八年级人教新课标轴对称同步练习修订稿
最新人教版八年级初二数学上册《轴对称》同步练习含答案
13.1《轴对称》同步练习一、基础练习1.下列大写英文字母中,是轴对称图形的有()A.4个B.5个C.6个D.7个2.下列图形是轴对称的有__________________.3.下列图形中,不是轴对称图形的是()4.下列用英文字母设计的五个图案中轴对称图形有________个.5.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见图案,这个图案有_______条对称轴.6.如图,把△ABC沿直线BC为轴翻折180°作变形到△DBC,那么△ABC和△DBC_____全等图形(填是或不是);若△ABC的面积为2,那么△BDC的面积为_____.AB CD7.下列图案中,是轴对称图形且对称轴有且只有两条的是()等腰三角形等边三角形矩形直角三角形A.等腰三角形B.等边三角形C.矩形D.直角三角形二、拔高练习1.如图,找出图中的轴对称图形,并说出它们各有几条对称轴?2.王成球衣上的口惠而实号码是由一个三位数组成的.他站在镜前,发现这个号码在镜子中的像与原来的号码完全相同.请问这个号码可能是多少?3.两个全等的三角形,可以拼出各种不同的图形,图15-1-11已画出其中一个三角形,请你分别补出一个与其全等的三角形,使每个图形有不同的对称轴(所画三角形可与原三角形有重叠部分).4.观察下列中国传统工艺品的花纹,其中轴对称图形是( )5.有两个村庄A和B被一条河隔开,如图,现在要架一座桥MN,使由A到B的路程最短,问桥应架在什么地方?(河岸是平行的,桥垂直于两岸).6.某汽车的车牌倒映在水中,你能确定该车的牌照号码吗?基础练习参考答案:1.A2.A、B、E、F3.C4.35.26.是、27.C拔高练习参考答案:1.解:⑴是轴对称图形,有3条对称轴;⑵是轴对称图形,有5条对称轴;⑶是轴对称图形,有4条对称轴;⑷是轴对称图形,有1条对称轴;⑸是轴对称图形,有2条对称轴;⑹不是轴对称图形.2.解:在用行书书写0~9这十个数字中,只有0,1,8这三个数字在镜子中的像与原来的完全一样,因此王成球衣上的号码可能是以下两种情况:⑴号码中有两个相同的数字的数有6个:101,181,010,080,808;818.⑵号码中的三个数字完全相同的有2个:888,111(000这个号不符合实际)因此这个号码是以上8个数中的一个.3.4.A.5.分析:因河宽是一定值,所以桥MN的长度一定,只需使AM+BN最短即可,可平移AM(或BN),使它们首尾相接,即可确定N(或A1点)的位置.解:将A沿垂直于河岸的方向平移至A1,使AA1与河宽相等,连结A1B,与靠近B点的河岸交于点N在N处架桥MN,则路程AMNB最短.6.M17936良好的学习态度能够更好的提高学习能力。
【精编】人教版八年级数学上册 第13章《轴对称》 同步练习及答案(13.3).doc
第13章《轴对称》同步练习(§13.3)班级 学号 姓名 得分一、填空题(每题3分,共30分)1.等腰三角形的一个角是110°,则它的底角为_______°.2.等腰三角形的腰长是6,则底边长3,周长为______________________.3.等腰三角形一个底角为50°,则此等腰三角形顶角为________________________. 4.在△ABC 中,AB =AC ,点D 在AC 边上,且BD =BC =AD ,则∠A = °.5.已知直线yy ′⊥xx ′,垂足为O ,则图形①与图形_____成轴对称 6.等腰三角形一腰上的中线把这个三角形的周长分成15㎝和12㎝,则这个三角形的底边长为 ㎝.7.腰长为12㎝,底角为15°的等腰三角形的面积为 . 8.到三角形各顶点距离相等的点是三角形 的交点. 9.在直角坐标系内有两点A (-1,1)、B (2,3),若M 为x 轴上一点,且MA +MB 最小,则M 的坐标是________,MA +MB =________.10.等腰三角形的周长为13cm,其中一边长为5cm,则该等腰三角形的腰边长为_____cm..二、选择题(每题3分,共24分)11.点M (1,2)关于原点对称的点的坐标为 ( )A .(—1,2)B .(-1,-2)C .(1,-2)D .(2,-1) 12.下列说法正确的是( )A .等腰三角形的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形一边不可以是另一边的二倍D .等腰三角形的两个底角相等13.已知∠AOB =30°,点P 在∠AOB 的内部,P 1与P 关于OB 对称,P 2与P关于OA 对称,则P ,P 1,P 2三点构成的三角形是( ) A .直角三角形 B .钝角三角形C .等腰三角形D .等边三角形14.如图,DE 是∆ABC 中AC 边的垂直平分线,若BC =8厘米,AB =10厘米,则∆EBC 的周长为( )厘米A .16B .28C .26D .18 15.等腰三角形的对称轴,最多可以有( )A .1条B .3条C .6条D .无数条 16.下列判断不正确的是( )①y ′③②x ′ Oxy (第5题)(第14题)E DABCA .等腰三角形的两底角相等B .等腰三角形的两腰相等C .等边三角形的三个内角都是60°D .两个内角分别为120°、40°的三角形是等腰三角形 17.下列轴对称图形中对称轴最多的是( )A .等腰直角三角形;B .正方形;C .有一个角为60°的等腰三角形;D .圆18.如图,∠A =15°,AB =BC =CD =DE =EF ,则∠FEM =( )A .45°B .60°C .75°D .90°三、解答题(共46分)19.(7分)已知,如图ΔABC 中,AB =AC ,D 点在BC 上,且BD =AD ,DC =AC .将图中的等腰三角形全都写出来.并求∠B 的度数.20.(7分)如图,在⊿ABC 中,∠ABC 和∠ACB 的平分线交于点O ,过O 点作EF ∥BC ,交AB 于E ,交AC 于F ,BE =5cm ,CF =3cm ,求EF 的长.21.(8分)如图,已知P 点是∠AOB 平分线上一点,PC, (1)∠PCD =∠PDC 吗? 为什么?(2)OP 是CD 的垂直平分线吗? 为什么?22.(8分)已知:如图,AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,DB =DC ,NMEFCBAD (第18题)B C D B D求证:△ABC 是等腰三角形.23.(8分)如图,已知直线MN 与MN 同侧两点A 、B 求作:点P ,使点P 在MN 上,且∠APM =∠BPN24.(8分)如图,在⊿ABC 中,∠ACB =90,DE 是AB 的垂直平分线,∠CAE :∠EAB =4:1. 求∠B 的度数.BEC参考答案一、填空题1.35 2.15 3.80°4.36°5.②6.7或11 7.36 8.线段中垂线9.)0,41(,5 10.5或4二、选择题11.B 12.D 13.D 14.D 15.B 16.D 17.D 18.C三、解答题19.⊿ABC,⊿ADB,⊿ADC ,∠B=36°20.EF=8㎝21.(1)利用角平分线性质得PC=PD,所以∠PCD=∠PDC (2)成立22.略23.略24.15°。
人教版 八年级数学 上册第13章 轴对称 同步训练
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯人教版八年级数学第13章轴对称同步训练一、选择题1. 如图,在△ABC中,AB=AC,AD⊥BC于点D,下列结论不正确的是()A.∠B=∠C B.BD=CDC.AB=2BD D.AD平分∠BAC2. 如图,AC=AD,BC=BD,则有()A.CD垂直平分ABB.AB垂直平分CDC.AB与CD互相垂直平分D.CD平分∠ACB3. 如图,DE是△ABC的边AB的垂直平分线,D为垂足,DE交AC于点E,且AC=8,BC=5,则△BEC的周长是()A.12 B.13 C.14 D.154. 已知实数x、y满足|x-4|+y-8=0,则以x、y的值为两边长的等腰三角形的周长是()A. 20或16B. 20C. 16D. 以上答案均不对5. 如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD6. [2018·河北] 图是由“○”和“□”组成的轴对称图形,则该图形的对称轴是直线()A.l1B.l2C.l3D.l47. 如图,直线l是一条河,P,Q是两个村庄.欲在直线l上的某处修建一个水泵站M,向P,Q两村供水,现有如下四种铺设方案,图中PM,MQ表示铺设的管道,则所需管道最短的是()8. (2020·烟台)七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm2的是()A.B.C.D.9. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在点O相连并可绕点O转动,点C固定,OC=CD=DE,点D,E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°10. 如图,在四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小,则此时∠AMN+∠ANM的度数为()A.80°B.90°C.100°D.130°二、填空题11. 图中的虚线,哪些是图形的对称轴,哪些不是?是对称轴的是______;不是对称轴的是______.(填写序号)12. 如图,在△ABC中,AB=BC,∠ABC=110°.AB的垂直平分线DE交AC 于点D,连接BD,则∠ABD=________度.13. (2020·襄阳)如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=__________°.ACB14. 如图,在等边三角形ABC中,点D在边AB上,点E在边AC上,将△ADE 折叠,使点A落在BC边上的点F处,则∠BDF+∠CEF=________°.15. 如图,在小正三角形组成的网格中,已有6个小正三角形被涂黑,还需涂黑n个小正三角形,使它们与原来被涂黑的小正三角形组成的新图案恰有3条对称轴,则n的最小值是________.三、解答题16. 如图,方格纸中每个小正方形的边长均为1,正方形ABCD和△EFG的顶点都在小正方形的顶点上.(1)在图中画出△EFG关于直线AC对称的△EMN(点F的对称点为M,点G的对称点为N);(2)请直接写出正方形ABCD与△EMN重叠部分的面积.17. 拓广探究如图,△ABC在平面直角坐标系中,点A,B,C的坐标分别为A(-2,1),B(-4,5),C(-5,2),直线l经过点(-1,0)且与y轴平行.(1)作△ABC关于直线l对称的△A1B1C1,其中点A,B,C的对称点分别为点A1,B1,C1;(2)写出点A1,B1,C1的坐标;(3)在图中画出△A2B2C2,其中A2(-2,-2),B2(-4,-6),C2(-5,-3),并指出△A2B2C2和△ABC的对称轴.18. 如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如①,△ABC是等腰锐角三角形,AB=AC(AB>BC),若∠ABC的平分线BD交AC于点D,且BD是△ABC的一条特异线,则∠BDC=________度;(2)如图②,在△ABC中,∠B=2∠C,线段AC的垂直平分线交AC于点D,交BC于点E.求证:AE是△ABC的一条特异线;(3)如图③,已知△ABC是特异三角形,且∠A=30°,∠B为钝角,求出所有可能的∠B的度数.人教版八年级数学第13章轴对称同步训练-答案一、选择题1. 【答案】C2. 【答案】B3. 【答案】B[解析] ∵DE是△ABC的边AB的垂直平分线,∴AE=BE.∵AC =8,BC=5,∴△BEC的周长=BE+EC+BC=AE+EC+BC=AC+BC=13.4. 【答案】B【解析】∵|x-4|+y-8=0,∴x-4=0,y-8=0,解得x=4,y=8.分两种情况讨论:①当4为腰时,根据三角形三边关系知4+4=8,∴这样的等腰三角形不存在;②当8为腰时,则有4+8>8,这样能够组成等腰三角形,∴此三角形的周长是8+8+4=20.5. 【答案】D[解析] 选项A由等角对等边可得△ABC是等腰三角形;选项B由所给条件可得△ADB≌△ADC,由全等三角形的性质可得AB=AC;选项C由垂直平分线的性质可得AB=AC;选项D不可以得到AB=AC.6. 【答案】C[解析] 沿着直线l3折叠,直线两旁的部分能够互相重合,因此该图形的对称轴是直线l3.7. 【答案】D8. 【答案】最小的等腰直角三角形的面积42=1(cm2),平行四边形面积为2cm2,中等的等腰直角三角形的面积为2cm2,最大的等腰直角三角形的面积为4cm2,则A、阴影部分的面积为2+2=4(cm2),不符合题意;B、阴影部分的面积为1+2=3(cm2),不符合题意;C、阴影部分的面积为4+2=6(cm2),不符合题意;D、阴影部分的面积为4+1=5(cm2),符合题意.故选:D.9. 【答案】D[解析] ∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC.∴∠DCE=∠O+∠ODC=2∠ODC.∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°.∵∠CDE+∠ODC=180°-∠BDE=105°,∴∠CDE=105°-∠ODC=80°.10. 【答案】C[解析] 如图,延长AB到点A',使得BA'=BA,延长AD到点A″,使得DA″=AD,连接A'A″与BC,CD分别交于点M,N.∵∠ABC=∠ADC=90°,∴点A,A'关于BC对称,点A,A″关于CD对称,此时△AMN的周长最小.∵BA=BA',MB⊥AB,∴MA=MA'.同理NA=NA″.∴∠A'=∠MAB,∠A″=∠NAD.∵∠AMN=∠A'+∠MAB=2∠A',∠ANM=∠A″+∠NAD=2∠A″,∴∠AMN+∠ANM=2(∠A'+∠A″).∵∠BAD=130°,∴∠A'+∠A″=180°-∠BAD=50°.∴∠AMN+∠ANM=2×50°=100°.二、填空题11. 【答案】②④⑥①③⑤12. 【答案】35【解析】∵AB=BC,∠ABC=110°,∴∠A=∠C=35°,∵DE 垂直平分AB,∴DA=DB,∴∠ABD=∠A=35°.13. 【答案】40.【解析】∵AB=AD=DC,∴∠ABD=∠ADB,∠DAC=∠C.∵∠BAD=20°,∴∠ADB=180202︒-︒=80°.又∵∠ADB=∠DAC+∠C,∴∠C=12∠ADB=40°.故答案为40.14. 【答案】120[解析] 由于△ABC是等边三角形,所以∠A=60°.所以∠ADE+∠AED=120°.因为将△ADE折叠,使点A落在BC边上的点F处,所以∠ADE=∠EDF,∠AED=∠DEF.所以∠ADF+∠AEF=2(∠ADE+∠AED)=240°.所以∠BDF+∠CEF=360°-(∠ADF+∠AEF)=120°.15. 【答案】3[解析] 如图所示,n的最小值为3.三、解答题16. 【答案】解:(1)△EMN如图所示.(2)重叠部分的面积=2×1=2.17. 【答案】(1)△A1B1C1如图所示.(2)A 1(0,1),B 1(2,5),C 1(3,2).(3)△A 2B 2C 2如图所示.△A 2B 2C 2和△ABC 的对称轴是经过点⎝ ⎛⎭⎪⎫0,-12且与x 轴平行的直线.18. 【答案】解:(1)72 [解析] ∵AB =AC , ∴∠ABC =∠C. ∵BD 平分∠ABC ,∴∠ABD =∠CBD =12∠ABC. ∵BD 是△ABC 的一条特异线, ∴△ABD 和△BCD 都是等腰三角形, ∴AD =BD =BC.∴∠A =∠ABD ,∠C =∠BDC. ∴∠ABC =∠C =∠BDC.∵∠BDC =∠A +∠ABD =2∠A , 设∠A =x ,则∠C =∠ABC =∠BDC =2x. 在△ABC 中,∠A +∠ABC +∠C =180°, 即x +2x +2x =180°, 解得x =36°.∴∠BDC =72°.(2)证明:∵DE 是线段AC 的垂直平分线, ∴EA =EC ,即△EAC 是等腰三角形. ∴∠EAC =∠C.∴∠AEB =∠EAC +∠C =2∠C. ∵∠B =2∠C ,∴∠AEB=∠B.∴AE=AB,即△EAB是等腰三角形,∴AE是△ABC是一条特异线.(3)如图ⓐ,①当BD是特异线时,如果AB=BD=DC,则∠ABC=∠ABD+∠DBC=120°+15°=135°;②如果AD=AB,DB=DC,则∠ABC=∠ABD+∠DBC=75°+37.5°=112.5°;③如果AD=DB,DC=CB,则∠ABC=∠ABD+∠DBC=30°+60°=90°(不合题意,舍去).④如图ⓑ,当AD是特异线时,AB=BD,AD=DC,则∠ABC=180°-20°-20°=140°.⑤当CD为特异线时,不合题意.综上所述,符合条件的∠ABC的度数为135°或112.5°或140°.。
八年级数学轴对称同步练习题(K12教育文档)
八年级数学轴对称同步练习题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学轴对称同步练习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学轴对称同步练习题(word版可编辑修改)的全部内容。
人教新课标八年级数学(上)自主学习达标检测(二)(轴对称)(时间90分钟满分100分)班级学号姓名得分一、填空题(每题2分,共32分)1.线段轴是对称图形,它有_______条对称轴,正三角形的对称轴有条.2.下面是我们熟悉的四个交通标志图形,请从几何图形的性质考虑,哪一个..不..与其他三个同?请指出这个图形,并说明理由.答:这个图形是: (写出序号即可),理由是.3.等腰△ABC中,若∠A=30°,则∠B=________.4.△ABC中,AD⊥BC于D,且BD=CD,若AB=3,则AC=__ __.5.在 Rt △ABC中,∠C=90°,AD平分∠BAC交BC于D,若CD=4,则点D到AB的距离是__________.6.判断下列图形(如图所示)是不是轴对称图形。
7.等腰△ABC中,AB=AC=10,∠A=30°,则腰AB上的高等于___________.8.如图,△ABC中,AD垂直平分边BC,且△ABC的周长为24,则AB+BD = ;又若∠CAB=60°,则∠CAD = .9.如图,△ABC中,EF垂直平分AB,GH垂直平分AC,设EF与GH相交于O,则点O与边BC的关系如何?请用一句话表示: .10.如图:等腰梯形ABCD中,AD∥BC,AB=6,AD=5,BC=8,且AB∥DE,则△DEC的周长是____________.11.请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形。
人教版八年级数学上册《13.1轴对称》同步练习.docx
初中数学试卷桑水出品轴对称典题探究例1. 下列图形:①三角形,②线段,③正方形,④直角.其中是轴对称图形的个数是()A.4个 B.3个 C.2个 D.1个例2. 下面有4个汽车标致图案,其中是轴对称图形的是()①②③④A、②③④B、①③④C、①②④D、①②③例3. 画锐角三角形、钝角三角形三遍的垂直平分线说出交点位于三角形的什么位置(外心)例4. 如图BCAD ,BD=DC,点C在AE的垂直平分线上。
(1)AB、AC、CE的长度有什么关系?(2)AB+BD与DE有什么关系?D C EBA演练方阵A档(巩固专练)1.在图中,是轴对称图形的是()2.在下图的几何图形中,一定是轴对称图形的有()A.2个B.3个C.4个D.5个3. 下列轴对称图形中,对称轴最多的是()。
60的等腰三角形A、等腰直角三角形B、有一角为C、正方形D、圆4. 下列图形中不是轴对称图形的是()。
①角;②线段③不等边三角形;④等边三角形。
A、①②③B、②③C、③D、①②③④5. 下列图形中,不一定是轴对称图形的是()A、线段MNB、两相交射线C、射线D、等边三角形6. 下列图形中一定是轴对称图形的是()A、梯形B、直角三角形C、线段D、平行四边形7. 下列图形中,不一定是轴对称图形的是()A、角B、线段C、直角三角形D、等腰三角形8.如图,ΔABC与ΔA'B'C'关于直线l对称,则∠B的度数为()A.30° B.50° C.90° D.100°9.将一个正方形纸片依次按图a,b的方式对折,然后沿图c中的虚线裁剪,成图d样式,将纸展开铺平,所得到的图形是图1-5中的()10.如图,将矩形纸片ABCD (图①)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E (如图②);(2)以过点E的直线为折痕折叠纸片,使点A落在BC 边上,折痕EF交AD边于点F (如图③);(3)将纸片收展平,那么∠AFE的度数为()A.60° B.67.5°C.72° D.75°B档(提升精练)1. 下列的说法:①轴对称和轴对称图形意义相同;②轴对称图形必轴对称;③轴对称和轴对称图形的对称轴都是一直线;④轴对称图形的对称点一定在对称轴的两旁,其中正确的有() A、1个 B 、2个 C 、3个 D 、4个2. 下列说法中,正确说法的个数有( )①对顶角是轴对称图形,对顶角的平分线是它的一条对称轴;②等腰三角形至少有1条对称轴,至多有3条对称轴;③关于某直线对称的两个三角形一定是全等三角形;④两图形关于某直线对称,对称点一定在直线的两旁。
八年级数学上12.2作轴对称图形同步练习(人教新课标)
12.2作轴对称图形
1.已知△ABC,过点A作直线L.
求作:△A′B′C′使它与△ABC关于L对称.
作法:(1)作点C关于直线L的对称点C′;
(2)作点B关于直线L的对称点B′;
(3)点A在L上,故点A的对称点A′与A重合;
(4)连结A′B′、B′C′、C′A′.
则△A′B′C′就是所求作的三角形.
2.已知a⊥b,a、b相交于点O,点P为a、b外一点.
求作:点P关于a、b的对称点M、N,并证明OM=ON(不许用全等).
作法:(1)过点P作PC⊥a,并延长PC到M,使CM=PC.
(2)过点P作PD⊥b,并延长PD到N,使得DN=PD.
则点M、N就是点P关于a、b的对称点.
证明:∵点P与点M关于直线a对称,
∴直线a是线段PM的中垂线.
∴OP=OM.
同理可证:OP=ON.
∴OM=ON.
3.为美化校园,学校准备在一块圆形空地上建花坛,现征集设计方案,•要求设计的图
案由圆、三角形、矩形组成(三种几何图案的个数不限),并且使整个圆形场地成轴对称图形,请你画出你的设计方案.
答案:略。
完整word版,八年级数学上册 13.2.1 作轴对称图形同步练习 (新版)新人教版
画轴对称图形一.选择题(共10小题)1.作已知点关于某直线的对称点的第一步是()A.过已知点作一条直线与已知直线相交B.过已知点作一条:直线与已知直线垂直C.过已知点作一条直线与已知直线平行D.不确定2.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A.7 B.14 C.17 D.203.若在△ABC所在平面上求作一点P,使P到∠A的两边的距离相等,且PA=PB,那么下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P为AC、AB两边上的高的交点C.P为∠A的角平分线与AB的垂直平分线的交点D.P为∠A的角平分线与AB边上的中线的交点4.如图,△ABC中,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列四个结论,其中正确的个数是()A.1个B.2个C.3个D.4个5.下列图形:其中所有轴对称图形的对称轴条数之和为()A.13 B.11 C.10 D.86.如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是()A.①B.②C.⑤D.⑥7.小华将一张如图所示矩形纸片沿对角线剪开,他利用所得的两个直角三角形通过图形变换构成了下列四个图形,这四个图形中不是轴对称图形的是()A.B.C.D.8.如图,阴影部分是由5个小正方形涂黑组成的一个直角图形,再将方格内空白的两个小正方形涂黑,得到新的图形(阴影部分),其中不是轴对称图形的是()A.B.C.D.二.填空题(共10小题)9.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形_________ .10.(2009•绍兴)在黑板报的设计中,小敏遇到了如下的问题:在如图中,直线l与AB垂直,要作△ABC关于l的轴对称图形.小敏已作出了一步,请你用直尺和圆规作出这个图形的其余部分,保留作图痕迹,并写出相应的作法.作法:(1)以B为圆心,BA为半径作弧,与AB的延长线交于点P;_________ _________________________就是所要作的轴对称图形.11.在如图的正方形网格中有一个三角形ABC,作出三角形ABC关于直线MN的轴反射图形,若网格上最小正方形边长为1,则三角形ABC与它轴反射图形的面积之和是_________ .12.画一个图形关于某条直线的对称图形时,只要从已知图形上找出几个_________ ,然后分别作出它们的_________ ,再按原有方式连接起来即可.13.如图,已知长方形的台球桌台ABCD,有黑、白两球分别位于M、N两点的位置上,试问:怎样撞击白球N,才能让白球先撞台边AB,反弹后再击中黑球M.(在图上画出)14.利用图形中的对称点,画出图形的对称轴.15.如图,AB左边是计算器上的数字“5”,若以直线AB为对称轴,那么它的轴对称图形是数字_________ .16.下列每对文字图形中,能看成关于虚线对称的有:_________ (只需要序号).17.如图所示,观察规律并填空:_________ .18.下图是用纸叠成的生活图案,其中属于轴对称图形的是(用序号表示)_________ .三.解答题(共10小题)19.观察右面两个图形,解答下列问题:(1)其中是轴对称图形的为_________(2)用尺规作图的方法画出其中轴对称图形的对称轴(要求:只保留作图痕迹,不写作法)20.已知四边形ABCD,如果点D、C关于直线MN对称,(1)画出直线MN;(2)画出四边形ABCD关于直线MN的对称图形.21.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.22.已知:如图,在△ABC中,AB=BC=2,∠ABC=120°,BC∥x轴,点B的坐标是(﹣3,1).(1)画出△ABC关于y轴对称的△A′B′C′;(2)求以点A、B、B′、A′为顶点的四边形的面积.23.(2005•大连)如图,△ABC和△A′B′C′关于直线MN对称,△A′B′C′和△A″B″C″关于直线EF对称.(1)画出直线EF;(2)直线MN与EF相交于点O,试探究∠BOB″与直线MN、EF所夹锐角α的数量关系.13.2.1 画轴对称图形一、选择题(共8小题)1.B 2.C 3.C 4.C 5.B 6.A 7.A 8.D 二.填空题(共10小题)9.10. 解:(1)分别以B,P为圆心,BC,AC为半径作弧,两弧交于点Q;(2)连接BQ,PQ.△BPQ.11. 512. 关键点对称点13.14.15. 2;16. ①⑤;17. .;18. ①②③三.解答题(共5小题)19. 解:(1)②,①;(2)(3分)20. 解:(1)如图,直线MN即为所求;(2)四边形A′B′DC即为四边形ABDC关于直线MN的对称图形.21. 解(1)如图,△A1B1C1是△ABC关于直线l的对称图形.(2)由图得四边形BB1C1C是等腰梯形,BB1=4,CC1=2,高是4.∴S四边形BB1C1C=,==12.22. 解:(1)如图所示;(2)过A点作AD⊥BC,交CB的延长线于点D,则∠ABD=180°﹣∠ABC=180°﹣120°=60°在Rt△ABD中,BD=AB•cos∠ABD=2×=1AD=AB•sin∠ABD=2×又知点B的坐标为(﹣3,1)∴点A的坐标为(﹣4,1+)∵AA′⊥y轴,BB′⊥y轴∴AA′⊥BB′∵AB与A′B′不平行∴以点A,B,B′,A′为顶点的四边形是等腰梯形由点A,B的坐标可求得AA′=2×4=8,BB′=2×3=6∴梯形ABB′A′的面积=(AA′+BB′)•AD=×(8+6)×=7.23. 解:(1)如图,连接B′B″.(1分)作线段B'B″的垂直平分线EF.(2分)则直线EF是△A′B′C′和△A″B″C″的对称轴.(3分)(2)连接B′O.∵△ABC和△A'B'C'关于直线MN对称,∴∠BOM=∠B'OM.(5分)又∵△A'B'C'和△A″B″C″关于直线EF对称,∴∠B′OE=∠B″OE.(6分)∴∠BOB″=∠BOM+∠B′OM+∠B′OE+∠B″OE=2(∠B′OM+∠B′OE)=2α即∠BOB″=2α.(7分)。
2022年人教版八年级上册《轴对称》同步练习(附答案)
13.1 轴对称13.1.1 轴对称一、选择题〔共8小题〕1.以下各图,不是轴对称图形的是〔〕A.B.]C.D.2.以下四句话中的文字有三句具有对称规律,其中没有这种规律的一句是〔〕A.上海自来水来自海上B.有志者事竞成C.清水池里池水清D.蜜蜂酿蜂蜜3.以下说法错误的选项是〔〕A.等边三角形有3条对称轴B.正方形有4条对称轴C.角的对称轴有2条D.圆有无数条对称轴4.如图是经过轴对称变换后所得的图形,与原图形相比〔〕A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变5.观察图形…并判断照此规律从左到右第四个图形是〔〕A.B.C.D.6.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换〔如图1〕.结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形〔如图2〕的对应点所具有的性质是〔〕A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分 D.对应点连线互相平行第5题图第6题图第7题图7.如图,两个三角形关于某条直线成轴对称,其中某些边的长度和某些角的度数,那么x的度数是〔〕A.55°B.60°C.65°D.70°8.小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是〔〕A.B.C.D.二、填空题〔共10小题〕9.2021年11月2日,即20211102,正好前后对称,因而被称为“完美对称日〞,请你写出本世纪的一个“完美对称日〞:_________ .10.写出一个至少具有2条对称轴的图形名称_________ .11.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中的一个小正方形涂黑,所得图案是一个轴对称图形,那么涂黑的小正方形可以是_________ 〔填出所有符合要求的小正方形的标号〕12.在轴对称图形中,对应点的连线段被_________ 垂直平分.13.以下图形中,一定是轴对称图形的有_________ ;〔填序号〕〔1〕线段〔2〕三角形〔3〕圆〔4〕正方形〔5〕梯形.14.如图是汽车牌照在水中的倒影,那么该车牌照上的数字是_________ .15.〔2021•綦江县〕请同学们写出两个具有轴对称性的汉字_________ .16.如图,国际奥委会会旗上的图案由5个圆环组成.每两个圆环相交的局部叫做曲边四边形,如下图,从左至右共有8个曲边四边形,分别给它们标上序号.观察图形,我们发现标号为2的曲边四边形〔下简称“2〞〕经过平移能与“6〞重合,2又与_________ 成轴对称.〔请把能成轴对称的曲边四边形标号都填上〕第11题图第14题图第16题图17.如图,长方形ABCD中,长BC=a,宽AB=b,〔b<a<2b〕,四边形ABEH和四边形ECGF都是正方形.当a、b满足的等量关系是_________ 时,图形是一个轴对称图形.18.请利用轴对称性,在下面这组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形:三、解答题〔共5小题〕19.判断以下图形是否为轴对称图形?如果是,说出它有几条对称轴.20.如图,五边形ABCDE是轴对称图形,线段AF所在直线为对称轴,找出图中所有相等的线段和相等的角.21.如图,l是该轴对称图形的对称轴.〔1〕试写出图中二组对应相等的线段:;〔2〕试写出二组对应相等的角:;〔3〕线段AB、CD都被直线l .22.如图是由两个等边三角形〔不全等〕组成的图形.请你移动其中的一个三角形,使它与另一个三角形组成轴对称图形,并且所构成的图形有尽可能多的对称轴.画出你所构成的图形,它有几条对称轴?23.有一些整数你无论从左往右看,还是从右往左看,数字都是完全一样的,例如:22,131,1991,123321,…,像这样的数,我们叫它“回文数〞.回文数实际上是由左右排列对称的自然数构成的,有趣的是,当你遇到一个普通的数〔两位以上〕,经过一定的计算,可以变成“回文数〞,方法很简单:只要将这个数加上它的逆序数就可以了,假设一次不成功,反复进行下去,一定能得到一个回文数,比方:①132+231=363②7299+9927=17226,17226+62271=79497,成功了!〔1〕你能用上述方法,将以下各数“变〞成回文数吗?①237 ②362〔2〕请写出一个四位数,并用上述方法将它变成回文数.13.1.1 轴对称一、选择题〔共8小题〕1.A 2.B 3.C 4.A 5.D 6.B 7.B 8.D二.填空题〔共10小题〕9.20011002,20210102〔答案不唯一〕;10.矩形;11.2,3,4,5,7 12.对称轴;13.〔1〕〔3〕〔4〕;14.21678.;15.甲、由、中、田、日等.;16.1,3,7;17.;18.三.解答题〔共5小题〕19.解:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的局部能够互相重合,那么这个图形叫做轴对称图形.那么〔1〕〔3〕〔5〕〔6〕〔9〕不是轴对称图形;〔2〕〔4〕有1条对称轴;〔7〕有4条对称轴;〔8〕有1条对称轴;〔10〕有2条对称轴.20.解:相等的线段:AB=AE,CB=DE,CF=DF;相等的角:∠B=∠E,∠C=∠D,∠BAF=∠EAF,∠AFD=∠AFC.21.〔1〕AC=BD,AE=BE,CF=DF,AO=BO;〔2〕∠BAC=∠ABD,∠ACD=∠BDC;〔3〕垂直平分.22.解:如图,小正三角形再大正三角形的内部,该图形有3条对称轴.23.解:〔1〕①237+732=969,②362+263=625,〔2〕1151+1511=2662;《一元二次方程的应用》综合练习【知能点分类训练】知能点1 面积问题1.有一个三角形的面积为25cm2,其中一边比这一边上的高的3倍多5cm,那么这一边的长是________,高是_________.2.要用一条铁丝围成一个面积为120cm2的长方形,并使长比宽多2cm,那么长方形的长是______cm.3.有一间长为18m,宽为7.5m的会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的12,四周未铺地毯处的宽度相同,那么所留宽度为_______m.4.在一块长16m,宽12m的矩形空地上,要建造四个花园,•中间用互相垂直且宽度相同的两条甬路隔开,并使花园所占面积为空地面积的,求甬路宽.知能点2 增长〔降低〕率问题5.某工厂用两年时间把产量提高了44%,求每年的平均增长率.•设每年的平均增长率为x,列方程为_______,增长率为_________.6.某粮食大户2005年产粮30万kg,方案在2007年产粮到达36.3万kg,假设每年粮食增长的百分数相同,求平均每年增长的百分数.7.某厂一月分的产值为15万元,第一季度的总产值是95万元,设月平均增长率为x,那么可列方程为〔〕.A.95=15〔1+x〕2 B.15〔1+x〕3=95C.15〔1+x〕+15〔1+x〕2=95 D.15+15〔1+x〕+15〔1+x〕2=958.某种商品经过两次降价,由每件100元降低了19元,•那么平均每次降价的百分率为〔〕. A.9% B.9.5% C.8.5% D.10%9.某班将2005年暑假勤工俭学挣得的班费2000元按一年定期存入银行.2006•年暑假到期后取出1000元寄往灾区,将剩下的1000元和利息继续按一年定期存入银行,待2007年毕业后全部捐给母校.假设2007年到期后可取人民币〔本息和〕1069元,•问银行一年定期存款的年利率是多少.〔假定不交利息税〕【综合应用提高】10.用24cm长的铁丝:〔1〕能不能折成一个面积为48cm2的矩形?〔2〕•能不能折成面积是32cm2的矩形?假设能,求出边长;假设不能,请说明理由.11.如果一个正方体的长增加3cm,宽减少4cm,高增加2cm,•所得的长方体的体积比原正方体的体积增加251cm3,求原正方体的边长.12.某厂方案在两年后总产值要翻两番,那么,•这两年产值的平均增长率应为多少?【开放探索创新】13.某农户种植花生,原种植的花生亩产量为200kg,出油率为50%.现在种植新品种花生后,每亩收获的花生可加工成花生油132kg,•其中花生出油率的增长率是亩产量的增长率的,求新品种花生亩产量的增长率.【中考真题实战】14.〔陕西中考〕在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,•制成一幅矩形挂图,如下图,如果要使整幅挂图的面积是5400cm2,设金色纸边的宽为xcm,•那么x满足的方程为〔〕.A.x2+130x-1400=0 B.x2+65x-350=0C.x2-130x-1400=0 D.x2-65x-350=015.〔遵义中考〕某商店将一件商品的进价提价20%后又降价20%,以96元的价格出售,•那么该商店卖出这种商品的盈亏情况是〔〕.A.不亏不赚 B.亏4元 C.赚6元 D.亏24元16.〔大连中考〕某企业的年产值在两年内从1000万元增加到1210万元,求平均每年增长的百分率.17.〔新疆中考〕在一块长16m,宽12m的矩形荒地上,要建造一个花园,要求花园所占面积为荒地面积的一半,图a、图b分别是小明和小颖的设计方案.〔1〕你认为小明的结果对吗?请说明理由.〔2〕请你帮助小颖求出图中的x〔精确到0.1m〕.〔3〕你还有其他的设计方案吗?请在以下图中画出你的设计草图,并加以说明.18.〔兰州中考〕某地2004年外贸收入为2.5亿元,2006年外贸收入到到达4亿元.•假设平均每年的增长率为x,那么可以列出方程为〔〕.A.2.5〔1+x〕2=4 B.〔2.5+x%〕2=4C.2.5〔1+x〕〔1+2x〕2=4 D.2.5〔1+x%〕2=4参考答案1.15cm 103cm2.12 点拨:根据题意,可设长为xcm,宽为〔x-2〕cm,可列方程为〔x-2〕x=120.3.1.5 点拨:根据题意,设所留宽度为x,可列方程〔18-2x〕〔7.5-2x〕=12×18×7.5.4.设甬路宽为xm,根据题意可列方程为〔16-x〕〔12-x〕=×16×12,解得x1=2,x2=26〔不符合题意,舍去〕.5.〔1+x〕2=〔1+44%〕 20%6.设平均每年增长的百分数为x,根据题意得30〔1+x〕2=36.3,解得x1=0.1,x2=-2.1〔不符合题意,舍去〕.故平均每年的增长率为10%.7.D 点拨:一个季度的总产值包括一月,二月,三月的产值.8.D 点拨:降低19元,所以现价为81元,可列方程为100〔1-x〕2=81.9.设银行一年定期存款的年利率是x元,根据题意,列方程为[2000〔1+x〕-1000]〔1+x〕=1069,整理得2x2+3x-0.069=0,x1≈0.0225,x2≈-1.5225〔不符合题意,舍去〕.10.〔1〕设矩形的长为xcm,那么宽为〔12-x〕cm,根据题意可得x〔12-x〕=48,整理得x2-12x+48=0,∵b2-4ac=144-4×48<0,∴原方程无解,故用24cm长的铁丝不能折成面积为48cm2的矩形.〔2〕根据题意,可列方程为x〔12-x〕=32,整理得x2-12x+32=0,解得x1=4,x2=8.当x=4时,12-x=8;当x=8时,12-x=4,所以长为8cm时,宽为4cm.用长为24cm 的铁丝能折成面积为32cm2的矩形,边长为4cm和8cm.11.设原正方体的边长为xcm,那么现在长方体的长为〔x+3〕cm,宽为〔x-4〕cm,高为〔x+2〕cm,根据题意列方程得:〔x+3〕〔x-4〕〔x+2〕-x3=251,整理得x2-14x-275=0,∴x1=25,x2=-11〔不符合题意,舍去〕.12.这两年产值的平均增长率为x,根据题意可得〔1+x〕2=4,解得x1=1,x2=-3〔不符合题意,舍去〕故这两年生产总值的平均增长率为100%.13.设新品种花生亩产量的增长率为x,那么花生出油率的增长率为12x.根据题意列方程得200〔1+x〕×50%〔1+12x〕=132,整理得25x2+75x-16=0,解得x1=0.2,x2=-3.2〔舍去〕.故新品种花生亩产量的增长率为20%.14.B15.B 点拨:提高和降低的百分率相同,而基点不同,所得的结果是不同的,设进价为a,那么a〔1+20%〕〔1-20%〕=96,∴a=100.16.设平均每年增长的百分率为x,根据题意,得1000〔1+x〕2=1210,1+x=±1.1,解得x1=0.1=10%,x2=-2.1〔不符合题意,舍去〕.所以x=10%.点拨:此题解题关键是理解和熟记增长率公式.17.〔1〕小明的结果不对,设小路的宽为xm,那么得方程〔16-2x〕〔12-2x〕=12×16×12,解得x1=2,x2=12.而荒地的宽为12m,假设小路宽为12m,不符合实际情况,故x2=12m不符合题意,•应舍去.〔2〕由题意得4×221961612,42xxππ=⨯⨯=,∴x≈5.5m.〔3〕方案不唯一,如图,说明略.18.A。
(完整版)八年级数学第十二章第1-2节轴对称作轴对称图形同步练习人教新课标版
初二数学人教新课标版第十二章 第 1-2 节 轴对称;作轴对称图形同步练习(答题时间:35 分钟)一、选择题:1. 下列英文字母属于轴对称图形的是()A. NB. SC. HD. J2. 下列图案中,有且只有三条对称轴的是()3. 下列图案是我国几家银行的行标,其中是轴对称图形的有( ) A. 1 个 B. 2 个 C. 3 个 D. 4 个4. 如图所示的矩形纸片,先沿虚线按箭头方向向右对折,接着将对折后的纸片沿虚线剪下一个小圆和一个小三角形,然后将纸片打开,打开后的纸片是下列图中的哪一个( )5. 下列说法错误的是( )A. 两个三角形关于某直线对称,那么这两个三角形全等B. 两个图形关于某直线对称,且对应线段相交,则交点必在对称轴上C. 两个图形关于某直线对称,对应点的连线不一定垂直对称轴D. 若直线 l 同时垂直平分 AA ', BB ' ,那么线段 AB = A ' B '二、填空题:6. 如图所示, Rt ∆ABC 中, ∠ACB = 90 , ∠A = 50 ,将其折叠,使 A 落在边 CB 上的 A ' 处,折痕为 CD ,则∠A ' DB =;7.如图,ΔABC与Δ A 'B 'C ' 关于直线 l 对称,则∠B 的度数为;lA A'B B'C C'8.点P(3, -5) 关于x 轴对称的点的坐标是;9.如图,正方形的边长为4cm,则图中阴影部分的面积为cm2;10. 已知点A(x + 2, 3) 与点B(-5, y + 7) 关于x 轴对称,则x =,y =;三、解答题:11.如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上的F 点处,CE=3 cm,AB=8 cm,BC=10 cm。
求图中阴影部分的面积。
12.如图,l1, l2交于A ,P, Q 的位置如图所示,试确定N 点,使它到l1, l2的距离相等,且到P, Q 两点的距离也相等。
人教版 八年级上册数学 13.1 轴对称 同步训练(含答案)
人教版八年级数学13.1 轴对称同步训练一、选择题(本大题共10道小题)1. 如图所示的轴对称图形中,只用平移就可以使对称轴两边的图形重合的有()A.1个B.2个C.3个D.4个2. P是∠AOB内一点,分别作点P关于直线OA,OB的对称点P1,P2,连接OP1,OP2,则下列结论正确的是()A. OP1⊥OP2B. OP1=OP2C. OP1⊥OP2且OP1=OP2D. OP1≠OP23. 如果点(m-1,-1)与点(5,-1)关于y轴对称,那么m的值为()A.4 B.-4 C.5 D.-54. 将一张长与宽的比为2∶1的长方形纸片按图①②所示的方式对折,然后沿图③中的虚线裁剪,得到图④,最后将图④中的纸片展开铺平,所得到的图案是()5. 如图,点A在直线l上,△ABC与△AB'C'关于直线l对称,连接BB'分别交AC,AC'于点D,D',连接CC',下列结论不一定正确的是()A.∠BAC=∠B'AC''∥BB'C.BD=B'D'D.AD=DD'6. 把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图0)的对应点所具有的性质是()A.对应点所连线段与对称轴垂直B.对应点所连线段被对称轴平分C.对应点所连线段都相等D.对应点所连线段互相平行7. 对于△ABC,嘉淇用尺规进行如下操作:如图,(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点D;(2)作直线AD交BC边于点E.根据嘉淇的操作方法,可知线段AE是()A.△ABC的高线B.△ABC的中线C.边BC的垂直平分线D.△ABC的角平分线8. 将平面直角坐标系内某个图形的各个点的横坐标都乘-1,纵坐标不变,则所得图形与原图形的关系是()A.关于x轴对称B.关于y轴对称C.图形向左平移D.图形向下平移9. 如图,在RtABC 中,90ACB ∠=︒,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于D E ,两点,作直线DE 交AB 于点F ,交BC 于点G ,连接CF .若3AC =,2CG =,则CF 的长为A .52B .3C .2D .7210. 如图,点P 在直线l 外,以点P 为圆心,大于点P 到直线l 的距离为半径画弧,交直线l 于点A ,B ;保持半径不变,分别以点A ,B 为圆心画弧,两弧相交于点Q ,则PQ ⊥l.上述尺规作图的依据是 ( )A .一条直线与两平行线中的一条垂直,必然与另一条直线也垂直B .线段垂直平分线上的点与这条线段两个端点的距离相等,两点确定一条直线C .与线段两个端点距离相等的点在这条线段的垂直平分线上,两点确定一条直线D .角的内部到角的两边的距离相等的点在角的平分线上二、填空题(本大题共7道小题)11. 如图所示的五角星是轴对称图形,它的对称轴共有________条.12. 如图所示的4组图形中,左右两个图形成轴对称的是第________组(填序号).13. 如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是________.14. 如图,DE是△ABC的边AC的垂直平分线,若BC=9,AD=4,则BD=________.15. 在平面直角坐标系中,点A的坐标是(-1,2).作点A关于x轴的对称点,得到点A1,再将点A1向下平移4个单位长度,得到点A2,则点A2的坐标是________.16. 画图:试画出下列正多边形的所有对称轴,并完成表格.根据上表,猜想正n边形有条对称轴.17. 现要在三角地带ABC内(如图)建一座中心医院,使医院到A,B两个居民小区的距离相等,并且到公路AB和AC的距离也相等,请你确定这座中心医院的位置.三、解答题(本大题共4道小题)18. 把下列正多边形对称轴的条数填入表格中.图形正多边形的边数345678对称轴的条数________________________ 根据上表,请你就一个正n边形对称轴的条数做一个猜想,写出猜想的结果.(不用证明)19. 如,在△ABC中,D为BC上的一点,E,F为AD上的两点,若EB=EC,FB=FC.求证:AB=AC.20. 已知:如图,∠BAC的平分线与BC的垂直平分线DG交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:BE=CF;(2)若AF=6,BC=7,求△ABC的周长.21. 如图,在四边形ABCD中,AD∥BC,E是CD的中点,连接AE,BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)AD=FC;(2)AB=BC+AD.人教版八年级数学13.1 轴对称同步训练-答案一、选择题(本大题共10道小题)1. 【答案】B[解析] 从左数第二个和第四个,只用平移就可以使对称轴两边的图形重合.2. 【答案】B3. 【答案】B[解析] ∵点(m-1,-1)与点(5,-1)关于y轴对称,∴m-1=-5,解得m=-4.4. 【答案】A5. 【答案】D[解析] 如图,设BB'交直线l于点O.∵△ABC与△AB'C'关于直线l对称,∴△ABC≌△AB'C',BB'⊥l,CC'⊥l,AB=AB',AC=AC',OD=OD',OB=OB'.∴∠BAC=∠B'AC',BB'∥CC',BD=B'D'. 故选项A ,B ,C 正确.故选D .6. 【答案】B[解析] 连接BB'交对称轴于点O ,过点B 作BM ⊥对称轴,垂足为M ,过点B'作B'N ⊥对称轴,垂足为N ,由轴对称的性质及平移的性质可得BM=B'N.又因为∠BOM=∠B'ON ,∠BMO=∠B'NO=90°,所以△BOM ≌△B'ON.所以OB=OB'.同理其他对应点也有这样的结论.7. 【答案】A8. 【答案】B[解析] 点的横坐标乘-1后变为原来的相反数,又因为纵坐标不变,故变化后的点与原来的点关于y 轴对称.9. 【答案】A【解析】由作法得GF 垂直平分BC , ∴FB FC =,2CG BG ==,FG BC ⊥, ∵90ACB ∠=︒,∴FG AC ∥,∴BF CF =, ∴CF 为斜边AB 上的中线, ∵22345AB =+=, ∴1522CF AB ==.故选A .10. 【答案】C二、填空题(本大题共7道小题)11. 【答案】5[解析] 如图,五角星的对称轴共有5条.12. 【答案】(3)(4)13. 【答案】线段垂直平分线上的点与这条线段两个端点的距离相等14. 【答案】515. 【答案】(-1,-6)[解析] ∵点A的坐标是(-1,2),作点A关于x轴的对称点,得到点A1,∴点A1的坐标是(-1,-2).∵将点A1向下平移4个单位长度,得到点A2,∴点A2的坐标是(-1,-6).16. 【答案】解:如图.故填3,4,5,6,n.17. 【答案】解:作线段AB的垂直平分线EF,作∠BAC的平分线AM,EF与AM 相交于点P,则点P处即为这座中心医院的位置.三、解答题(本大题共4道小题)18. 【答案】解:345678猜想:一个正n边形有n条对称轴.19. 【答案】证明:∵EB=EC,∴点E在BC的垂直平分线上.∵FB=FC,∴点F在BC的垂直平分线上.∴直线EF是BC的垂直平分线.∵点A在直线EF上,∴AB=AC.20. 【答案】(1)证明:如图,连接CD.∵点D 在BC 的垂直平分线上,∴BD =CD. ∵DE ⊥AB ,DF ⊥AC ,AD 平分∠BAC , ∴DE =DF ,∠BED =∠CFD =90°. 在Rt △BDE 和Rt △CDF 中,⎩⎨⎧DE =DF ,BD =CD ,∴Rt △BDE ≌Rt △CDF(HL).∴BE =CF. (2)在Rt △ADE 和Rt △ADF 中, ⎩⎨⎧DE =DF ,AD =AD ,∴Rt △ADE ≌Rt △ADF. ∴AE =AF =6.∴△ABC 的周长=AB +BC +AC =(AE +BE)+BC +(AF -CF)=6+7+6=19.21. 【答案】证明:(1)∵E 是CD 的中点,∴DE =CE. ∵AD ∥BC ,∴∠ADE =∠FCE ,∠DAE =∠CFE. ∴△ADE ≌△FCE.∴AD =FC. (2)∵△ADE ≌△FCE , ∴AE =FE.又∵BE ⊥AE ,∴BE 垂直平分AF. ∴AB =FB.∵FB =BC +FC =BC +AD , ∴AB =BC +AD.。
2022年人教版八年级上册《轴对称2》同步练习(附答案)
13.1 轴对称 13.1.1 轴对称1.在角、线段、等腰三角形、平行四边形、等腰梯形、圆这六个图形中,是轴对称图形的有 。
2.等边三角形、角、长方形这三个图形中,对称轴最多的是 ,它共有 条对称轴。
3.小明面对镜子站着,他的左脚在前,那么在镜子里他是 脚在前。
4.在下面这一组图形中符号中找出它们所蕴含的内在规律全面质量管理在横线上的空白处填上恰当的图形。
5.观察以下平面图形,期中是轴对称图形的有〔 〕A 、1个 B 、2个 C 、3个 D 、4个6.以下说法中正确的选项是〔 〕A 、轴对称图形是由两个图形组成的B 、等边三角形有三条对称轴C 、两个全等三角形组成一个轴对称图形D 、直角三角形一定是轴对称图形 图形,你能找到它们的对称轴吗?有的图形不止一条对称轴,你能找到它们各自所有的对称轴吗?在图中把它们画出来。
8.如图产,在△ABC 中,DE 是AC 的垂直平分线,交BC 于D ,交AC 于F ,△ABD 的周长为15㎝,而AC =5㎝,求△ABC 的周长。
能力提升9.一辆汽车牌在水中的倒影为 ,那么该车牌照号码为 。
10.在A ,B ,N ,H ,U 这五个英文文字中近似成轴对称的是 。
11.如图,在△ABC 中,∠A =90°,∠B =15°, DE 是BC 的垂直平分线,交AB 于D ,交BC 于E , 且BD =18㎝,那么AC = ㎝。
B DC EA 第8题图E B D C A第11题图12.如图,由小正方形组成的L 形图中,请你用三种方法分别在以下图中添画一个小正方形使它成为轴对称图形。
方法一 方法二 方法三13.如图,BD =DC ,ED ⊥BC ,AE 平分∠BAC , EM ⊥AB ,EN ⊥AC 垂足分别为M ,N 。
求证:BM =CN 。
考点追踪1.(2004年吉林)如图,对称轴条数最多的一个图形是( )A BCDO l第 2 题 图2.(2004年河南)如图,直线l 是四边形ABCD 的对称轴,假设AB=CD ,有下面的结论:①AB ∥CD ,②AC ⊥BD ,③AO =CO ,④AB ⊥BC ,其中正确的结论有________. 3.(2004年荆门)如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D',C'的位置,假设∠EFB =65°,那么∠AED'等于( ). A .50° B .55° C .60° D .65°NEBMDC A第13题图65°A BCDD'C'第 3 题 图E F轴对称根底闯关 1、角、线段、等腰三角形、等腰梯形、圆 2、等边三角形 3 3、右 4、 5、C 6、B 8、20cm能力提升 9、M17936 10、A 、H 、U 11、连接BE ,CE ,因为BD=DC 、ED ⊥BC ,所以EB=EC ,又因为EM ⊥AB ,EN ⊥AC ,EA 平分∠BAC ,所以EM=EN ,∠EMB=∠ENC =90度,所以RT △BEM ≌RT △CEN ,所以BM=CN 考点追踪 1、B 2、①②③ 3、A《一元二次方程的应用》 综合练习 【知能点分类训练】 知能点1 面积问题1.有一个三角形的面积为25cm 2,其中一边比这一边上的高的3倍多5cm ,那么这一边的长是________,高是_________.2.要用一条铁丝围成一个面积为120cm 2的长方形,并使长比宽多2cm ,那么长方形的长是______cm .3.有一间长为18m ,宽为7.5m 的会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的12,四周未铺地毯处的宽度相同,那么所留宽度为_______m . 4.在一块长16m ,宽12m 的矩形空地上,要建造四个花园,•中间用互相垂直且宽度相同的两条甬路隔开,并使花园所占面积为空地面积的,求甬路宽.知能点2 增长〔降低〕率问题5.某工厂用两年时间把产量提高了44%,求每年的平均增长率.•设每年的平均增长率为x ,列方程为_______,增长率为_________.6.某粮食大户2005年产粮30万kg ,方案在2007年产粮到达36.3万kg ,假设每年粮食增长的百分数相同,求平均每年增长的百分数.7.某厂一月分的产值为15万元,第一季度的总产值是95万元,设月平均增长率为x,那么可列方程为〔〕.A.95=15〔1+x〕2 B.15〔1+x〕3=95C.15〔1+x〕+15〔1+x〕2=95 D.15+15〔1+x〕+15〔1+x〕2=958.某种商品经过两次降价,由每件100元降低了19元,•那么平均每次降价的百分率为〔〕. A.9% B.9.5% C.8.5% D.10%9.某班将2005年暑假勤工俭学挣得的班费2000元按一年定期存入银行.2006•年暑假到期后取出1000元寄往灾区,将剩下的1000元和利息继续按一年定期存入银行,待2007年毕业后全部捐给母校.假设2007年到期后可取人民币〔本息和〕1069元,•问银行一年定期存款的年利率是多少.〔假定不交利息税〕【综合应用提高】10.用24cm长的铁丝:〔1〕能不能折成一个面积为48cm2的矩形?〔2〕•能不能折成面积是32cm2的矩形?假设能,求出边长;假设不能,请说明理由.11.如果一个正方体的长增加3cm,宽减少4cm,高增加2cm,•所得的长方体的体积比原正方体的体积增加251cm3,求原正方体的边长.12.某厂方案在两年后总产值要翻两番,那么,•这两年产值的平均增长率应为多少?【开放探索创新】13.某农户种植花生,原种植的花生亩产量为200kg,出油率为50%.现在种植新品种花生后,每亩收获的花生可加工成花生油132kg,•其中花生出油率的增长率是亩产量的增长率的,求新品种花生亩产量的增长率.【中考真题实战】14.〔陕西中考〕在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,•制成一幅矩形挂图,如下图,如果要使整幅挂图的面积是5400cm2,设金色纸边的宽为xcm,•那么x满足的方程为〔〕.A.x2+130x-1400=0 B.x2+65x-350=0C.x2-130x-1400=0 D.x2-65x-350=015.〔遵义中考〕某商店将一件商品的进价提价20%后又降价20%,以96元的价格出售,•那么该商店卖出这种商品的盈亏情况是〔〕.A.不亏不赚 B.亏4元 C.赚6元 D.亏24元16.〔大连中考〕某企业的年产值在两年内从1000万元增加到1210万元,求平均每年增长的百分率.17.〔新疆中考〕在一块长16m,宽12m的矩形荒地上,要建造一个花园,要求花园所占面积为荒地面积的一半,图a、图b分别是小明和小颖的设计方案.〔1〕你认为小明的结果对吗?请说明理由.〔2〕请你帮助小颖求出图中的x〔精确到0.1m〕.〔3〕你还有其他的设计方案吗?请在以下图中画出你的设计草图,并加以说明.18.〔兰州中考〕某地2004年外贸收入为2.5亿元,2006年外贸收入到到达4亿元.•假设平均每年的增长率为x,那么可以列出方程为〔〕.A.2.5〔1+x〕2=4 B.〔2.5+x%〕2=4C.2.5〔1+x〕〔1+2x〕2=4 D.2.5〔1+x%〕2=4参考答案1.15cm 103cm2.12 点拨:根据题意,可设长为xcm,宽为〔x-2〕cm,可列方程为〔x-2〕x=120.3.1.5 点拨:根据题意,设所留宽度为x,可列方程〔18-2x〕〔7.5-2x〕=12×18×7.5.4.设甬路宽为xm,根据题意可列方程为〔16-x〕〔12-x〕=×16×12,解得x1=2,x2=26〔不符合题意,舍去〕.5.〔1+x〕2=〔1+44%〕 20%6.设平均每年增长的百分数为x,根据题意得30〔1+x〕2=36.3,解得x1=0.1,x2=-2.1〔不符合题意,舍去〕.故平均每年的增长率为10%.7.D 点拨:一个季度的总产值包括一月,二月,三月的产值.8.D 点拨:降低19元,所以现价为81元,可列方程为100〔1-x〕2=81.9.设银行一年定期存款的年利率是x元,根据题意,列方程为[2000〔1+x〕-1000]〔1+x〕=1069,整理得2x2+3x-0.069=0,x1≈0.0225,x2≈-1.5225〔不符合题意,舍去〕.10.〔1〕设矩形的长为xcm,那么宽为〔12-x〕cm,根据题意可得x〔12-x〕=48,整理得x2-12x+48=0,∵b2-4ac=144-4×48<0,∴原方程无解,故用24cm长的铁丝不能折成面积为48cm2的矩形.〔2〕根据题意,可列方程为x〔12-x〕=32,整理得x2-12x+32=0,解得x1=4,x2=8.当x=4时,12-x=8;当x=8时,12-x=4,所以长为8cm时,宽为4cm.用长为24cm 的铁丝能折成面积为32cm2的矩形,边长为4cm和8cm.11.设原正方体的边长为xcm,那么现在长方体的长为〔x+3〕cm,宽为〔x-4〕cm,高为〔x+2〕cm,根据题意列方程得:〔x+3〕〔x-4〕〔x+2〕-x3=251,整理得x2-14x-275=0,∴x1=25,x2=-11〔不符合题意,舍去〕.12.这两年产值的平均增长率为x,根据题意可得〔1+x〕2=4,解得x1=1,x2=-3〔不符合题意,舍去〕故这两年生产总值的平均增长率为100%.13.设新品种花生亩产量的增长率为x,那么花生出油率的增长率为12x.根据题意列方程得200〔1+x〕×50%〔1+12x〕=132,整理得25x2+75x-16=0,解得x1=0.2,x2=-3.2〔舍去〕.故新品种花生亩产量的增长率为20%.14.B15.B 点拨:提高和降低的百分率相同,而基点不同,所得的结果是不同的,设进价为a,那么a〔1+20%〕〔1-20%〕=96,∴a=100.16.设平均每年增长的百分率为x,根据题意,得1000〔1+x〕2=1210,1+x=±1.1,解得x1=0.1=10%,x2=-2.1〔不符合题意,舍去〕.所以x=10%.点拨:此题解题关键是理解和熟记增长率公式.17.〔1〕小明的结果不对,设小路的宽为xm,那么得方程〔16-2x〕〔12-2x〕=12×16×12,解得x1=2,x2=12.而荒地的宽为12m,假设小路宽为12m,不符合实际情况,故x2=12m不符合题意,•应舍去.〔2〕由题意得4×221961612,42xxππ=⨯⨯=,∴x≈5.5m.〔3〕方案不唯一,如图,说明略.18.A。
人教版八年级数学上13.1《轴对称》同步练习.docx
初中数学试卷桑水出品13.1《轴对称》同步练习基础练习1.(易)如图所示,将一个正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去一个三角形和一个形如“1”的图形,将纸片展开,得到的图形是()2.(易)下列四个图形中,是轴对称图形的有()A.⑴⑶B.⑵⑶C.⑴⑷D.⑵⑷3.(易)在三角形、四边形、五边形、和正六边形中,是轴对称图形的是()A.三角形B.四边形C.五边形D.正六边形4.(易)下列图形中,是轴对称图形的是()拔高练习1.在0,1,2,3,4,5,6,7,8,9这10个数字中,符合轴对称关系的有()A.3个B.4个C.5个D.6个2.观察下图,它有对称轴()A.1条B.2条C.3条D.4条3.在26个大写英文字母中,有许多字母是轴对称图形,请你把其中是轴对称图形的字母写出来________________(不少于5个).4.下列图案中,有且只有三条对称轴的是()A C DB5.小明用如图所示的胶滚沿从左到右的方向将图案滚到墙上.下列给出的四个图案中,符合胶滚涂出的图案的是( )6.如图,⑴正三角形,⑵正四边形,⑶正五边形,⑷正六边形,⑸正八边形,⑹正九边形都是轴对称图形,数一数它们的对称轴的条数.观察后分析:正多边形对称轴的条数与边数n有什么关系?根据你的分析结果回答,正十边形,正十六边形,正二二十九边形分别有几条对称轴?正五十边形呢?正一百边形呢?基础练习参考答案:1.【答案】D.【考点】折叠,轴对称.【分析】根据折叠和轴对称的性质,从折叠的方向和剪去一个三角形的位置看,放开后是位于中间的正方形,故要B,D两项中选择;从剪去的如“1”的图形方向看箭头朝外.故选D.2.【答案】B.【考点】轴对称图形.【分析】根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,因此所给图形中②③是轴对称图形.故选B.3.【答案】D.【考点】轴对称图形.【分析】根据轴对称图形两部分沿对称轴折叠后可重合的定义,只有正六边形沿某条直线折叠后直线两旁的部能够完全重合,是轴对称图形.故选D.4.【解析】第二个图形沿圆心折叠,左右可重合,故是轴对称图形,第四个图形旋转120度可重合,故是旋转对称图形,其它两个沿着任意一直线折叠不重合,旋转任意角度也不重合,故既不是轴对称图形,也不是旋转对称图形.【答案】B.【小结】欲知某一图形是不是轴对称图形,要根据定义来判断.拔高练习参考答案:1.B.2.A.3.A,B,C,D,E,H,I,M,O,T,U,V,W,X,Y4.D.5.A.6.解:正三角形有3条对称轴,正四边形有4条对称轴,正五边形有5条对称轴,正六边形有6条对称轴,正八边形有8条对称轴,正九边形有9条对称轴.正多边形的对称轴的条数与边数n之间的关系是:边数是n,对称轴的条数是n条.所以正十边形有10条对称轴,正十六边形有16条对称轴,正二十九边形有29条对称轴,正五十边形有50条对称轴,正一百边形就有100条对称轴.。
八年级数学上册 轴对称同步测控优化训练(带解析) 人教新课标版
第十四章轴对称14.1 轴对称5分钟训练(预习类训练,可用于课前)1.下列说法不正确的是( )△ABC与△A′B′C′关于直线l对称,那么它们对应边上的高、中线、对应角平分线也分别关于直线l对称思路解析:根据轴对称的定义与性质判断.“对称必全等”,但全等不一定对称.答案:D2.下列图案(如图14-1-1)是轴对称图形的有( )图14-1-1思路解析:观察图形,根据轴对称的定义判断,第一个与第四个图形是轴对称图形.答案:B3.三角形三边的三条中垂线交于一点,这点到__________的距离相等.答案:三角形三个顶点10分钟训练(强化类训练,可用于课中)1.仔细看一看:观察图14-1-2中的“风车”图案,其中是轴对称图形的有__________.图14-1-2思路解析:轴对称图形应该是关于某条直线对称的,需要认真观察,从不同角度分析比较,使对称轴两边的部分互相重合.答案:①③④2.(1)如图14-1-3(1),等腰梯形ABCD是轴对称图形,它的对称轴交上、下底于点E、点F,则__________和__________成轴对称.(2)如图14-1-3(2),△ABC和△DEF关于直线l成轴对称,则把__________和__________看成一个__________,就变成一个轴对称图形.(1) (2)图14-1-3思路解析:根据定义辨别轴对称与轴对称图形的关系.答案:(1)四边形 ABFE 四边形DCFE(2)△ABC △DEF 整体3.动手做一做:作出下列图形(如图14-1-4)的对称轴:图14-1-4思路分析:观察图形的特点,找对应点的连线段的垂直平分线.解:①共有三条对称轴,②只有1条对称轴,③有5条对称轴.14-1-5,已知P在∠AOB内,点M、N分别是点P关于AO、BO的对称点.连结MN,分别交AO、BO于E、F,若△PEF的周长是20 cm,求MN的长.图14-1-5思路分析:根据对称性质,把△PEF的三条边转换到一条直线上,即线段MN=PE+EF+PF. 解:因为点M、N是关于定点P的对称点,所以ME=PE,NF=PF.所以MN=ME+EF+FN=20(cm). 14-1-6,直线l是四边形ABCD的对称轴,若AB=CD,有下面的结论:①AB∥CD;②AC⊥BD;③AO=CO;④AB⊥BC.其中正确的有__________.图14-1-6思路解析:利用轴对称的性质——对应线段相等,得到全等的三角形.∵直线l是四边形ABCD的对称轴,∴AB=AD,BC=DC,AC⊥BD且AC平分BD.又∵AB=CD,∴AB=BC=CD=AD.∵∠ADC=∠ABC,∴△ABC和△ADC是两个全等的等腰三角形.∴∠ACD=∠CAB.∴AB∥CD.∵∠AOB=∠COD=90°,AB=CD,BO=DO,∴Rt△AOB≌Rt△COD.∴AO=CO.而AB和BC的位置关系无法确定,也就是说它们不一定垂直.因此,正确的结论有①②③.答案:①②③快乐时光一个功课很差的学生在毕业前夕对他的英文老师说:“谢谢您,老师我非常感谢您,我虽然毕业了,但您永远是我的老师,如果您要我做什么事情,千万别客气!”“好吧!请替我做件事.”老师说:“你千万不要告诉别人我曾教过你英语!”30分钟训练(巩固类训练,可用于课后)1.三角形纸片上有一点P,量得PA=3 cm,PB=3 cm,则点P一定( )思路解析:点P到线段AB两个端点的距离相等,点P在线段AB的垂直平分线上.答案:D2.在线段、射线、直线、角、直角三角形、等腰三角形中是轴对称图形的有( )思路解析:线段、射线、直线、角、等腰三角形都是轴对称图形.前三者都关于自身所在的直线对称,其中线段还关于其垂直平分线对称;角关于其平分线所在的直线对称,等腰三角形关于底边上的高所在的直线对称.直角三角形不是轴对称图形.答案:C3.(2010某某某某模拟)如图14-1-7,将矩形沿对称轴折叠,在对称轴处剪下一块,余下部分的展开图为( )图14-1-7 图14-1-8 答案:D14-1-9所示,将矩形纸片ABCD沿虚线EF折叠,使点A落在点G上,点D落在点H上;然后再沿虚线GH折叠,使B落在点E上,点C落在点F上.叠完后,剪一个直径在BC上的半圆,再展开,则展开后的图形为( )图14-1-9思路解析:折纸问题体现了轴对称,折叠两次就是两次轴对称问题,在线段BC和EF上剪了一个半圆,实际上得到了三个半圆,则第一对半圆关于EF对称,第二对半圆关于GH对称,图B符合实际情况.答案:B5.(1)成轴对称的两个图形一定是全等形吗?(2)全等的两个图形一定成轴对称吗?思路分析:轴对称图形能够重合,一定是全等形;但全等的两个图形不一定成轴对称,这里有位置要求,即成轴对称的两个图形的形状、大小相同,位置还很特殊,两个图形沿某条直线折叠后重合才能成轴对称..解:(1)一定是,因为这两个图形能够互相重合.(2)不一定,例如:这两个三角形虽然全等,但不论怎么折叠它们都不会重合,因此,它们就不成轴对称. 14-1-11,已知E是∠AOB的角平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D,求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是CD的垂直平分线.图14-1-11思路解析:角关于其平分线对称,用角平分线性质证明三角形全等可以证得相关的线段和角相等.可以用垂直平分线的判定定理判断点E、点O都在线段CD的垂直平分线上,由此OE 是CD的垂直平分线.证明:(1)∵OE平分∠AOB,∴∠DOE=∠COE.∵∠DOE+∠OED=90°,∠OED+∠EDC=90°,∴∠EDC=∠DOE.同理,∠ECD=∠COE.∴∠ECD=∠EDC.(2)Rt△ODE≌Rt△OCE,OC=OD.(3)∵DE=EC,∴点E在CD的垂直平分线上.∵OC=OD,∴点O在CD的垂直平分线上.∴OE是CD的垂直平分线.14-1-12,已知AB比AC长2 cm,BC的垂直平分线交AB于D,交BC于E,△ACD的周长是14 cm,求AB和AC的长.思路分析:利用垂直平分线的性质,把相等的线段“集中”到一个三角形中. 解:∵DE是BC的垂直平分线,∴DB=DC.∵AC+AD+CD=14 cm,∴AC+AD+DB=14,即AC+AB=14 cm.又∵AB-AC=2 cm,设AB=x cm,AC=y cm,根据题意得14,8,2.6,x y xx y y+==⎧⎧⎨⎨-==⎩⎩解得即AB长8 cm,AC长6 cm.14-1-13,已知Rt△ABC中,∠ACB=90°,AC=BC,点D是BC的中点,CE⊥AD,垂足为E,BF∥AC交CE的延长线于点F.求证:AB垂直平分DF.图14-1-13思路解析:在垂直问题中,用“同角的余角相等”“到线段两端点距离相等的点在线段的垂直平分线上”判定AB是线段DF的垂直平分线.证明:如图,连结DG.∵∠1+∠ADC=90°,∠2+∠ADC=90°,∴∠1=∠2.∵AC=BC,∴Rt△ADC≌Rt△CFB(AAS).∴DC=BF.∵点D是BC的中点,∴DC=BD.∴BD=BF.∴点B在DF的垂直平分线上.∵AC∥BF,∴∠CBF=90°.∴∠DBG=∠FBG=45°.∴△BGD≌△BGF(SAS).∴DG=FG.∴点G在DF的垂直平分线上.∴AB垂直平分DF.。
【最新】人教版八年级数学上册 第13章《轴对称》 同步练习及答案(13.1-13.2).doc
第13章《轴对称》同步练习(§13.1~13.2)班级 学号 姓名 得分一、填空题(每题3分,共30分)1.如图所示的图形是___图形,其对称轴共有___条.2.简体汉字中“田、日、中”,都具有对称美的特点,请你再写出具有这们特征的三个汉字为_____.3.正方形是轴对称图形,它的对称轴有_______条.4.如果一个图形沿一条直线折叠,直线两旁的部分能够________,这个图形就叫做______________,这条直线就是它的________,这时,我们也说这个图形关于这条直线 对称.5.小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是 .6.点A (-2,1)关于y 轴的对称点的坐标是____,点A 关于x 的对称点的坐标是____.7.如图,△COB 与△AOB 关于x 轴对称,点A 的坐标为(则点C 的坐标为____.8.如图所示,写出长方形ABCD 三个顶点的坐标:A B :___,C :____.9.如图,P 是正△ABC 内的一点,若将△P AB 绕点A 到△P′AC ,则∠P AP ′的度数为________.10.如图,阴影部分组成的图案既是关于x 轴成轴对称的图形又是关于坐标原点O 成中心对称的图形.若点A 的坐标是(1,3),则点M 和点N 的坐标分别是________.PPCBA(第9题)(第5题)(第1题)二、选择题(每题3分,共24分)11.下列图形:①线段;②角;③平行四边形;④三角形;⑤圆,其中一定是轴对称图形的共有()A.2个B.3个C.4个D.5个12.下列图形中轴对称图形有()A.4个B.3个C.2个D.1个13.如图所示,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超,使超市到三个小区的距离相等,则超市应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在AC、BC两边垂直平分线的交点处D.在A、B两内角平分线的交点处14.在刚刚买来的一件衣服上,有一个标签,上面有如下几个图形,如图所示分别表示这件衣服可干洗,不可漂白,应低温熨烫或悬挂凉干,它们其中是轴对称图形的是()15.如图,在四个图形中,对称轴条数最多的一个图形是()A.B.C.D.16.在直角坐标系中,点P(2,1)关于x轴对称点的坐标是()A.(2,1)B.(-2,1)C.(2,-1)D(-2,-1)17.将一圆形纸片对折后再对折,得到如图所示的图形,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()18.王明是班上公认的“小马虎”在做作业时,将点A的纵横坐标次序颠倒,写成A(a,b),小华也不细心,将点B的坐标写成关于y轴的对称点的坐标,写成B(-b,-a),则A、B两点原来的位置关系是()A.关于y轴对称B.关于x轴对称C.A和B重合D.以上都不对三、解答题(共46分)19.(7分)如图所示,下面两个图形关于某条直线对称,画出其对称轴,求出zyx,,的值.CBA(第13题)A.B.C.D.(第17题)6270︒120︒100︒zyHGEDCxBA20.(7分)如图是由两个等边三角形组成的图形,它是轴对称图形吗?如果不是,请移动其中的一个三角形,使它与另一个三角形一起组成轴对称图形,有几种移法?(至少画四种,相同类型的算一种). 21.(8分)你能将方格中的图案做如下变换吗?相信你一定能行的! (1)关于x 轴对称;(2)关于y 轴对称22.(8分)AC 、AB 是两条笔直的交叉公路,M 、N 是两个实习点的同学参加劳动,现欲建一个茶水供应中,使得此茶水供应站到公路两边的距离相等,且离M 、N 两个实习点的距离也相等,试问:此茶水供应站应建在何处?23.(8分)已知A (2m +n ,2)、B (1,n -m ),当m ,n 分别为何值时Bx(1)A 、B 关于x 轴对称; (2)A 、B 关于y 轴对称.24.(8分)开放与探究(1)观察图中①-④中阴影部分所构成的图案,请写出这四个图案都具有的两个特征;(2)借助图中⑤的网格,请你设计一个新图案,使该图案同时具有你解答(1)中所写的两个共同的特征.⑤④①参考答案一、填空题1.轴对称图形,5 2.答案不唯一如:“美、善、口、工、士”等 3.4 4.互相重合,轴对称图形,对称轴,成轴 5.1021∶ 6.(2,1),(-2,-1) 7.(2,-3) 8.(-2,1.5)、(-2,-1.5)、(2,-1.5) 9.60° 10.)(),,(3-1.3-1-N M二、选择题11.B 12.B 13.C 14.B 15.B 16.C 17.C 18.B三、解答题19.对称轴为MN ,2,6,70==︒=z y x 20.不是,答案不唯一 21.略 22.图略,画法:(1)画出∠CAB 的角平分线AE ;(2)连结MN ,作MN 的垂直平分线与AE 交于P ;(3)由点P 即为所求 23.(1)m=1,n=-1,点A 、B 关于x 轴对称;(2)m=-1,n=1,点A 、B 关于y 轴对称. 24.答案不唯一:如(1)都是轴对称图形;阴影部分面积等于4个小正方形面积之和;(2)答案不唯一.。
12.1 轴对称同步练习(人教版初中数学八年级上册)
12.1 轴对称◇课标点击◇1.什么是轴对称?什么是轴对称图形?它们之间有什么区别?有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称是两个图形之间的关系,轴对称图形是一个图形具有的特征.2.图形的轴对称有哪些性质?图形的轴对称主要有下列两条性质:⑴如果两个图形成轴对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.⑵轴对称是指两个图形之间的形状与位置关系, 成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.3.线段的垂直平分线有什么性质?线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.◇同步训练1◇【基础达标】1.选择题:⑴下列说法错误..的是( )A.关于某条直线对称的两个三角形一定全等B.轴对称图形至少有一条对称轴C.全等三角形一定能关于某条直线对称D.角是关于它的平分线对称的图形⑵下列图形中,是.轴对称图形的为( )⑶下图所示的图案中,是轴对称图形且有两条对称轴的是( )E DCA BMNF2.填空题:⑴观察右上图中的两个图案,是轴对称图形的为________,它有_____条对称轴. ⑵如右下图,△ABC 与△AED 关于直线对称,若AB=2cm ,∠C=95°,则AE= ,∠D= 度.⑶坐标平面内,点A 和B 关于x 轴对称,若点A 到x 轴的距离是3cm ,则点B 到x 轴的距离是__________.3.下图中的图形都是轴对称图形,请你试着画出它们的对称轴.4.如图,△ABC 与△ADE 关于直线MN 对称.BC 与DE 的交点F 在直线MN 上.⑴指出两个三角形中的对称点; ⑵指出图中相等的线段和角; ⑶图中还有对称的三角形吗?5.如图,把一张纸片对折后,用笔尖在纸上扎出图⑶所示的图案,将纸打开后铺平,观察你所得的图案.位于折痕两侧的部分有什么关系?与同伴交流你的想法.【能力巩固】lDCABA6.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形。
【人教版八年级数学上册同步练习试题及答案】第13章《轴对称》 同步练习及答案(13.1-13.2)
第13章《轴对称》同步练习(§13.1~13.2)班级 学号 姓名 得分一、填空题(每题3分,共30分)1.如图所示的图形是___图形,其对称轴共有___条.2.简体汉字中“田、日、中”,都具有对称美的特点,请你再写出具有这们特征的三个汉字为_____.3.正方形是轴对称图形,它的对称轴有_______条.4.如果一个图形沿一条直线折叠,直线两旁的部分能够________,这个图形就叫做______________,这条直线就是它的________,这时,我们也说这个图形关于这条直线 对称. 5.小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是 .6.点A (-2,1)关于y 轴的对称点的坐标是____,点x 的对称点的坐标是____.7.如图,△COB 与△AOB 关于x 轴对称,点A 的坐标为(则点C 的坐标为____.8.如图所示,写出长方形ABCD 三个顶点的坐标:A B :___,C:____.9.如图,P 是正△ABC 内的一点,若将△P AB 绕点A 到△P ′AC ,则∠P AP ′的度数为________.10.如图,阴影部分组成的图案既是关于x 轴成轴对称的图形又是关于坐标原点O 成中心对称的图形.若点A 的坐标是(1,3),则点M 和点N 的坐标分别是________.P P C B A (第9题) (第5题) (第1题)二、选择题(每题3分,共24分)11.下列图形:①线段;②角;③平行四边形;④三角形;⑤圆,其中一定是轴对称图形的共有( )A .2个B .3个C .4个D .5个12.下列图形中轴对称图形有()A .4个B .3个C .2个D .1个13.如图所示,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超,使超市到三个小区的距离相等,则超市应建在( )A .在AC 、BC 两边高线的交点处B .在AC 、BC 两边中线的交点处 C .在AC 、BC 两边垂直平分线的交点处D .在A 、B 两内角平分线的交点处14.在刚刚买来的一件衣服上,有一个标签,上面有如下几个图形,如图所示分别表示这件衣服可干洗,不可漂白,应低温熨烫或悬挂凉干,它们其中是轴对称图形的是( )15.如图,在四个图形中,对称轴条数最多的一个图形是( )A .B .C .D .16.在直角坐标系中,点P (2,1)关于x 轴对称点的坐标是( )A .(2,1)B .(-2,1)C .(2,-1)D (-2,-1)17.将一圆形纸片对折后再对折,得到如图所示的图形,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )18.王明是班上公认的“小马虎”在做作业时,将点A 的纵横坐标次序颠倒,写成A (a ,b ),小华也不细心,将点B 的坐标写成关于y 轴的对称点的坐标,写成B (-b ,-a ),则A 、B 两点原来的位置关系是( )A .关于y 轴对称B .关于x 轴对称C .A 和B 重合D .以上都不对CB A (第13题) A . B .C .D .(第17题)三、解答题(共46分)19.(7分)如图所示,下面两个图形关于某条直线对称,画出其对称轴,求出z y x ,,的值.20.(7分)如图是由两个等边三角形组成的图形,它是轴对称图形吗?如果不是,请移动其中的一个三角形,使它与另一个三角形一起组成轴对称图形,有几种移法?(至少画四种,相同类型的算一种).21.(8分)你能将方格中的图案做如下变换吗?相信你一定能行的!(1)关于x 轴对称;(2)关于y 轴对称x 6270︒120︒100︒z y H G F E D C x B A22.(8分)AC 、AB 是两条笔直的交叉公路,M 、N 是两个实习点的同学参加劳动,现欲建一个茶水供应中,使得此茶水供应站到公路两边的距离相等,且离M 、N 两个实习点的距离也相等,试问:此茶水供应站应建在何处?23.(8分)已知A (2m +n ,2)、B (1,n -m ),当m ,n 分别为何值时(1)A 、B 关于x 轴对称;(2)A 、B 关于y 轴对称.24.(8分)开放与探究(1)观察图中①-④中阴影部分所构成的图案,请写出这四个图案都具有的两个特征;(2)借助图中⑤的网格,请你设计一个新图案,使该图案同时具有你解答(1)中所写的两个共同的特征.B⑤④③①参考答案一、填空题1.轴对称图形,5 2.答案不唯一如:“美、善、口、工、士”等 3.4 4.互相重合,轴对称图形,对称轴,成轴 5.1021∶ 6.(2,1),(-2,-1) 7.(2,-3) 8.(-2,1.5)、(-2,-1.5)、(2,-1.5) 9.60° 10.)(),,(3-1.3-1-N M二、选择题11.B 12.B 13.C 14.B 15.B 16.C 17.C 18.B三、解答题19.对称轴为MN ,2,6,70==︒=z y x 20.不是,答案不唯一 21.略 22.图略,画法:(1)画出∠CAB 的角平分线AE ;(2)连结MN ,作MN 的垂直平分线与AE 交于P ;(3)由点P 即为所求 23.(1)m=1,n=-1,点A 、B 关于x 轴对称;(2)m=-1,n=1,点A 、B 关于y 轴对称. 24.答案不唯一:如(1)都是轴对称图形;阴影部分面积等于4个小正方形面积之和;(2)答案不唯一.如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。
13.1+轴对称同步练习2024—2025学年人教版数学八年级上册
13.1 轴对称同步练习2024-2025学年八年级上册数学人教版第 1 课时轴对称1.剪纸是我国优秀的传统文化.下列剪纸图案中,是轴对称图形的为 ( )2. 下列图形中,对称轴的条数最多的是 ( )3.如图,△ABC与△A'B'C'关于直线l 对称,连接AA',BB',CC',其中 BB'分别交AC,A'C'于点 D,D'.有下列结论:① AA'∥BB';②∠ADB=∠A'D'B';③ 直线 l 垂直平分AA';④ 直线AB 与A'B'的交点不一定在直线l上.其中,正确的是 ( )A. ①②③B. ②③④C. ①②④D. ①③④4. 如图,台球桌相邻两边互相垂直,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中(球反弹前、后的运动路径与桌边的夹角相等),击打白球时,必须保证∠1的度数为5. 如图,六边形 ABCDEF 是轴对称图形,CF所在的直线是它的对称轴.如果∠AFC+∠DCF = 150°,那么∠AFE +∠BCD =6. 如图,在四边形ABCD 中,AB=AD,点B 关于 AC 的对称点 B'恰好落在 CD 上. 若∠BAD=100°,则∠ACB 的度数为 ( )A. 40°B. 45°C. 60°D. 80°7. 如图,直线AB,CD 相交于点O,P 为这两条直线外一点,连接OP,点P 关于直线AB,CD 的对称点分别是P₁,P₂.若OP=4,则点P₁,P₂之间的距离可能是 ( )A. 0B. 7C. 9D. 108. 如图,弹性小球从点P 出发,沿图中所示的方向运动,每当小球碰到长方形的边时反弹,反弹时反射角等于入射角.记小球第1次碰到长方形的边时的点为Q,第2次碰到长方形的边时的点为M,第3次碰到长方形的边时的点为N……以此类推,第2024次碰到长方形的边时的点为图中的 ( )A. PB. QC. MD. N9. 在△ABC 中,将∠B,∠C 按如图所示的方式折叠,使点 B,C均落在边 BC 上的点G 处,线段MN,EF 为折痕. 若∠A = 80°, 则∠MGE 的度数为 .10. 如图,在△ABC 中,∠C=90°,点M,N 分别在边AB,BC 上,且点A,B关于直线 MN 对称,连接AN.(1) 若∠CAN=α,则∠B 与α之间的数量关系为 .(2) 若BC=43AC,AB=53AC,且△ABC的周长为24,求 AC 的长.11. 如图,在△ABC 中,∠BAC=90°,点A 关于BC 的对称点为A',点B关于AC 的对称点为B',点C 关于AB 的对称点为C',连接AB',A'C,AC',B'C,A'B',B'C',A'C'.若S△ABC =1,求S△A'B'C的值.第2课时线段的垂直平分线的性质1. 如图,在△ABC中,分别以点 A,B 为圆心,大于1AB 的长为半径画弧,两弧相交于点 E,F,连接2AE,BE,作直线 EF 交 AB 于点 M,连接CM,则下列判断中,不正确的是 ( )A. AB=2CMB. EF⊥ABC. AE=BED. AM=BM2.如图,在△ABC 中,AB 的垂直平分线DE 交AC 于点 D,垂足为E,连接BD.如果△DBC 的周长为 10 cm,BC=4 cm,那么 AC 的长为 ( )A. 5cmB. 6cmC. 7 cmD. 9cm3.如图,在△ABC中,AB=AC,D 是 BC 的中点,AC 的垂直平分线分别交AC,AD,AB于点E,O,F,连接OC,OB,则图中全等三角形的对数是 .4.如图,在Rt△ABC 中,∠ABC=90°,ED 是 AC 的垂直平分线,交 AC 于点D,交BC 于点E,∠BAE=1 0°,则∠C 的度数为 .5. 如图,在Rt△ABC 中,∠C=90°,AB =2AC,AD 平分∠BAC,交 BC 于点D.求证:点 D 在线段AB 的垂直平分线上.6. 如图,在△ABC 中,AB,AC 的垂直平分线l₁,l₂相交于点 O,连接OB,OC.若∠BAC=78°,则∠OBC 的度数为 ( )A. 6°B. 8°C. 12°D. 16°7. 如图,线段AB,DE 的垂直平分线交于点C,且∠ABC=∠EDC=72°,∠AEB=92°,则∠EBD的度数为 ( )A. 168°B. 158°C. 128°D. 118°8. 如图,在△ABC中,BC 的垂直平分线DE 交 AC 于点 D,交 BC 于点E,连接 BD.若AD=3,AC=5,设AB 的长为m,则m的取值范围是 .9. 如图,在△ABC中,E 是边 BC上的一点,连接AE,BD 垂直平分线段AE,垂足为F,交 AC 于点D,连接DE.(1) 若AB = 6,△DEC 的周长为 7,求△ABC 的周长.(2) 若∠ABD=15°,∠C=45°,求∠CED 的度数.10. 如图,∠BAC 的平分线与BC 的垂直平分线 DG 相交于点 D,连接BD,过点 D 作DE⊥AB 于点E,DF⊥AC 交AC 的延长线于点 F.(1) 求证:BE=CF.(2)若AB=15,AC=9,求 BE 的长.11.如图,在△ABC中,DM,EN 分别垂直平分AC,BC,交AB 于M,N两点, DM 与 EN 的延长线相交于点 F,连接CM,CN.(1) 若∠ACB=120°,则∠MCN 的度数为(2) 若∠MCN=α,则∠MFN 的度数为 (用含α的式子表示).(3) 连接 FA,FB,FC,若△CMN 的周长为6cm,△FAB 的周长为 14 cm,求 FC的长.。
数学:《轴对称》同步练习1(人教版八年级上)
数学:《轴对称》同步练习1(人教版八年级上)一、试试你的身手(每小题3分,共30分)1.在圆、正方形、等腰三角形、线段中,对称轴最多的是______. 2.设∠a 是等腰三角形的一个底角,则其度数x 的取值范围应是______. 3.在平面直角坐标系中,关于x 轴对称的点的横坐标______,纵坐标______. 4.如图1,线段AB 和线段A B ''关于直线MN 对称,则AA '⊥______,OB =______.5.如图2,平面镜A 与B 之间夹角为110°,光线经平面镜A 反射到平面镜B 上,再反射出去,若∠1=∠2,则∠1的度数为______.6.如图3,已知AC CD DA CB DE ====,则此图中共有 ______ 个等腰三角形. 7.AD 为△ABC 的高,AB AC =,△ABC 周长为20cm ,△ACD 周长为14cm ,则AD =______.8.如图4,在△ABC 中,∠C =90°,AB 的垂直平分线交BC 于D ,∠CAD ∶∠DBA =1∶2,则∠B 的度数为______.9.△ABC 中,AB AC =,∠BAC =120°,D 为BC 上一点,DA AB ⊥,AD =24,则BC =______. 10.如图5,l 是四边形ABCD 的对称轴,如果AD ∥BC ,则下列结论: ①AB CD ∥;②AB BC =;③AB ⊥BC ;④AO OC =.其中正确的结论是______.(把你认为正确的结论的序号都填上) 二、相信你的选择(每小题3分,共24分)1.有些国家的国旗设计成了轴对称图形,观察下列代表国旗的图案中,你认为是轴对称图形的有( ).A .4个B .3个C .2个D .1个ABC DE图3ABCDM图4ABCD图5Ol加拿大澳大利亚瑞士乌拉圭2.等腰三角形一个外角等于110°,则底角为( ).A .70°或40°B .40°或55°C .55°或70°D .70°3.如图6所示,把一个正方形三次对折后沿虚线剪下,则所得的图形是( ).4.已知两条互不平行的线段AB ,A B ''关于直线l 对称,AB ,A B ''所在的直线交于点P ,下面四个结论:①AB A B ''=;②点P 在直线l 上;③若A A ',是对称点,则直线l 垂直平分线段AA ';④若B B ',是对称点,则PB PB '=,其中正确的是( ).A .①③④B .①②C .③④D .①②③④5.如图7所示,光线L 照射到平面镜Ⅰ上,然后在平面镜Ⅰ、 Ⅱ之间来回反射,已知=55=75αβ︒︒,,∠∠则∠β为( ).A .50°B .55°C .60°D .65°6.如图8,△ABC 中,AB =AC ,点D 在AC 边上,且BD =BC =AD ,则∠A 的度数为( ). A .30° B .36° C .60° D .65°7.三角形一边上的高与中线相互重合,且等于该边的一半,则这个三角形是( ). A .任意三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形上折右折右下方折 沿虚线剪开图6A .B .C .D .A BCD 图88.如图9,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D C '',的位置,若65EFB =︒∠,则AED ∠等于( ).A .50°B .55°C .60°D .65° 三、挑战你的技能(本大题共66分)1.(本题9分)如图,由小正方形组成的L 形图中,请你用三种方法分别在下图中添画一个小正方形使它成为轴对称图形:2.(本题12分)两个全等的三角板,可以拼出各种不同的图形.下面各图已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成不同的轴对称图形(所画三角形可与原三角形有重叠部分).3.(本题10分)如图10,已知在△ABC 中,AB AC =,∠BAC =120°,AC 的垂直平分线EF 交AC 于点E ,交BC 于点F . 求证:BF =2CF .4.(本题10分)如图11,在平面直角坐标系中,若A 点的坐标是(-2,1),B 点的坐标是(4,3).在x方法一方法二方法三ABCE图10F轴上求一点C ,使得CA +CB 最短.5.(本题12分)正三角形给人以“稳如泰山”的美感,它具有独特的对称性,如图12,请你用三种不同的分割方法,将下列三个正三角形分别分割成四个等腰三角形.(在图中画出分割线,并标出必要的角的度数)6.(本题13分)如图13,在等边三角形ABC 中∠B ,∠C 的平分线相交于点O ,作BO CO ,的垂直平分线分别交BC 于点E 和点F .小明说:“E ,F 是BC 的三等分点.”你同意他的说法吗?请说明理由.参考答案:一、1.圆 2.0°<x <90° 3.相同,互为相反数 4.MN ,OB 5.35° 6.4 7.4cm 8.36° 9.72 10.①②④二、1.C 2.C 3.C 4.D 5.D 6.B 7.D 8. AAO Byx图11图12ACEF图13 BO三、1.2.分别为3.证明:连接AF .由题意,可知AF =CF ,∠B =∠C=30°.∴∠CAF=30°. ∴∠BAF =90°. ∴∠BFA =60°.∴22BF AFCF ==. 4.图略. 5.6.同意.连接OE ,OF .由题意可知:30BE OE CF OF OBC OCB ====︒,,∠∠. ∴∠BOE =∠OBC ,∠COF =∠OCB ,∠BOC =120°. ∴∠EOF =60°,∠OEF =60°,∠OFE =60°. ∴OE OF EF BE CF ====. ∴E ,F 是BC 的三等分点.方法一方法二方法三。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级人教新课标轴对
称同步练习
集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]
2010年中考数学复习同步练习(16)(轴对称)姓名1.下列图形中,不是轴对称图形的是
()
(A)平行四边形(B)正八边形(C)等腰梯形(D)等边三角形
2.下图的图形中是常见的安全标记,其中是轴对称图形的是()
(A)(B)(C)(D)3.下列图案中,不是轴对称图形的是
()
(A)(B)(C)(D)4.下面有4个汽车标志图案,其中是轴对称图形的是
()
(A)②③④(B)①③④(C)①②④(D)①②③
5.下列图形中,是轴对称图形的有
()
(A) 1个(B) 2个(C) 3个(D)
4个
6.下列各图中,是中心对称图形的是
()
(A) 1个(B) 2个(C) 3个(D)
4个
7.下列图案都是由字母“m”经过变形、组合而成的,其中是.轴对称图形的有()
(A) 1个(B) 2个(C) 3个(D)
4个
8.下列图形中,不是轴对称图形的是
()
(A)有两个角相等的三角形(B)有一个角为45°的直角三角形(C)一个角为30°,另一个内角为120°的三角形(D)有一个内角为30°的直角三角形
9.下列各图中,是轴对称的图形的有
()
(A) 1个(B) 2个(C) 3个(D)
4个
10.下面图形中是轴对称性的平面图形有
()
(A) 2个(B) 3个(C) 4个(D)
5个
11.下列交通标志中,是轴对称图形的有
()
(A) 2个(B) 3个(C) 4个(D)
5个
12.下列图形中,△ABC与△ABC关于直线MN成轴对称的是
()
A′
B′C′
C
N
A
B
M
C
N
A
B
M
A′
B′
C′
B′
N
C
M
A
B
A′
C′
B′
A′
C′
N
C
M
A
B
(A)(B)(C)(D)
13.下列图案中是轴对称图形的是:
()
(A)(B)(C)(D)14.下列图形中不是轴对称图形的是
()
(A)(B)(C)(D)15.如下图,直线L是一条河,P,Q是两个村庄。
欲在L上的某处修建一个水泵站M,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()
1.选择观察下列平面图形,其中是轴对称图形的有()
个
个个个
例1如图,四个图形中,对称轴条数最多的一个图形是(。