概率统计模拟试题14解答
概率论与数理统计模拟试题&参考答案
练习题一一、填空题。
1、已知P(A)=0.3,P(A+B)=0.6,则当A 、B 互不相容时,P(B)=___________,而当A 、B 相互独立时,P(B)=__________。
2、已知X ~),(p n B ,且8E X =, 4.8D X =, 则n =__________,X 的最可能值为__________。
3、若)(~λP X ,则=EX ,=DX 。
4、二维离散型随机变量),(ηξ的分布律为:则η的边缘分布_____________,ξ,η是否独立?_____________(填独立或不独立)。
5、设12(,,,)n X X X 是来自正态总体2(,)N μσ的一组简单随机样本,则样本均值11()n X X X n=++ 服从__________。
6、设一仓库中有10箱同种规格的产品,其中由甲、乙、丙三厂生产的分别为5箱、3箱、2箱,三厂产品的次品率依次为0.1, 0.2, 0.3, 从这10箱中任取一箱,再从这箱中任取一件,则这件产品为次品的概率为 。
7、设连续型随机变量ξ的概率密度为1 -1 ()1 010 x xx x x ϕ+≤<⎧⎪=-≤≤⎨⎪⎩其它,则E ξ=__________。
二、判断题。
1、服从二元正态分布的随机变量),(ηξ,它们独立的充要条件是ξ与η的相关系数0ρ=。
( )2、设12(,,,)n X X X 是来自正态总体2(,)N μσ的样本,S 是样本方差,则222(1)~()n Sn χσ-。
( )3、随机变量Y X ,相互独立必推出Y X ,不相关。
( )4、已知θ 是θ的无偏估计,则2θ 一定是2θ的无偏估计。
( )5、在5把钥匙中,有2把能打开门,现逐把试开,则第3把能打开门的概率为0.4。
( )三、选择题。
1、某元件寿命ξ服从参数为λ(11000λ-=小时)的指数分布。
3个这样的元件使用1000小时后,都没有损坏的概率是 (A )1e -; (B )3e -(C )31e --(D )13e -2、设X 的分布函数为)(x F ,则13+=X Y 的分布函数()y G 为(A )()3131-y F (B )()13+y F (C )1)(3+y F (D )⎪⎭⎫⎝⎛-3131y F3、设随机变量(3,4)N ξ ,且()()P c P c ξξ≤=>,则c 的取值为() (A )0; (B )3; (C )-3; (D )24、设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量32X Y -的方差是()。
高中数学高二专题14条件概率与全概率公式
专题14条件概率与全概率公式一、单选题1.某地的中学生中有60%的同学爱好滑冰,50%的同学爱好滑雪,70%的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为( ) A .0.8B .0.6C .0.5D .0.42.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 A .0.8B .0.75C .0.6D .0.45二、填空题3.52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A 的概率为;已知第一次抽到的是A ,则第二次抽取A 的概率为4.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以12,A A 和3A 表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号). ①()25P B =; ②()15|11P B A =; ③事件B 与事件1A 相互独立; ④123,,A A A 是两两互斥的事件;⑤()P B 的值不能确定,因为它与123,,A A A 中哪一个发生有关三、解答题5.在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表); (2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).四、单选题6.现随机安排甲、乙等4位同学参加校运会跳高、跳远、投铅球比赛,要求每位同学参加一项比赛,每项比赛至少一位同学参加,事件A =“甲参加跳高比赛”,事件B =“乙参加跳高比赛”,事件C =“乙参加跳远比赛”,则( ) A .事件A 与B 相互独立 B .事件A 与C 为互斥事件 C .()512P C A =D .()19P B A =7.甲罐中有5个红球,2个白球和3个黑球, 乙罐中有4个红球,3个白球和3个黑球(球除颜色外,大小质地均相同).先从甲罐中随机取出一球放入乙罐,分别以12,A A 和3A 表示由甲罐中取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐中取出的球是红球的事件.下列结论正确的个数是( ) ①事件1A 与2A 相互独立;②1A ,2A ,3A 是两两互斥的事件; ③24(|)11P B A =;④()922P B =; ⑤14(|)9P A B = A .5B .4C .3D .2五、多选题8.设A ,B 是一个随机试验中的两个事件,且()13P A =,()34P B =,()12P A B +=,则( ) A .()16P AB =B .()34P B A =C .()()P B P B A =D .()712P AB AB +=9.随着春节的临近,小王和小张等4位同学准备互相送祝福.他们每人写了一个祝福的贺卡,这四张贺卡收齐后让每人从中随机抽取一张作为收到的新春祝福,则( ) A .小王和小张恰好互换了贺卡的概率为16B .已知小王抽到的是小张写的贺卡的条件下,小张抽到小王写的贺卡的概率为13C .恰有一个人抽到自己写的贺卡的概率为13D .每个人抽到的贺卡都不是自己写的概率为5810.有3台车床加工同一型号的零件,第1台加工的次品率为8%,第2台加工的次品率为3%,第3台加工的次品率为2%,加工出来的零件混放在一起.已知第1,2,3台车床加工的零件数分别占总数的10%,40%,50%,从混放的零件中任取一个零件,则下列结论正确的是( )A .该零件是第1台车床加工出来的次品的概率为0.08B .该零件是次品的概率为0.03C .如果该零件是第3台车床加工出来的,那么它不是次品的概率为0.98D .如果该零件是次品,那么它不是第3台车床加工出来的概率为13六、解答题11.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是…,2t X -,1t X -,t X ,1t X +,…,那么1t X +时刻的状态的条件概率仅依赖前一状态t X ,即()()1211,,,t t t t t t P X X X X P X X +--+⋅⋅⋅=. 现实生活中也存在着许多马尔科夫链,例如著名的赌徒模型.假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为50%,且每局赌赢可以赢得1元,每一局赌徒赌输的概率为50%,且赌输就要输掉1元.赌徒会一直玩下去,直到遇到如下两种情况才会结束赌博游戏:一种是手中赌金为0元,即赌徒输光;一种是赌金达到预期的B 元,赌徒停止赌博.记赌徒的本金为()*N ,A A A B ∈<,赌博过程如下图的数轴所示.当赌徒手中有n 元(0n B ≤≤,N n ∈)时,最终输光的概率为........()P n ,请回答下列问题: (1)请直接写出()0P 与()P B 的数值.(2)证明(){}P n 是一个等差数列,并写出公差d .(3)当100A =时,分别计算200B =,1000B =时,()P A 的数值,并结合实际,解释当B →∞时,()P A 的统计含义.12.某游戏中的角色“突击者”的攻击有一段冷却时间(即发动一次攻击后需经过一段时间才能再次发动攻击).其拥有两个技能,技能一是每次发动攻击后有12的概率使自己的下一次攻击立即冷却完毕并直接发动,该技能可以连续触发,从而可能连续多次跳过冷却时间持续发动攻击;技能二是每次发动攻击时有12的概率使得本次攻击以及接下来的攻击的伤害全部变为原来的2倍,但是多次触发时效果不可叠加(相当于多次触发技能二时仅得到第一次触发带来的2倍伤害加成).每次攻击发动时先判定技能二是否触发,再判定技能一是否触发.发动一次攻击并连续多次触发技能一而带来的连续攻击称为一轮攻击,造成的总伤害称为一轮攻击的伤害.假设“突击者”单次攻击的伤害为1,技能一和技能二的各次触发均彼此独立: (1)当“突击者”发动一轮攻击时,记事件A 为“技能一和技能二的触发次数之和为2”,事件B 为“技能一和技能二各触发1次”,求条件概率()P B A(2)设n是正整数,“突击者”一轮攻击造成的伤害为2n的概率记为n P,求n P.13.假设有两个密闭的盒子,第一个盒子里装有3个白球2个红球,第二个盒子里装有2个白球4个红球,这些小球除颜色外完全相同.(1)每次从第一个盒子里随机取出一个球,取出的球不再放回,经过两次取球,求取出的两球中有红球的条件下,第二次取出的是红球的概率;(2)若先从第一个盒子里随机取出一个球放入第二个盒子中,摇匀后,再从第二个盒子里随机取出一个球,求从第二个盒子里取出的球是红球的概率.14.为丰富学生的课外活动,学校羽毛球社团举行羽毛球团体赛,赛制采取5局3胜制,每局都是单打模式,每队有5名队员,比赛中每个队员至多上场一次且上场顺序是随机的,每局比赛结果互不影响,经过小组赛后,最终甲乙两队进入最后的决赛,根据前期比赛的数据统计,甲队明星队员M对乙队的每名队员的胜率均为34,甲队其余4名队员对乙队每名队员的胜率均为12.(注:比赛结果没有平局)(1)求甲队明星队员M在前四局比赛中不出场的前提下,甲乙两队比赛4局,甲队最终获胜的概率;(2)求甲乙两队比赛3局,甲队获得最终胜利的概率;(3)若已知甲乙两队比赛3局,甲队获得最终胜利,求甲队明星队员M上场的概率.15.人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为12(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.①求选到的袋子为甲袋的概率,②将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案;方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.参考答案:1.A【分析】先算出同时爱好两项的概率,利用条件概率的知识求解. 【详解】同时爱好两项的概率为0.50.60.70.4+-=, 记“该同学爱好滑雪”为事件A ,记“该同学爱好滑冰”为事件B , 则()0.5,()0.4P A P AB ==, 所以()0.4()0.8()0.5P AB P BA P A ===∣. 故选:A . 2.A【详解】试题分析:记A =“一天的空气质量为优良”,B =“第二天空气质量也为优良”,由题意可知()()0.75,0.6P A P AB ==,所以()()()4|5P AB P B A P A ==,故选A. 考点:条件概率. 3.1221117【分析】由题意结合概率的乘法公式可得两次都抽到A 的概率,再由条件概率的公式即可求得在第一次抽到A 的条件下,第二次抽到A 的概率.【详解】由题意,设第一次抽到A 的事件为B ,第二次抽到A 的事件为C , 则()()()()1431411221,(),|1525122152131713BC P BC P B P C B P B P =⨯======. 故答案为:1221;117. 4.②④【分析】根据互斥事件的定义即可判断④;根据条件概率的计算公式分别得出123,,A A A 事件发生的条件下B 事件发生的概率,即可判断②;然后由()()()123()P B P A B P A B P A B =++,判断①和⑤;再比较11()()()P A B P A P B ,的大小即可判断③.【详解】由题意可知事件123,,A A A 不可能同时发生,则123,,A A A 是两两互斥的事件,则④正确;由题意得()()()123544|,|,|111111P B A P B A P B A ===,故②正确; ()()()()()()()()()123133122()|||P B P A B P A B P A B P A P B A P A P B A P A P B A =++=++552434910111011101122=⨯+⨯+⨯=,①⑤错; 因为11559()()()104492222P A B P A P B ==⨯=,,所以事件B 与事件A 1不独立,③错;综上选②④故答案为:②④【点睛】本题主要考查了判断互斥事件,计算条件概率以及事件的独立性,属于中档题.5.(1)47.9岁; (2)0.89; (3)0.0014.【分析】(1)根据平均值等于各矩形的面积乘以对应区间的中点值的和即可求出; (2)设A ={一人患这种疾病的年龄在区间[20,70)},根据对立事件的概率公式()1()P A P A =-即可解出;(3)根据条件概率公式即可求出.【详解】(1)平均年龄(50.001150.002250.012350.017450.023x =⨯+⨯+⨯+⨯+⨯ 550.020650.017750.006850.002)1047.9+⨯+⨯+⨯+⨯⨯=(岁). (2)设A ={一人患这种疾病的年龄在区间[20,70)},所以()1()1(0.0010.0020.0060.002)1010.110.89P A P A =-=-+++⨯=-=.(3)设B =“任选一人年龄位于区间[40,50)”,C =“从该地区中任选一人患这种疾病”, 则由已知得:()()16%0.16,0.1%0.001,(|)0.023100.23P B P C P B C =====⨯=,则由条件概率公式可得从该地区中任选一人,若此人的年龄位于区间[40,50),此人患这种疾病的概率为()(|)()()0.0010.23(|)0.00143750.0014()0.16P BC P C P B C C B P B B P P ⨯====≈.6.C【分析】根据条件求出(),(),(),()P A P B P AB P AC ,由互斥事件的定义、相互独立事件的判定和条件概率公式进行逐一判断即可【详解】对于A ,每项比赛至少一位同学参加,则有2113421322C C C A 36A ⋅=不同的安排方法, 事件A =“甲参加跳高比赛”,若跳高比赛安排2人,则有33A 6=种方法;若跳高比赛安排1人,则有212312C C A 6=种方法,所以安排甲参加跳高比赛的不同安排方法共有6612+=种,则121()363P A ==,同理121()363P B ==, 若安排甲、乙同时参加跳高比赛,则跳高比赛安排2人为甲和乙,跳远、投铅球比赛各安排1人,有22A 2=种不同的安排方法,所以21()3618P AB ==, 因为()()()P AB P A P B ≠,事件A 与B 不相互独立故A 错误;对于B ,在一次试验中,不可能同时发生的两个事件称为互斥事件,事件A 与C 可以同时发生,故事件A 与C 不是互斥事件,故B 错误;对于C ,在安排甲参加跳高比赛的同时安排乙参加跳远比赛的不同安排方法有1132C +C 5=种,所以5()36P AC =,所以()5()5361()123P AC P C A P A ===,故C 正确; 对于D ,()1()1181()63P AB P B A P A ===,故D 错误. 故选:C 7.C【分析】先判断出1A ,2A ,3A 是两两互斥的事件,且不满足()()()1212P A A P A P A =⋅,①错误,②正确,用条件概率求解③⑤,用全概率概率求解④,得出结论. 【详解】显然,1A ,2A ,3A 是两两互斥的事件,且 ()1515232P A ==++,()2215235P A ==++,而()()()12120P A A P A P A =≠⋅,①错误,②正确;()2215235P A ==++,()214451155P A B =⨯=,所以24(|)11P B A =,③正确;()()()()()()()1122331541349211115101122P B P B A P A P B A P A P B A P A =⋅+⋅+⋅=⨯+⨯+⨯=④正确;()()()111552119922P A B P A B P B ⨯===,⑤错误,综上:结论正确个数为3.故选:C 8.BCD【分析】利用和事件的概率公式和条件概率公式可得. 【详解】对于A :()()()()P A B P A P B P AB +=+-,()111234P AB =+-, 所以()112P AB =,故A 错误; 对于B :()()()P AB P AB P A +=Q ,()11123P AB ∴+=,∴()14P AB =, ()()()134143P AB P B A P A ===,故B 正确;对于C :1()112()1()43P AB P B A P A ===,()14P B =,∴()()P B A P B =,故C 正确. 对于D :()()()()112P AB AB P AB P AB P AB +=+=+, ()()()P B P AB P AB =+Q ,∴()3144P AB =+,∴()12P AB =,∴()11712212P AB AB +=+=,所以D 正确. 故选:BCD. 9.BC【分析】计算出四个人每人从中随机抽取一张共有111432C C C 种抽法,根据古典概型的概率公式以及条件概率的概率公式计算各选项,可得答案.【详解】对于A,四个人每人从中随机抽取一张共有111432C C C 种抽法, 其中小王和小张恰好互换了贺卡的抽法有12C 种,故小王和小张恰好互换了贺卡的概率为12111432C 1C C C 12= ,A 错误; 对于B,设小王抽到的是小张写的贺卡为事件A , 则1132111432C C 1()C C C 4P A ==,小张抽到小王写的贺卡为事件B ,则已知小王抽到的是小张写的贺卡的条件下,小张抽到小王写的贺卡的概率为1()112(|)1()34P AB P B A P A === ,B 正确; 对于C, 恰有一个人抽到自己写的贺卡的抽法有14C 2⨯种,故恰有一个人抽到自己写的贺卡的概率为14111432C 21C C C 3⨯= ,C 正确;对于D, 每个人抽到的贺卡都不是自己写的抽法共有13C (12)9+=种,故每个人抽到的贺卡都不是自己写的概率为13111432C (12)93C C C 248+==,D 错误, 故选:BC 10.BC【分析】利用乘法公式、互斥事件加法求概率即可判断A ,B ;利用条件概率公式、对立事件即可判断C ,D .【详解】记事件A :车床加工的零件为次品,记事件i B :第i 台车床加工的零件,则1(|)8%P A B =,2(|)3%P A B =,3(|)2%P A B =,1()10%P B =,2()40%P B =,3()50%P B =, 对于A ,任取一个零件是第1台生产出来的次品概率为111()(|)()8%10%0.008P AB P A B P B ==⨯=,故A 错误;对于B ,任取一个零件是次品的概率为123()()()()8%10%3%40%2%50%0.03P A P AB P AB P AB =++=⨯+⨯+⨯=,故B 正确;对于C ,如果该零件是第3台车床加工出来的,那么它不是次品的概率为33()1()12%0.98P A B P A B =-=-=,故C 正确;对于D ,如果该零件是次品,那么它不是第3台车床加工出来的概率为()()()()3333(|)2%50%21(|)1110.033P AB P A B P B P B A P A P A ⨯-=-=-=-=,故D 错误.故选:BC .11.(1)()01P =,()0P B = (2)证明见解析;1d B=-(3)200B =时,()50%P A =,当1000B =时,()90%P A =,统计含义见解析【分析】(1)明确0n =和n B =的含义,即可得答案; (2)由全概率公式可得11()(1)(1)22P n P n P n =-++,整理为()()()()11P n P n P n P n --=+-,即可证明结论;(3)由(2)结论可得()1AP A B=-,即可求得200B =,1000B =时,()P A 的数值,结合概率的变化趋势,即可得统计含义.【详解】(1)当0n =时,赌徒已经输光了,因此()01P =.当n B =时,赌徒到了终止赌博的条件,不再赌了,因此输光的概率()0P B =. (2)记M :赌徒有n 元最后输光的事件,N :赌徒有n 元且下一场赢的事件, ()()(|)()(|)P M P N P M N P N P M N =+,即11()(1)(1)22P n P n P n =-++, 所以()()()()11P n P n P n P n --=+-, 所以(){}P n 是一个等差数列,设()()1P n P n d --=,则()()()()12,10P n P n d P P d ---=-=L ,, 累加得()(0)P n P nd -=,故()(0)P B P Bd -=,得1d B=-, (3)100A =,由()()0P n P nd -=得()()0P A P Ad -=,即()1A P A B=-, 当200B =时,()50%P A =, 当1000B =时,()90%P A =,当B →∞时,()1P A →,因此可知久赌无赢家, 即便是一个这样看似公平的游戏,只要赌徒一直玩下去就会100%的概率输光.【点睛】关键点睛:此题很新颖,题目的背景设置的虽然较为陌生复杂,但解答并不困难,该题将概率和数列知识综合到了一起,解答的关键是要弄明白题目的含义,即审清楚题意,明确11()(1)(1)22P n P n P n =-++,即可求解, 12.(1)89;(2)141118227n n ++⎡⎤⎛⎫⎛⎫-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.【分析】(1)分析试验过程,分别求出()P A 和()P AB ,利用条件概率的公式直接计算; (2)分析 “突击者”一轮攻击造成的伤害为2n ,分为:i.进行2n 次,均不触发技能二;前面的21n -次触发技能一,最后一次不触发技能一;ii.第一次触发技能二,然后的n 1-次触发技能一,第n 次未触发技能一;iii. 前面的()2,1,2,1k k n =-次未触发技能二,然后接着的第21k +次触发技能二;前面的1n k +-触发技能一,第n k +次未触发技能一. 分别求概率.即可求出n P .【详解】(1)两次攻击,分成下列情况:i.第一次攻击,技能一和技能二均触发,第二次攻击,技能一和技能二均未触发;ii .第一次攻击,技能一触发,技能二未触发,第二次攻击,技能二触发,技能一未触发;iii. 第一、二次攻击,技能一触发,技能二未触发,第三次攻击,技能一、二未触发;所以()111111*********2222222222222264P A =⨯⨯⨯+⨯⨯⨯+⨯⨯⨯⨯⨯=. ()111111111222222228P AB =⨯⨯⨯+⨯⨯⨯=.所以()1889964P B A ==.(2)“突击者”一轮攻击造成的伤害为2n ,分为:i. 记事件D :进行2n 次,均不触发技能二;前面的21n -次触发技能一,最后一次不触发技能一.其概率为:()221411112222n n nP D -⎛⎫⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ii. 记事件E :第一次触发技能二,然后的n 1-次触发技能一,第n 次未触发技能一.其概率为:()1111112222n n P E -+⎛⎫⎛⎫=⨯⨯= ⎪⎪⎝⎭⎝⎭iii. 记事件k F :前面的()2,1,2,1k k n =-次未触发技能二,然后接着的第21k +次触发技能二;前面的1n k +-触发技能一,第n k +次未触发技能一. 其概率为: ()21311111122222kn k n k k P F +-++⎛⎫⎛⎫⎛⎫=⨯⨯⨯= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,则事件121,n F F F -L 彼此互斥,记121n F F F F -=+++L , 所以()()()()121n F F F P P P F P -=++L ()31321311111222n n n n +++⨯++-+⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L()131131311112222112n n n n ++-++⎛⎫⎛⎫⎛⎫-⨯ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭=- ⎪⎝⎭⎛⎫- ⎪⎝⎭141111822172n n n +++⎡⎤⎛⎫⎛⎫-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎛⎫⎣⎦=- ⎪⎝⎭. 所以()()()n F P P D P E P =++141411118221112272n n n n n ++++⎡⎤⎛⎫⎛⎫-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎣⎦=++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭141411822127n n n++⎡⎤⎛⎫⎛⎫-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎛⎫⎣⎦=+⎪⎝⎭1481317272n n+⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭【点睛】关键点睛:这道题关键的地方是题意的理解,文字较多,要明白一轮攻击中含多次攻击,每次攻击判断技能的触发,在第二问中需要分多种情况进行讨论,然后用互斥事件的概率计算公式进行求解 13.(1)47(2)2235【分析】(1)利用对立事件的概率公式与条件概率公式,结合古典概型求解即可; (2)利用全概率公式,结合古典概型求解即可.【详解】(1)依题意,记事件i A 表示第i 次从第一个盒子里取出红球,记事件B 表示两次取球中有红球,则()()3237111541010P B P B =-=-⨯=-=,()()()()()()1212222132454547710P A A P A A P A B P A B P B P B ⨯⨯++⨯⨯====. (2)记事件1C 表示从第一个盒子里取出红球,记事件2C 表示从第一个盒子里取出白球,记事件D 表示从第二个盒子里取出红球,则()()()()()1122253422575735P D P C P D C P C P D C =+=⨯+⨯=. 14.(1)316(2)1380(3)913【分析】(1)事件B =“甲乙两队比赛4局甲队最终获胜”,事件j A =“甲队第j 局获胜”,利用互斥事件的概率求法求概率即可;(2)讨论M 上场或不上场两种情况,应用全概率公式求甲队获得最终胜利的概率; (3)利用贝叶斯公式求甲队明星队员M 上场的概率. 【详解】(1)事件B =“甲乙两队比赛4局甲队最终获胜”, 事件jA =“甲队第j 局获胜”,其中1,2,3,4,j =j A 相互独立.又甲队明星队员M 前四局不出场,故()1,1,2,3,42j P A j ==,123412341234B A A A A A A A A A A A A =++,所以()41313C 216P B ⎛⎫== ⎪⎝⎭.(2)设C 为甲3局获得最终胜利,D 为前3局甲队明星队员M 上场比赛, 由全概率公式知,()()()()()||P C P C D P D P C D P D =⋅+⋅,因为每名队员上场顺序随机,故()234335C A 3A 5PD ==,()321,55P D =-= ()()2313311|,|241628P C D P C D ⎛⎫⎛⎫⎛⎫=⨯=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()3312131658580P C =⨯+⨯=. (3)由(2),()()()()()()33|9165|131380P CD P C D P D P D C P C P C ⨯⋅====. 15.(1)1120(2)①19;②方案二中取到红球的概率更大.【分析】(1)根据全概率公式,解决抽签问题; (2)利用条件概率公式计算,根据数据下结论.【详解】(1)设试验一次,“取到甲袋”为事件1A ,“取到乙袋”为事件2A ,“试验结果为红球”为事件1B ,“试验结果为白球”为事件2B ,(1)()()()()()111121219121121021020P B P A P B A P A P B A =+=⨯+⨯=. 所以试验一次结果为红球的概率为1120. (2)①因为1B ,2B 是对立事件,()()219120P B P B =-=, 所以()()()()()()2111212221111029920P B A P A P A B P A B P B P B ⨯====, 所以选到的袋子为甲袋的概率为19.②由①得()()2212181199P A B P A B =-=-=, 所以方案一中取到红球的概率为:()()()()1121122121982591091018P P A B P B A P A B P B A =+=⨯+⨯=, 方案二中取到红球的概率为:()()()()22211121289123791091045P P A B P B A P A B P B A =+=⨯+⨯=,因为3754518>,所以方案二中取到红球的概率更大.。
概率论与数理统计模拟试卷和答案
北京语言大学网络教育学院《概率论与数理统计》模拟试卷一注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。
请监考老师负责监督。
2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。
3.本试卷满分100分,答题时间为90分钟。
4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。
一、【单项选择题】(本大题共5小题,每小题3分,共15分) 在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。
1、设A,B 是两个互不相容的事件,P (A )>0 ,P (B )>0,则( )一定成立。
[A] P (A)=1-P (B ) [B] P (A │B)=0 [C] P (A │B )=1[D] P (A B )=02、设A,B 是两个事件,P (A )>0 , P (B )>0 ,当下面条件( )成立时,A 与B 一定相互独立。
[A] P(A B )=P (A )P (B ) [B] P (AB )=P (A )P (B ) [C] P (A │B )=P (B )[D] P (A │B )=P(A )3、若A 、B 相互独立,则下列式子成立的为( )。
[A] )()()(B P A P B A P = [B] 0)(=AB P [C])()(A B P B A P = [D])()(B P B A P =4、下面的函数中,( )可以是离散型随机变量的概率函数。
[A] {}11(0,1,2)!e P k k k ξ-=== [B] {}12(1,2)!e P k k k ξ-=== [C] {}31(0,1,2)2k P k k ξ=== [D] {}41(1,2,3)2k P k k ξ===--- 5、设1()F x 与2()F x 分别为随机变量1X 与2X 的分布函数,为了使12()()()F x aF x bF x =-是某一随机变量的分布函数,则下列个组中应取( )。
2024届新高考数学大题精选30题:概率统计(精选30题)(解析版)
大题概率统计(精选30题)1(2024·浙江绍兴·二模)盒中有标记数字1,2的小球各2个.(1)若有放回地随机取出2个小球,求取出的2个小球上的数字不同的概率;(2)若不放回地依次随机取出4个小球,记相邻小球上的数字相同的对数为X(如1122,则X=2),求X的分布列及数学期望E X.【答案】(1)1 2;(2)分布列见解析,1.【分析】(1)根据组合知识求得取球的方法数,然后由概率公式计算概率;(2)确定X的所有可能取值为0,1,2,然后分别计算概率得分布列,再由期望公式计算出期望.【详解】(1)设事件A=“取出的2个小球上的数字不同”,则P A=C12C12+C12C12C14C14=12.(2)X的所有可能取值为0,1,2.①当相邻小球上的数字都不同时,如1212,有2×A22×A22种,则P X=0=2×A22×A22A44=13.②当相邻小球上的数字只有1对相同时,如1221,有2×A22×A22种,则P X=1=2×A22×A22A44=13.③当相邻小球上的数字有2对相同时,如1122,有2×A22×A22种,则P X=2=2×A22×A22A44=13.所以X的分布列为X012P 131313所以X的数学期望E X=0×13+1×13+2×13=1.2(2024·江苏扬州·模拟预测)甲、乙两人进行某棋类比赛,每局比赛时,若决出输赢则获胜方得2分,负方得0分;若平局则各得1分.已知甲在每局中获胜、平局、负的概率均为13,且各局比赛结果相互独立.(1)若比赛共进行了三局,求甲共得3分的概率;(2)规定比赛最多进行五局,若一方比另一方多得4分,则停止比赛,求比赛局数X的分布列与数学期望.【答案】(1)7 27;(2)分布列见解析,31781.【分析】(1)写出所有可能情形,利用互斥事件的概率和公式即可求出;(2)算出X为不同值时对应的概率并填写分布列,之后求出数学期望即可.【详解】(1)设“三局比赛后,甲得3分”为事件A,甲得3分包含以下情形:三局均为平局,三局中甲一胜一平一负,所以P A=133+A3313 3=727,故三局比赛甲得3分的概率为7 27 .(2)依题意知X的可能取值为2,3,4,5,P X=2=2×132=29,P X=3=2×C12133=427,P X=4=2×C12134+C1313 4=1081,P X=5=1-P X=2-P X=3-P X=4=1-29-427-1081=4181,故其分布列为:X2345P2942710814181期望E X=2×29+3×427+4×1081+5×4181=31781.3(2024·江苏南通·二模)某班组建了一支8人的篮球队,其中甲、乙、丙、丁四位同学入选,该班体育老师担任教练.(1)从甲、乙、丙、丁中任选两人担任队长和副队长,甲不担任队长,共有多少种选法?(2)某次传球基本功训练,体育老师与甲、乙、丙、丁进行传球训练,老师传给每位学生的概率都相等,每位学生传球给同学的概率也相等,学生传给老师的概率为17.传球从老师开始,记为第一次传球,前三次传球中,甲同学恰好有一次接到球且第三次传球后球回到老师手中的概率是多少?【答案】(1)9种(2)349.【分析】(1)法一,利用分步乘法计数原理集合组合数的计算,即可求得答案;法二,利用间接法,即用不考虑队长人选对甲的限制的所有选法,减去甲担任队长的选法,即可得答案;(2)考虑第一次传球,老师传给了甲还是传给乙、丙、丁中的任一位,继而确定第二次以及第三次传球后球回到老师手中的情况,结合乘法公式以及互斥事件的概率求法,即可求得答案.【详解】(1)法一,先选出队长,由于甲不担任队长,方法数为C13;再选出副队长,方法数也是C13,故共有方法数为C13×C13=9(种).方法二先不考虑队长人选对甲的限制,共有方法数为A 24=4×3=12(种);若甲任队长,方法数为C 13,故甲不担任队长的选法种数为12-3=9(种)答:从甲、乙、丙、丁中任选两人分别担任队长和副队长,甲不担任队长的选法共有9种.(2)①若第一次传球,老师传给了甲,其概率为14;第二次传球甲只能传给乙、丙、丁中的任一位同学,其概率为67;第三次传球,乙、丙、丁中的一位传球给老师,其概率为17,故这种传球方式,三次传球后球回到老师手中的概率为:14×67×17=398.②若第一次传球,老师传给乙、丙、丁中的任一位,其概率为34,第二次传球,乙、丙、丁中的一位传球给甲,其概率为27,第三次传球,甲将球传给老师,其概率为17,这种传球方式,三次传球后球回到老师手中的概率为34×27×17=398,所以,前三次传球中满足题意的概率为:398+398=349.答:前三次传球中,甲同学恰好有一次接到球且第三次传球后球回到老师手中的概率是349.4(2024·重庆·模拟预测)中国在第75届联合国大会上承诺,努力争取2060年之前实现碳中和(简称“双碳目标”).新能源电动汽车作为战略新兴产业,对于实现“双碳目标”具有重要的作用.赛力斯汽车有限公司为了调查客户对旗下AITO 问界M 7的满意程度,对所有的意向客户发起了满意度问卷调查,将打分在80分以上的客户称为“问界粉”.现将参与调查的客户打分(满分100分)进行了统计,得到如下的频率分布直方图:(1)估计本次调查客户打分的中位数(结果保留一位小数);(2)按是否为“问界粉”比例采用分层抽样的方法抽取10名客户前往重庆赛力斯两江智慧工厂参观,在10名参观的客户中随机抽取2名客户赠送价值2万元的购车抵用券.记获赠购车券的“问界粉”人数为ξ,求ξ的分布列和数学期望E ξ .【答案】(1)73.3分(2)分布列见解析;期望为35【分析】(1)根据频率分布直方图求解中位数的方法可得答案;(2)确定抽取的“问界粉”人数,再确定ξ的取值,求解分布列,利用期望公式求解期望.【详解】(1)由频率分布直方图可知:打分低于70分的客户所占比例为40%,打分低于80分的客户的所占比例为70%,所以本次调查客户打分的中位数在[70,80)内,由70+10×0.50-0.400.70-0.40=2203≈73.3,所以本次调查客户打分的中位数约为73.3分;(2)根据按比例的分层抽样:抽取的“问界粉”客户3人,“非问界粉”客户7人,则ξ的所有可能取值分别为0,1,2,其中:P (ξ=0)=C 03C 27C 210=715,P (ξ=1)=C 13C 17C 210=715,P (ξ=2)=C 23C 07C 210=115,所以ξ的分布列为:ξ012P715715115所以数学期望E (ξ)=0×715+1×715+2×115=35.5(2024·福建三明·三模)某校开设劳动教育课程,为了有效推动课程实施,学校开展劳动课程知识问答竞赛,现有家政、园艺、民族工艺三类问题海量题库,其中家政类占14,园艺类占14,民族工艺类占12.根据以往答题经验,选手甲答对家政类、园艺类、民族工艺类题目的概率分别为25,25,45,选手乙答对这三类题目的概率均为12.(1)求随机任选1题,甲答对的概率;(2)现进行甲、乙双人对抗赛,规则如下:两位选手进行三轮答题比赛,每轮只出1道题目,比赛时两位选手同时回答这道题,若一人答对且另一人答错,则答对者得1分,答错者得-1分,若两人都答对或都答错,则两人均得0分,累计得分为正者将获得奖品,且两位选手答对与否互不影响,每次答题的结果也互不影响,求甲获得奖品的概率.【答案】(1)35(2)4411000【分析】(1)利用全概率公式,即可求得答案;(2)求出乙答对的概率,设每一轮比赛中甲得分为X ,求出X 的每个值对应的概率,即可求得三轮比赛后,甲总得分为Y 的每个值相应的概率,即可得答案.【详解】(1)记随机任选1题为家政、园艺、民族工艺试题分别为事件A i i =1,2,3 ,记随机任选1题,甲答对为事件B ,则P A 1 =14,P A 2 =14,P A 3 =12,P B |A 1 =25,P B |A 2 =25,P B |A 3 =45,则P B =P A1 P B |A 1 +P A2 P B |A 2 +P A3 P B |A 3=14×25+14×25+12×45=35;(2)设乙答对记为事件C ,则P C =P A 1 P C |A 1 +P A 2 P C |A 2 +P A 3 P C |A 3 =14×12+14×12+12×12=12,设每一轮比赛中甲得分为X ,则P X =1 =P BC =P B P C =35×1-12 =310,P X =0 =P BC ∪BC =P BC +P CB=35×12+1-35 ×1-12 =12,P (X =-1)=P B C =1-35 ×12=15,三轮比赛后,设甲总得分为Y ,则P Y =3 =3103=271000,P Y =2 =C 23310 2×12=27200,P Y =1 =C 13×310×122+C 23×3102×15=2791000,所以甲最终获得奖品的概率为P =P Y =3 +P Y =2 +P Y =1 =271000+27200+2791000=4411000.6(2024·江苏南京·二模)某地5家超市春节期间的广告支出x (万元)与销售额y (万元)的数据如下:超市A B C D E 广告支出x 24568销售额y3040606070(1)从A ,B ,C ,D ,E 这5家超市中随机抽取3家,记销售额不少于60万元的超市个数为X ,求随机变量X 的分布列及期望E (X );(2)利用最小二乘法求y 关于x 的线性回归方程,并预测广告支出为10万元时的销售额.附:线性回归方程y =b x +a中斜率和截距的最小二乘估计公式分别为:b =ni =1x i y i -nx yni =1x 2i -nx2,a =y -b x .【答案】(1)X 的分布列见解析,期望E (X )=95(2)y=7x +17;预测广告费支出10万元时的销售额为87万元.【分析】(1)根据超几何分布的概率公式求解分布列,进而可求解期望,(2)利用最小二乘法求解线性回归方程即可.【详解】(1)从A ,B ,C ,D ,E 这5家超市中随机抽取3家,记销售额不少于60万元的超市有C ,D ,E 这3家超市,则随机变量X 的可能取值为1,2,3P (X =1)=C 13C 22C 35=310,P (X =2)=C 23C 12C 35=35,P (X =3)=C 33C 35=110,∴X 的分布列为:X123P31035110数学期望E (X )=1×310+2×35+3×110=95.(2)x =2+4+5+6+85=5,y =30+40+60+60+705=52,b=ni =1x i y i -nx yni =1x 2i -nx2=60+160+300+360+560-5×5×524+16+25+36+64-5×52=7,a=52-7×5=17.∴y 关于x 的线性回归方程为y=7x +17;在y =7x +17中,取x =10,得y =7×10+17=87.∴预测广告费支出10万元时的销售额为87万元.7(2024·重庆·三模)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为12,各局比赛的结果都相互独立,第1局甲当裁判.记随机变量X i =1,第i 局乙当裁判0,第i 局甲或丙当裁判, i =1,2,⋅⋅⋅,n ,p i =P X i =1 ,X 表示前n 局中乙当裁判的次数.(1)求事件“n =3且X =1”的概率;(2)求p i ;(3)求E X ,并根据你的理解,说明当n 充分大时E X 的实际含义.附:设X ,Y 都是离散型随机变量,则E X +Y =E X +E Y .【答案】(1)34;(2)p i =-13 ×-12i -1+13;(3)p i ,答案见解析。
最新版精选2019年高中数学单元测试试题-概率专题模拟题库(含标准答案)
2019年高中数学单元测试试题 概率专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.在长为12cm 的线段AB 上任取一点 C . 现作一矩形,邻边长分别等于线段AC,CB 的长,则该矩形面积大于20cm 2的概率为: ( ) A . 16B .13 C .23D .45(2012辽宁文)2.从0到9这10个数字中任取3个数字组成一个没有重复数字的三位数,这个数不能被3整除的概率为 (A )4160 (B )3854 (C )3554 (D )1954(2006四川理) 3.在△ABC 中,60ABC ∠=,2AB =,6BC =,在BC 上任取一点D ,使△ABD 为钝角三角形的概率为 A .16 B .13 C .12 D .23第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题4.已知实数[0,8]x ∈,执行如图所示的程序框图,则输出的x 不小于55的概率为 ▲ .5.如下图,在一个边长为3 cm 的正方形内部画一个边长为2 cm 的正方形,向大正方形内随机投点,则所投的点落入小正方形内的概率是________.6.抛掷甲、乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记所得的数字分别为x ,y ,则x y 为整数的概率是 .7.对总数为N 的一批零件抽取一个容量为30的样本,若每个零件被抽取的概率为41,则N 的值是___________.〖解〗1208.某初级中学共有学生2000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. (Ⅰ)求x 的值;(Ⅱ)现用分层抽样的方法在全校抽取48名学生, 问应在初三年级抽取多少名? (Ⅲ)已知245,245≥≥z y ,求初三年级中女生比男生多的概率.〖解〗本题主要考查概率与统计的基础知识,考查运算求解能力及应用意识.满分12分. (Ⅰ)由19.02000=x,解得380=x . (Ⅱ)初三年级人数为500)370380377373(2000=+++-=+z y , 设应在初三年级抽取m 人,则200048500=m ,解得m=12. 所以应在初三年级抽取12名.(Ⅲ)设初三年级女生比男生多的事件为A ,初三年级女生和男生数记为数对(,)y z , 由(Ⅱ)知500,(,,245,245)y z y z N y z +=∈≥≥,则基本事件总数有:(245,255),(246,254),(247,253),(248,252),(249,251),(250,250), (251,249),(252,248),(253,247),(254,246),(255,245)共11个,而事件A 包含的基本事件有:(251,249),(252,248),(253,247),(254,246),(255,245)共5个,所以5()11P A =. 9.在区间[]3,2-上随机取一个数x ,则x ≤1的概率为___________.10.某人随机地将标注为,,A B C 的三个小球放入编号为1,2,3的三个盒子中,每个盒子放入一个小球,全部放完.则标注为B 的小球放入编号为奇数的盒子中的概率为 ▲ .11.若将一枚硬币连续抛掷两次,则出现“一次正面和一次反面”的概率为12.给出下列命题: (1)必然事件的概率为1;(2)概率为0的事件是不可能事件;(3)若随机事件A 、B 是对立事件,则A 、B 也是互斥事件; (4)若事件A 、B 相互独立,则()()()P A B P A P B ⋅=⋅. 则所有真命题的序号为 ▲ .13.如图,在某城市中,M,N两地之间有整齐的方格形道路网,1A 、2A 、3A 、4A 是道路网中位于一条对角线上的4个交汇处,今在道路网M、N处的甲、乙两人分别要到N、M处,他们分别随机地选择一条沿街的最短路径,同时以每10分钟一格的速度分别向N,M处行走,直到到达N,M为止.甲、乙两人相遇的概率为 ▲ .14. 将一个体积为64cm3、表面涂有红漆的正方体木块锯成64个体积为1cm3的小正方体,从中任取两块,至少有一面上涂有红漆的概率是_________15.设长度为3的线段AB 的中点为C ,若在线段AB 上随机选取一点P ,则线段PC 的长满足1≤PC 的概率是 ▲ .16.甲乙两人投篮,投中的概率分别为32,53,两人各投2次,则两人投中次数相等的概率为______.(用不可约分数作答)17.已知m ∈{-1,0,1},n ∈{-1,1},若随机选取m ,n ,则直线10mx ny ++=恰好不经过第二象限的概率是 ▲ .种不同方法;当1,1;0,1m n m n =-===直线10mx ny ++=不经过第二象限,所以概率是21.63= 18.口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为 . 【答案】13. 【解析】试题分析:利用x 、y 表示第一次和第二次从袋子中抽取的球的编号,用(),x y 表示其中一个基本事件,则事件总体所包含的基本事件有:()1,2,()1,3,()1,4,()2,3,第13题()2,4,()3,4,共6个;事件“取出的两个球的编号大于5”所包含的基本事件有:()2,4,()3,4,共2个,所以事件“取出的两个球的编号大于5”发生的概率2163P ==. 19.在集合{x |x =}中任取一个元素,所取元素恰好满足方程cos x =的概率是__________20.掷两枚硬币,若记出现“两个正面”、“两个反面”、“一正一反”的概率分别为123,,P P P ,则下列判断中,正确的有 .(填序号) ①123P P P == ②123P P P += ③1231P P P ++= ④31222,P P P ==三、解答题21.(本题满分14分)先后抛掷一枚骰子,得到的点数分别记为,a b ,按以下程序进行运算:(1)若6,3a b ==,求程序运行后计算机输出的y 的值; (2)若“输出y 的值是3”为事件A ,求事件A 发生的概率.22.(14分)已知关于x 的一元二次方程x 2﹣2ax+b 2=0.(1)若a 是从0、1、2、3四个数中任取的一个数,b 是从0、1、2三个数中任取的一个数,求上述方程没有实根的概率;(2)若a 是从区间[0,3]内任取的一个数,b 是从区间[0,2]内任取的一个数,求上述方程没有实根的概率.23. (本小题满分14分)某射击运动员在一次射击中,命中10环、9环、8环、7环的概率分别为0.2、0.35、0.2、0.15。
概率统计试题和答案
概率统计试题和答案题目答案的红色部分为更正部分,请同志们注意下统计与概率1.(2017课标1,理2)如图,正方形ABCD( B ) A.14B.π8C.12D.π42.(2017课标3,理3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( A )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳3.(2017课标2,理13)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次, 表示抽到的二等品件数,则D X = 1.96 。
4.(2016年全国I 理14)5(2)x x +的展开式中,x 3的系数是 10 .(用数字填写答案)5.(2016年全国I 理14)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( B )(A )13 (B )12 (C )23 (D )345.(2016年全国2理10)从区间随机抽取个数,,…,,,,…,,构成n 个数对,,…,,其中两数的平方和小于1的数对共有个,则用随机模拟的方法得到的圆周率的近似值为( C )(A ) (B ) (C ) (D ) 6.(2016年全国3理4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为[]0,12n 1x 2x nx 1y 2y n y ()11,x y ()22,x y (),n n x y m π4nm 2n m 4m n 2m n50C。
概率论与数理统计模拟试题及答案
概率论与数理统计试题 考试时间:120分钟 试卷总分100分 题号 一 二 三 四 五 六 七 八 九 十 总分 得分 评卷教师一、填空题(满分15分)1.已知3.0)(=B P ,7.0)(=⋃B A P ,且A 与B 相互独立,则=)(A P 。
2.设随机变量X 服从参数为二项分布,且21}0{==X P ,则=p 。
3.设),3(~2σN X ,且1.0}0{=<X P ,则=<<}63{X P4.已知DX=1,DY=2,且X 和Y 相互独立,则D(2X-Y)=5.已知随机变量X 服从自由度为n 的t 分布,则随机变量2X 服从的分布是 。
二、选择题(满分15分)1.抛掷3枚均匀对称的硬币,恰好有两枚正面向上的概率是 。
装订线(A )0.125, (B )0.25, (C )0.375, (D )0.5 2.有γ个球,随机地放在n 个盒子中(γ≤n),则某指定的γ个盒子中各有一球的概率为 。
(A )γγn ! (B )γγn C r n ! (C )nn γ! (D) n n n C γγ! 3.设随机变量X 的概率密度为||)(x ce x f -=,则c = 。
(A )-21(B )0 (C )21 (D )14.掷一颗骰子600次,求“一点” 出现次数的均值为 。
(A )50 (B )100 (C )120 (D )1505.设总体X 在),(ρμρμ+-上服从均匀分布,则参数μ的矩估计量为 。
(A )x 1 (B )∑=-n i i X n 111 (C )∑=-n i i X n 1211 (D )x 三、计算题(满分60分)1.某商店拥有某产品共计12件,其中4件次品,已经售出2件,现从剩下的10件产品中任取一件,求这件是正品的概率。
2.设某种电子元件的寿命服从正态分布N (40,100),随机地取5个元件,求恰有两个元件寿命小于50的概率。
(8413.0)1(=Φ,9772.0)2(=Φ)3.在区间(0,1)中随机地取两个数,求事件“两数之和小于56”的概率。
概率论与数理统计试习题与答案
设 为来自总体 的一个样本, 服从指数分布,其密度函数为 ,其中 为未知参数,试求 的矩估计量和极大似然估计量。
八、(本题满分12分)
设某市青少年犯罪的年龄构成服从正态分布,今随机抽取9名罪犯,其年龄如下:22,17,19,25,25,18,16,23,24,试以95%的概率判断犯罪青少年的年龄是否为18岁。
概率论与数理统计试题与答案(2012-2013-1)
概率统计模拟题一
一、填空题(本题满分18分,每题3分)
1、设 则 =。
2、设随机变量 ,若 ,则 。
3、设 与 相互独立, ,则 。
4、设随机变量 的方差为2,则根据契比雪夫不等式有 。
5、设 为来自总体 的样本,则统计量 服从
分布。
6、设正态总体 , 未知,则 的置信度为 的置信区间的长度 。(按下侧分位数)
对 求导,得
五、(本题满分10分)解: ;
六、(本题满分13分)矩估计: ,
极大似然估计:似然函数 ,
,
七、(本题满分12分)解:欲检验假设
因 未知,故采用 检验,取检验统计量 ,今 , , , , ,拒绝域为 ,因 的观察值 ,未落入拒绝域内,故在 下接受原假设。
八、(本题满分8分)因 ,故
概率统计模拟题二
试求: (1)常数 ; (2) 落在 内的概率; (3) 的分布函数 。
五、(本题满分12分)
设随机变量 与 相互独立,下表给出了二维随机变量 的联合分布律及关于 和 边缘分布律中的某些数值,试将其余数值求出。
六、(本题满分10分)设一工厂生产某种设备,其寿命 (以年计)的概率密度函数为:
工厂规定,出售的设备若在售出一年之内损坏可予以调换。若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元,试求厂方出售一台设备净赢利的数学期望。
概率论与数理统计试题与答案完整版
概率论与数理统计试题与答案HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】概率论与数理统计试题与答案(2012-2013-1)概率统计模拟题一一、填空题(本题满分18分,每题3分)1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。
2、设随机变量p)B(3,~Y p),B(2,~X ,若95)1(=≥X p ,则=≥)1(Y p 。
3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。
4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。
5、设)X ,,X ,(X n 21 为来自总体)10(2χ的样本,则统计量∑==n1i i X Y 服从分布。
6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度=L 。
(按下侧分位数)二、选择题(本题满分15分,每题3分)1、 若A 与自身独立,则( )(A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<<A P ; (D) 0)(=A P 或1)(=A P2、下列数列中,是概率分布的是( )(A) 4,3,2,1,0,15)(==x xx p ; (B) 3,2,1,0,65)(2=-=x x x p (C) 6,5,4,3,41)(==x x p ; (D) 5,4,3,2,1,251)(=+=x x x p 3、设),(~p n B X ,则有( )(A) np X E 2)12(=- (B) )1(4)12(p np X D -=-(C) 14)12(+=+np X E (D) 1)1(4)12(+-=+p np X D4、设随机变量),(~2σμN X ,则随着σ的增大,概率()σμ<-X P ( )。
(A)单调增大 (B)单调减小 (C)保持不变 (D)增减不定5、设),,,(21n X X X 是来自总体),(~2σμN X 的一个样本,X 与2S 分别为样本均值与样本方差,则下列结果错误..的是( )。
概率论与数理统计模拟试题集(6套,含详细答案)
《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。
正确打“√”,错误打“×”)⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( )⑸ 样本方差2n S=n121)(X Xni i-∑=是母体方差DX 的无偏估计 ( )二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生;(2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。
三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为210131111115651530XP-- 求2Y X =的分布列.五、(10分)设随机变量X 具有密度函数||1()2x f x e -=,∞< x <∞, 求X 的数学期望和方差.六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,的样本,试求未知参数p 的极大似然估计.《概率论与数理统计》试题(1)评分标准一 ⑴ ×;⑵ ×;⑶ √;⑷ √;⑸ ×。
《概率论与数理统计》模拟试题及答案
模拟试题一一、 填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。
P( A ∪B) = 。
2、设事件A 与B 独立,A 与B 都不发生的概率为19,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ;4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A= , 分布函数F (x )= , 概率{0.51}P X -<<= ; 5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ; 6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , COV(2X-3Y , X)= ;7、设125,,,X X X 是总体~(0,1)X N 的简单随机样本,则当k = 时,~(3)Y t =;8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本,11ni i X X n ==∑为样本均值,则θ的矩估计量为: 。
9、设样本129,,,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =,求参数a 的置信度为95%的置信区间: ;二、 计算题(35分)1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ϕ;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他1) 求边缘密度函数(),()X Y x y ϕϕ; 2) 问X 与Y 是否独立?是否相关? 3) 计算Z = X + Y 的密度函数()Z z ϕ;3、(11分)设总体X 的概率密度函数为:1,0(),000xe x x x θϕθθ-⎧≥⎪=>⎨⎪<⎩X 1,X 2,…,X n 是取自总体X 的简单随机样本。
概率论与数理统计模拟试题及解答
模拟试题(一)参考答案一.单项选择题(每小题2分,共16分)1、设B A ,为两个随机事件,若0)(=AB P ,则下列命题中正确的是( ) (A) A 与B 互不相容 (B) A 与B 独立(C) 0)(0)(==B P A P 或(D) AB 未必是不可能事件解 若AB 为零概率事件,其未必为不可能事件.本题应选D.2、设每次试验失败的概率为p ,则在3次独立重复试验中至少成功一次的概率为( )(A) )1(3p - (B) 3)1(p - (C) 31p - (D) 213)1(p p C -解 所求事件的对立事件为“3次都不成功”,其概率为3p ,故所求概率为31p -.若直接从正面去求较为麻烦.本题应选C.3、若函数)(x f y =是一随机变量ξ的概率密度,则下面说法中一定成立的是( ) (A) )(x f 非负 (B) )(x f 的值域为]1,0[ (C) )(x f 单调非降 (D) )(x f 在),(+∞-∞内连续解 由连续型随机变量概率密度的定义可知,)(x f 是定义在),(+∞-∞上的非负函数,且满足⎰∞+∞-=1d )(x x f ,所以A 一定成立.而其它选项不一定成立.例如服从]21,31[上的均匀分布的随机变量的概率密度⎪⎩⎪⎨⎧≤≤=其他,0,2131,6)(x x f在31=x 与21=x 处不连续,且在这两点的函数值大于1.因而本题应选A. 4、若随机变量X 的概率密度为)( e21)(4)3(2+∞<<-∞=+-x x f x π,则=Y ( ))1,0(~N(A)23+X (B)23+X (C)23-X (D)23-X 解 X 的数学期望3-=EX ,方差2=DX ,令23+=X Y ,则其服从标准正态分布.故本题应选A.5、若随机变量Y X ,不相关,则下列等式中不成立的是( ) (A) 0),cov(=Y X (B) DY DX Y X D +=+)((C) DY DX DXY ⋅=(D) EY EX EXY ⋅=解 因为0=ρ,故0),cov(=⋅=DY DX Y X ρ,DY DX Y X DY DX Y X D +=++=+),cov(2)(, 但无论如何,都不成立DY DX DXY ⋅=.故本题应选C.6、设样本n X X X ,,,21⋅⋅⋅取自标准正态分布总体X ,又S X ,分别为样本均值及样本标准差,则( ) (A) )1,0(~N X(B) )1,0(~N Xn(C))(~212n X ni i χ∑=(D))1(~-n t SX解 )1,0(~nN X ,),0(~n N X n ,)1(~-⋅n t S X n ,只有C 选项成立.本题应选C. 7、样本n X X X ,,,21 )3(≥n 取自总体X ,则下列估计量中,( )不是总体期望μ的无偏估计量(A)∑=ni iX1(B) X(C) )46(1.01n X X +(D) 321X X X -+解 由无偏估计量的定义计算可知,∑=ni iX1不是无偏估计量,本题应选A.8、在假设检验中,记0H 为待检假设,则犯第一类错误指的是( ) (A) 0H 成立,经检验接受0H (B) 0H 成立,经检验拒绝0H (C) 0H 不成立,经检验接受0H (D) 0H 不成立,经检验拒绝0H解 弃真错误为第一类错误,本题应选B.二.填空题(每空2分,共14分)1、同时掷三个均匀的硬币,出现三个正面的概率是________,恰好出现一个正面的概率是________. 解81;83. 2、设随机变量X 服从一区间上的均匀分布,且31,3==DX EX ,则X 的概率密度为________. 解 设],[~b a X ,则,3112)( ,322=-==+=a b DX b a EX 解得2=a , 4=b , 所以X 的概率密度为⎪⎩⎪⎨⎧≤≤=.0,42,21)(其他x x f3、设随机变量X 服从参数为2的指数分布, Y 服从参数为4的指数分布,则=+)32(2Y X E ________. 解 473])([232)32(222=++=+=+EY EX DX EY EX Y X E . 4、设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式,有≤≥+}6||{Y X P ________.解 根据切比雪夫不等式,12136),cov(26)(}6||{2=++=+≤≥+Y X DY DX Y X D Y X P . 5、假设随机变量X 服从分布)(n t ,则21X 服从分布________(并写出其参数).解 设)(~n t nZY X =,其中)1,0(~N Y ,)(~2n Z χ,且)1(~22χY ,从而)1,(~122n F Y n ZX =. 6、设n X X X ,,,21 )1(>n 为来自总体X 的一个样本,对总体方差DX 进行估计时,常用的无偏估计量是________.解 ∑=--=ni i X X n S 122)(11. 三.(本题6分)设1.0)(=A P ,9.0)|(=A B P ,2.0)|(=A B P ,求)|(B A P . 解 由全概率公式可得27.02.09.09.01.0)|()()|()()(=⋅+⋅=+=A B P A P A B P A P B P .31)()|()()()()|(===B P A B P A P B P AB P B A P .四.(本题8分)两台车床加工同样的零件,第一台出现废品的概率为0.03,第二台出现废品的概率为0.02.加工出来的零件放在一起.又知第一台加工的零件数是第二台加工的零件数的2倍.求:(1) 任取一个零件是合格品的概率,(2) 若任取一个零件是废品,它为第二台车床加工的概率.解 设21,A A 分别表示第一台,第二台车床加工的零件的事件.B 表示产品是合格品的事件. (1) 由全概率公式可得973.098.03197.032)|()()|()()(2211≈⋅+⋅=+=A B P A P A B P A P B P . (2) 247.0973.0102.031)()|()()()()|(2222≈-⋅===B P A B P A P B P B A P B A P . 五.(本题14分)袋中有4个球分别标有数字1,2,2,3,从袋中任取一球后,不放回再取一球,分别以Y X ,记第一次,第二次取得球上标有的数字,求:(1) ) ,(Y X 的联合分布; (2) Y X ,的边缘分布; (3) Y X ,是否独立;(4) )(XY E .解 (1) YX 1 2 3 1 061 121 2 61 61 613 121 61(2)41)1(==X P ,21)2(==X P ,41)3(==X P .41)1(==Y P ,21)2(==Y P ,41)3(==Y P .(3)因为)1()1(1610)1,1(===≠===Y P X P Y X P ,故Y X ,不独立. (4)613261226112121316121)(⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅=XY E 612312113⋅⋅+⋅⋅+623=.六.(本题12分)设随机变量X 的密度函数为)( e )(||2+∞<<-∞=-x Ax x f x ,试求:(1) A 的值; (2) )21(≤<-X P ; (3) 2X Y =的密度函数. 解 (1) 因⎰∞+∞-x x f d )(⎰∞+-===0214d e 2A x x A x ,从而41=A ; (2) ⎰⎰⎰---+==≤<-20201221d e 41d e 41d )(}21{x x x x x x f X P xx 12e 45e 251----=;(3) 当0≤y 时,0)(=y F Y ;当0>y 时,)()()()(2y X y P y X P y Y P y F Y ≤≤-=≤=≤=)()(y F y F X X --=,所以,两边关于y 求导可得,.e 4121e 4121e 41)(yyyY y yy yy y f ---⋅=-⋅⋅-⋅⋅=故Y 的密度函数为⎪⎩⎪⎨⎧>⋅≤=-.0,e 41,0,0)(y y y y f yY七.(本题6分)某商店负责供应某地区1000人商品,某种产品在一段时间内每人需用一件的概率为0.6.假定在这段时间,各人购买与否彼此无关,问商店应预备多少件这种商品,才能以%7.99的概率保证不会脱销?(假定该商品在某一段时间内每人最多买一件).解 设⎩⎨⎧=人购买该种商品第人不购买该种商品第i i X i ,1,,0(1000,,2,1 =i ),X 表示购买该种商品的人数,则)6.0,1000(~B X .又设商品预备n 件该种商品,依题意,由中心极限定理可得)240600240600()()(-≤-=-≤-=≤n X P DXEX n DX EX X P n X P997.0)240600(=-Φ≈n .查正态分布表得75.2240600=-n ,解得6436.642≈=n 件.八.(本题10分)一个罐内装有黑球和白球,黑球数与白球数之比为R .(1) 从罐内任取一球,取得黑球的个数X 为总体,即⎩⎨⎧=白球,,黑球,,01X 求总体X 的分布;(2) 从罐内有放回的抽取一个容量为n 的样本n X X X ,,,21 ,其中有m 个白球,求比数R 的最大似然估计值.解(1) X 1 0 PR R +1 R+11即R R R R R x X P xxx+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+==-1111)(1 )1,0(=x ; (2)nx ni i iR R x XP R L i)1()()(1+∑===∏=,两边取对数,)1ln()(ln R n x R R L i +-∑=,两边再关于R 求导,并令其为0,得011=+-∑R nx i , 从而∑∑-=ii x n xR ˆ,又由样本值知,m n x i-=∑,故估计值为1ˆ-=m n R . 九.(本题14分)对两批同类电子元件的电阻进行测试,各抽6件,测得结果如下(单位:Ω):A 批:0.140,0.138,0.143,0.141,0.144,0.137;B 批:0.135,0.140,0.142,0.136,0.138,0.141. 已知元件电阻服从正态分布,设05.0=α,问:(1) 两批电子元件的电阻的方差是否相等? (2) 两批电子元件的平均电阻是否有显著差异? (2281.2)10(025.0=t ,15.7)5,5(025.0=F )解 (1) 2221122210 σσσσ≠=:,:H H .检验统计量为2221S S F =)5 ,5(~F (在0H 成立时),由05.0=α,查得临界值15.7)5 ,5(025.02/==F F α,15.712/1=-αF . 由样本值算得962.00000078.00000075.0==F ,由于2/2/1ααF F F <<-,故不能拒绝10H ,即认为两批电子元件的电阻的方差相等.(2) 211210 μμμμ==:,:H H . 统计量2)1()1()11(2122221121-+-+-+-=n n sn s n n n YX T )10(~t (在0H 成立时),查表得临界值228.2)10(025.02/==t t α.再由样本值算得005.2120000078.00000075.0139.01405.0=+-=T ,因为2/||αt T <,故接收0H .即认为两批电子元件的平均电阻无显著差异.模拟试题(二)参考答案一.单项选择题(每小题2分,共16分)1.设C , ,B A 表示3个事件,则C B A 表示( ). (A) C , ,B A 中有一个发生(B) C , ,B A 中不多于一个发生(C) C , ,B A 都不发生 (D) C , ,B A 中恰有两个发生 解 本题应选C. 2.已知)(,61)|(,31)()(B A P B A P B P A P 则====( ). (A) 187 (B) 1811 (C) 31 (D) 41解 181)|()()(==A B P A P AB P ,187)()()(1)(1)()(=+--=-==AB P B P A P B A P B A P B A P . 故本题应选A.3.设两个相互独立的随机变量X 与Y 分别服从正态分布)1,0(N 和)1,1(N ,则( )(A) 21}0{=≤+Y X P (B) 21}1{=≤+Y X P (C) 21}0{=≤-Y X P (D) 21}1{=≤-Y X P解 )2,1(~N Y X +,)2,1(~--N Y X ,故本题应选B.4.设X 与Y 为两随机变量,且6.0,1,4===XY DY DX ρ,则=-)23(Y X D ( ) (A) 40 (B) 34 (C) 25.6 (D) 17.6解 2.1),cov(=⋅=DY DX Y X XY ρ,6.25),cov(1249)23(=-+=-Y X DY DX Y X D .故本题应选C.5.若随机变量X 服从参数为λ的泊松分布,则2X 的数学期望是( )(A) λ(B)λ1 (C) 2λ (D) λλ+2 解 222)(λλ+=+=EX DX EX ,本题应选D.6.设n X X X ,,,21 是来自于正态总体),(2σμN 的简单随机样本,X 为样本方差,记∑=--=n i i X X n S 122)(111 ∑=-=n i i X X n S 1222)(1 ∑=--=n i i X n S 1223)(11μ ∑=-=n i i X n S 1224)(1μ 则服从自由度为1-n 的t 分布的随机变量是( )(A) 1/1--=n S X t μ(B) 1/2--=n S X t μ(C) 1/3--=n S X t μ(D) 1/4--=n S X t μ解 ),(~2nN X σμ,)1(~)(1122--∑=n t X Xni iσ,再由t 分布的定义知,本题应选B.7.设总体X 均值μ与方差2σ都存在,且均为未知参数,而,,,21 X X n X 是该总体的一个样本,X 为样本方差,则总体方差2σ的矩估计量是( )(A) X (B) ∑=-n i i X n 12)(1μ(C) ∑=--n i i X X n 12)(11 (D) ∑=-n i i X X n 12)(1 解 本题应选D.8.在假设检验时,若增大样本容量,则犯两类错误的概率( ) (A) 都增大 (B) 都减小(C) 都不变 (D) 一个增大一个减小 解 本题应选B.二.填空题(每空2分,共14分)1.设10件产品中有4件不合格品,从中任取2件,已知所取2件中有1件是不合格品,则另外1件也是不合格品的概率为________.解 设A 表示两件中有一件不合格品,B 表示两件都是不合格品.则所求的极限为51)()()()()|(===A PB P A P AB P A B P2.设随机变量X 服从)8.0 ,1(B 分布,则X 的分布函数为________.解 X 服从0-1分布,其分布函数为⎪⎩⎪⎨⎧≥<≤<=.11,10,2.0,0,0)(x x x x f3.若随机变量X 服从均值为2,方差为2σ的正态分布,且6.0}40{=<<X P ,则}0{<X P =________.解 2=μ,即其密度函数关于2=x 对称.由对称性知2.026.01}0{=-=<X P . 4.设总体X 服从参数为p 的0-1分布,其中)10(<<p p 未知.现得一样本容量为8的样本值:0,1,0,1,1,0,1,1,则样本均值是________,样本方差是________.解 由定义计算知85=X ;56152=S . 5.设总体X 服从参数为λ的指数分布,现从X 中随机抽取10个样本,根据测得的结果计算知27101=∑=i ix,那么λ的矩估计值为________.解 27101ˆ==X λ.6.设总体) ,(~2σμN X ,且2σ未知,用样本检验假设00μμ=:H 时,采用的统计量是________. 解 )1(~0--=n t nSX T μ (0H 为真时).三.(本题8分)设有三只外形完全相同的盒子,Ⅰ号盒中装有14个黑球,6个白球;Ⅱ号盒中装有5个黑球,25个白球;Ⅲ号盒中装有8个黑球,42个白球.现在从三个盒子中任取一盒,再从中任取一球,求:(1)取到的球是黑球的概率;(2)若取到的是黑球,它是取自Ⅰ号盒中的概率.解 设321,,A A A 分别表示从第Ⅰ,Ⅱ,Ⅲ号盒中取球,B 表示取到黑球. (1) 由全概公式可得≈⋅+⋅+⋅==∑=5083130531201431)|()()(31i i i A B P A P B P 0.342; (2) 由贝叶斯公式得≈=)()|()()|(111B P A B P A P B A P 0.682.四.(本题6分)设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=其他,,,,002cos 21)(πx x x f , 对X 独立地重复观察4次,用Y 表示观察值大于3π地次数,求2Y 的数学期望. 解 21d 2c o s 21)3(3==>⎰πππx x X P ,)21,4(~B Y ,从而 5)(22=+=EY DY EY .五.(本题12分) 设),(Y X 的联合分布律为YX 0 1 2 1 0.1 0.05 0.35 2 0.3 0.1 0.1 问:(1) Y X ,是否独立;(2) 计算)(Y X P =的值;(3) 在2=Y 的条件下X 的条件分布律. 解 (1) 因为)0()1(4.05.02.01.0)0,1(===⋅=≠===Y P X P Y X P , 所以Y X ,不独立; (2) 15.01.005.0)2,2()1,1()(=+===+====Y X P Y X P Y X P ;(3) 9745.035.0)2()2,1()2|1(========Y P Y X P Y X P ,92971)2|2(=-===Y X P .六.(本题12分)设二维随机变量) ,(Y X 的概率密度为⎩⎨⎧≤≤≤=,,0,10,12),(2其他x y y y x f 求:(1) X 的边缘密度函数)(x f X ;(2) )(XY E ; (3) )1(>+Y X P . 解 (1)⎩⎨⎧≤≤⎪⎩⎪⎨⎧=≤≤==⎰⎰∞+∞-.,0,104,0,10,d 12d ),()(302其他其他x xx y y y y x f x f x X(2) 21d 12d )(0310==⎰⎰y xy x XY E x ;(3) ==>+⎰⎰-y y x Y X P x x d 12d )1(1212187.七.(本题6分)一部件包括10部分,每部分的长度是一个随机变量,它们相互独立,且服从同一均匀分布,其数学期望为2mm,均方差为0.05,规定总长度为)1.020(±mm 时产品合格,试求产品合格的概率.解 设i X 表示第i 部分的长度,10,,2,1 =i ,X 表示部件的长度.由题意知2=i EX ,0025.0=i DX ,且∑==101i i X X ,20=EX ,025.0=DX .由独立同分布的中心极限定理知,产品为合格品的概率为)025.01.0|025.020(|)1.0|20(|≤-=≤-X P X P4714.01)025.01.0(2=-Φ=. 八.(本题7分)设总体X 具有概率密度为⎪⎩⎪⎨⎧>-=--,,0,0,e )!1()(1其他x x k x f x k k θθ 其中k 为已知正整数,求θ的极大似然估计.解 设n X X X ,,,21 是来自总体X 的样本,当0,,,21>n x x x 时,似然函数∑-===-=-=∑∏ni ix ni k innkni i xk x f L 1e])!1[()()(111θθθ,两边取对数,∑-+--===-∑ni i ni k ix x k n nk L 111ln )!1ln(ln )(ln θθθ,关于θ求导,并令其为0,得0)(ln 1=∑-==ni i x nkL θθ,从而解得θ的极大似然估计为XkX nkni i=∑==1ˆθ. 九.(本题14分)从某锌矿的东、西两支矿脉中,各抽取样本容量分别为9与8的样本进行测试,得样本含锌平均数及样本方差如下:东支:230.01=x ,1337.021=n s , )9(1=n 西支:269.02=x ,1736.022=n s , )8(2=n 若东、西两支矿脉的含锌量都服从正态分布,问东、西两支矿脉含锌量的平均值是否可以看作一样?)05.0(=α53.4)7 ,8( (025.0=F ,90.4)8 ,7(025.0=F ,) 1315.2)15(0025.0=t解 本题是在未知方差,又没有说明方差是否相等的情况下,要求检验两总体均值是否相等的问题,故首先必须检验方差是否相等,在相等的条件下,检验总体均值是否相等.第一步假设0H :21σ=22σ,统计量2221s s F =~)1,1(21--n n F ,经检验,接受0H :21σ=22σ;第二步假设0H :21μμ=, 统计量2)1()1()11(2122221121-+-+-+-=n n s n s n n n YX T )2(~21-+n n t经检验,接受0H ,即可认为东、西两支矿脉含锌量的平均值相等.(请参见模拟试题(一)第九大题)十.(本题5分) 设总体X 的密度函数为⎪⎩⎪⎨⎧≤≤=,,0,0,3)(23其它θθx x x f其中θ为未知参数,n X X X ,,,21 为来自总体X 的样本,证明:X 34是θ的无偏估计量.证明 ⎰∞+∞-===x x xf EX X E X E d )(343434)34(θθθ==⎰033d 334x x , 故X 34是θ的无偏估计量.模拟试题(三)参考答案一.填空题(每小题2分,共14分)1.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8180,则该射手的命中率为 .解 设A 表示一次射击中击中目标,依题意,四次都没击中的概率为81801)(4-=A P ,解得31)(=A P ,从而射手的命中率为32)(=A P . 2.若事件A ,B 独立,且p A P =)(,q B P =)(则=+)(B A P . 解 pq p B P A P B P A P B A P +-=-+=1)()()()()( .3.设离散型随机变量X 服从参数为λ(0>λ)的泊松分布,已知==)1(X P )2(=X P ,则λ= .解 )2(e 2e)1(2=====--X P X P λλλλ,从而解得2=λ.4.设相互独立的两个随机变量X ,Y 具有同一分布律,且X 的分布律为:X 0 1P 21 21则随机变量},max{Y X Z =的分布律为 . 解 Z 的可能取值为0,1.412121)0()0()0,0()0(=⋅========Y P X P Y X P Z P .43411)1(=-==Z P .5.设随机变量X ,Y 的方差分别为25=DX ,36=DY ,相关系数4.0=XY ρ,则),(Y X Cov = .解 12),cov(=⋅=DY DX Y X XYρ.6.设总体X 的期望值μ和方差2σ都存在,总体方差2σ的无偏估计量是21)(∑=-n i i X X n k ,则=k .解 1-=n n k . 7.设总体),(~2σμN X ,μ未知,检验2020σσ=H :,应选用的统计量是 .解)1(~)(2212--∑=n X Xni iχσ (0H 为真时)二 .单项选择题(每小题2分,共16分)1.6本中文书和4本外文书任意往书架上摆放,则4本外文书放在一起的概率为( )(A)!10!6!4 (B)107 (C)!10!7!4 (D)104 解 本题应选C.2.若事件B A ,相互独立,则下列正确的是( ) (A) =)|(A B P )|(B A P (B) =)|(A B P )(A P (C) )|(B A P )(B P =(D) =)|(B A P )(1A P -解 由独立性的定义知,==)()|(A P B A P )(1A P -,故本题应选D.3.设随机变量X 服从参数为n ,p 的二项分布,且6.1=EX ,28.1=DX ,则n ,p 的值为( ) (A) n =8,p =2.0 (B) n =4,p =4.0 (C) n =5,p =32.0(D) n =6,p =3.0解 由6.1=np ,28.1)1(=-p np ,解得n =8,p =2.0,本题应选A.4.设随机变量X 服从正态分布)1,2(N ,其概率密度函数为)(x f ,分布函数为)(x F ,则有( ) (A) =≥)0(X P =≤)0(X P5.0 (B) =≥)2(X P =≤)2(X P 5.0 (C) )(x f =)(x f -,),(∞+-∞∈x (D) =-)(x F -1)(x F , ),(∞+-∞∈x解 2=EX ,故其密度函数关于2=x 对称,故本题应选B.5.如果随机变量X 与Y 满足:)(Y X D +)(Y X D -=,则下列式子正确的是( ) (A) X 与Y 相互独立 (B) X 与Y 不相关 (C) 0=DY(D) 0=⋅DY DX解 由)(Y X D +)(Y X D -=,可得0),cov(=Y X ,从而可知X 与Y 不相关,故本题应选B.6.设n X X X ,,,21 是来自总体),(~2σμN X 的样本,X 为样本均值,令=Y 212)(σ∑=-ni iX X,则~Y ( )(A) )1(2-n χ (B) )(2n χ (C) ),(2σμN (D)),(2nN σμ解 本题应选A.7.设n X X X ,,,21 是取自总体),0(2σN 的样本,可以作为2σ的无偏估计量的统计量是( )(A) ∑=n i i X n 121 (B) ∑=-n i i X n 1211 (C) ∑=n i i X n 11 (D)∑=-ni i X n 111 解 由无偏估计的定义及期望的性质知,2221212)(1)1(σ==+===∑∑==DX EX DX EX EX n X n E ni i n i i ,故A 选择正确,同理验算其他选项,B,C,D 均不正确.故本题应选A.8.样本n X X X ,,,21 来自正态总体),(2σμN ,若进行假设检验,当( )时,一般采用统计量nS X t /0μ-=(A) μ未知,检验2σ=20σ(B) μ已知,检验2σ=20σ(C) 2σ未知,检验 μ=0μ(D) 2σ已知,检验μ=0μ解 本题应选C. 三.(本题8分)有两台车床生产同一型号螺杆,甲车床的产量是乙车床的5.1倍,甲车床的废品率为%2,乙车床的废品率为%1,现随机抽取一根螺杆检查,发现是废品,问该废品是由甲车床生产的概率是多少?解 设21,A A 分别表示螺杆由甲,乙车床生产的事件.B 表示螺杆是废品的事件.由贝叶斯公式可得)|()()|()()|()()|(2211111A B P A P A B P A P A B P A P B A P +=75.001.05202.05302.053=⋅+⋅⋅=. 四.(本题8分)假设一部机器在一天内发生故障的概率为2.0,机器发生故障时全天停止工作.若一周五个工作日里无故障,可获利润10万元,发生一次故障获利润5万元,发生两次故障获利润0万元,发生三次或三次以上故障就要亏损2万元,问一周内期望利润是多少?解 设X 表示一周中所获的利润,其分布律为:X 0 5 10 P 548.08.02.051-⋅⋅- 48.02.05⋅⋅ 58.0从而由期望的定义计算可得216.5=EX .五.(本题12分)1.设随机向量X ,Y 的联合分布为:X Y 1 2 31 0 61 1212 61 61 613 121 61(1) 求X ,Y 的边际分布;(2) 判断X ,Y 是否独立. 解 (1) X 的边际分布为: Y 的边际分布为:X 1 2 3 Y 1 2 3P 41 21 41 P 41 21 41(2) X 与Y 不相互独立.2.设随机变量),(Y X 的联合密度函数为:),(y x f =⎩⎨⎧<<-其他,,,,00e y x y求概率)1(≤+Y X P .解 ==≤+⎰⎰--y x Y X P x xy d e d )1(1210211e2e 1---+.六.(本题8分)设连续型随机变量X 的分布函数为:=)(x F ⎪⎩⎪⎨⎧≤>+-,,,,000e 22x x B A x 求: (1) 系数A 及B ;(2) 随机变量X 的概率密度; (3) )9ln 4ln (≤≤X P .解 (1) 由分布函数的性质知1)e(lim )(22==+=+∞-+∞→A B A F x x ,)0(0)e(lim )(lim 202F B A B A x F x x x ==+=+=-→→++,从而1-=B ;(2) 分布函数的导数即为其概率密度,即)(x f =⎪⎩⎪⎨⎧≤>-000e 22x x x x ,,,(3) 61)4ln ()9ln ()9ln 4ln (=-=≤≤F F X P . 七.(本题8分)设n X X X ,,,21 为总体X 的一个样本,X 的概率密度为:)(x f =⎪⎩⎪⎨⎧≤≤-其他,,,,0101x x θθ其中0>θ,求未知参数θ的矩估计量与极大似然估计量.解 令X x x EX =+==⎰1d 10θθθθ,从而解得θ的矩估计量为2)1(XX -=θ. 极大似然估计为:∑∑==+=ni ini iXX n 11ln ln θ.(具体做法类似与模拟试卷二第八题)八.(本题10分)设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为5.66分,标准差为15分,问在显著水平05.0下,是否可认为全体考生的平均成绩为70分?解 假设0H :70=μ,选取统计量ns X T /μ-=)1(~-n t , (0H 为真时)在05.0=α下,查t 分布的双侧临界值表知0301.2025.0=t . 另一方面,计算统计量的值0301.24.136/15705.66||<=-=T ,从而接受原假设,即可认为全体考生的平均成绩为70分.九.(本题12分)两家银行分别对21个储户和16个储户的年存款余额进行抽样调查,测得其平均年存款余额分别为x =2600元和y =2700元,样本标准差相应地为811=S 元和1052=S 元,假设年存款余额服从正态分布,试比较两家银行的储户的平均年存款余额有无显著差异?(10.0=α)解 此题要求检验21μμ=,由于t 检验必须在方差相等的条件下进行,因此必须先检验21σ与22σ是否相等.第一步假设0H :21σ=22σ,统计量2221s s F =~)1,1(21--n n F ,经检验,接受0H :21σ=22σ;第二步假设0H :21μμ=, 统计量2)1()1()11(2122221121-+-+-+-=n n s n s n n n YX T )2(~21-+n n t经检验,拒绝0H ,即两家银行的储户的平均年存款余额有显著差异.(请参见模拟试题(一)第九大题)十.(本题4分)设总体X 服从参数为λ的泊松分布,λ为未知参数,⎩⎨⎧-=为偶数,,为奇数,,X X X T 11)(证明:)(X T 是λ2-e的一个无偏估计量.证明 ∑∞===)()()]([x x X P x T X T E∑∞=-=0!)(x xex x T λλ=-=∑∞=-0!)1(n nne n λλλ2-e ,所以)(X T 是λ2-e的一个无偏估计量.模拟试题(四)参考答案一.填空题(每小题2分,共20分)1.设)(A P =0.4,)(B P =0.5.若,7.0)(=B A P 则=+)(B A P . 解 55.0)|()()()()(=-+=+B A P B P B P A P B A P2.若随机变量X 服从二项分布,即)1.0,5(~B X ,则=-)21(X D .解 8.19.01.0544)21(=⋅⋅⋅==-DX X D . 3.三次独立重复射击中,若至少有一次击中的概率为6437,则每次击中的概率为 . 解43. 4.设随机变量X 的概率密度是:⎩⎨⎧<<=,,0,10,3)(2其他x x x f 且,784.0)(=≥a X P 则=a .解 由784.0)(=≥a X P 知,10<<α.故,784.01d 3)(132⎰=-==≥ααx x a X P 从而6.0=α. 5.利用正态分布的结论,有:=+-⎰∞+∞---x x x x d e )44(212)2(22π .解 令t x =-2,则原式1)(d e212222=+==⎰∞+∞--EX DX t t t π,这里)1,0(~N X .6.设总体X 的密度函数为:⎩⎨⎧<<=-,,0,10,)(1其他x x x f αα)0(>αα为参数其中,n x x x ,,,21 是来自总体X 的样本观测值,则样本的似然函数=);,,,(21αn x x x L .解 ∏=-ni i nx 11αα.7.设X ,Y 是二维随机向量,DX ,DY 都不为零,若有常数0>a 与b 使1)(=+-=b aX Y P ,这时X 与Y 是 关系.解 完全相关.8.若),(~2σμN X ,n X X X ,,,21 是来自总体X 的样本,2,S X 分别为样本均值和方差,则SnX )(μ-服从 分布.解 )1(-n t .9.设),(~211σμN X ,),(~222σμN Y ,X 与Y 相互独立.从X ,Y 中分别抽取容量为21,n n 的样本,样本均值分别为Y X ,,则Y X -服从分布 .解 ),(22212121n n N σσμμ+-.10.设随机变量X 和Y 的相关系数为0.9,若4.0-=X Z ,则Y 与Z 的相关系数为____________. 解 9.0),cov()4.0,cov(),cov(==-=X Y X Y Z Y . 二.单项选择题(每小题2分,共12分)1. 设随机变量X 的数学期望EX 与2σ=DX 均存在,由切比雪夫不等式估计概率}4{σ<-EX X P 为( )(A) 161≥(B) 161≤(C) 1615≥(D) 1615≤解 本题应选C.2.B A ,为随机随机事件,且A B ⊂,则下列式子正确的是( ). (A) )()(A P B A P =(B) )()()(A P B P A B P -=-(C) )()(A P AB P = (D) )()(B P A B P =解 本题应选A.3. 设随机变量X 的密度函数为⎩⎨⎧≤≤+=其他,,,,010)(x B Ax x f 且127=EX ,则( ).(A) 5.0,1-==B A(B) 1,5.0=-=B A(C) 1,5.0==B A (D) 5.0,1==B A 解 令1d )(10=+⎰x B Ax ,127d )(1=+⎰x x B Ax ,解得5.0,1==B A ,故本题应选D. 4.若随机变量X 与Y 不相关,则有( ). (A) )(9)()3(Y D X D Y X D -=- (B) )()()(Y D X D XY D ⨯= (C) 0)]}()][({[=--Y E Y X E X E(D) 1)(=+=b aX Y P 解 本题应选C.5.已知随机变量),(~21n n F F ,且αα=>)},({21n n F F P ,则=-),(211n n F α( ).(A) ),(121n n F α(B)),(1121n n F α-(C)),(112n n F α(D) ),(1211n n F α-解6.将一枚硬币独立地掷两次,记事件:=1A {掷第一次出现正面},=2A {掷第二次出现正面},=3A {正、反面各出现一次},=4A {正面出现两次},则事件( ).(A) 321,,A A A 相互独立 (B) 432,,A A A 相互独立 (C) 321,,A A A 两两独立(D) 432,,A A A 两两独立解 21)(1=A P ,21)(2=A P ,21)(3=A P ,41)(4=A P ,再由事件独立的充分必要条件可知321,,A A A 两两独立,本题应选C.三.计算题(每小题8分,共48分)1.某厂由甲,乙,丙三个车间生产同一种产品,它们的产量之比为3:2:1,各车间产品的不合格率依次为8%,9%,12%.现从该厂产品中任意抽取一件,求:(1) 取到不合格产品的概率;(2) 若取到的是不合格品,求它是由甲厂生产的概率. 解 (1) 运用全概率公式, 0.09;(2) 运用贝叶斯公式, 0.44.(具体做法参见模拟试卷(一)第四题)2.一实习生用一台机器接连独立地制造三个同样的零件,第i 个零件是不合格品的概率为)3,2,1(11=+=i ip i ,以X 表示三个零件中合格品的个数,求:(1) X 的概率分布; (2) X 的方差DX .解 (1)12234132411241=⋅+⋅+=EX , (2)2741924114412=⋅+⋅+=EX ,故521.0)(22=-=EX EX DX . 3.设总体X ),0(~2σN ,2σ为未知参数,n x x x ,,,21 是来自总体X 的一组样本值,求2σ的最大似然估计.解 似然函数21221222222e )21(e)21()(σσσπσπσ∑=∑===--ni i ni i x nx nL ,两边取对数212222ln 22ln 4)(ln σσπσ∑---==ni ix nn L ,关于2σ求导,并令其为零,得0)(21222122=∑+⋅-=σσni ix n , 从而解得极大似然估计量为∑==n i i x n 1221ˆσ. 4.二维随机变量(X ,Y )的联合概率密度:⎩⎨⎧>>=+-其它,,,,00,0e 2),()2(y x y x f y x求: (1) X 与Y 之间是否相互独立,判断X 与Y 是否线性相关;(2) )1(≤+X Y P . 解 (1) ⎪⎩⎪⎨⎧≤>==⎰⎰∞++-∞+∞-0,0,0,d e 2d ),()(0)2(x x y y y x f x f y x X341⎩⎨⎧≤>=-.0,0,0,e x x x 同理⎩⎨⎧≤>=-.0,0,0,e )(2y y yf y Y 从而)()(),(y f x f y x f Y X =,故X 与Y 相互独立,因而X 与Y 一定不相关.(2) =≤+)1(X Y P =⎰⎰-+-y x x y x d 2e d 10)2(1021)e 1(--.5.某人乘车或步行上班,他等车的时间X (单位:分钟)服从参数为51的指数分布,如果等车时间超过10分钟他就步行上班.若此人一周上班5次,以Y 表示他一周步行上班的次数.求Y 的概率分布;并求他一周内至少有一次步行上班的概率.解 此人每天等车时间超过10分钟也即步行上班的概率为210e d e 51)10(--∞+==>⎰x X P sx. 故)e ,5(~2-B Y .52)e 1(1)1(---=≥Y P .6.设随机变量X 的概率密度为⎪⎩⎪⎨⎧∈⋅=其他,,,,0]8,1[31)(32x x x f )(x F 是X 的分布函数.求随机变量)(X F Y =的概率分布.解 ⎪⎪⎩⎪⎪⎨⎧>≤<-≤=.8,1,81,1,1,0)(31x x x x x F(3) 当0<y 时,0)()(=≤=y Y P y F Y ;当10<≤y 时,))1(()1()()(331+≤=≤-=≤=y X P y X P y Y P y F Yy y F X =+=))1((3;当1≥y 时,1)()(=≤=y Y P y F Y . 故对)(y F Y 求导可得Y 的概率密度,⎩⎨⎧<<=其它,,,,0101)(y y f Y 即]10[~,U Y 四.应用题(第1题7分、第2题8分,共15分)21 1.假设对目标独立地发射400发炮弹,已知每一发炮弹的命中率等于0.2,用中心极限定理计算命中60发到100发之间的概率.解 设⎩⎨⎧=发炮弹命中第发炮弹没有命中第i i X i ,1,,0 (400,,2,1 =i ),则 ∑==4001i i X X )2.0,400(~B表示400发炮弹命中的发数,且80=EX ,64=DX ,故由中心极限定理知,)6420|6480(|)20|80(|)10060(<-=<-=<<X P X P X P9876.01)820(2=-Φ=. 2.某厂生产铜丝,生产一向稳定.现从该厂产品中随机抽出10段检查其折断力,测后经计算:5.160)(,5.28712=-=∑=n i i x x x .假定铜丝折断力服从正态分布,问是否可以相信该厂生产的铜丝的折断力方差为16?(1.0=α)解 16162120≠=σσ:,:H H .采用统计量 2221S n σχ-=,在0H 成立时,)9(~22χχ.由1.0=α,查得临界值 325.3)9(295.022/1==-χχα, 919.16)9(205.022/==χχα, 由样本值算得03.10165.1602≈=χ,由于22/222/1ααχχχ<<-,所以不拒绝0H ,即该厂生产的铜丝的折断力方差为16. 五.证明题(5分)若随机变量X 的密度函数)(x f ,对任意的R x ∈,满足:)()(x f x f -=,)(x F 是其分布函数.证明:对任意实数a ,有⎰-=-a x x f a F 0d )(21)(. 证明 ⎰⎰⎰-∞--∞-+==-a ax x f x x f x x f a F 00d )(d )(d )()(⎰-+=a x x f 0d )(21 (令x t -=) ⎰⎰⎰-=-=--=a a a x x f t t f t t f 000d )(21d )(21d )(21.。
概率论与数理统计练习题及其答案
概率论与数理统计模拟试题(概率论部分)一、填空题(每小题3分):1、同时抛出两枚硬币,两枚硬币均为正面的概率为 ;2、依次抛两枚骰子,若第一枚为3点,则第二枚也为3点的概率为 ;3、设事件A 、B ,()0.8,()0.5,()P A P AB P AB === ;4、若事件A 、B 互斥,()0.3,()0.4,()P A P B P A B ==-= ;5、设A 和B 相互独立,且()0.4,()0.3P A P B ==,则()P A B += ;6、设随机变量~(0,1)X N ,分布函数为()x Φ,则(0)Φ= ;7、设2(0,)XN σ,若{}20.45P X <-=,则{}22P X -<<= ;8、已知随机变量X 服从区间[0,1]上的均匀分布,21Y X =-,则DY = ; 9、设随机变量X 与Y 相互独立,方差分别为2和3,则(23)D X Y -= ; 10、设随机变量X 、Y 满足()()()E XY E X E Y =,则协方差(,)Cov X Y = ; 11、设随机变量X 、Y 满足0XY ρ=,则协方差(,)Cov X Y = ; 二、选择题(每小题3分,每题只有一个正确答案):1、设事件A 、B ,()0,P AB =则下面说法中正确的是( ).()A A 、B 互斥;()B A 、B 相互独立;()C ()0P A =或()0P B =;()D ()()P A B P A -=.2、(),(),(),()P A a P B b P A B c P AB ====( ).()A a b -; ()B c b -; ()C a ab -; ()D b a -.3、设事件A 、B 互斥,()0P A >,()0P B >,则下面说法中正确的是( ); ()A ()0P B A >;()B ()()P A B P A =;()C ()0P A B =;()D ()()()P AB P A P B =.4、()0.8,()0.7,()0.8,P A P B P A B ===则下面说法中正确的是( );()A A 、B 相互独立;()B A 、B 互斥;()C A B ⊂;()D ()()()P A B P A P B +=+.5、设事件A 、B 相互独立,则下面的说法中,错误的是( );()A A 与B 独立;()B A 与B 独立;()C ()()()P AB P A P B =;()D A 、B 一定互斥.6、设随机变量X 的概率密度为2(3)4(),x f x x --=-∞<<∞,则( )(0,1)N .3()4X A -; ()B ; 3()2X C +; ()D . 7、设总体X 服从2(3,4)N ,且常数c 满足{}{}P X c P X c >=<,则C 等于( );()A 3; ()B 2; ()C 1; ()D 0.8、设()P A p =,则n 次独立重复试验中事件A 至少发生一次的概率为( ).()A p ; ()B 1p -; ()C (1)n p -; ()D 1(1)n p --.9、设随机变量X 与Y 相互独立,方差分别为6和3,则(2)D X Y -=( ).()A 9; ()B 15; ()C 27; ()D 33.10、若随机变量X 和Y 的协方差(,)0Cov X Y =,则下列结论中正确的 ( ) ()A X 、Y 相互独立; ()B ()D X Y DX DY +=+;()C ()D X Y DX DY -=-; ()D ()D XY DX DY =⋅.三、计算题(一维随机变量部分)1、如图系统由3个电子元件组成,各元件独立工作,其正常工作的概率皆为0.8,求系统正常工作的概率.解:()()()()P P AB C P AB P C P ABC ==+- ()()()()()()P A P B P C P A P B P C =+- 0.80.80.80.80.80.80.928.=⨯+-⨯⨯=2、在区间(0,1)上任意取5个数,求这5个数中有2个大于23的概率. 解:设取得的数为X ,则2133P X ⎧⎫>=⎨⎬⎩⎭,又设5个数中大于23的个数为Y ,则{}2522511802133243P Y C -⎛⎫⎛⎫==-=⎪⎪⎝⎭⎝⎭. 3、设随机变量X 在[]2,5上服从均匀分布,现在对X 进行三次独立观测,求至少有两次观测值大于3的概率.解:由已知,X 的分布密度为:1,25()30,.x f x ⎧≤≤⎪=⎨⎪⎩其他,则 {}5312333P X dx >==⎰,设在三次独立观测中观测值大于3的次数为Y ,则2(3,)3Yb ,那么{}223333212202()()()33327P Y C C ≥=+=.4、已知离散型随机变量X 的分布列为:10120.10.40.20.3-⎛⎫ ⎪⎝⎭,求: (1) {1 1.5}P X -<≤;(2) 2()E X 、DX . 解: (1) {1 1.5}0.40.20.6P X -<≤=+=. (2) 0.7EX =2()00.410.340.3 1.5E X =⨯+⨯+⨯=. 22()() 1.50.70.8.DX E X EX =-=-= 5、已知随机变量X 的概率密度为:(12),01()0,A x x f x +<<⎧=⎨⎩其它, (1) 求A 的值; (2) 计算{0.10.5}P X << 解: (1) 由 11()(12)2f x dx A x dx A +∞-∞==+=⎰⎰得12A =. (2): {}0.50.10.10.5()P X f x dx <<=⎰.0.50.11(12)0.322x dx =+=⎰.6、已知随机变量X 服从(0,1)上的均匀分布,求X Y e =的概率密度函数.解:X 的概率密度:1,01()0,x f x <<⎧=⎨⎩,其他 当0Y ≤时,()0Y f x =;当0Y >时,(){}{}(ln )X Y X F y P Y y P e y F y =≤=≤=,故1,1()0,Y X y e y f y F ⎧<<⎪'==⎨⎪⎩其他. 7、已知连续型随机变量X 的密度函数为sin 0,()0A x x f x π<<⎧=⎨⎩ 其他.,求: (1)常数A ; (2)求33P X ππ⎧⎫-<<⎨⎬⎩⎭.解: (1) 由 01()sin 2f x dx A xdx A π+∞-∞===⎰⎰,得 12A =. (2)330311()sin 3324P X f x dx xdx πππππ+-⎧⎫-<<===⎨⎬⎩⎭⎰⎰.四、(二维随机变量部分:边缘分布、函数分布、概率、期望、方差)1、在区间(0,1)任意取2个数,求这2个数之和小于65的概率。
概率论与数理统计模拟试题5套带答案
06-07-1《概率论与数理统计》试题A一、填空题(每题3分,共15分)1. 设A ,B 相互独立,且2.0)(,8.0)(==A P B A P ,则=)(B P __________.2. 已知),2(~2σN X,且3.0}42{=<<X P ,则=<}0{X P __________.3. 设X 与Y 相互独立,且2)(=X E ,()3E Y =,()()1D X D Y ==,则=-])[(2Y X E ___4.设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()n i i X μσ=-∑服从__________分布.5. 设),3(~),,2(~p B Y p B X,且95}1{=≥X P ,则=≥}1{Y P __________. 二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】(A) 11a a b -+-;(B) (1)()(1)a a a b a b -++-;(C) a a b +;(D) 2a ab ⎛⎫ ⎪+⎝⎭.2. 设随机变量X 的概率密度为()130, 其他c x p x <<⎧=⎨⎩则方差D(X)= 【 】(A) 2; (B)12; (C) 3; (D)13.3. 设A 、B 为两个互不相容的随机事件,且()0>B P ,则下列选项必然正确的是【 】()A ()()B P A P -=1;()B ()0=B A P ;()C ()1=B A P ;()D ()0=AB P .4. 设()x x f sin =是某个连续型随机变量X 的概率密度函数,则X 的取值范围是【 】 ()A ⎥⎦⎤⎢⎣⎡2,0π;()B []π,0; ()C ⎥⎦⎤⎢⎣⎡-2,2ππ;()D ⎥⎦⎤⎢⎣⎡23,ππ. 5. 设()2,~σμN X ,b aX Y -=,其中a 、b 为常数,且0≠a ,则~Y 【 】()A ()222,b a b a N +-σμ; ()B ()222,b a b a N -+σμ;()C ()22,σμa b a N +; ()D ()22,σμa b a N -.三、(本题满分8分) 甲乙两人独立地对同一目标射击一次,其命中率分别为0.5和0.4,现已知目标被命中,求它是乙命中的概率.四、(本题满分12分)设随机变量X 的密度函数为xx ee Ax f -+=)(,求: (1)常数A ; (2)}3ln 210{<<X P ; (3)分布函数)(x F .五、(本题满分10分)设随机变量X 的概率密度为()⎩⎨⎧<<-=其他,010),1(6x x x x f 求12+=X Y的概率密度.六、(本题满分10分)将一枚硬币连掷三次,X 表示三次中出现正面的次数,Y 表示三次中出现正面次数与出现反面次数之差的绝对值,求:(1)(X ,Y )的联合概率分布;(2){}X Y P>.七、(本题满分10分)二维随机变量(X ,Y )的概率密度为⎩⎨⎧>>=+-其他,00,0,),()2(y x Ae y x f y x求:(1)系数A ;(2)X ,Y 的边缘密度函数;(3)问X ,Y 是否独立。
概率论模拟题及答案
p( A0
B)
=
p( A0 ) p(B p(B)
A0 )
= 0.413
24.设 X 为一年内投保人的死亡数, (1) 则 X ~ B(10000,0.006)
(2)公司的年利润为 Y=120000-1000X, 由于 EX=np=60,DX=npq=0.24,根据中心极限定理,可得 Z = X − EX 近似~ N (np,, npq) ,于是有:
F(x)=
⎧A + Be −2x ⎨
⎩0
x>0 其它
求 : (1)A,B 的值; (2) p(−2 < x ≤ 2) ;(3) X 的概率密度函数.
四.计算题(II) 20.设随机向量(X ,Y)的联合密度为
f
(
x,
y
)
=
⎧4xy
⎨ ⎩
0
0 ≤ y ≤ 1,0 ≤ x ≤ 1 其它
求 (1) p( X < Y ) ; (2). X 与 Y 的协方差 cov( X ,Y ) .
DX
p(Y ≥ 60000) = p( X ≤ 60) = p( X − 60 ≤ 0) = Φ(0) = 0.5 0.24
六,证明题(满分 5 分)
因为 E( X − C)2 − DX = E( X 2 − 2CX + C 2 ) − (EX 2 − (EX )2 )
= E( X )2 − 2CEX + C 2
(6).0.96; (7).14; (8).( µ, σ 2 ); (9).-1; (10). nσ 2 n
二, 选择题 11.C;12.A;13.B;14.B;15.D 三,计算题(I) 16. 因为 A 与 B 相互独立,所以
统计与概率经典例题含答案和解析
统计与概率经典例题(含答案及解析)1.(本题8分)为了解学区九年级学生对数学知识的掌握情况,在一次数学检测中,从学区2000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:⑴表中a和b所表示的数分别为:a= .,b= .;⑵请在图中补全频数分布直方图;⑶如果把成绩在70分以上(含70分)定为合格,那么该学区2000名九年级考生数学成绩为合格的学生约有多少名?2.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1﹣5月新注册小型企业一共有家.请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.3.(12分)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.4.(本题10分)某校为了解2014年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40名学生借阅总册数的40%.类别科普类教辅类文艺类其他册数(本)128 80 m 48(1)求表格中字母m的值及扇形统计图中“教辅类”所对应的圆心角a的度数;(2)该校2014年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本?5.(10分)将如图所示的版面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上(“A”看做是“1”)。
《概率论与数理统计》模拟试卷
《概率论与数理统计》模拟试卷一、填空题1.三只考签由三个学生轮流放回抽取一次,每次取一只,设i A 表示第i 只考签被抽到(1,2,3)i =,则“至少有一只考签没有..被抽到〞这一事件可表示为 . 2.设()0.4P A =,()0.3P B =,()0.6P A B =,则()P AB = .3.一袋中装有10个球,其中3个黑球,7个白球,先后两次不放回从袋中各取一球,则第二次取到的是黑球的概率为 .4.随机变量X 的分布函数为0,0()0.4,011,1x F x x x <⎧⎪=≤<⎨⎪≥⎩,则{1}P X == .5.设随机变量~(,25)X N μ,且{5}0.5P X >=,则μ= .6.设随机变量X 的概率密度函数为,01()0,Ax x f x <<⎧=⎨⎩其它,则常数A = .7.设随机变量X 服从参数为,n p 的二项分布,且16n =,()4D X =,则p = . 8.设二维随机变量(,)X Y 的分布律为则{}P X Y == .9.设随机变量X 服从参数为1的泊松分布,则2{()}P X E X == .10.设随机变量~(1,1),~(1,1)X N Y N -,且X 与Y 相互独立,则2[()]E X Y -= . 11.()1D X =,()9D Y =,0.5XY ρ=,则(321)D X Y -+= .12.设X 和Y 的方差DX 和DY 都存在,且满足()()D X Y D X Y +=-,则X 与Y 的相关系数XY ρ= .13.设1210,,,X X X 是来自总体(0,1)X N 的简单随机样本,则统计量2221210X X X +++服从自由度n = 的2χ分布.14.设来自总体~(,1)X N μ的容量为16的样本的样本均值 5.11x =,其未知参数μ的置信水平为1α-的置信区间为(4.62,5.60),则α= .15.设正态总体2~(,)X N μσ,其中2,μσ均未知,12,,,n X X X 为来自总体X 的简单随机样本,记11n i i X X n ==∑,221()ni i Q X X ==-∑,则检验假设01:0,:0H H μμ=≠的t 检验方法使用统计量t = .二、计算题1.设随机变量X 的概率密度函数,01()2,120,x x f x x x <<⎧⎪=-≤<⎨⎪⎩其他 ,求⑴{1}P X ≥;⑵分布函数()F x .2.设随机变量X 的概率密度函数1,01()0,X x f x <<⎧=⎨⎩其他,⑴求XY e =的概率密度函数()Y f y ;⑵求Y 的数学期望()E Y .3.设,X Y 的联合概率密度函数为,01,01(,)0,x y x y f x y +<<<<⎧=⎨⎩其他,⑴求X 和Y 的边缘概率密度函数()X f x 和()Y f y ;⑵推断X 与Y 的是否独立?4.将两封信随意投入3个邮筒,设X 和Y 分别表示投入第1和2号邮筒中信的数目,⑴求X 和Y 的联合分布律;⑵求X 与Y 的协方差(,)Cov X Y .5.设总体X 的概率密度函数22,0(;)0,xx f x θθθ⎧<<⎪=⎨⎪⎩其他,其中0θ>为未知参数,n X X X ,,,21 是来自总体X 的样本.⑴求未知参数θ的矩估量量ˆθ;⑵推断所求的估量量ˆθ是否为θ的无偏估量量.6.设总体X 的概率密度函数||1(;)()2x f x e x θθθ-=-∞<<+∞,其中0θ>为未知参数,6,3,1,2,4,7,8,9---为来自总体的X 样本值,求θ的极大似然估量值.参考答案一、填空题1.123A A A 2.0.3 3.0.3 4.0.6 5.56.2 7.0.5 8.0.4 9.12e10.6 11.27 12.0 13.10 14.0.05 15X三、计算以下概率问题1.解:⑴1{1}1{1}10.5P X P X xdx ≥=-<=-=⎰⑵当0x <时,()0F x =; 当01x ≤<时,2()2xx F x xdt ==⎰;当12x ≤<时,211()(2)212xx F x xdx x dx x =+-=--⎰⎰; 当2x ≥时,()1F x =;所以2200,012()21,1221,2x x x F x x x x x <⎧⎪⎪≤<⎪=⎨⎪--≤<⎪⎪≥⎩,.2.解:⑴()1,01,0,x f x <<⎧=⎨⎩其他 (){}{}X Y F y P Y y P e y =≤=≤当0y <时,()0Y F y =; 当0,y ≥时,(){ln }(ln )Y X F y P X y F y =≤=,()()Y Y f y F y '=,于是1,1()0,Y y ey f y ⎧<<⎪=⎨⎪⎩其他⑵1()()1XxE Y E e e dx e ===-⎰3.解:⑴当01x <<时,11()(,)()2X f x f x y dy x y dy x +∞-∞==+=+⎰⎰; 当01y <<时,101()(,)()2Y f y f x y dx x y dx y +∞-∞==+=+⎰⎰; ⑵(,)()()X Y f x y f x f y ≠∴X 与Y 不是相互独立的。
专题20统计概率(理科)解答题20题-备战高考数学冲刺横向强化精练精讲(原卷版)
统计概率(理科)解答题20题1.(2021年全国高考乙卷数学(文)试题)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下: 旧设备9.810.3 10.0 10.29.99.810.0 10.1 10.29.7新设备 10.1 10.4 10.1 10.0 10.1 10.3 10.6 10.5 10.4 10.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21s 和22s .(1)求x ,y ,21s ,22s ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210s s y x +-≥认为有显著提高).2.(2021年全国高考甲卷数学(理)试题)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品 二级品 合计 甲机床 150 50 200 乙机床 120 80 200 合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++ ()2P K k ≥ 0.050 0.0100.001k 3.841 6.635 10.8283.(2016年全国普通高等学校招生统一考试理科数学(新课标3卷精编版))下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:参考数据:719.32i i y ==∑,7140.17i i i t y ==∑,721()0.55ii y y =-=∑7≈2.646.参考公式:相关系数12211()()()(yy)niii n ni ii i t t y y r t t ===--=--∑∑∑回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为:121()()()nii i ni i tt y y b t t ==--=-∑∑,=.a y b t -4.(2021年全国新高考Ⅰ卷数学试题)某学校组织“一带一路”知识竞赛,有A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A 类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.5.(2019年全国统一高考数学试卷(文科)(新课标Ⅲ))为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:P C的估计值为记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()0.70.(1)求乙离子残留百分比直方图中,a b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).6.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.,经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.7.(2020年全国统一高考数学试卷(文科)(新课标Ⅱ))某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,2021)80i i x x =-=∑(,2021)9000i iy y =-=∑(,201))800i i i x y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))ni iiiin ni i x y x x y y y x ===----∑∑∑((((,≈1.414.8.(2021·辽宁大连·高三学业考试)某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:男生女生支持不支持 支持 不支持 方案一 200人 400人 300人 100人 方案二350人250人150人250人假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案二的概率估计值记为0p ,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p ,试比较0p 与 1p 的大小.(结论不要求证明)9.(2019年天津卷)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.10.(2018年全国普通高等学校招生统一考试理数(全国卷II ))下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,,17)建立模型①:ˆ30.413.5yt =-+;根据2010年至2016年的数据(时间变量t 的值依次为1,2,,7)建立模型②:ˆ9917.5yt =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.11.(18年天津卷)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查. (I )应从甲、乙、丙三个部门的员工中分别抽取多少人?(II )若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i )用X 表示抽取的3人中睡眠不足..的员工人数,求随机变量X 的分布列与数学期望; (ii )设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.12.(2017年全国1卷)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布()2,N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)u u σσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)u u σσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸: 9.9510.12 9.969.9610.01 9.929.9810.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,()16162221111160.2121616i i i i s x x x x ==⎛⎫=-=-≈ ⎪⎝⎭∑∑,其中x i 为抽取的第i 个零件的尺寸,1,2,,16i =.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布()2,N μσ,则()–330.9974P Z μσμσ<<+=,160.99740.9592≈0.0080.09≈.13.(16年全国1)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下: 上年度出险次数12 3 4 5≥保费0.85a a1.25a 1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 5≥ 概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值.14.(16年全国2卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. (1)求X 的分布列;(2)若要求()0.5P X n ≤≥,确定n 的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?15.(2021·云南·模拟预测(理))某工厂为了提高某产品的生产质量引进了一条年产量为100万件的生产线.已知该产品的质量以某项指标值k 为衡量标准,为估算其经济效益,该厂先进行了试生产,并从中随机抽取了100件该产品,统计了每个产品的质量指标值k ,并分成以下5组,其统计结果如下表所示: 质量指标值 [)5,6[)6,7[)7,8[)8,9[]9,10频数163040104试利用该样本的频率分布估计总体的概率分布,并解决下列问题:(注:每组数据取区间的中点值)(1)由频率分布表可认为,该产品的质量指标值k 近似地服从正态分布()2,N μσ,其中μ近似为样本平均数x ,σ近似为样本的标准差s ,并已求得0.82s ≈,记X 表示某天从生产线上随机抽取的10件产品中质量指标值k 在区间(]5.42,7.88之外的个数,求()1P X =及X 的数学期望(精确到0.001);(2)已知每个产品的质量指标值k 与利润y (单位:万元)的关系如下表所示()6,7t ∈ 质量指标值k [)5,6[)6,7[)7,8[)8,9[]9,10利润y5t3t2tt25t -假定该厂所生产的该产品都能销售出去,且这一年的总投资为500万元,问:该厂能否在一年之内通过销售该产品收回投资?试说明理由.参考数据:若随机变量()2~,Z N μσ,则()()0.6827,220.9545P Z P Z μσμσμσμσ-<≤+=-<≤+=,()9330.9973,0.81860.1651P Z μσμσ-<≤+=≈.16.(2021·河南·模拟预测(理))如图,某市有南、北两条城市主干道,在出行高峰期,北干道有1N ,2N ,3N ,4N ,四个交通易堵塞路段,它们被堵塞的概率都是13,南干道有1S ,2S ,两个交通易堵塞路段,它们被堵塞的概率分别为12,23.某人在高峰期驾车从城西开往城东,假设以上各路段是否被堵塞互不影响.(1)求北干道的1N ,2N ,3N ,4N 个易堵塞路段至少有一个被堵塞的概率; (2)若南干道被堵塞路段的个数为X ,求X 的分布列及数学期望()E X ;(3)若按照“平均被堵塞路段少的路线是较好的高峰期出行路线”的标准,则从城西开往城东较好的高峰期出行路线是哪一条?请说明理由.17.(2021·黑龙江·哈尔滨市第一中学校高三期末(理))在核酸检测中, “k 合1”混采核酸检测是指:先将k 个人的样本混合在一起进行1次检测,如果这k 个人都没有感染新冠病毒,则检测结果为阴性,得到每人的检测结果都为阴性,检测结束;如果这k 个人中有人感染新冠病毒,则检测结果为阳性,此时需对每人再进行1次检测,得到每人的检测结果,检测结束.(1)现对100人进行核酸检测,假设其中只有2人感染新冠病毒,并假设每次检测结果准确将这100人随机平均分成10组,每组10人,且对每组都采用“10合1”混采核酸检测.如果感染新冠病毒的2人在同一组,求检测的总次数;(2)将这100人随机平均分成20组,每组5人,且对每组都采用“5合1”混采核酸检测.试求两名感染者在同一组的概率.18.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为(01)p p <<,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为()f p ,求()f p 的最大值点0p ;(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ; (ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?19.(2021·广东·模拟预测)2020年9月,中国在第75届联合国大会上承诺,将采取更加有力的政策和措施,力争于2030年之前使二氧化碳的排放达到峰值,努力争取2060年之前实现碳中和(简称“双碳目标”),此举展现了我国应对气候变化的坚定决心,预示着中国经济结构和经济社会运转方式将产生深刻变革,极大促进我国产业链的清洁化和绿色化.新能源汽车、电动汽车是重要的战略新兴产业,对于实现“双碳目标”具有重要的作用为了解某一地区纯电动汽车销售情况,一机构根据统计数据,用最小二乘法得到电汽车销量y (单位:万台)关于x (年份)的线性回归方程为ˆ 4.79459.2yx =-,且销量y 的方差为22545y s =,年份x 的方差为22x s =.(1)求y 与x 的相关系数r ,并据此判断电动汽车销量y 与年份x 的相关性强弱; (2)该机构还调查了该地区90位购车车主的性别与购车种类情况,得到的数据如下表:购买非电动车 购买电动车 总计男性 39 6 45 女性 30 15 45 总计 692190请判断有多大的把握认为购买电动汽车与性别有关;(3)在购买电动汽车的车主中按照性别进行分层抽样抽取7人,再从这7人中随机抽取3人,记这3人中,男性的人数为X ,求X 的分布列和数学期望. 512763525⨯≈②参考公式:(i )线性回归方程:ˆˆˆybx a =+,其中()()()121ˆˆˆ,niii ni i x x y y b ay bx x x ==--==--∑∑ (ii )相关系数:()()()()12211niii nniii i x x y y r x x y y ===--=--∑∑∑ 0.9r >,则可判断y 与x 线性相关较强.(iii )22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++.附表: ()20P K k ≥ 0.10 0.05 0.025 0.010 0.0010k2.7063.841 5.024 6.635 10.82820.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或11都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列; (ii)求4p ,并根据4p 的值解释这种试验方案的合理性.12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟试题(一)参考答案一.单项选择题(每小题2分,共16分)1.设B A ,为两个随机事件,若0)(=AB P ,则下列命题中正确的是( ) (A) A 与B 互不相容 (B) A 与B 独立(C) 0)(0)(==B P A P 或(D) AB 未必是不可能事件解 若AB 为零概率事件,其未必为不可能事件.本题应选D.2.设每次试验失败的概率为p ,则在3次独立重复试验中至少成功一次的概率为( )(A) )1(3p - (B) 3)1(p - (C) 31p - (D) 213)1(p p C -解 所求事件的对立事件为“3次都不成功”,其概率为3p ,故所求概率为31p -.若直接从正面去求较为麻烦.本题应选C.3.若函数)(x f y =是一随机变量ξ的概率密度,则下面说法中一定成立的是( ) (A) )(x f 非负 (B) )(x f 的值域为]1,0[ (C) )(x f 单调非降 (D) )(x f 在),(+∞-∞内连续解 由连续型随机变量概率密度的定义可知,)(x f 是定义在),(+∞-∞上的非负函数,且满足⎰∞+∞-=1d )(x x f ,所以A 一定成立.而其它选项不一定成立.例如服从]21,31[上的均匀分布的随机变量的概率密度⎪⎩⎪⎨⎧≤≤=其他,0,2131,6)(x x f在31=x 与21=x 处不连续,且在这两点的函数值大于1.因而本题应选A. 4.若随机变量X 的概率密度为)( 21)(4)3(2+∞<<-∞=+-x ex f x π,则=Y ( ))1,0(~N(A)23+X (B)23+X (C)23-X (D)23-X 解 X 的数学期望3-=EX ,方差2=DX ,令23+=X Y ,则其服从标准正态分布.故本题应选A.5.若随机变量Y X ,不相关,则下列等式中不成立的是( ) (A) 0),cov(=Y X (B) DY DX Y X D +=+)((C) DY DX DXY ⋅=(D) EY EX EXY ⋅=解 因为0=ρ,故0),cov(=⋅=DY DX Y X ρ,DY DX Y X DY DX Y X D +=++=+),cov(2)(, 但无论如何,都不成立DY DX DXY ⋅=.故本题应选C.6.设样本n X X X ,,,21⋅⋅⋅取自标准正态分布总体X ,又S X ,分别为样本均值及样本标准差,则( ) (A) )1,0(~N X(B) )1,0(~N X n(C))(~212n Xni iχ∑=(D))1(~-n t SX解 )1,0(~nN X ,),0(~n N X n ,)1(~-⋅n t S X n ,只有C 选项成立.本题应选C. 7.样本n X X X ,,,21Λ )3(≥n 取自总体X ,则下列估计量中,( )不是总体期望μ的无偏估计量(A)∑=ni iX1(B) X(C) )46(1.01n X X +(D) 321X X X -+解 由无偏估计量的定义计算可知,∑=ni iX1不是无偏估计量,本题应选A.8.在假设检验中,记0H 为待检假设,则犯第一类错误指的是( ) (A) 0H 成立,经检验接受0H (B) 0H 成立,经检验拒绝0H (C) 0H 不成立,经检验接受0H (D) 0H 不成立,经检验拒绝0H解 弃真错误为第一类错误,本题应选B.二.填空题(每空2分,共14分)1.同时掷三个均匀的硬币,出现三个正面的概率是________,恰好出现一个正面的概率是________. 解81;83. 2.设随机变量X 服从一区间上的均匀分布,且31,3==DX EX ,则X 的概率密度为________. 解 设],[~b a X ,则,3112)( ,322=-==+=a b DX b a EX 解得2=a , 4=b , 所以X 的概率密度为⎪⎩⎪⎨⎧≤≤=.0,42,21)(其他x x f3.设随机变量X 服从参数为2的指数分布,Y 服从参数为4的指数分布,则=+)32(2Y X E ________.解 472])([232)32(222=++=+=+EY EX DX EY EX Y X E . 4.设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式,有≤≥+}6|{|Y X P ________.解 根据切比雪夫不等式,12136),(26)(}6|{|2=++=+≤≥+Y X Cov DY DX Y X D Y X P . 5.假设随机变量X 服从分布)(n t ,则21X 服从分布________(并写出其参数).解 设)(~n t nZY X =,其中)1,0(~N Y ,)(~2n Z χ,且)1(~22χY ,从而)1,(~122n F Y n ZX =. 6.设n X X X ,,,21Λ)1(>n 为来自总体X 的一个样本,对总体方差DX 进行估计时,常用的无偏估计量是________.解 ∑=--=ni i X X n S 122)(11. 三.(本题6分)设1.0)(=A P ,9.0)|(=A B P ,2.0)|(=A B P ,求)|(B A P . 解 由全概率公式可得27.02.09.09.01.0)|()()|()()(=⋅+⋅=+=A B P A P A B P A P B P .31)()|()()()()|(===B P A B P A P B P AB P B A P .四.(本题8分)两台车床加工同样的零件,第一台出现废品的概率为0.03,第二台出现废品的概率为0.02.加工出来的零件放在一起.又知第一台加工的零件数是第二台加工的零件数的2倍.求:(1) 任取一个零件是合格品的概率,(2) 若任取一个零件是废品,它为第二台车床加工的概率.解 设21,A A 分别表示第一台,第二台车床加工的零件的事件.B 表示产品是合格品的事件. (1) 由全概率公式可得973.098.03197.032)|()()|()()(2211≈⋅+⋅=+=A B P A P A B P A P B P . (2) 247.0973.0102.031)()|()()()()|(2222≈-⋅===B P A B P A P B P B A P B A P . 五.(本题14分)袋中有4个球分别标有数字1,2,2,3,从袋中任取一球后,不放回再取一球,分别以Y X ,记第一次,第二次取得球上标有的数字,求:(1) ) ,(Y X 的联合分布; (2) Y X ,的边缘分布; (3) Y X ,是否独立;(4) )(XY E .解 (1) YX 1 2 3 1 061 121 2 61 61 613 121 61(2)41)1(==X P ,21)2(==X P ,41)3(==X P .41)1(==Y P ,21)2(==Y P ,41)3(==Y P .(3)因为)1()1(1610)1,1(===≠===Y P X P Y X P ,故Y X ,不独立. (4)613261226112121316121)(⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅=XY E 612312113⋅⋅+⋅⋅+623=.六.(本题12分)设随机变量X 的密度函数为)( e )(||2+∞<<-∞=-x Ax x f x ,试求:(1) A 的值; (2) )21(≤<-X P ; (3) 2X Y =的密度函数. 解 (1) 因⎰∞+∞-x x f d )(⎰∞+-===0214d e 2A x x A x ,从而41=A ; (2) ⎰⎰⎰---+==≤<-20201221d e 41d e 41d )()21(x x x x x x f X P xx 12e 45e 251----=;(3) 当0≤y 时,0)(=y F Y ;当0≤y 时,)()()()(2y X y P y X P y Y P y F Y ≤≤-=≤=≤=)()(y F y F X X --=,所以,两边关于y 求导可得,.4121412141)(y yy Y e y ye y y e y yf ---⋅=-⋅⋅-⋅⋅= 故Y 的密度函数为⎪⎩⎪⎨⎧>⋅≤=-.0,41,0,0)(y e y y y f yY 七.(本题6分)某商店负责供应某地区1000人商品,某种产品在一段时间内每人需用一件的概率为0.6.假定在这段时间,各人购买与否彼此无关,问商店应预备多少件这种商品,才能以%7.99的概率保证不会脱销?(假定该商品在某一段时间内每人最多买一件).解 设⎩⎨⎧=人购买该种商品第人不购买该种商品第i i X i ,1,,0(1000,,2,1Λ=i ),X 表示购买该种商品的人数,则)6.0,1000(~B X .又设商品预备n 件该种商品,依题意,由中心极限定理可得)240600240600()()(-≤-=-≤-=≤n X P DXEX n DX EX X P n X P997.0)240600(=-Φ≈n .查正态分布表得75.2240600=-n ,解得6436.642≈=n 件.八.(本题10分)一个罐内装有黑球和白球,黑球数与白球数之比为R .(1) 从罐内任取一球,取得黑球的个数X 为总体,即⎩⎨⎧=白球,,黑球,,01X 求总体X 的分布;(2) 从罐内有放回的抽取一个容量为n 的样本n X X X ,,,21Λ,其中有m 个白球,求比数R 的最大似然估计值.解(1) X 1 0 PR R +1 R+11即R R R R R x X P xxx+=⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛+==-1111)(1 )1,0(=x ; (2)nx ni i iR R x XP R L i)1()()(1+∑===∏=,两边取对数,)1ln()(ln R n x R R L i +-∑=,两边再关于R 求导,并令其为0,得011=+-∑R nx i , 从而∑∑-=ii x n xR ˆ,又由样本值知,m n x i-=∑,故估计值为1ˆ-=m n R . 九.(本题14分)对两批同类电子元件的电阻进行测试,各抽6件,测得结果如下(单位:Ω):A 批:0.140,0.138,0.143,0.141,0.144,0.137;B 批:0.135,0.140,0.142,0.136,0.138,0.141. 已知元件电阻服从正态分布,设05.0=α,问:(1) 两批电子元件的电阻的方差是否相等? (2) 两批电子元件的平均电阻是否有显著差异? (2281.2)10(025.0=t ,15.7)5,5(025.0=F )解 (1) 2221122210 σσσσ≠=:,:H H .检验统计量为2221S S F =)5 ,5(~F (在0H 成立时),由05.0=α,查得临界值15.7)5 ,5(025.02/==F F α,15.712/1=-αF . 由样本值算得962.00000078.00000075.0==F ,由于2/2/1ααF F F <<-,故不能拒绝10H ,即认为两批电子元件的电阻的方差相等.(2) 211210 μμμμ==:,:H H . 统计量62221SS YX T +-=)10(~t (在0H 成立时),查表得临界值228.2)10(025.02/==t t α.再由样本值算得148.160000078.00000075.0139.01405.0=+-=T ,因为2/||αt T <,故接收0H .即认为两批电子元件的平均电阻无显著差异.模拟试题(二)参考答案一.单项选择题(每小题2分,共16分)1.设C , ,B A 表示3个事件,则C B A 表示( ) (A) C , ,B A 中有一个发生(B) C , ,B A 中不多于一个发生(C) C , ,B A 都不发生 (D) C , ,B A 中恰有两个发生 解 本题应选C. 2.已知)(,61)|(,31)()(B A P B A P B P A P 则====( ). (A) 187 (B) 1811 (C) 31 (D) 41解 181)|()()(==A B P A P AB P ,187)()()(1)(1)()(=+--=-==AB P B P A P B A P B A P B A P Y Y . 故本题应选A.3.设两个相互独立的随机变量X 与Y 分别服从正态分布)1,0(N 和)1,1(N ,则( )(A) 21}0{=≤+Y X P (B) 21}1{=≤+Y X P (C) 21}0{=≤-Y X P (D) 21}1{=≤-Y X P解 )2,1(~N Y X +,)2,1(~--N Y X ,故本题应选B.4.设X 与Y 为两随机变量,且6.0,1,4===XY DY DX ρ,则=-)23(Y X D ( ) (A) 40 (B) 34 (C) 25.6 (D) 17.6解 2.1),cov(=⋅=DY DX Y X XY ρ,6.25),cov(1249)23(=-+=-Y X DY DX Y X D .故本题应选C.5.若随机变量X 服从参数为λ的泊松分布,则2X 的数学期望是( )(A) λ(B)λ1 (C) 2λ (D) λλ+2 解 222)(λλ+=+=EX DX EX ,本题应选D.6.设n X X X ,,,21Λ是来自于正态总体),(2σμN 的简单随机样本,X 为样本方差,记∑=--=n i i X X n S 122)(111 ∑=-=n i i X X n S 1222)(1 ∑=--=n i i X n S 1223)(11μ ∑=-=n i i X n S 1224)(1μ 则服从自由度为1-n 的t 分布的随机变量是( )(A) 1/1--=n S X t μ(B) 1/2--=n S X t μ(C) 1/3--=n S X t μ(D) 1/4--=n S X t μ解 ),(~2nN X σμ,)1(~)(1122--∑=n t X Xni iσ,再由t 分布的定义知,本题应选B.7.设总体X 均值μ与方差2σ都存在,且均为未知参数,而,,,21ΛX X n X 是该总体的一个样本,X 为样本方差,则总体方差2σ的矩估计量是( )(A) X (B) ∑=-n i i X n 12)(1μ(C) ∑=--n i i X X n 12)(11 (D) ∑=-n i i X X n 12)(1 解 本题应选D.8.在假设检验时,若增大样本容量,则犯两类错误的概率( ) (A) 都增大 (B) 都减小(C) 都不变 (D) 一个增大一个减小 解 本题应选B.二.填空题(每空2分,共14分)1.设10件产品中有4件不合格品,从中任取2件,已知所取2件中有1件是不合格品,则另外1件也是不合格品的概率为________.解 设A 表示两件中有一件不合格品,B 表示两件都是不合格品.则所求的极限为51)()()()()|(===A PB P A P AB P A B P2.设随机变量X 服从)8.0 ,1(B 分布,则X 的分布函数为________.解 X 服从0-1分布,其分布函数为⎪⎩⎪⎨⎧≥<≤<=.11,10,2.0,0,0)(x x x x f3.若随机变量X 服从均值为2,方差为2σ的正态分布,且6.0}40{=<<X P ,则}0{<X P =________.解 2=μ,即其密度函数关于2=x 对称.由对称性知2.026.01}0{=-=<X P . 4.设总体X 服从参数为p 的0-1分布,其中)10(<<p p 未知.现得一样本容量为8的样本值:0,1,0,1,1,0,1,1,则样本均值是________,样本方差是________.解 由定义计算知85=X ;56152=S . 5.设总体X 服从参数为λ的指数分布,现从X 中随机抽取10个样本,根据测得的结果计算知27101=∑=i ix,那么λ的矩估计值为________.解 27101ˆ==Xλ.6.设总体) ,(~2σμN X ,且2σ未知,用样本检验假设00μμ=:H 时,采用的统计量是________. 解 )1(~0--=n t nSX T μ (0H 为真时).三.(本题8分)设有三只外形完全相同的盒子,Ⅰ号盒中装有14个黑球,6个白球;Ⅱ号盒中装有5个黑球,25个白球;Ⅲ号盒中装有8个黑球,42个白球.现在从三个盒子中任取一盒,再从中任取一球,求:(1)取到的球是黑球的概率;(2)若取到的是黑球,它是取自Ⅰ号盒中的概率.解 设321,,A A A 分别表示从第Ⅰ,Ⅱ,Ⅲ号盒中取球,B 表示取到黑球. (1) 由全概公式可得≈⋅+⋅+⋅==∑=5083130531201431)|()()(31i i i A B P A P B P 0.342; (2) 由贝叶斯公式得≈=)()|()()|(111B P A B P A P B A P 0.682.四.(本题6分)设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=其他,,,,002cos 21)(πx x x f , 对X 独立地重复观察4次,用Y 表示观察值大于3π地次数,求2Y 的数学期望. 解 21d 2cos 21)3(3==>⎰πππx x X P ,)21,4(~B Y ,从而 5)(22=+=EY DY EY .五.(本题12分) 设),(Y X 的联合分布律为YX 0 1 2 1 0.1 0.05 0.35 2 0.3 0.1 0.1 问:(1) Y X ,是否独立;(2) 计算)(Y X P =的值;(3) 在2=Y 的条件下X 的条件分布律. 解 (1) 因为)0()1(4.05.02.01.0)0,1(===⋅=≠===Y P X P Y X P , 所以Y X ,不独立; (2) 15.01.005.0)2,2()1,1()(=+===+====Y X P Y X P Y X P ;(3) 9745.035.0)2()2,1()2|1(========Y P Y X P Y X P ,92971)2|2(=-===Y X P .六.(本题12分)设二维随机变量) ,(Y X 的概率密度为⎩⎨⎧≤≤≤=,,0,10,12),(2其他x y y y x f 求:(1) X 的边缘密度函数)(x f X ;(2) )(XY E ; (3) )1(>+Y X P . 解 (1)⎩⎨⎧≤≤⎪⎩⎪⎨⎧=≤≤==⎰⎰∞+∞-.,0,104,0,10,d 12d ),()(302其他其他x xx y y y y x f x f x X(2) 21d 12d )(0310==⎰⎰y xy x XY E x ;(3) ==>+⎰⎰-y y x Y X P x x d 12d )1(1212187.七.(本题6分)一部件包括10部分,每部分的长度是一个随机变量,它们相互独立,且服从同一均匀分布,其数学期望为2mm,均方差为0.05,规定总长度为)1.020(±mm 时产品合格,试求产品合格的概率.解 设i X 表示第i 部分的长度,10,,2,1Λ=i ,X 表示部件的长度.由题意知2=i EX ,0025.0=i DX ,且∑==101i i X X ,20=EX ,025.0=DX .由独立同分布的中心极限定理知,产品为合格品的概率为)025.01.0|025.020(|)1.0|20(|≤-=≤-X P X P4714.01)025.01.0(2=-Φ=. 八.(本题7分)设总体X 具有概率密度为⎪⎩⎪⎨⎧>-=--,,0,0,e )!1()(1其他x x k x f x k k θθ 其中k 为已知正整数,求θ的极大似然估计.解 设n X X X ,,,21Λ是来自总体X 的样本,当0,,,21>n x x x Λ时,似然函数∑-===-=-=∑∏ni ix ni k innkni i xk x f L 1e])!1[()()(111θθθ,两边取对数,∑-+--===-∑ni i ni k ix x k n nk L 111ln )!1ln(ln )(ln θθθ,关于θ求导,并令其为0,得0)(ln 1=∑-==ni i x nkL θθ,从而解得θ的极大似然估计为XkX nkni i=∑==1ˆθ. 九.(本题14分)从某锌矿的东、西两支矿脉中,各抽取样本容量分别为9与8的样本进行测试,得样本含锌平均数及样本方差如下:东支:230.01=x ,1337.021=n s , )9(1=n 西支:269.02=x ,1736.022=n s , )8(2=n 若东、西两支矿脉的含锌量都服从正态分布,问东、西两支矿脉含锌量的平均值是否可以看作一样?)05.0(=α53.4)7 ,8( (025.0=F ,90.4)8 ,7(025.0=F ,) 1315.2)15(0025.0=t解 本题是在未知方差,又没有说明方差是否相等的情况下,要求检验两总体均值是否相等的问题,故首先必须检验方差是否相等,在相等的条件下,检验总体均值是否相等.第一步假设0H :21σ=22σ,统计量2221s s F =~)1,1(21--n n F ,经检验,接受0H :21σ=22σ;第二步假设0H :21μμ=, 统计量2)1()1()11(2122221121-+-+-+-=n n s n s n n n YX T )2(~21-+n n t经检验,接受0H ,即可认为东、西两支矿脉含锌量的平均值相等.(请参见模拟试题(一)第九大题)十.(本题5分) 设总体X 的密度函数为⎪⎩⎪⎨⎧≤≤=,,0,0,3)(23其它θθx x x f其中θ为未知参数,n X X X ,,,21Λ为来自总体X 的样本,证明:X 34是θ的无偏估计量.证明 ⎰∞+∞-===x x xf EX X E X E d )(343434)34(θθθ==⎰033d 334x x ,故X 34是 的无偏估计量.模拟试题(三)参考答案一.填空题(每小题2分,共14分)1.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8180,则该射手的命中率为 .解 设A 表示一次射击中击中目标,依题意,四次都没击中的概率为81801)(4-=A P ,解得31)(=A P ,从而射手的命中率为32)(=A P . 2.若事件A ,B 独立,且p A P =)(,q B P =)(则=+)(B A P . 解 pq p B P A P B P A P B A P +-=-+=1)()()()()(Y .3.设离散型随机变量X 服从参数为λ(0>λ)的泊松分布,已知==)1(X P )2(=X P ,则λ= .解 )2(e 2e)1(2=====--X P X P λλλλ,从而解得2=λ.4.设相互独立的两个随机变量X ,Y 具有同一分布律,且X 的分布律为:X 0 1P 21 21则随机变量},max{Y X Z =的分布律为 . 解 Z 的可能取值为0,1.412121)0()0()0,0()0(=⋅========Y P X P Y X P Z P .43411)1(=-==Z P .5.设随机变量X ,Y 的方差分别为25=DX ,36=DY ,相关系数4.0=XY ρ,则),(Y X Cov = .解 12),cov(=⋅=DY DX Y X XYρ.6.设总体X 的期望值μ和方差2σ都存在,总体方差2σ的无偏估计量是21)(∑=-n i i X X n k ,则=k .解 1-=n n k . 7.设总体),(~2σμN X ,μ未知,检验2020σσ=H :,应选用的统计量是 .解)1(~)(2212--∑=n X Xni iχσ (0H 为真时)二 .单项选择题(每小题2分,共16分)1.6本中文书和4本外文书任意往书架上摆放,则4本外文书放在一起的概率为( ) (A)!10!6!4 (B)107 (C)!10!7!4 (D)104 解 本题应选C.2.若事件B A ,相互独立,则下列正确的是( ) (A) =)|(A B P )|(B A P (B) =)|(A B P )(A P (C) )|(B A P )(B P =(D) =)|(B A P )(1A P -解 由独立性的定义知,==)()|(A P B A P )(1A P -,故本题应选D.3.设随机变量X 服从参数为n ,p 的二项分布,且6.1=EX ,28.1=DX ,则n ,p 的值为( ) (A) n =8,p =2.0 (B) n =4,p =4.0 (C) n =5,p =32.0(D) n =6,p =3.0解 由6.1=np ,28.1)1(=-p np ,解得n =8,p =2.0,本题应选A.4.设随机变量X 服从正态分布)1,2(N ,其概率密度函数为)(x f ,分布函数为)(x F ,则有( ) (A) =≥)0(X P =≤)0(X P5.0 (B) =≥)2(X P =≤)2(X P 5.0 (C) )(x f =)(x f -,),(∞+-∞∈x (D) =-)(x F -1)(x F , ),(∞+-∞∈x解 2=EX ,故其密度函数关于2=x 对称,故本题应选B.5.如果随机变量X 与Y 满足:)(Y X D +)(Y X D -=,则下列式子正确的是( ) (A) X 与Y 相互独立 (B) X 与Y 不相关 (C) 0=DY(D) 0=⋅DY DX解 由)(Y X D +)(Y X D -=,可得0),cov(=Y X ,从而可知X 与Y 不相关,故本题应选B.6.设n X X X ,,,21Λ是来自总体),(~2σμN X 的样本,X 为样本均值,令=Y 212)(σ∑=-ni iX X,则~Y ( )(A) )1(2-n χ (B) )(2n χ (C) ),(2σμN (D)),(2nN σμ解 本题应选A.7.设n X X X ,,,21Λ是取自总体),0(2σN 的样本,可以作为2σ的无偏估计量的统计量是( )(A) ∑=n i i X n 121 (B) ∑=-n i i X n 1211 (C) ∑=n i i X n 11 (D)∑=-ni i X n 111 解 由无偏估计的定义及期望的性质知,2221212)(1)1(σ==+===∑∑==DX EX DX EX EX n X n E ni i n i i ,故A 选择正确,同理验算其他选项,B,C,D 均不正确.故本题应选A.8.样本n X X X ,,,21Λ来自正态总体),(2σμN ,若进行假设检验,当( )时,一般采用统计量nS X t /0μ-=(A) μ未知,检验2σ=20σ (B) μ已知,检验2σ=20σ (C) 2σ未知,检验 μ=0μ(D) 2σ已知,检验μ=0μ解 本题应选C. 三.(本题8分)有两台车床生产同一型号螺杆,甲车床的产量是乙车床的5.1倍,甲车床的废品率为%2,乙车床的废品率为%1,现随机抽取一根螺杆检查,发现是废品,问该废品是由甲车床生产的概率是多少?解 设21,A A 分别表示螺杆由甲,乙车床生产的事件.B 表示螺杆是废品的事件.由贝叶斯公式可得)|()()|()()|()()|(2211111A B P A P A B P A P A B P A P B A P +=75.001.05202.05302.053=⋅+⋅⋅=. 四.(本题8分)假设一部机器在一天内发生故障的概率为2.0,机器发生故障时全天停止工作.若一周五个工作日里无故障,可获利润10万元,发生一次故障获利润5万元,发生两次故障获利润0万元,发生三次或三次以上故障就要亏损2万元,问一周内期望利润是多少?解 设X 表示一周中所获的利润,其分布律为:X 0 5 10 P 548.08.02.051-⋅⋅- 48.02.05⋅⋅ 58.0从而由期望的定义计算可得216.5=EX .五.(本题12分)1.设随机向量X ,Y 的联合分布为:X Y 1 2 31 0 61 1212 61 61 613 121 61(1) 求X ,Y 的边际分布;(2) 判断X ,Y 是否独立. 解 (1) X 的边际分布为: Y 的边际分布为:X 1 2 3 Y 1 2 3P 41 21 41 P 41 21 41(2) X 与Y 不相互独立.2.设随机变量),(Y X 的联合密度函数为:),(y x f =⎩⎨⎧<<-其他,,,,00e y x y求概率)1(≤+Y X P .解 ==≤+⎰⎰--y x Y X P x xy d e d )1(1210211e2e 1---+.六.(本题8分)设连续型随机变量X 的分布函数为:=)(x F ⎪⎩⎪⎨⎧≤>+-,,,,000e 22x x B A x 求: (1) 系数A 及B ;(2) 随机变量X 的概率密度; (3) )9ln 4ln (≤≤X P .解 (1) 由分布函数的性质知1)e(lim )(22==+=+∞-+∞→A B A F x x ,)0(0)e(lim )(lim 202F B A B A x F x x x ==+=+=-→→++,从而1-=B ;(2) 分布函数的导数即为其概率密度,即)(x f =⎪⎩⎪⎨⎧≤>-000e 22x x x x ,,,(3) 61)4ln ()9ln ()9ln 4ln (=-=≤≤F F X P . 七.(本题8分)设n X X X ,,,21Λ为总体X 的一个样本,X 的概率密度为:)(x f =⎪⎩⎪⎨⎧≤≤-其他,,,,0101x x θθ其中0>θ,求未知参数θ的矩估计量与极大似然估计量.解 令X x x EX =+==⎰1d 10θθθθ,从而解得θ的矩估计量为2)1(XX -=θ). 极大似然估计为:∑∑==+=ni ini iXX n 11ln ln θ).(具体做法类似与模拟试卷二第八题)八.(本题10分)设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为5.66分,标准差为15分,问在显著水平05.0下,是否可认为全体考生的平均成绩为70分?解 假设0H :70=μ,选取统计量ns X T /μ-=)1(~-n t , (0H 为真时)在05.0=α下,查t 分布的双侧临界值表知0301.2025.0=t . 另一方面,计算统计量的值0301.24.136/15705.66||<=-=T ,从而接受原假设,即可认为全体考生的平均成绩为70分.九.(本题12分)两家银行分别对21个储户和16个储户的年存款余额进行抽样调查,测得其平均年存款余额分别为x =2600元和y =2700元,样本标准差相应地为811=S 元和1052=S 元,假设年存款余额服从正态分布,试比较两家银行的储户的平均年存款余额有无显著差异?(10.0=α)解 此题要求检验21μμ=,由于t 检验必须在方差相等的条件下进行,因此必须先检验21σ与22σ是否相等.第一步假设0H :21σ=22σ,统计量2221s s F =~)1,1(21--n n F ,经检验,接受0H :21σ=22σ;第二步假设0H :21μμ=, 统计量2)1()1()11(2122221121-+-+-+-=n n s n s n n n YX T )2(~21-+n n t经检验,拒绝0H ,即两家银行的储户的平均年存款余额有显著差异.(请参见模拟试题(一)第九大题)十.(本题4分)设总体X 服从参数为λ的泊松分布,λ为未知参数,⎩⎨⎧-=为偶数,,为奇数,,X X X T 11)(证明:)(X T 是λ2-e的一个无偏估计量.证明 ∑∞===0)()()]([x x X P x T TX T E∑∞=-=0!)(x xex x T λλ=-=∑∞=-0!)1(n nne n λλλ2-e ,所以)(X T 是λ2-e的一个无偏估计量.模拟试题(四)参考答案一.填空题(每小题2分,共20分)1.设)(A P =0.4,)(B P =0.5.若,7.0)(=B A P 则=+)(B A P . 解 55.0)|()()()()(=-+=+B A P B P B P A P B A P2.若随机变量X 服从二项分布,即)1.0,5(~B X ,则=-)21(X D .解 8.19.01.0544)21(=⋅⋅⋅==-DX X D . 3.三次独立重复射击中,若至少有一次击中的概率为6437,则每次击中的概率为 . 解43. 4.设随机变量X 的概率密度是:⎩⎨⎧<<=,,0,10,3)(2其他x x x f 且,784.0)(=≥a X P 则=a .解 由784.0)(=≥a X P 知,10<<α.故,784.01d 3)(132⎰=-==≥ααx x a X P 从而6.0=α. 5.利用正态分布的结论,有:=+-⎰∞+∞---x x x x d e )44(212)2(22π .解 令t x =-2,则原式1)(d e212222=+==⎰∞+∞--EX DX t t t π,这里)1,0(~N X .6.设总体X 的密度函数为:⎩⎨⎧<<=-,,0,10,)(1其他x x x f αα)0(>αα为参数其中,n x x x ,,,21Λ是来自总体X 的样本观测值,则样本的似然函数=);,,,(21αn x x x L Λ .解 ∏=-ni i nx 11αα.7.设X ,Y 是二维随机向量,DX ,DY 都不为零,若有常数0>a 与b 使1)(=+-=b aX Y P ,这时X 与Y 是 关系.解 完全相关.8.若),(~2σμN X ,n X X X ,,,21Λ是来自总体X 的样本,2,S X 分别为样本均值和方差,则SnX )(μ-服从 分布.解 )1(-n t .9.设),(~211σμN X ,),(~222σμN Y ,X 与Y 相互独立.从X ,Y 中分别抽取容量为21,n n 的样本,样本均值分别为Y X ,,则Y X -服从分布 .解 ),(22212121n n N σσμμ+-.10.设随机变量X 和Y 的相关系数为0.9,若4.0-=X Z ,则Y 与Z 的相关系数为____________. 解 9.0),cov()4.0,cov(),cov(==-=X Y X Y Z Y . 二.单项选择题(每小题2分,共12分)1. 设随机变量X 的数学期望EX 与2σ=DX 均存在,由切比雪夫不等式估计概率}4{σ<-EX X P 为( )(A) 161≥(B) 161≤(C) 1615≥(D) 1615≤解 本题应选C.2.B A ,为随机随机事件,且A B ⊂,则下列式子正确的是( ). (A) )()(A P B A P =Y(B) )()()(A P B P A B P -=-(C) )()(A P AB P = (D) )()(B P A B P =解 本题应选A.3. 设随机变量X 的密度函数为⎩⎨⎧≤≤+=其他,,,,010)(x B Ax x f 且127=EX ,则( ).(A) 5.0,1-==B A(B) 1,5.0=-=B A(C) 1,5.0==B A (D) 5.0,1==B A 解 令1d )(10=+⎰x B Ax ,127d )(1=+⎰x x B Ax ,解得5.0,1==B A ,故本题应选D. 4.若随机变量X 与Y 不相关,则有( ). (A) )(9)()3(Y D X D Y X D -=- (B) )()()(Y D X D XY D ⨯= (C) 0)]}()][({[=--Y E Y X E X E(D) 1)(=+=b aX Y P 解 本题应选C.5.已知随机变量),(~21n n F F ,且αα=>)},({21n n F F P ,则=-),(211n n F α( ).(A) ),(121n n F α(B)),(1121n n F α-(C)),(112n n F α(D) ),(1211n n F α-解6.将一枚硬币独立地掷两次,记事件:=1A {掷第一次出现正面},=2A {掷第二次出现正面},=3A {正、反面各出现一次},=4A {正面出现两次},则事件( ).(A) 321,,A A A 相互独立 (B) 432,,A A A 相互独立 (C) 321,,A A A 两两独立(D) 432,,A A A 两两独立解 21)(1=A P ,21)(2=A P ,21)(3=A P ,41)(4=A P ,再由事件独立的充分必要条件可知321,,A A A 两两独立,本题应选C.三.计算题(每小题8分,共48分)1.某厂由甲,乙,丙三个车间生产同一种产品,它们的产量之比为3:2:1,各车间产品的不合格率依次为8%,9%,12%.现从该厂产品中任意抽取一件,求:(1) 取到不合格产品的概率;(2) 若取到的是不合格品,求它是由甲厂生产的概率. 解 (1) 运用全概率公式, 0.09;(2) 运用贝叶斯公式, 0.44.(具体做法参见模拟试卷(一)第四题)2.一实习生用一台机器接连独立地制造三个同样的零件,第i 个零件是不合格品的概率为)3,2,1(11=+=i ip i ,以X 表示三个零件中合格品的个数,求:(1) X 的概率分布; (2) X 的方差DX .解 (1)12234132411241=⋅+⋅+=EX , (2)2741924114412=⋅+⋅+=EX ,故521.0)(22=-=EX EX DX . 3.设总体X ),0(~2σN ,2σ为未知参数,n x x x ,,,21Λ是来自总体X 的一组样本值,求2σ的最大似然估计.解 似然函数21221222222e )21(e)21()(σσσπσπσ∑=∑===--ni i ni i x n x nL ,两边取对数212222ln 22ln 4)(ln σσπσ∑---==ni ix nn L ,关于2σ求导,并令其为零,得0)(21222122=∑+⋅-=σσni ix n , 从而解得极大似然估计量为∑==n i i x n 1221ˆσ. 4.二维随机变量(X ,Y )的联合概率密度:⎩⎨⎧>>=+-其它,,,,00,0e 2),()2(y x y x f y x求: (1) X 与Y 之间是否相互独立,判断X 与Y 是否线性相关;(2) )1(≤+X Y P . 解 (1) ⎪⎩⎪⎨⎧≤>==⎰⎰∞++-∞+∞-0,0,0,d e 2d ),()(0)2(x x y y y x f x f y x X3⎩⎨⎧≤>=-.0,0,0,e x x x 同理 ⎩⎨⎧≤>=-.0,0,0,e )(2y y y f y Y 从而)()(),(y f x f y x f Y X =, 故X 与Y 相互独立,因而X 与Y 一定不相关.(2) =≤+)1(X Y P =⎰⎰-+-y x x y x d 2e d 10)2(1021)e 1(--.5.某人乘车或步行上班,他等车的时间X (单位:分钟)服从参数为51的指数分布,如果等车时间超过10分钟他就步行上班.若此人一周上班5次,以Y 表示他一周步行上班的次数.求Y 的概率分布;并求他一周内至少有一次步行上班的概率.解 此人每天等车时间超过10分钟也即步行上班的概率为210e d e 51)10(--∞+==>⎰x X P s x. 故)e ,5(~2-B Y . 52)e 1(1)1(---=≥Y P .6.设随机变量X 的概率密度为⎪⎩⎪⎨⎧∈⋅=其他,,,,0]8,1[31)(32x x x f )(x F 是X 的分布函数.求随机变量)(X F Y =的概率分布.解 ⎪⎪⎩⎪⎪⎨⎧>≤<-≤=.8,1,81,1,1,0)(31x x x x x F(3) 当0<y 时,0)()(=≤=y Y P y F Y ;当10<≤y 时, ))1(()1()()(331+≤=≤-=≤=y X P y X P y Y P y F Yy y F X =+=))1((3;当1≥y 时,1)()(=≤=y Y P y F Y .故对)(y F Y 求导可得Y 的概率密度,⎩⎨⎧<<=其它,,,,0101)(y y f Y 即]10[~,U Y 四.应用题(第1题7分、第2题8分,共15分)1.假设对目标独立地发射400发炮弹,已知每一发炮弹的命中率等于0.2,用中心极限定理计算命中60发到100发之间的概率.解 设⎩⎨⎧=发炮弹命中第发炮弹没有命中第i i X i ,1,,0 (400,,2,1Λ=i ),则 ∑==4001i i X X )2.0,400(~B表示400发炮弹命中的发数,且80=EX ,64=DX ,故由中心极限定理知,)6420|6480(|)20|80(|)10060(<-=<-=<<X P X P X P9876.01)820(2=-Φ=. 2.某厂生产铜丝,生产一向稳定.现从该厂产品中随机抽出10段检查其折断力,测后经计算:5.160)(,5.28712=-=∑=n i i x x x .假定铜丝折断力服从正态分布,问是否可以相信该厂生产的铜丝的折断力方差为16?(1.0=α)解 16162120≠=σσ:,:H H .采用统计量 2221S n σχ-=,在0H 成立时,)9(~22χχ.由1.0=α,查得临界值 325.3)9(295.022/1==-χχα, 919.16)9(205.022/==χχα, 由样本值算得03.10165.1602≈=χ,由于22/222/1ααχχχ<<-,所以不拒绝0H ,即该厂生产的铜丝的折断力方差为16. 五.证明题(5分)若随机变量X 的密度函数)(x f ,对任意的R x ∈,满足:)()(x f x f -=,)(x F 是其分布函数.证明:对任意实数a ,有⎰-=-a x x f a F 0d )(21)(. 证明 ⎰⎰⎰-∞--∞-+==-a ax x f x x f x x f a F 00d )(d )(d )()(⎰-+=a x x f 0d )(21 (令x t -=) ⎰⎰⎰-=-=--=a a a x x f t t f t t f 000d )(21d )(21d )(21.。