九年级数学一元二次函数教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新九年级数学一元二
次函数教案
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
个性化教学辅导
纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根. (5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的
交点,由方程组
c
bx ax y n kx y ++=+=2
的解的数目来确定:①方程组有两组不同的解
时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.
(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为
()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故
a
c
x x a b x x =
⋅-=+2121,()()a a ac b a c a b x x x x x x x x AB ∆=-=-⎪⎭
⎫
⎝⎛-=--=-=-=44422
212
212
2121
课 后 作
业 1.抛物线y =x 2+2x -2的顶点坐标是 ( )
A.(2,-2)
B.(1,-2)
C.(1,-3)
D.(-1,-3) 2.已知二次函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( )
A.ab >0,c >0 B.ab >0,c <0 C.ab <0,c >0 D.ab <0,c <0
C
A E
F B
D
第2,3题图 第4题图
3.二次函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( ) A .a >0,b <0,c >0 B .a <0,b <0,c >0 C .a <0,b >0,c <0 D .a <0,b >0,c >0
第9题
8.有一个运算装置,当输入值为x 时,其输出值为y ,且y 是x 的二次函数,已知输入值为2-,0,1时, 相应的输出值分别为5,3-,4-. (1)求此二次函数的解析式;
(2)在所给的坐标系中画出这个二次函数的图象,并根据图象写出当输出值y 为正数时输入值x 的取值范围.
9.某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成下图.请根据图象回答:
⑴第一天中,在什么时间范围内这头骆驼的体温是上升的它的体温从最低上升到最高需要多少时间
⑵第三天12时这头骆驼的体温是多少?
⑶兴趣小组又在研究中发现,图中10时到22时的曲线是抛物线,求该抛物线的解析式.
2与x轴的一个交点为A(-1,0).
12.已知:抛物线t
=4
+
y+
ax
ax
(1)求抛物线与x轴的另一个交点B的坐标;
(2)D是抛物线与y轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD的面积为9,求此抛物线的解析式;
(3)E是第二象限内到x轴、y轴的距离的比为5∶2的点,如果点E在(2)中的抛物线上,且它与点A在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P,使△APE的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.
.
14.卢浦大桥拱形可以近似看作抛物线的一部分.在大桥截面1∶11000的比例图上,跨
度AB=5 cm,拱高OC=0.9 cm,线段DE表示大桥拱内桥长,DE∥AB,如图
(1).在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1 cm作为数轴的单位长度,建立平面直角坐标系,如图(2).
(1)求出图(2)上以这一部分抛物线为图象的函数解析式,写出函数定义域;
(2)如果DE与AB的距离OM=0.45 cm,求卢浦大桥拱内实际桥长(备用数据:
2 ,计算结果精确到1米).
4.1
15.已知在平面直角坐标系内,O 为坐标原点,A 、B 是x 轴正半轴上的两点,点A 在点B 的左侧,如图.二次函数c bx ax y ++=2(a ≠0)的图象经过点A 、B ,与y 轴相交于点C .
(1)a 、c 的符号之间有何关系?
(2)如果线段OC 的长度是线段OA 、OB 长度的比例中项,试证
a 、c 互为倒数;
(3)在(2)的条件下,如果b =-4,34=AB ,求a 、c 的值.
16.如图,直线33
3+-=x y 分别与x 轴、y 轴交于点A 、B ,⊙E 经过原点O 及A 、B 两点. (1)C 是⊙E 上一点,连结BC 交OA 于点D ,若∠COD =∠CBO ,求点A 、B 、C 的坐标;
(2)求经过O 、C 、A 三点的抛物线的解析式:
(3)若延长BC 到P ,使DP =2,连结AP ,试判断直线PA 与⊙E 的位置关系,并说明理由.