 (1)自然土壤发生过程 (2)生物地球化学过程 (3)施肥和土壤管理 (4)酸沉降 3、土壤酸化的环境效应 4、土壤酸化防治
土壤酸化过程
Al3+ Ca2+ 土壤 K+ 胶体 Na+ Mg2+ H+ + H+ Na Ca2+
Al3+
K+
Mg2+
H+
H+ 增加,土壤酸化 盐基离子淋溶
离子交换
二.土壤碱度
土壤碱性指标 1、pH 2、碱化度(钠碱化度;ESP-exchangeable sodium percentage) 是指土壤胶体吸附的交换性钠离子占阳离子交换量的百分率。
二.土壤酸度
(一)土壤活性酸 土壤溶液中的氢离子引起的酸,用pH表示。 土壤酸碱性划分 ﹤5.0 强酸性 5.0-6.5 酸性 6.5-7.5 中性 7.5-8.5 碱性 ﹥8.5 强碱性
二.土壤酸度
(二)土壤潜性酸 指土壤胶体上吸附的氢离子、铝离子等所产生 的酸,单位cmol.L-1/kg。 Al3++H2O⇋Al(OH)2++H+ Al(OH)2++ H2O⇋Al(OH)2++H+ Al(OH)2++H2O ⇋Al(OH)3+H+ 土壤中交换性铝离子是土壤潜性酸的主要贡献 者。在南方红壤土壤中占到90%以上。
土壤学名词(中英文对照)
01. 总论01.001 土壤 soil陆地表面由矿物质、有机物质、水、空气和生物组成,具有肥力,能生长植物的未固结层。
01.002 土壤学 soil science研究土壤的形成、分类、分布、制图和土壤的物理、化学、生物学特性、肥力特征以及土壤利用、改良和管理的科学。
01.003 发生土壤学 pedology侧重研究土壤的发生、演化、特性、分类、分布和利用潜力的土壤学。
土壤学名词01. 总论01.001 土壤 soil陆地表面由矿物质、有机物质、水、空气和生物组成,具有肥力,能生长植物的未固结层。
01.002 土壤学 soil science研究土壤的形成、分类、分布、制图和土壤的物理、化学、生物学特性、肥力特征以及土壤利用、改良和管理的科学。
01.003 发生土壤学 pedology侧重研究土壤的发生、演化、特性、分类、分布和利用潜力的土壤学。
01.004 耕作土壤学 edaphology侧重研究土壤的组成、性质及其与植物生长的关系,通过耕作管理提高土壤肥力和生产能力的土壤学。
01.005 土壤地理[学] soil geography研究土壤的空间分布和组合及其地理环境相互关系的学科。
01.006 土壤物理[学] soil physics研究土壤中物理现象或过程的学科。
01.007 土壤化学 soil chemistry研究土壤中各种化学行为和过程的学科。
01.008 土壤生物化学 soil biochemistry阐明土壤有机碳和氮素等物质的转化、消长规律及其功能的学科。
01.009 土壤矿物学 soil mineralogy研究土壤中原生矿物和次生矿物的类型、性质、成因、转化和分布的学科。
01.010 农业化学 agrochemistry研究植物营养、土壤养分、肥料性质和施用技术及其相互关系的学科。
在广义上也包括农产品加工酿造等。
01.011 土壤分析化学 soil analytical chemistry研究用化学方法和原理测定土壤成分和性质的技术学科。
土壤学中英文对照名词.
土壤学中英文对照名词01. 总论01.001 土壤soil 陆地表面由矿物质、有机物质、水、空气和生物组成,具有肥力,能生长植物的未固结层。
01.002 土壤学soil science 研究土壤的形成、分类、分布、制图和土壤的物理、化学、生物学特性、肥力特征以及土壤利用、改良和管理的科学。
01.003 发生土壤学pedology 侧重研究土壤的发生、演化、特性、分类、分布和利用潜力的土壤学。
01.004 耕作土壤学edaphology 侧重研究土壤的组成、性质及其与植物生长的关系,通过耕作管理提高土壤肥力和生产能力的土壤学。
01.005 土壤地理[学] soil geography 研究土壤的空间分布和组合及其地理环境相互关系的学科。
01.006 土壤物理[学] soil physics 研究土壤中物理现象或过程的学科。
01.007 土壤化学soil chemistry 研究土壤中各种化学行为和过程的学科。
01.008 土壤生物化学soil biochemistry 阐明土壤有机碳和氮素等物质的转化、消长规律及其功能的学科。
01.009 土壤矿物学soil mineralogy 研究土壤中原生矿物和次生矿物的类型、性质、成因、转化和分布的学科。
01.010 农业化学agrochemistry 研究植物营养、土壤养分、肥料性质和施用技术及其相互关系的学科。
在广义上也包括农产品加工酿造等。
01.011 土壤分析化学soil analytical chemistry 研究用化学方法和原理测定土壤成分和性质的技术学科。
01.012 土壤生物学soil biology 研究土壤中生物的种类、分布、功能及其与土壤和环境间相互关系的学科。
01.013 土壤微生物学soil microbiology 研究土壤中微生物种类、功能和活性以及与土壤和环境间相互关系的学科。
01.014 土壤生态学soil ecology 研究土壤环境与生物间相互关系,以及生态系统内部结构、功能、平衡与演变规律的学科。
土壤学最新完整英文词汇
土壤与土壤资源学常用专业词汇 (一土壤矿物质固氮菌 diazotroph矿物 mineral (四土壤理化性质石英 quartz 土壤物理性质 soil physical properties 长石 feldspar 质地 texture岩石 rock 粒组 soil separate花岗岩 granite 砂质 sandy风化 (作用 weather 壤质 loam粘土 clay(minerals 粘质 clay母质 parent material /subsoil 粘重 heavy苏达 soda 砾石 gravel石灰 lime 土壤结构 soil structure土壤 soil 团粒 granular土体 solum 土壤孔隙系统 soil pore system云母 mica 孔隙度 porosity(二土壤有机质土壤容重 bulk density/apparent density 有机质 organic matter 土壤比重 particle density泥炭 peat 土壤湿度状况 soil temperature regime 腐殖质 humus 土壤通气性 soil aeration凋落物 litter 土壤水 soil water林褥 forest floor 土壤湿度 soil moisture积累 accumulate/deposit 含水量 soil moisture content分解 decomposition/decompose 水势 water potential矿化 mineralization 毛细作用 capillary(三土壤生物土壤颜色 soil color土壤生物体 soil organism 蒙塞尔土壤色卡土壤动物 (区系 soil fauna Munsell Soil Color Chart细菌 bacteria 土壤化学性质真菌 fungi (pl of fungus soil chemistry properties藻类 algae 氧化 -还原 (作用 oxidation-reduction 土壤植物 (区系 soil microflora 胶体 colloid蚯蚓 earthworm 吸附 adsorption蚁 ant 阳离子交换量螨 mite cation exchange capacity根际 the rhizosphere 阴离子交换 anion exchange根瘤 root nodule/root tubercle 盐基饱和度 salt base percentage/ 菌根 mycorhiza base -saturation percentage土壤酶 soil enzyme 土壤反应 (pH soil reaction(pH酸性 acid 不完全性肥料 incomplete fertilizer酸度 acidity 厩肥 stable manure(长效肥料碱化 alkalinization 粪便 excrement碱性的 alkaline(碱土鸟粪 guano /gwa:neu/碱度 alkalinity 骨粉 bone meal(六养分、肥料及肥力堆(沤制(作堆肥 compost土壤养分 soil nutrient 草皮 turf营养元素 nutrient element 草炭 peat大量元素 macro-element 草木灰 ash微量元素 micro-/trace element 石灰 lime氮 nitrogen 石膏 gypsum水解氮 hydrolysable nitrogen 硝酸盐肥料 nitrate硝态氮 nitrate nitrogen 过磷酸盐肥料 superphosphate氨态氮 ammonium nitrogen 钾盐肥料 kainite磷 phosphorus (七土壤发生与分布分类有效磷 available phosphorus 风化作用 weathering钾 potassium 土壤发育(发生钙 calcium pedogenesis/soil development/genesis/formation 镁 magnesium 土壤发生因素 factor of soil development 硫 sulphur 土壤发育过程 processes of铁 iron 淋溶(作用 leaching/eluviation铝 aluminium 沉积 deposit锰 manganese 淀积 illuviate(soil 专用土壤养分供应 soil nutrient supply 沉淀(沉降 precipitation土壤肥力 soil fertility (水饱和 saturate肥料 fertilizer or manure 还原(条件 reduction or reducing condition 施肥fertilization or manure 潜育 gleys吸收 absorption or uptake 好气条件 aerobics (pl (condition 空中施肥(飞机 aerial fertilization 累积 accumulation叶面施肥 foliar fertilization 富集(积 enrichment/concentration缺乏 deficiency 锈斑 mottling缺氮 nitrogen deficiency 杂色的、斑驳的 mottled缺钾 potassium deficiency 过滤 percolate肥料效果 re sp on se to /effe ct of ferti l i zer 土壤剖面 soil profile土壤植物诊断 soil and plant diagnosis 剖面发育 profile development可见症状 visual symptom 发生层 horizon (layer化肥 fertilizer 有机质层 organic layer完全性肥料 complete fertilizer 腐殖质层 humus layer绿肥(作物 green-mature crops 矿质土层 mineral horizonA 、B 、C 层 A 、 B 、 C horizon 土地经营 land management淋溶层 eluvial horizon 地力分级 land classification淀积层 illuvial horizon 立地 site潜育层 gleying horizon 立地指数 site index土壤分布 soil distribution 深翻 ripping地带性土壤 zonal soils 松土 `scarifying /ai/非地带性土壤(在内 intrazonal soil 土壤改良 soil reclamation/improvement 土壤带 soil stripes /ai/ 土壤保持 soil conservation土壤复域 soil complex 荒地 virgin land土壤分类 soil classification 开荒 reclamation土壤分类系统 soil taxonomy/k`sc/ or system工程防治(水保 mechanical control 诊断层 diagnostic horizon 生物防治(水保 biological control 分类单元 categories 沟渠clinch土纲 soil order (九地质地貌土类 great group 风化残渣 residue n.亚类 group (subgroup 残积土 residual soil淋溶土 Alfisols 底土 subsoil旱成土 Aridisols 沉积物 deposit sediment新成土 Entisols 冲积物 alluvial material有机土 Histosols 冲积砂 fluvial sand始成土 Inceptisols 冲积土 alluvial soil软土 Mollisols 冰川 glacier氧化土 Oxisols 冻土 glacial soil灰土(灰壤 Spodosols 松散岩石 (母质 unconsolidated rocks 老成土 Ultsols 非破碎岩石 uncrambled rocks变性土 V ertisols 山脉 mountain range暗棕壤 Dark Brown Forest Soil 山脊 (山岭 mountain ridge草甸土 Meadow soil 坡地 slope沼泽土 Bog soil 坡度 falling gradient /ei/石质土 Lithosol soil 陡 steep / 缓 gentle(八土壤管理分水岭 water shed耕作 cultivate or tillage 谷地 valley灌溉 irrigation 盆地 basin排水 drain (n 、 -age 洼地 low land or depression or loblolly 放牧 pasture 平原plain集约(精耕 intensive 平地 flat land肥力保持 maintain soil fertility 沙丘 dune /ju:/轮作 crop rotation 漫滩 (泛湿地 floor plain排污 waste discharge 山洪 torrent沼泽 (泥沼 marsh/swamp/bog 污水净化 sewage purification人为搅动土 disturbed soil 烂泥 sludges(十土壤环境学 (化学组成 composition旱化 drought or xeric 微生物转化 microbiological transformation水淹 flood or overflow 中毒水平 toxic level侵蚀 erosion 农药污染 pesticide pollution可蚀性 erodibility 杀虫剂 pesticide生荒的 virgin 杀菌剂细菌 bactericide 真菌 fungicide精耕的 (集约 intensive 除草剂 herbicide开垦 reclamation 残留 residue土壤改良 soil improvementor amelioration/or amendment 降解、净化 degradation v. -de硬化 (板结 compact 富营养化 eutrophia水利 water conservancy 生物富集 biotic-enrichment/beneficiation水土保持 soil and water conservation 放射性物质(废物 radioactive wastes废气 discharge or effluent gas废水 sewage/effluent/waste water土壤污染 soil pollution /contamination废渣 fag end/waste slag/industrial sediment or waste 重金属 heavy metal 工业三废 three industrial waste元素 element 环境保护 environmental protection环境背景值 (本底值 background levels 环境监测 environmental monitoring汞 mercury 环境危害 environmental hazard镉 cadmium 环境标准 ---- standard/criteria(评价铅 lead 环境评价 --- criticize/assayment/evaluate污水 /下水道 sewage ;工业 effluents 污水净化 sewage purification 污灌 sewage farm 污染生物指数 boitic index of pollution二氧化硫 sulfur dioxide/dai`eksaid/ (十一土壤分析常用词酸雨 acid rain /precipitation 消化 digestion大气沉降 atmospheric deposition(fallout 稀释 dilution环境污染物 environmental pollutant 萃取 extraction危害 (危险 hazard 萃取剂 extractant (剂 extract (物剧毒 highly toxic 渗透 osmosis毒害、毒物 poison 渗漏 percolation浓缩、富集 enrichment/concentrate 扩散 diffusion工业废物(残渣 industrial sediment 过滤 filter废物处理 waste disposal 分析 analysis 测定 determination原子吸收光谱 atomic absorption spectrometry 分光计 spectrometer 蒸馏 distillation光谱 spectrum补遗词汇过磷酸钙 superphosphate 磷酸铵 ammonium phosphate 氨 ammonia尿素 urea基肥 base manure追肥 top application or dressing 随机区组 randomized blocks 腐熟 well-composted 堆腐 compost .。
土壤学英文词汇
土壤与土壤资源学常用专业词汇(一)土壤矿物质固氮菌diazotroph矿物mineral (四)土壤理化性质石英quartz 土壤物理性质soil physical properties 长石feldspar 质地texture岩石rock 粒组soil separate花岗岩granite 砂质sandy风化(作用) weather 壤质loam粘土clay(minerals) 粘质clay母质parent material /subsoil 粘重heavy苏达soda 砾石gravel石灰lime 土壤结构soil structure土壤soil 团粒granular土体solum 土壤孔隙系统soil pore system云母mica 孔隙度porosity(二)土壤有机质土壤容重bulk density/apparent density 有机质organic matter 土壤比重particle density泥炭peat 土壤湿度状况soil temperature regime 腐殖质humus 土壤通气性soil aeration凋落物litter 土壤水soil water林褥forest floor 土壤湿度soil moisture积累accumulate/deposit 含水量soil moisture content分解decomposition/decompose 水势water potential矿化mineralization 毛细作用capillary(三)土壤生物土壤颜色soil color土壤生物体soil organism 蒙塞尔土壤色卡土壤动物(区系) soil fauna Munsell Soil Color Chart细菌bacteria 土壤化学性质真菌fungi (pl of fungus) soil chemistry properties藻类algae 氧化-还原(作用) oxidation-reduction土壤植物(区系)soil microflora 胶体colloid蚯蚓earthworm 吸附adsorption蚁ant 阳离子交换量螨mite cation exchange capacity根际the rhizosphere 阴离子交换anion exchange根瘤root nodule/root tubercle 盐基饱和度salt base percentage/菌根mycorhiza base -saturation percentage土壤酶soil enzyme 土壤反应(pH) soil reaction(pH)酸性acid 不完全性肥料incomplete fertilizer酸度acidity 厩肥stable manure(长效肥料)碱化alkalinization 粪便excrement碱性的alkaline(碱土) 鸟粪guano /gwa:neu/碱度alkalinity 骨粉bone meal(六)养分、肥料及肥力堆(沤)制(作堆肥)compost土壤养分soil nutrient 草皮turf营养元素nutrient element 草炭peat大量元素macro-element 草木灰ash微量元素micro-/trace element 石灰lime氮nitrogen 石膏gypsum水解氮hydrolysable nitrogen 硝酸盐肥料nitrate硝态氮nitrate nitrogen 过磷酸盐肥料superphosphate氨态氮ammonium nitrogen 钾盐肥料kainite磷phosphorus (七)土壤发生与分布分类有效磷available phosphorus 风化作用weathering钾potassium 土壤发育(发生)钙calcium pedogenesis/soil development/genesis/formation 镁magnesium 土壤发生因素factor of soil development硫sulphur 土壤发育过程processes of铁iron 淋溶(作用)leaching/eluviation铝aluminium 沉积deposit锰manganese 淀积illuviate(soil 专用)土壤养分供应soil nutrient supply 沉淀(沉降)precipitation土壤肥力soil fertility (水)饱和saturate肥料fertilizer or manure 还原(条件)reduction or reducing condition 施肥fertilization or manure 潜育gleys吸收absorption or uptake 好气条件aerobics(pl)(condition)空中施肥(飞机)aerial fertilization 累积accumulation叶面施肥foliar fertilization 富集(积)enrichment/concentration缺乏deficiency 锈斑mottling缺氮nitrogen deficiency 杂色的、斑驳的mottled缺钾potassium deficiency 过滤percolate肥料效果response to /effect of fertilizer 土壤剖面soil profile土壤植物诊断soil and plant diagnosis 剖面发育profile development可见症状visual symptom 发生层horizon(layer)化肥fertilizer 有机质层organic layer完全性肥料complete fertilizer 腐殖质层humus layer绿肥(作物)green-mature crops 矿质土层mineral horizonA、B、C层A、B、C horizon 土地经营land management淋溶层eluvial horizon 地力分级land classification淀积层illuvial horizon 立地site潜育层gleying horizon 立地指数site index土壤分布soil distribution 深翻ripping地带性土壤zonal soils 松土`scarifying /ai/非地带性土壤(在内)intrazonal soil 土壤改良soil reclamation/improvement 土壤带soil stripes /ai/ 土壤保持soil conservation土壤复域soil complex 荒地virgin land土壤分类soil classification 开荒reclamation土壤分类系统soil taxonomy/k`sc/ or system工程防治(水保)mechanical control 诊断层diagnostic horizon 生物防治(水保)biological control分类单元categories 沟渠clinch土纲soil order (九)地质地貌土类great group 风化残渣residue n.亚类group (subgroup)残积土residual soil淋溶土Alfisols 底土subsoil旱成土Aridisols 沉积物deposit sediment新成土Entisols 冲积物alluvial material有机土Histosols 冲积砂fluvial sand始成土Inceptisols 冲积土alluvial soil软土Mollisols 冰川glacier氧化土Oxisols 冻土glacial soil灰土(灰壤)Spodosols 松散岩石(母质)unconsolidated rocks 老成土Ultsols 非破碎岩石uncrambled rocks变性土Vertisols 山脉mountain range暗棕壤Dark Brown Forest Soil 山脊(山岭)mountain ridge草甸土Meadow soil 坡地slope沼泽土Bog soil 坡度falling gradient /ei/石质土Lithosol soil 陡steep / 缓gentle(八)土壤管理分水岭water shed耕作cultivate or tillage 谷地valley灌溉irrigation 盆地basin排水drain (n、-age)洼地low land or depression or loblolly 放牧pasture 平原plain集约(精耕)intensive 平地flat land肥力保持maintain soil fertility 沙丘dune /ju:/轮作crop rotation 漫滩(泛湿地)floor plain排污waste discharge 山洪torrent沼泽(泥沼)marsh/swamp/bog 污水净化sewage purification人为搅动土disturbed soil 烂泥sludges(十)土壤环境学(化学)组成composition旱化drought or xeric 微生物转化microbiological transformation水淹flood or overflow 中毒水平toxic level侵蚀erosion 农药污染pesticide pollution可蚀性erodibility 杀虫剂pesticide生荒的virgin 杀菌剂细菌bactericide 真菌fungicide精耕的(集约)intensive 除草剂herbicide开垦reclamation 残留residue土壤改良soil improvementor amelioration/or amendment 降解、净化degradation v. -de硬化(板结)compact 富营养化eutrophia水利water conservancy 生物富集biotic-enrichment/beneficiation水土保持soil and water conservation 放射性物质(废物)radioactive wastes废气discharge or effluent gas废水sewage/effluent/waste water土壤污染soil pollution /contamination废渣fag end/waste slag/industrial sediment or waste 重金属heavy metal 工业三废three industrial waste元素element 环境保护environmental protection环境背景值(本底值)background levels 环境监测environmental monitoring汞mercury 环境危害environmental hazard镉cadmium 环境标准---- standard/criteria(评价)铅lead 环境评价--- criticize/assayment/evaluate污水/下水道sewage ;工业effluents 污水净化sewage purification污灌sewage farm 污染生物指数boitic index of pollution二氧化硫sulfur dioxide/dai`eksaid/ (十一)土壤分析常用词酸雨acid rain /precipitation 消化digestion大气沉降atmospheric deposition(fallout)稀释dilution环境污染物environmental pollutant 萃取extraction危害(危险)hazard 萃取剂extractant(剂)extract(物)剧毒highly toxic 渗透osmosis毒害、毒物poison 渗漏percolation浓缩、富集enrichment/concentrate 扩散diffusion工业废物(残渣)industrial sediment 过滤filter废物处理waste disposal 分析analysis 测定determination原子吸收光谱atomic absorption spectrometry分光计spectrometer蒸馏distillation光谱spectrum补遗词汇过磷酸钙superphosphate磷酸铵ammonium phosphate 氨ammonia尿素urea基肥base manure追肥top application or dressing 随机区组randomized blocks 腐熟well-composted堆腐compost .。
土壤养分课件
第二节 土壤磷素 soil phosphorus
三.土壤中磷的存在形态 土壤磷素可分为两大类:有机态磷和机 态磷。 有机态磷的含量占全磷的10~20%左右。
1.有机磷化合物 主要是植素(肌醇六磷酸)或植酸类,核蛋白或核
酸以及磷类化合物。 磷与土壤有机质含量的相性不很强原因就在于此
第二节 土壤磷素 soil phosphorus
五.土壤氮素转化及自然界氮素循环 当今学科研究前沿
无论是植物营养、土壤科学、生态 学、环境科学堵在研究氮循环、平 衡、与提高氮肥利用率研究
第二节 土壤氮素循环
五. 土中氮素的转化
(一)土壤氮素的有效化过程
1.有机态氮的矿化过程
含氮的有机合化物,在多种微物物的作用下降解为简单的氨 态氮的过程。
(1)水解过程
我国北方的土壤中,能固铵的粘粒矿物较多,但其土壤中铵极少, 而南方水田的铵态较多,而能固定铵的粘土矿物不多。因此,铵的 粘土矿物固定在我国的意义不是非常大。
第二节 土壤氮素循环
氮素的反硝化问题严重,不仅在水田,也在旱地土壤中具 有反硝化问题
第二节 土壤氮素循环
第二节 土壤氮素循环
六、土壤氮素的调控
RCHNH2COOH + O2
RCH2COOH + NH3 + E
酶
条件:
① 好气或嫌气;
② 真菌、细菌、放线菌等;
③温度较高且特别敏感 ④ ;水分60~70%;
⑤ pH值要求在4.8~5.2
⑥ C/N比适当的条件下,矿化作用最强烈,最彻底。
3.硝化过程(nitrification)
氨、胺、酰胺→硝态氮化合物,分两步进行 (1)亚硝化作用
Ca-P
Fe-P Al-P
土壤养分 英语
土壤养分英语English:Soil nutrients refer to the essential elements and compounds present in the soil that are necessary for plant growth and development. These nutrients include macronutrients such as nitrogen, phosphorus, and potassium, as well as micronutrients like iron, zinc, and copper. Together, these nutrients play a crucial role in the fertility and productivity of the soil, as well as the overall health and vitality of plants. The availability of these nutrients in the soil is influenced by factors such as soil pH, organic matter content, and microbial activity. Proper management of soil nutrients through practices such as fertilization, crop rotation, and cover cropping is essential for maintaining soil fertility and sustaining healthy plant growth.中文翻译:土壤养分指的是土壤中存在的对植物生长和发育必不可少的基本元素和化合物。
这些养分包括氮、磷、钾等大量元素,以及铁、锌、铜等微量元素。
土壤学专业英语
A1层AI horizonA2层A2 horizonABC型土ABC soilAC型土AC soilAG型土AG soilAo层Ao horizonAp层Ap horizonA层A horizonBC型土壤B C SoilB层B horizonC层C horizonG层G horizonH层H layerL层L layerpF曲线pF curvepF值pF valuepH值pH ValueU形沟蚀U-shaped gullyingV式节制坝V-type check dam V形沟蚀V-shaped gullingV形拖板V-dragX线分光分析X-ray spectrophyX线绕射分析X-xayd iffraction methody次量养分元素,Secondary nutrient element(即Secondary essential element 安定粒团Stable aggregate氨态氮Ammonieal nitrogen胺化作用Aminization暗Dark (指Soil colour暗渠排水Closed ditch drainage暗色火山灰土Ando soil白垩土Chalk soil白毛微法Cunninghemella plaque test斑点Mottling半定域土Semizonal soil半润度含水量Moisture content at 50% relative humidity半沼泽土Half bog soil (同Marsh border soil)榜纹Streak剥蚀作用Exfoliation保土坝Soil saving dam保土调查Soil conservation survey保土局Soil conservation service (U.S.D.A.)保土作物soil protective crop保土作物Soil conserving crop饱和度Degree of saturation饱和渗透度Saturated permeability饱和水流Saturated flow鲍氏单位(鲍尔)Baule's unit (haule)鲍氏生产律Baule s law of percentage yield 被护作物Cover crop崩积层Colluvium崩积土Colluvial soil边际地Manning's formula Marginal Land 变质多米高岭石Metahalloysite表层冲蚀Sheet erosion表土Surface soil表土截去Truncation冰川沈积Glacial drift冰积土Glacial soil冰沼土Tundra soil薄片状构造Laminar structure卜来水化云母Bravaisite不饱和水流Unsaturated flow不坚结Unconsolidated不自由水Unfree water不足供应Poverty adjustment残积土Residual soil槽式培段Channel-type terrace 草地Grass land草皮Sod草滩腐植土Marsh soil草原黑土Black prairie soil草原土Prairie soit颤动容积Oscilation volume超施石灰Overlim ing超效水Superavailable water超粘粒Ultra clay成熟剖面Mature profile成土母质Parent material成土因子Soil former成土作用Soil forming process 赤道聚钙土Equatorial pedoca] 冲积层Alluvium冲积扇Alluvial fan冲积土Alluvial soil冲蚀Erosion冲蚀比Erosion ratio冲蚀防治Erosion control冲蚀性Erosiveness冲刷Scouring虫泄Worm excretion虫穴Mole burrow出水口Outlet初步沟蚀Incipient gullying (即Finger gullying)锄力作用Dynamic process处女土Virgin soil穿透度Penetrability穿透计Penetr0meter垂距Vertical interval垂流涵洞坝Drop inlet dam次边际地Submarginal land次量要素Secondary product of weathering次生矿物Secondary mineral次生土Sedentary soil次生土Heterochronogenous soils次生土粒Secondary soils (同Heterochronogenous soils) 次生盐土Secondary soil particle次生砖红壤Secondary laterite粗糙系数Coefficient of roughness粗骨土Skelctal soil粗管状Tubular (指Pore space)粗砂壤土Coarse sand loam粗团率State of aggregation脆性Brittle (指Consistence)代换性盐基Replaceable bases单杆式霸Pole type brucn dam单粒构造Single grain structure单粒构造Primary particle structure单值测定Single value determination淡Weal (指Soil colour)淡栗钙土Light chestnut coloured soil氮肥Ammoniate氮化细菌Ammonifving bacteria氮化作用Ammonification氮素循环Nitrogen cycle弹性Elastic (指Consistence)弹性梳物养分Elastic plant nutrient当量碱度Equivalent basicity当量酸度Equivalent acidity稻田阶段Paddy terrace等电点Isoelectric point等电点Amphoteric point (同Isoeiectric point) 等电沈液Isoelectric precipitate等腐植质带Isohumus belt等高川作Contour listihg等高耕作Contour Planting (farming)等高间栽Contour strip cropping等高线Contour等高作沟Contour ridging (同Contour furrowing) 等高作沟Contour furrowing等力Isodynes等斜阶段Uniform terrace低腐植潜水灰壤Low humic glei soil狄屯高岭石Dickite底堆石Ground moraine底土Subsoil地臂冲蚀Geological erosion地景Land scape地力衰竭Soil exhaustion地势Relief地下灌溉Sub-irregation地下水Ground water地下水位Ground water table地形Topograph电导测定法Electro-conductivity method电解质Electrolyte电渗Electrophoresis (同Cataphoresis) 电渗Caraphoresis电透析Electrodyalysis电子显微法Electromicroscopy凋萎点Wilting point凋萎系数Wilting co-efficient跌水冲蚀Waterfall erosion碟状构造Platy structure定位Orientation定位吸着Oriented adsorption定域土,顾域土Zonal soil冻胀计Dilatometer动物穴Animal furrow豆科桢物Leguminous plant犊聚作用Accumulation短行Short row (同Point row)短行Point row断键水Broken bond water对称浓度Symmetry concentration对称值Symmetry value多孔状Porous (指Pore space)多铝蒙特石Bidellite多镁蒙特石,皂石Saponite多水高岭石Hailoysite多铁蒙特石,绿高岭石,硅铁石Nontronire多硅高岭石Anauxite遏渡域Transitional zone二层法(机械分析)Two layer method (mechanical analysis) 二电性Amphoteric character二甲苯当量Xylene equivalent二可性细菌Faeultntive bacteria二性胶体Ampholytoid矾斑Alum spot反附着作用Negative adsorption反吸收柞用Negative absorption泛域土Azonal soil方块构造Cubic like structure防风草带Shelter belt防风间栽Wind strip cropping防风林Wind break放牧地Grazing land放射菌Actinomycetes放射性迹示法Radioactivity tracer technique非共生好氧性固氮菌Azotobacter非共生嫌氧性固氮菌Closteridimn pasterianum 非交接性阴离子Non-exchangeable cation非气候性成土作用Aclimatic soil formation非石灰性土Non calcarious soil非微管孔度Non-capillary porosity非正常冲蚀Abnormal erosion (同Soil erosion) 非正常剖面Abnormal profile沸池石复合体Zeolitic complex沸泡石Zeolite沸泡状构造Vesicular structure分解变质Katamorphism分区轮牧法Rotational grazing分散Dispersion分散比Dispersion ratio分散剂Dispersing agent分散媒Dispersion medium分散体Dispersoid分散系Disperse system分散相Dispersed phase分水渠Diversion channel分水线Divide玢粒,粉砂Silt玢质粘壤土,粉砂粘壤土Silty clay loam粉红Pink (指Soil colour)粉质壤土,粉砂壤土Silty loam粉状构造Pulverulent stucture风成凸起Knob风化次生物Secondary saline soil风化度Degree of weathering风化作用Weathering风积土Regosol风积土Aeolian soil风蚀Wiod erosion风蚀沟Wind gully风刷池Blown out land蜂巢状构造Honey comb structure (即Cellula structure)夫来潜水灰壤Vlei soil浮秤法(机械分析) Hydrometer metnod (mechanical analysis) 复钙作用Recalcification腐枚质Humus腐泥土Muck腐生Saprophytic腐石Rigolith腐械质沸池石馥合体Humus zeolite complex 腐铀銴g Humus soil腐栈质聚硅土Humic siallite腐镇质硬盘Humus ortstien腐植化有机物Humified organic matter腐植化作用Humification腐植素Humin腐植酸Humic acid腐植质灰壤Humus podzol腐植质潜水灰壤Humic glei soil附着力Adsorbility附着作用Adsorption副样本Subsample"覆盖?" Mulch钙成土Calcimorphic (Calomorphic) soil钙化作用Calcification钙积层Caliche (同Bca horizon)钙积层Bca horizon钙粘土,钙粘粒Calc. ium clay钙质土Calcium soil"盖?" Ginger nut"盖洛?" Gedroizite竿底层Plow sole高岭石Kaolinite高岭石类Kaolinites高岭土Kaolin高岭土化作用Kaoiinization高山腐植土Alpine humus soil高山黑钙土Mountain chernozem高山灰化土Mountain podzolized soil" 高山栗钙土Mountain chestnut soil高山泥炭土Mountain peat高山土Alpine soil高山涯草原土Alpine meadow soil格形矿物Lattice minerals根孔Root hole根瘤Root nodule根瘤菌Nodule bacteria根瘤菌Bacterium radicicola根瘤细菌Rhizobium根溶性Root soluble根系Root system根域Root Zone耕作Tillage耕作层Plowing layer耕作性Tilth共生Symbiosis沟坚冲蚀Gully erosion沟蚀Gullying构造单位Structure unit构造剖面Structural profile构造形成力Structural capacity古土Fossil soil古土壤Relict soil古土壤Paleosol (同Relict soil)古土壤学Paleopedology谷A泥炭土Niederungsmoor ( 同Fen peat)谷A泥炭土Flachmoor (同Fenpeat)固氮菌Nitrogen fixing bacteria固氮菌土盘法Azotobacter soilplaque technique 固氮作用Nitrngen fixation固性Firm(指onsistence)关键墙段Key terrace灌溉Irrigation灌林灰壤Heath podzol灌林泥炭土Heath peat光能硝化作用Photonitrification广域Macrozone广域地势Macrorelief龟土Adobe soil国际土质分级International texture grades 过度放牧Over grazing过度武土Transitional soil过分消耗Luxury consumption海积土Marine soil海绵状Spongeous (指Pore space)海滩沈积Beach deposit海洋沈积Marine deposit旱境土Arid soil旱农制Dry farming好热性细菌Thermophile bacteria好氧性细菌Aerobic bacterial耗土作物Soil depleting crop合成变质Anamorphism河岸冲饪Stream bank erosion河成土Fluvial soil河床冲积土River wash核状构造Nutty sturcture核状沈积Concretionary deposit黑钙土Chernozem (Tschernozem)黑钙土Black earth ( 同Chernozem)黑棉土Regur黑棉土Black cotton soil黑泥炭土Black turf soil黑色石灰岩土Rendzina黑微法Aspergillus niger method横插式阻刷坝Crosswise brush type dam 横带间裁Strip cropping横渠Transverse channel洪积层Deluvium红漠钙土Red desert soil红壤Red loam红壤Lateritic soil红壤化作用Laterization红色草原土Red prairie soil红色栗钙土Reddish chestnut earth红色石灰岩土Terra rossa红棕钙土Reddish brown soil红棕色红壤Reddish brown leteritic soil 后硅作用Resilisification湖成泥炭土Lacustrine peat湖成沈积Lacustrine deposit湖成砖红壤Lake latefite湖积土Lacustrine soil互接种族Cross inoculation group互沈激理论Mutual precipitation theory 护膜胶体Dopplerite滑Slick (指Consistence)滑崩Slumping (同Slip)滑崩Slip滑崩冲蚀Slip erosion化学性风化作用Chemical weathering 化学性剖面Chemical profile化育性土类Genetic soil type化育因子Genetic factor还积土Transported soil还原作用Regradation缓动草带Buffer strip缓动能量Buffer capacity缓动曲线Buffer curve缓动作用Buffer action黄壤Yellow earth黄色准灰壤Yellow podzolic soil黄土Loess黄棕色红壤Yellowish brown lateritic soil灰分Ash灰钙土Sierozem灰钙土Grey soil (同Sierozem)灰钙土Gray earth灰化层PodzOlized horizon灰化红黄壤,红黄准灰壤Reddish yellow podzolic soil 灰化土壤Podzolized soil灰化作用Podzolization灰黄色Grayish yellow灰壤Podzol灰色Gray灰色森林土Gray forest soil灰色准灰壤Gray podzolic (wooded) soil灰棕准灰壤,灰棕壤Gray brown podzolic soil混凝土节制坝Concret dam活性酸度Acidity,active火山土Volcanic soil基层Substratum机械分部Mechanical separate机械分析Mechanical analysis机械洗出作用Mechanical eluviation机械组成Mechanical composition积水Water logging极细砂Very fine sand集流时间Time of concentration集水面积Drainage area寄生Parasitic加速冲蚀Accelerated erosion (同Soil erosion)钾钠风化比Shifting value假比重Apparent specific gravity假比重Apparent density (lg] Apparent specifi gravity) 假粒团False aggregate坚结Indurated (指Consistence)坚结物质Consolidated material监生植物Halophytic vegetation监育土Halogenic (Halomorphic) soil剪断力Shear碱班Alkali spot碱度Alkalinity碱土Solonetz碱土Black alkali soil (同Solonetz)碱土Alkali soil碱土(匈牙利名) Szik soil碱土化作用Solonization碱土化作用Atkalization碱土退化作用Solotization碱性湿草原土Alkaline meadow soil碱性土Alkaline soil渐斜阶段Variable grade terrace降水强度Rainfall intensity降水强度频率曲线Rainfall intensity frequency curve 降水效力指数P-E index交换常数Exchange constant交换恒温式Exchange isotherm交换能量Exchangeable capacity交换性气Exchangeable hydrogen交换性酸度Acidity,exchangeable交换性盐基Exchangeable bases交换性阴离子Exehangeableanion胶结Cementation (指Consistence)胶结剂Cementing agent 胶粒Colloidal particle 胶略水Gel water"胶溶化Peptize胶溶剂Peptizing age。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全文电子教材土壤与土壤资源学(上篇:土壤学)林学专业2 O 2SO2H 2OO 2MineralNutrients英文版—土壤养分Chapter 9. Soil NutrientsSoil nutrient availability is one of the factors that often limit tree growth and soil productivity. Other factors commonly limiting for tree growth can include soil moisture availability, climate (such as temperature and precipitation), soil physical properties (such as drainage and soil compaction), or a combination of the above factors. N is often a nutrient that is most deficient for plant growth. Nitrogen deficiency can be caused by low N content in the soil or by the slow release rate in ecosystems such as the boreal forests or peatlands where low temperature or poor aeration encourages accumulation of organic matter and reduces N mineralization rates. Phosphorus is also frequently deficient in soils where there is very little P in the parent material or where most of the P has been lost through weathering during the soil formation processes, such as in the tropics.There are 16 elements that are considered essential for plant growth. Lack of any of those essential nutrients will hinder the proper growth and functioning of the plants and will prevent the plants from completing their life cycle. Among those 16 essential nutrients, C, H, and O come from the air and water and are usually not deficient, although recent climate change studies using CO2 enriched air showed that increasing atmosphere CO2 concentration can significantly increase forest productivity; however, plants usually acquire the other essential nutrients from the soil. Among the macronutrients (N, P, K, Ca, Mg, and S), Mg and S can also sometimes be deficient for tree growth. Potassium and calcium deficiencies in forests are very rare. In terms of micronutrients (Mn, Zn, Cu, Fe, Mo, B, and Cl), B, Zn, Cu, and Fe deficiencies, especially B deficiency, are most frequently reported. These nutrients are called micronutrients because they usually exist on the earth and are required by plants in very small quantities. In addition to those 16 essential nutrients, cobalt (Co), vanadium (Va), nickel (Ni), silicon (Si), and sodium (Na) have been found to be essential to some plants. For example, nickel has been found to be essential for soybeans and Si for rice. In this chapter, we will discuss the importance of soil nutrients in tree growth, discuss the macronutrients and micronutrients, describe the cycling of nutrients in the soil, and provide an introduction to the mechanisms of plant nutrient uptake.9.1 Nutrients: available forms, availability and functionalityThe interaction of numerous physical, chemical, and biological properties in soils controls the availability of soil nutrients for plant uptake. Understanding these processes will enable us to manage selected soil properties to optimize nutrient availability and soil productivity. To understand these interacting processes will require us to have a good knowledge of the soil properties and processes covered in the earlier chapters. Not all nutrients present in the soil are available for plant uptake and different nutrients have different available forms.a) Forms of nutrients plant can uptakeDetails of available nutrient forms will be discussed in the next section where the individual macro- and micronutrients are presented. The forms of the essential nutrients that plants can uptake, along with their functionality and normal amounts in plants, are listed in Table 11.1. One thing common to all nutrients is that plants acquire most of their needed nutrients from the soil solution and mostly in the inorganic form. Some acquisition of nutrients through the gaseous form is possible. For example, plants can absorb NH3 and SO2 in the air through the stomata. Nitrogen cycling is one of the most complex as compared with the cycling of the other essential nutrients. One of the important mechanisms for increasing plant N availability is through symbiotic N-fixation. With this mechanism, most of the N the host plant uptake comes from the bacterial that can fix N2 in the air. There have been reports to indicate that trees sometimes can take up organic N in the form of simple amino acids and proteins. The uptake of organic form of N has been found to be mostly assisted by mycorrhizas and this uptake mechanism is very important in soils with low fertility and for nutrients with low mobility in the soil. A few species of plants are able to use animal proteins as an N source directly. These carnivorous plants, such as the common bladderwort (Utricularia vulgaris) and the sundew (Drosera rotundifolia), have special adaptations that are used to lure and trap insects and other very small animals. The plants digest the trapped organisms, absorbing the nitrogenous compounds the organisms contain as well as other compounds and minerals, such as potassium and phosphate. Most of the carnivores of the plant world are found in bogs, a habitat that is usually quite acidic and thus not favorable for the growth of nitrifying bacteria.b) Nutrient availabilityNutrient availability is an important area of interest in soil nutrient management. Nutrient availability falls into the soil science discipline of soil fertility. Soil fertility is narrowly defined as “the status of a soil with respect to the amount and availability to plants of elements necess ary for plant growth”. Of all soil properties, fertility is the one with which man is most involved; it is the property that can be readily changed by man in his exploitation or management of the land. In intensively managed forest systems, such as in plantations, soil nutrient availability can be altered and managed through silvicultural techniques such as site preparation, weed control, thinning, and fertilization. Even in natural forests, where there is very little human control of processes, soil nutrient availability is not a completely stable factor but changes with stage of forest succession, natural disturbance regimes, and with soil profile development. Occurrence of fire and extensive wind throw can result in sudden dramatic changes in soil nutrient availability. A soil, particularly one with the heterogeneity of many forest soils, cannot be considered to have a unique single, static level of soil fertility.Since plants take up most of their needed nutrients from the soil solution, nutrient availability is controlled by the interaction of numerous physical, chemical, and biological properties in soils. The basic relationship between the various components of the dynamic soil system is depicted in Figure 11.1. In reactions 1 and 2, plants absorb nutrients (cations and anions) from the soil solution and release small quantities of ions such as H+ (to balance the charge in soil solution, ifcations are absorbed by plants), or OH- and HCO3- (if anions are absorbed). In reactions 3 and 4, changes in ion c oncentrations in soil solution are “buffered” by ions adsorbed on the surface of soil minerals. Ion removal from solution causes partial desorption of the same ions from these surfaces. In reactions 5 and 6, minerals contained in the soil can dissolve to re-supply soil solution with many ions; likewise, increases in ion concentration in soil solution resulting from fertilization or other inputs can cause some minerals to precipitate. In reactions 7 and 8, soil microorganisms can remove ions from soil solution and incorporate them into microbial tissues, and conversely, when microbes or other organisms die, they release nutrients to the soil solution. Microbial activity produces and decomposes organic matter or humus in soils. These dynamic processes are very dependent on adequate energy supply from organic C, inorganic ion availability, and numerous environmental conditions. In reactions 9 and 10, plant roots and soil organisms utilize O2 and respire CO2 through metabolic activities. As a result, CO2 concentration in the soil air is greater than in the atmosphere. Diffusion of gases in soil decreases dramatically with increasing soil water content and soil depth. In reactions 11 and 12, numerous environmental factors and human activities can influence ion concentration in soil solution, which reacts with the mineral and biological processes in soil. For example, adding ammonium fertilizer to soil can increase the N concentration in the soil solution, but over time, N concentration in the soil solution will decrease due to plant uptake, volatilization losses, transformation of ammonium into nitrate through the nitrification process, and immobilization of ammonium by microorganisms and fixation by clays and organic matter through inorganic reactions.All of these processes and reactions are important to the availability of plant nutrients; however, depending on the specific nutrient, some processes are more important than others. For example, microbial processes are more important to N and S availability than mineral surface exchange reactions, whereas the opposite is true for K, Ca, and Mg.c) Functions of inorganic nutrients in plantsTable 9.1 lists some of the functions of nutrients in plant growth and physiology. Inorganic ions affect osmosis and thus help to regulate water balance in plants. Several inorganic ions can serve interchangeably in this role, in many plants this particular requirement is described as non-specific. On the other hand, an inorganic nutrient may function as part of an essential biological molecule; in this case the requirement is highly specific. An example of a specific function is the presence of magnesium in the chlorophyll molecule. Some of the common functions of mineral nutrients are discussed below.Catalysts: A key role of the inorganic nutrients is their participation in some of the enzymatic reactions of the plant cell. In some cases, they are essential structural parts (a “prosthetic group”) of the enzyme. In other cases, they serve as activators or regulators of certain enzymes. Potassium, for instance, which probably affects 50-60 enzymes, is believed to regulate the conformation of some proteins. Changing the shape of an enzyme could, for example, expose or obstruct reaction sites.Electron transport:Many of the biochemical activities of cells, including photosynthesis and respiration, are oxidation-reduction reactions. In such reactions, electrons are transferred to or from a molecule that functions as an electron acceptor or donor. The cytochromes, which contain iron, are involved in electron transfer.Structural and molecular components:Some mineral elements serve as structural components of cells, either as part of a physical structure or as part of the molecules involved in cellular metabolism. Calcium combines with pectic acid in the middle lamella of the plant cell wall. Phosphorus occurs in the sugar-phosphate backbone of DNA and RNA and in the phospholipids of the cellular membranes. Nitrogen is an essential component of amino acids, chlorophylls, and nucleotides. Sulphur is found in two amino acids that form a component of proteins.Osmosis:The movement of water into and out of plant cells is largely dependent on the concentration of solute in the cells and in the surrounding medium. The uptake of ions by a plant cell thus may result in the entry of water into the cell. The increased turgor pressure results in expansion of the immature cell, which is the chief cause of cellular growth, and in the maintenance of turgor in the mature cell. This is an example of conversion of energy from one form to another by a living system; the chemical energy (ATP) expended in the active uptake of ions by the plant cell is translated into the physical energy of water movement.Effects of cell permeability: Calcium has a direct effect on the physical properties of cellular membranes. When there is a calcium deficiency, membranes seem to lose their integrity, and solutes within the membranes or cells leak out.9.2 Macronutriens: N, P, K, Ca, Mg, and S9.2.1 Nitrogena) Origin and distribution of NThe N in soil is derived from the earth’s atmosphere. The N content of surface mineral soils typically ranges from 0.02 to 0.5%. About 98% of the earth’s N is contained in the igneous rocks deep under the planet’s crust, where it i s effectively out of contact with the soil-plant-air-water environment in which we live. Therefore, we must concentrate our discussion of N cycling on the remaining 2% that cycles in the biosphere. Most of the N found in the soil comes from biological N fixation. The atmosphere contains a large amount of N2 (78% of the atmosphere is N2 gas). Some 75,000 Mg of N is found in the air above 1 ha of the land surface. However, the very strong triple bond between two nitrogen atoms makes this gas quite inert and not directly usable by plants or animals. Were it not for the ability of certain microorganisms to break this triple bond to form nitrogen compounds, vegetation in the terrestrial ecosystems around the world would be rather sparse, and little N would be found in soils.Most of the N in terrestrial ecosystems is found in the soil. The soil contains 10 to 20 times as much N as does the standing vegetation (including roots) of forest ecosystems. Most soil N occurs as part of organic molecules. Soil organic matter typically contains about 5% N; therefore, the distribution of soil N closely parallels that of soil organic matter. Except where large amounts of chemical fertilizers have been applied, inorganic N (NH4+ and NO3-) seldom accounts for more than 1 to 2% of the total N in the soil. Unlike most of the organic N, the mineral forms of N are mostly quite soluble in water and may be easily lost from soils through leaching and volatilization.b) Forms of N in the soilThe different forms of N that can be found in the soil can be divided into two categories: inorganic and organic forms of N. As discussed above, most of the soil N exists in the organic form.Inorganic N: Inorganic forms of N include ammonium (NH4+), nitrate (NO3-), nitrite (NO2-), nitrous oxide (N2O), nitric oxide (NO), and the nitrogen gas (N2). Trace amounts of nitrite may be present in the soil. Nitrite is toxic to plants and is generally quickly converted to nitrate in the nitrification processes. Therefore, nitrite usually does not accumulate in the soil. N2O, NO, and N2 are the products of dinitrification or contained in the air trapped in the soil pores. As will be discussed below, conditions in forest soils generally favor the formation of ammonium and plants are adapted to this dominant form of N as a N source. Ammonium is the product of mineralization of organic N. Nitrate is formed through the nitrification process. There is usually abundant nitrate accumulation in the soil where conditions favor nitritication. The inorganic N content in soils is very dynamics as its concentration is affected by a large number of factors, including temperature, moisture content, plant uptake, microbial population, organic matter content, and so on. There are distinct seasonal and diurnal changes in soil inorganic N contents in the soil.Both inorganic N forms are soluble in water. Ammonium is mainly present in the soil on exchangeable sites and the positively charged ammonium can be attracted on to the negatively charged surfaces of clay and organic particles. This mechanism presents NH4+ from being easily lost from the soil solution. NH4+ can also be fixed in the clay structure, making it unavailable for plant uptake as well as from being lost through leaching. On the other hand, most of the NO3-, if present, will be found in the soil solution and is much more proven to be lost through leaching.Organic N: Organic N usually represent greater than 95% of the total soil N. Organic N occurs as proteins, amino acids, and other complex N compounds. Organic N can be separated into three types based on their solubility and how easy they can be hydrolyzed: a) soluble organic N: usually less than 5% of the total soil N content. Some of the soluble organic N (such as simple amino acids) can be take up directly by plants, especially with the assistance of mycorrhizas. This fraction of the organic N can be easily hydrolyzed to release NH4+ for plant uptake; b) hydrolyzable organic N. This fraction of organic N can be hydrolyzed to simpler soluble organic N when treated with acids or alkalis; and c) non-hydrolyzeable organic N. The content of this fraction can be as high as 50% of the total N in the soil. This is the most stable fraction of the soil organic N and the nature of this fraction of N is still not very clear. Much of the organic N forms organo-mineral complexes. Organic N in these complexes are much more stable than the non-complexed organic N in the soil.c) N cycling processesThe processes of N cycling are presented in Figure 11.2. The main N cycling processes are discussed below.Biological N fixation:Through biological N-fixation, certain organisms convert the inert dinitrogen gas of the atmosphere to N-containing organic compounds that become available to all form of life through the N cycle. Terrestrial ecosystems have been estimated to fix 130 to 180million Mg of N, about twice as much as is industrially fixed in the manufacturing of fertilizers.Symbiotic bacteria (Rhizobia) fix N2 in nodules present on the roots of legumes. This fixed N may be utilized by the host plant, excreted from the nodule into the soil and be used by other nearby plants, or released as nodules or legume residues decompose after the plant dies or is incorporated into the soil. Other microorganisms that are also capable of fixing N include Actinomycetes and Frankia that fix N in symbiosis with non-legume tree species such as alders, Myrica, and Casuarina; Azotobacter and Azospirillum are heterotrophic free-living fixers; and blue-green algae and Anabaena are autotrophic free-living fixers.Regardless of the organisms involved, the key to biological N fixation is the enzyme Nitrogenase, which catalyzes the following reaction:(Nitrogenase)N2 + 8H+ + 6e- ® —————————→2NH3 + H2(Fe, Mo)The nitrogenase are proteins that contain Fe and Mo. The nitrogen fixation process requires a great deal of energy. The energy either comes from the host plant for organisms that form symbiosis, or from the soil organic matter for the heterotrophic free-living bacteria, or from the sun light for the autotrophic free-living organisms. The accumulation of ammonia will inhibit N fixation and too much nitrate in the soil will inhibit the formation of nodules. In addition to Fe and Mo, N-fixing organisms also require high amounts of P and S as these nutrients are either part of the nitrogenase molecule or are needed for its synthesis and use.The production of N by industrial fixation is based on the Haber-Bosch process, in which H2 and N2 gases react to form NH3, under high temperature and pressure:Catalyst3H2 + N2 ® ——————→NH31,200 °C, 500 atmImmobilization and mineralization: The majority (95-99%) of the soil N is in organic compounds that protect it from being lost but this also leaves it largely unavailable to higher plants. The quantities of NH4+ and NO3- available to plants depend largely on the amounts applied as N fertilizers and mineralized from organic N in soil. Much of the organic N is present as amine groups (R-NH2), largely in proteins or as part of humic compounds. When soil microbes attack these compounds, simple amino compounds (R-NH2), such as lysine (CH2NH2COOH) and alanine (CH3CHNH2COOH), are formed. Then the amine groups are hydrolyzed, and the N is released as ammonium ions (NH4+), which can be oxidized to the nitrate form. This enzymatic process is termed mineralization, that includes the ammonification (from simple amino compounds to NH4+) and nitrification (from NH4+ to NO3-) processes. A specific term called aminization describes the process from the amine groups and proteins to simple amino compounds:H2OProteins ® RCHNH2COOH + R-NH2 + CO(NH2)2 + CO2 + energyBacteria, fungiUsing an amino compound (R-NH2) as an example of the organic N source, the mineralization process can be indicated as follows:+2H2O +O2 +1/2O2R-NH2 ⇌OH- + R-OH + NH4+ ⇌4H+ + energy + NO2- ⇌energy + NO3--2H2O -O2 -1/2O2The opposite of the mineralization process is immobilization, the conversion of inorganic N ions (NH4+ and NO3-) into organic forms. Immobilization can take place by both biological and non-biological (abiotic) processes, the latter being of considerable importance in forest soils. Through the biological processes, as microorganisms decompose carbonaceous organic residues in the soil, they may require more N than is contained in the residues themselves and thus may immobilize NH4+ and NO3- in the soil solution. The microbes need N to maintain a C:N ratio of about 8:1. The microorganisms incorporate mineral N ions into their cellular components, such as proteins, leaving the solution essentially void of NO3- and NH4+ ions. During the immobilization process, microorganisms can compete very effectively with plants for NH4+ or NO3-. When the organisms die, some of the organic N in their cells may be converted into forms that make up the humus complex, and some may be released as NH4+ and NO3- ions. During the decomposition of nitrogenous compounds, microorganisms incorporate the N into amino acids and proteins (as part of the microbial biomass) and release excess N in the form of ammonium ions. In alkaline media, the N may be converted to ammonia (NH3), but this conversion usually occurs only during the decomposition of large amounts of N-rich material, as in the mature pile or a compost heap that has contact with the atmosphere. Within soil, the ammonia produced by ammonification is dissolved in the soil water, where it combines with protons to form the ammonium ions. Mineralization and immobilization occur simultaneously in the soil; whether the net effect is an increase or decrease in the amount of mineral N available in the soil depends primarily on the ratio of C to N in the organic residues undergoing decomposition.The amount of plant available N released from organic N depends on many factors affecting N mineralization, immobilization, and losses of NH4+ and NO3- from the soil. Mineralization being a microbial process will increase with a rise in temperature and is enhanced by adequate, although not excessive, soil moisture and a good supply of O2. Maximum aerobic activity and N mineralization occur between 50 and 80% water-filled pore space. Optimum temperature for N mineralization ranges between 25 and 35 °C.One of the factors affecting N mineralization and immobilization is the C:N ratio of the decomposing material. The N content of humus or stable soil organic matter ranges from 5 to 6%, whereas C ranges from 50 to 60%, giving a C:N ratio ranging between 8 and 12. When fresh organic material is added to the soil, there is a rapid increase in the number of heterotrophic organisms, accompanied by the evolution of large amounts of CO2, during the initial stage of decomposition. If the C:N ratio of the initial material is greater than 30:1, N immobilization occurs. As decay proceeds, the C:N ratio of the residue narrows and energy supply diminishes.Some of the microbial population dies because of the decreased food supply, and ultimately a new equilibrium is reached, accompanied by the mineralization of N. Generally speaking, when organic substances with C:N ratios between 20 and 30 are added to the soil, there may be neither immobilization nor release of mineral N. For organic materials with C:N ratio less than 20, there is usually a release of mineral N early in the decomposition process.In the organic matter mineralization processes, bacteria dominate the breakdown of proteins in neutral and alkaline environments, with some involvement of fungi, while fungi predominate under acidic environments (and most forest soils are acidic).Many studies have shown that only about 1 to 4% of the organic N of a soil mineralizes annually. Even so, the rate of mineralization provides sufficient mineral N for normal growth of natural vegetation (such as forests) in almost all soils except those with low organic matter, such as the soils of deserts and sandy areas. Mineralized soil N constitutes a major part of the N taken up by plants.Nitrification: Several species of bacteria common in soils are able to oxidize ammonia or ammonium ions in a process called nitrification. This is an energy yielding process, and the energy released in the process is used by these bacteria to reduce CO2 in much the same way that photosynthetic autotrophs use light energy in the reduction of CO2. Such organisms are known as chemosynthetic autotrophs (as distinct from photosynthetic autotrophs). The chemosynthetic nitrifying bacterium Nitrosomonas is primarily responsible for oxidation of ammonium to nitrite ions (NO2-).Nitrosomonas2NH4+ + 3O2 ® 2NO2- + 4H+ + 2H2O + energybacteriaNitrite is toxic to plants, but it rarely accumulates in the soil. Nitrobacter, another genus of bacteria, oxidizes the nitrite to form nitrate ions (NO3-), again, with a release of energy:Nitrobacter2NO- + O2 ® 2NO3- + energybacteriaOnce nitrate is formed and if it is not quickly taken up by plants or microbial organisms (in the process of microbial immobilization), it can be lost from the soil through leaching, when there is water percolating through the soil profile, and denitrification under anaerobic conditions. Nitrification will significantly increase soil acidity by producing H+ ions. Nitrification requires NH4+ ions, but excess NH4+ is toxic to Nitrobacter and must be avoided. The nitrifying organisms, being aerobic, require O2 to make NO2- and NO3- ions, and are therefore favored in well-drained soils.In forest soils, fortunately, nitrification rates are very low and most of the available form of N is present in the ammonium ion form. There are several possibilities that nitrification rates are low in forest soils. One possibility is that nitrification rates are inhibited by the low soil pH as forest soils are usually acidic. A second possibility is that nitrifying bacteria population is very low (that itself may be related to the inhibition by the acidic condition and other limiting factors) in forestsoils. Under prolonged incubations in the lab, nitrification eventually develops, although this may take as long as one year under optimum conditions. Another possibility is that microbial populations in forest soils have a very strong ability to immobilize the nitrate produced from nitrification. Therefore, under such a scenario, as soon as the nitrate is formed the microbial populations take it up. Recent gross N mineralization studies using 15N-labeled fertilizers confirmed such cases.Nitrification is also a microbial process and is thus affected by soil environmental factors. Nitrification is affected by 1) soil NH4+ content, 2) population of nitrifying organisms, 3) soil pH, 4) soil aeration, 5) soil moisture, and 6) temperature. If there is no NH4+ in the soil solution, nitrification does not occur. Variation in populations of nitrifiers results in differences in the lag time between the addition of the NH4+ and the buildup of NO3-. Because of the tendency of microbial populations to multiply rapidly in the presence of an adequate supply of C, the total amount of nitrification is not affected by the number of organisms initially present, provided that temperature and moisture conditions are favorable for sustained nitrification.Nitrification takes place over a wide range in pH (4.5 to 10), with an optimum pH of 8.5. Nitrifying bacterial need an adequate supply of Ca2+, H2PO4-, and a proper balance of micronutrients. Nitrifying bacteria are aerobes and maximum nitrification occurs at the same O2 concentration in the aboveground atmosphere. Nitrification rates are generally highest in soil water contents at field capacity or 1/3 bar water potential (80% of total pore space filled with water). In terms of temperature, the temperature coefficient, Q10, is 2 over the range 5 to 35 °C. Thus, a twofold change in the nitrification rate is associated with a shift of 10 °C within this temperature range. Optimum soil temperature for nitrification is 25 to 35 °C.Nitrate leaching:Nitrate ions are not adsorbed by the negatively charged colloids that dominate most soils. Therefore, nitrate ions move down easily with drainage water and are thus readily leached from the soil. This process constitutes a loss of N from the soil system for plant uptake and also causes several serious environmental problems. Leaching of nitrate from acidic sources (nitrification or acid rain) also facilitates the loss of Ca and Mg and other nutrient cations. Much of the nitrate mineralized in certain highly weathered, acid, tropical Oxisols and Ultisols leach below the root zone before annuals can take it up. It has been found that some of this leached nitrate is not lost to groundwater, but is stored several meters deep in the profile where the highly weathered clay have adsorbed it on their anion exchange sites. Deep-rooted trees are capable of taking up this deep subsoil nitrate and subsequently using it to enrich the surface soil when they shed their leaves. Trees such as Sesbania, grown in rotation with annual food crops, can make this pool of leached N available for food production and prevent its further movement to ground water. Agroforestry practices such as this have the potential to make a significant contribution to both crop production and environmental quality in the humid tropics.Ammonium fixation: Ammonium ions carry positive charges and thus can be attracted to the negatively charged surfaces of clay and humus, where they are held in exchangeable form, available for plant uptake, but partially protected from leaching. However, because of the particular size of the ammonium (and potassium) ion, it can become entrapped within cavities in the crystal structure of certain clays. Several 2:1 type clay minerals, especially vermiculites, have the capacity to fix both ammonium and potassium ions in this manner. Vermiculite has the greatest capacity, followed by fine-grained micas and some smectites, to fix ammonium and potassium in this manner. Ammonium and potassium ions fixed in the rigid part of a crystal structure are held in。