03解析函数的概念和充分必要条件

合集下载

解析函数

解析函数
2、微分 dz(t) dx(t) idy(t) (x(t) iy(t))dt z(t)dt 。
2、复变复值函数的导数与微分
定 义 3 : 设 复 变 函 数 w f (z) 在 区 域 E 内 有 定 义 ,
z0, z0 z E ,如果极限
lim f (z0 z) f (z0 )
结论:所有多项式函数在整个复平面内是解析的,任何 一个有理分式函数 P(z) 在不含分母为零的点的区域内是解析
Q(z)
函数。
2.孤立奇点
定义 5:若函数 f (z) 在 z0 处不解析,但在 z0 的任一邻域内
都有 f (z) 的解析点,则 z0 称为 f (z) 的奇点。
若函数 f (z) 在点 z0 处不解析,而在 z0 的某一去心邻域内
t 0
t
t
即: z(t0 ) x(t0 ) iy(t0 ) ,
(B)实变复值函数可导必连续。连续不一定可导。
定义 2:如果实变复值函数 z(t) 在区间 I 处每 z(t) x(t) iy(t)。 注 1、四则运算由定义 2 推。
2) f (z) 2x3 i3y3 ,这个函数只在直线 2x 3y 0 上可
导,从而在 z 平面上处处不解析。
例 7:设函数 f (z) my3 nx2 y i(x3 lxy2 ) 。
问常数 m, n,l 取何值时, f (z) 在复平面内处处解析? 当 m 1,n l 3 时,此函数在复平面内处处解析。
即 (z2 ) 2z, 类似可得(zn ) nzn1.
注:a.定义中 z 0 方式是任意的。 b.连续函数不一定可导;但是容易证明:可导必连续。 在复变函数中,处处连续又处处不可导的函数几乎随手 可得,如 f (z) z ,而在实变函数中,要造一个这种函数却不 是一件容易的事情。 例 2:讨论函数 f (z) | z |2 和 f (x) | x |2 的可导性。可得 f (z) | z |2 只在 z0 0 处可导,而在其它点处都不可导。f (x) | x |2 处处可导。 可以证明: f (z) 可导与可微是等价的。

第二章 解析函数

第二章 解析函数

在z0解析,若f (z)在区域D内每一点解析,则称f (z)在D
内解析,则称f (z)是D内的一个解析函数(全纯函数或 正则函数)。 如f (z)在 z0不解析, 则称z0为f (z)的奇点。
§1 解析函数的概念
f (z)在 z0解析
函数f (z)在z0的邻域内可导
f (z)在 z0解析 函数f (z)在z0可导 二元函数的微分 [例 ] 的解析性
§3 初等函数 3 乘幂ab与幂函数 [例 ] 求 、 和 的值。
幂函数:
形如:zb=ebLnz(z≠0,b为ቤተ መጻሕፍቲ ባይዱ意复常数)
的函数成为幂函数。
§3 初等函数 4 三角函数和双曲函数
性质:
§3 初等函数 4 三角函数和双曲函数 性质:
§3 初等函数 4 三角函数和双曲函数
[例] 计算sin(3+4i) ,cosi,sin6i
|sinz|1和|cosz|1在复数范围内不再成立。 [例] 求方程cosz=0的解。
§3 初等函数 4 三角函数和双曲函数
[例] 求方程sinz+cosz=0的解。
其它复变数三角函数:
§3 初等函数 4 三角函数和双曲函数 双曲函数
性质:
§3 初等函数 4 反三角函数和反双曲函数 设z=cosw,则称w为z的反余弦函数,记作: w=Arccosz
ii) f’(z) =f(z); iii) 当Im(z)=0时, f(z) =ex, 其中x=Re(z)。
§3 初等函数 1 指数函数
为整数)
加法定理
§3 初等函数 2 对数函数
主值
[例] 求Ln1, Ln(-2) 以及它们相应的主值。
§3 初等函数 1 指数函数 总结:

解析函数的概念

解析函数的概念

第二章 解析函数解析函数是本课程讨论的中心,是复变函数研究的主要对象.它在理论和实际中有着广泛的应用.本章在先学习复变函数概念的基础上,讨论解析函数.学习函数解析的的一个充要条件,以及如何用实部、虚部所具有的微分性质表达函数的解析.学习常用的初等复变函数.§2.1 解析函数的概念教学目的:1.理解并掌握复变函数可微和解析的定义,以及复变函数在一点和闭区域上解析的含义;能正确判断所给函数在一点或在一个区间上的可导性与解析性.2.能理解并掌握复变函数可微、解析与实、虚部两个二 元实函数的关系(C —R 条件);正确运用解析的充要条 件判断函数的解析性.3.熟练掌握几类初等单值解析函数,并了解几类典型的 初等多值解析函数.重难点:证明函数的可导性与解析性;掌握函数可导与解析的联系 与区别.教学方法:启发式讲授与指导练习相结合教学过程:§2.1.1 复变函数的导数解析函数是复变函数论的主要研究对象, 它是一类具有某种特性的可微函数.首先, 我们类似于实函数的导数引进复变函数的导数.【定义2.1】设)(z f w =在某0()U z 内有定义,记0z z z -=∆且对 00()z z z ∀+∆∈,)()(0z f z f w -=∆)()(00z f z z f -∆+=, 如果z w z ∆∆→∆0lim00)()(lim 0z z z f z f z z --=→(A =≠∞的常数)存在 (即对0ε∀>, 0δ∃>,..s t 当D z ∈且0z z δ-<时, 总有 ε<---A z z z f z f 00)()(), 则称)(z f 在0z 可导或可微(其中D 为)(z f 的定义域).A 称为)(z f 在0z 的导数, 记为)(0z f A '=或0|z z dw A dz ==,即 A =zw z f z ∆∆='→∆00lim )(00)()(lim 0z z z f z f z z --=→. 如果z w z ∆∆→∆0lim 00)()(lim 0z z z f z f z z --=→不存在, 则称)(z f 在0z 不可导或不可微.如果)(z f 在区域D 内每一点都可微, 则称)(z f 在D 内可微.注:10. 由于复变函数导数的定义与实函数导数的定义形式一致,容易验证, 实函数求导的基本公式大多可不加更改地移植到复变函数上来.20.由定义2.1易得, 若函数)(z f 在0z 可导, 则)(z f 在0z 连续(即连续是可导的必要条件) .例1 讨论z z f =)(在z 平面上的可导性.解 在复平面上任取一点z ,由于当0→∆z 时,zz z z f z z f ∆∆=∆-∆+)()(的 极限不存在, 所以 z z f =)(在点z 不可导.再由z 的任意性, z z f =)(在z 平面上处处不可导.(注意z zz z f z z f ∆∆=∆-∆+)()(的极限不存在图2 .1)例2 证明 函数2()f z z =在 0z =点可导,且导数等于0. 证明 由于 0000()()()(0)lim lim 0z z z f z f z f z f z z z →→--=--200lim lim 0z z zz z →→===,故函数2()f z z =在 0z =点可导,且导数等于0.例3 设()Re f z z =,证明 ()f z 在全平面处处不可导. 证明 因为对平面上任意一点0z ,000000()()Re Re Re()f z f z z z zz z z z z z z ---==---,考虑当z 沿直线0Im Im z z =趋于0z 时00000000Im Im Im Im ()()Re()lim lim 1z z z z z z z z z z f z f z z z z z z z →→∈=∈=--==-- 考虑当z 沿直线0Re Re z z =趋于0z 时00000000Re Re Re Re ()()Re()lim lim 0z z z z z z z z z z f z f z z z z z z z →→∈=∈=--==-- ;所以当0z z →时,极限000Re()limz z z z z z →--不存在, 即()f z 在0z 没有导数. 由0z 的任意性知函数()f z 在全平面处处不可导.例4 证明: 函数nz z f =)(在z 平面上处处可导, 且 1)(-='n n nz z (n 为正整数) .证明 在z 平面任取一点z , 因为()()()n nf z z f z z z z z z+∆-+∆-=∆∆121(1)2n n n n n nz z z z ----=+∆++∆ 所以 0lim →∆z 1)()(-=∆-∆+n nz z z f z z f , 即n z z f =)(在点z 可 导,且1)(-='n n nz z . 由点z 的任意性知, 结论成立.练习:试说明函数 224(),0()0,0xy x iy z f z x y z ⎧+≠⎪=+⎨⎪=⎩在原点不可导.提示: 22224200()(0)lim lim 01y y x ky x kyf z f xy k z x y k →→==-==-++ 则()f z 在原点的导数随k 而变化,故结论成立.§2.1.2 解析函数的概念与求导法则1.【定义2.2】如果)(z f 在点0z 的某邻域内处处可导, 则称)(z f 在点0z 解析;如果)(z f 在区域D 内可微(即)(z f 在D 内每一点都可导), 则称)(z f 在区域D 解析; 如果)(z f 在区域G 内解析, 而闭区域G D ⊂,则称)(z f 在闭区域D 上解析.如果)(z f 在0z 处 不解析,则称0z 为)(z f 的奇点.(如图2 .2)说明: 由定义2.2知,10.函数解析一定是与相关区域联系在一起的.即函数在一点解 析不是函数在该孤立点的性质. 函数在一点可导与在一点解析不等价;指函数在此点的某邻域内可导;20. 函数在一个区域D 内解析有时也称此函数为区域D 上的全纯函数或正则函数.函数在区域D 内解析等价于函数在区域D 内处处可导(即在区域D 内每一点都解析).函数在某闭区域上解析是指函数在包含此闭区域的更大的区域内解析.2.类似于实函数的求导法则, 关于解析函数我们有如下法则:1) 四则运算:如果)(z f , )(z g 都在区域D 内解析, 则他们的和、 差、乘积以及商(商的情形要求分母函数不为零)在区域D 内仍解析, 并且 [()()]()()f z g z f z g z '''±=± ;[()()]()()()f z g z f z g z f z g z'''⋅=+⋅;2()()()()()[](()0)()()f z f z g z f z g z g z g z g z ''⋅-⋅'=≠.另:(1)常数的导数为零.(2)()1n n z nz -'=(n 为正整数);(3)[()]()kf z kf z ''=(k 为常数).(4)多项式函数n n n a z a za z P +++=- 110)(在z 平面上解析, 且12110)1()(---++-+='n n n a za n z na z p (5)而有理函数m m n nb z b a z a z R ++++=00)(在z 平面上使分母不为零点处处都是解析的. 2) 复合函数求导法则:设()f z ξ=在z 平面上的区域D 内解析, ()w g ξ=在ξ平面上的区域G 内解析, 并且()f D G ⊂, 则复合 函数[()]w g f z =在区域D 内也解析, 并且{[()]}()()[()]()g f z g f z g f z f z ξ'''''=⋅=⋅.3) 反函数求导法则:设函数()w f z =在区域D 内为解析函数且 ()0f z '≠,又反函数1()()z f w w ϕ-==存在且连续,则 ()11()|()(())z w w f z f w ϕϕϕ='==''. 提问:1.设41()(1)4f z z i z =-+,则方程 ()0f z '=的全部解为 . 答案: 32244(1)0sin )33k k z i z i ππππ++-+=⇒==+(其中 0,1,2)k =2.若0z 是函数 ()f z 的奇点,则()f z 在点0z 不可导.( × )3.若0z 是函数 ()f z 的解析点,则()f z 在点0z 可导. ( √ )4.0()f z '存在,则()f z 在点0z 解析. ( × ) 例5 设212)23()(+-=z zz f , 由上述法则知, 2202()21(32)(32)f z z z z z ''=-+-+22021(32)(61)z z z =-+-.例6 求函数 5223()41z z f z z -+=+的解析性区域以及在该区域上的导数.解 设52()23,()41P z z z Q z z =-+=+,则P(z) , Q(z)在全平面上 解析,再由商的求导法则知()0Q z ≠时, ()()()P z f z Q z =在平面上解析,由()0Q z =得2i z =±;故函数)(z f 的解析区域是全平面除点2i z =±外的区域.且由商式求导公式得4222246104241()(41)z z z z f z z ++--'=+. §2.1.3 解析函数的一个充要条件(柯西—黎曼条件)与判别从形式上,复变函数的导数及其运算法则与实函数几乎没有什么差别,但实质上它们之间存在很大的的差异.下面,我们来研究复变函数的可微和解析与其实部、虚部两个二元实函数之间的关系.【定理2. 1】(可微的充要条件)设),(),()(y x iv y x u z f +=定义在区域D 上,则)(z f 在点D iy x z ∈+=可微(可导)的充要条 件是 :(1) ),(),,(y x v v x u 在点iy x z +=可微;(2) ),(),,(y x v v x u 在点iy x z +=满足x v y u y v x u ∂∂-=∂∂∂∂=∂∂, ( 柯西—黎曼条件也称为C R -方程 ).证明 必要性:若 )(z f 在点D iy x z ∈+=可微记ib a z f +=')(,v i u w ∆+∆=∆, y i x z ∆+∆=∆, 其中 (,)(,)u u x x y y u x y ∆=+∆+∆-,(,)(,)v v x x y y v x y ∆=+∆+∆-由导数的定义知()()()()()w f z z o z a ib x i y o z '∆=∆+∆=+∆+∆+∆()0()(0)a x b y i b x a y z z =∆-∆+∆+∆+∆∆→比较上式两边的实部、虚部得 ),(),(y x u y y x x u u -∆+∆+=∆y b x a ∆-∆=()o z +∆)(0z ∆→)),(),(y x v y y x x v v -∆+∆+=∆)()b x a y o z =∆+∆+∆(0z ∆→)再由实函数中二元实函数可微的定义知, ),(),,(y x v v x u 在点iy x z +=可微, 且xv b y u y v a x u ∂∂-=-=∂∂∂∂==∂∂,. 充分性: 记xv b y u y v a x u ∂∂-=-=∂∂∂∂==∂∂,, 且),(),,(y x v v x u 在点iy x z +=可微,所以 w u i v ∆=∆+∆[()][()]x y x y u x u y o z i v x v y o z ''''=∆+∆+∆+∆+∆+∆ ()()()]x x y y u i v x u i vy o z ''''=+∆++∆+∆ ()()()a b i x b i a y o z=+∆+-+∆+∆ ()()()a b i x i a b i y o z =+∆++∆+∆()()()a b i x i y o z =+∆+∆+∆ ()()f z z o z '=∆+∆. 所以 00()lim lim ()x x o z w a bi f z z z∆→∆→∆∆'=++=∆∆. 说明:10. 定理2.1中条件xv y u y v x u ∂∂-=∂∂∂∂=∂∂,称柯西—黎曼条件或柯西—黎曼方程或C R -方程.20. 由定理2.1的证明知,如果),(),()(y x iv y x u z f +=在 点iy x z +=可微, 则有导数公式 yu i y v x v i x u z f ∂∂-∂∂=∂∂+∂∂=')(. (由C R -方程还可以写出其它形式)30.特别注意:C R -方程是函数可导的必要而非充分条件.例如:函数 2222220(,)(,)00xy x y x y u x y v x y x y ⎧+≠⎪+==⎨⎪+=⎩令 ()(,)(,)f z u x y iv x y =+,则()f z 在点0z =处满足C R -方程即0,0u v u v x y y x∂∂∂∂===-=∂∂∂∂, 但是由于()f z 在点0z =处不连续,所以函数在0z =处不可导. 在实函数中,我们知道由二元实函数具有一阶连续的偏导数可以 推得二元函数可微, 由此可得【推论】※ (可微的充分条件) 设),(),()(y x iv y x u z f +=定义在 区域D 上,则)(z f 在点D iy x z ∈+=可微的充分条件是(1) ),(),,(y x v v x u 在点iy x z +=处具有一阶连续的偏导数;(2) ),(),,(y x v v x u 在点iy x z +=满足C —R 条件.将上述定理1及其推论运用到区域D 的每一点上,可得函数解析的充要条件.【定理2.2】 设),(),()(y x iv y x u z f +=定义在区域D 上,则)(z f 在D 内解析的充要条件是(1) ),(),,(y x v v x u 在D 内处处可微;(2) ),(),,(y x v v x u 在D 内满足C R -方程xv y u y v x u ∂∂-=∂∂∂∂=∂∂,. 【推论】设),(),()(y x iv y x u z f +=定义在区域D 上, 则)(z f 在D 内解析的充分条件是 (1) ),(),,(y x v v x u 在D 内具有一阶连续的偏导数; (2) ),(),,(y x v v x u 在D 内满足C —R 方程. 注: 定理2.2的充分性由推论立即可得, 但必要性的证明需要用到第三章中的解析函数的无穷可微性.例7 讨论下列函数的可导性与解析性.(1)()Re f z z =解: 设iy x z +=, 则有()Re f z z x ==,记 (,)u x y x =, 0),(=y x v . 因1,0u u x y∂∂==∂∂, 0,0=∂∂=∂∂y v x v , 显然它们不满足C —R 条件, 所以 由定理1知, ()Re f z z =在z 平面上处处不可导且处处不解析.(2)2)(zz f =.解: 设iy x z +=, 则有222)(y x zz f +==, 记 22),(y x y x u +=, 0),(=y x v . 因y y u x x u 2,2=∂∂=∂∂, 0,0=∂∂=∂∂yv x v , 显然它们都是连续的.要使C —R 条件满足, 只需0,0==y x 即可,所以 2)(zz f =仅在原点可导, 但在z 平面上处处不解析. (3)()(cos sin )x f z e y i y =+.解:设iy x z +=,),(),()(y x iv y x u z f +=,则有 cos ,sin x xu e y v e y ==因为 cos ,sin x x x y y x u e y v u v e y ''''===-=,且四个偏导数存在且连续,所以 ()f z 在z 平面上处处可导且处处解析且)()(z f z f =' ()(cos sin )()x z u v f z i e y i y e f z x x∂∂'=+=+==∂∂. 注: 满足此例题条件的解析函数称为复指数函数.说明:在讨论具体函数的可导性和解析性时, 可先找出实部和虚部实函数,再验证定理2.2或者推论的条件(1)和(2)得出可导性. 但在回答解析性时一定要慎重, 必须再考虑函数在可导点的邻域内的可导性后才能给出正确的回答.若C —R 方程不成立,则函数一定不可导.用推论有时更方便.提问:5.函数 22()f z x iy =+在点1z i =+处是(B )(A )不可导的. (B) 可导的. (C) 解析的. (D)既不可导也不解析. 解 由C-R 方程可推出在 x y =上()f z 可导,在复平面上处处不 解析.6.若)(z f 在曲线C 上每点不解析,则)(z f 在C 上不可导.( ⨯ )7.若)(z f 在曲线C 上每点可导,则)(z f 在C 上每一点解析.( ⨯ ) 练习:(1)讨论函数iy xz f -=2)(的可微性与解析性. 解 记2),(x y x u =, y y x v -=),(,因0,2=∂∂=∂∂y u x x u , 1,0-=∂∂=∂∂yv x v ,显然它们都是连续的.要使C —R 条件满足, 只需,12-=x 即21-=x , 所以 iy x z f -=2)(仅在直线21-=x 上可导, 但在z 平面上处处不解析.(2) 讨论函数 3232()3(3)f z x xy i y x y =+++的可导性与解析性. 解 记 32(,)3u x y x xy =+, 32(,)3v x y y x y =+, 因 2233,6u u x y xy x y ∂∂=+=∂∂, 226,33,v v xy y x x y∂∂==+∂∂,显然它们都是连续的. 要使C —R 条件满足, 只需0xy = 即()f z 仅在x 轴或y 轴上的点可导, 但在z 平面上处处不解析.例8 求函数 ()f z =Im Re z z z ⋅-在可导点处的导数. 解 ()f z =2Im Re z z z xy x iy ⋅-=-+,则(,)u x y xy x =-,2(,)v x y y =,1,,0,2,u u v v y x y x y x y∂∂∂∂=-===∂∂∂∂四个一阶偏导数连续, 由C —R 方程得01x y =⎧⎨=-⎩ 故函数 ()f z 仅在一点z i =-可导,且导数为()(1)|2z i f i y =-'-=-=-.例9若函数()f z u iv =+在区域D 内解析, 则函数()i f z 也在区域D 内解析.证明 因为()()i f z if z =-, 而()f z 在区域D 内解析, 所以()i f z 也在区域D 内也解析.例10 判断函数 ()f z =232x y i +在何处可导,何处解析,并求 (3),(32)f i f i ''++.解 2(,)u x y x =, 3(,)2v x y y =,22,0,0,6,u u v v x y x y x y∂∂∂∂====∂∂∂∂ 四个一阶偏导数连续,由C —R 方程得23x y =故 函数 ()f z 仅在曲线23x y =上可导,又点3z i =+在此曲线上,所以(3)f i '+存在且(3)f i '+=6,而32z i =+不在曲线上, 所以 (32)f i '+ 不存在.故函数 ()f z 仅在z i =-可导,且()(1)|2z i f i y =-'-=-=-. 例11判断函数 ()f z =322331(3)x xy i x y y -++-在复平面上 的解析性;若解析,试求()f z '.解 32(,)31u x y x xy =-+, 23(,)3v x y x y y =-,2233,6u u x y xy x y ∂∂=-=-∂∂,6v xy x∂=∂,2233v x y y ∂=-∂,四个一阶偏导数连续,由C —R 方程得xv y u y v x u ∂∂-=∂∂∂∂=∂∂,成立, 故函数 ()f z 在复平面上处处解析且()f z '=23z .例12 求实数,a b ,使()f z =2()x y i ax by -++在复平面上解析. 解()()2f x x y i ax by =-++在复平面上处处解析设(),2u x y x y =-,(),v x y ax by =+则2u x ∂=∂ 1u y ∂=-∂ v a x∂=∂ v b y ∂=∂满足C R -条件 u v x y∂∂⇒=∂∂⇒2b = u v y x ∂∂⇒=-∂∂⇒1a = 练习:设3232(,)()f x y my nyx i x xly =+++为解析函数,试确定n m l ,,的值.解:令32(,)u x y my nyx =+, 32(,)v x y x lxy =+,iv u y x f +=),(,则2x u nxy =, 323y u my nx =+, 223x v x ly =+, 2y v lxy =,这四个一阶偏导数存在且连续,因为解析函数()f z 满足C-R 方程,即:x y u v =,y x u v =-,亦即:lxy nxy 22=且323my nx +=22(3)x ly -+ 解得:m =1, 3-==l m .例13 函数)(z f 在区域D 内解析, 且满足下列条件之一,证明: )(z f 在区域D 内必为常数.(1) ()0f z '=.(2)Re ()f z =常数.(3))(z f 在区域D 内解析. (4) )(z f 在区域D 内为常数.(5)c bv au =+,其中a,b,c 为不 全为零的实常数.证明(1) 由()0u v v u f z i i x x y y∂∂∂∂'=+=-=∂∂∂∂ 知 0u v v u x x y y∂∂∂∂====∂∂∂∂, 故 u ,v 都是常数,从而 )(z f 在D 内必为常数.(2)因为 u =常数,故 0u u x y∂∂==∂∂,由C R -方程 v v x y∂∂=∂∂=0,从而 )(z f 在D 内必为常数. (3) 设),(),()(y x iv y x u z f +=, 则 ),(),()(y x iv y x u z f -=.由题设)(z f 和)(z f 都在区域D 内解析,由C —R 条件得x v y u y v x u ∂∂-=∂∂∂∂=∂∂,, xv y u y v x u ∂∂=∂∂∂∂-=∂∂,, 解得 0,0=∂∂=∂∂y u x u , 0,0=∂∂=∂∂yv x v 再由实函数的知识, ),(y x u 与),(y x v 均为实常数, 所以)(z f 在区域D 内为常数.(4) 设),(),()(y x iv y x u z f +=, 则222)(v u z f +=. 由题设)(z f 在区域D 内解析, 且)(z f 为常数, 记为A , 从而xv y u y v x u ∂∂-=∂∂∂∂=∂∂, (1) 222A v u =+ (2)由(2)式得 022=∂∂+∂∂xv v x u u (3) 022=∂∂+∂∂yv v y u u (4) 若0A =, 则0)(=z f , 结论显然成立;若0A ≠,联立(1)(3)(4)得 0,0=∂∂=∂∂y u x u ,0,0=∂∂=∂∂yv x v ; 再由实函数的知识, ),(y x u 与),(y x v 均为实常数, 所以)(z f 在 区域D 内为常数.(5)设a ≠0,则a bv c u -=,于是有 y y x x v a b u v a b u -=-=,. 由C-R 方程 .;x y y x v u v u -== 得0122=⎪⎪⎭⎫ ⎝⎛+⇒⎪⎭⎫ ⎝⎛-==-==y y y x x y v a b v a b a b u a b v a b u v ∴u,v 必为常数,即f(z)为常数.说明:在讨论满足一定条件的解析函数的性质时, 柯西黎曼条件常 常起着关键的作用.例14 ※ 如果)(z f 在上半平面内解析, 则)(z f 在下半平面内解析.证明 在下半平面内任取定一点z 0以及任一点z , 则 0z ,z 都属 于上半平面, 并且 ))()(()()(0000z z z f z f z z z f z f --=-- 因为)(z f 在上半平面内解析, 所以)()()(lim 0000z f z z z f z f z z '=--→,从而)())()((lim )()(lim 0000000z f z z z f z f z z z f z f z z z z '=--=--→→, 即)(z f 在点z 0可导. 再由z 0的任意性, )(z f 在下半平面内解析. 说明:在讨论函数的解析性时, 有时可直接利用导数的定义. 练习:1.函数在一点可导就是函数在一点解析这种说法对吗?答:不对,函数在一点解析是指函数在此点的某邻域内解析,因此只能说函数在一点解析函数在此点一定可导.2.函数在一条曲线上可导,则函数在此曲线上解析这种说法对吗?(不对,理由同上.)3.讨论下列函数的可导性 (1) z w =; (2)z w Re =或z Im .解 (1)设z x iy =+, w u iv =+,则 u =0v =. 由高数学知识知 u =, 0v =在平面上微, 所以, z w =在原点不可导.又当(,)(0,0)x y ≠时,u x ∂=∂,u y ∂=∂, 0v x ∂=∂, 0v y ∂=∂ 要使C R -条件满足, 只须0=,0=, 即0x =且0y =这与(,)(0,0)x y ≠矛盾, 故当(,)(0,0)x y ≠时u和v 不满足C R -条件, 所以z w = 当(,)(0,0)x y ≠时, 也不可导.综上所述, z w =在平面上处处不可导.(2) 设z x iy =+, w u iv =+,则 u x =,0v =. 由高数知识 u x =与0v =在平面上可微,但 10u v x y ∂∂=≠=∂∂, 0u v y x∂∂==-∂∂, 即C R -.条件不满足, 所以, z w Re =在平面上处处不可导.同理可得, Im w z =在平面上处处不可导.5.利用z w =的不解析性据理说明函数)0(1≠=z z w 在z 平面上不解析.解 (反证法) 显然)0(1≠=z z w 在0z =不解析(因它在0z =无意义) ; 假设)0(1≠=z z w 在某一点0z '≠解析, 由解析函数的四则运算性得, z w =在某一点0z '≠也解析, 这与z w =在平面上处处不解析矛盾.故 )0(1≠=z z w 在z 平面上处处不解析.6.讨论下列函数的可微性和解析性:(1)y ix xy z f 22)(+=; (2) 22)(iy x z f +=;(3) )3(3)(3223y y x i xy x z f -+-=.解 (1) 设()f z u iv =+, 则2u xy =, 2v x y =. 显然它们都在平面上具有一阶连续的偏导数 又2u y x ∂=∂, 2u xy y ∂=∂, 2v xy x∂=∂, 2v x y ∂=∂. 要使C R -条件满足, 只须22y x =,22xy xy =-, 即0x =且0y =所以, y ix xy z f 22)(+=仅在原点可导, 在平面上处处不解析.(2) 设()f z u iv =+, 则2u x =, 2v y =. 显然它们都在平面上具有一阶连续的偏导数又2u x x ∂=∂, 0u y ∂=∂, 0v x∂=∂, 2v y y ∂=∂. 要使C R -条件满足, 只须22x y =, 即x y =.所以, 22)(iy x z f +=仅在直线0x y -=上解析, 在平面上处处不解析.(3) 设()f z u iv =+, 则323u x xy =-, 233v x y y =-. 显然它们都在平面上具有一阶连续的偏导数又2233u v x y x y ∂∂=-=∂∂,6u v xy y x ∂∂=-=-∂∂, 即u ,v 满足C R -条件.所以, )3(3)(3223y y x i xy x z f -+-=在平面上处处可导, 也处处解析.7.证明下列函数在平面上解析,并利用yu i y v x v i x u z f ∂∂-∂∂=∂∂+∂∂=')(分别求出其导数: (1))sin cos ()sin cos ()(y x y y ie y y y x e z f x x ++-=;(2) )3(3)(3223y y x i xy x z f -+-=.证明 (1) 设()f z u iv =+,则(cos sin )x u e x y y y =-, (cos sin )x v e y y x y =+. 显然它们都在平面上具有一阶连续的偏导数又(cos cos sin )x u v e y x y y y x y∂∂=+-=∂∂, (sin sin cos )x u v e x y y y y y x∂∂=-++=-∂∂, 即u ,v 满足C.R 条件. 所以, ()f z 在平面上解析, 且()u v f z i x x∂∂'=+∂∂ (cos cos sin )(sin sin cos )x x e y x y y y ie y x y y y =+-+++[cos sin cos sin (sin cos )]x e y i y x y y y i x y y y =++-++(cos sin )(cos sin )(cos sin )x x x e y i y e x y i y iye y i y =+++++(cos sin )(1)(1)x z e y i y x iy e z =+++=+(2) 同习题3(3)可证()f z 在平面上解析, 于是2222()3363()3u v f z i x y i xy x iy z x x∂∂'=+=-+=+=∂∂. 9.若函数)(z f 在区域D 内解析, 且满足下列条件之一, 证明)(z f 在区域D 内必为常数.(1)在D 内0)(='z f ; (2))(Re z f 或)(Im z f 在区域D 内为常数. 证明 (1) 设()f z u iv =+. 因)(z f 在区域D 内解析,且由解析函数的导数与实部、虚部实函数的关系:yu i y v x v i x u z f ∂∂-∂∂=∂∂+∂∂=')( 得 0u x ∂=∂, 0u y ∂=∂, 0v x∂=∂, 0v y ∂=∂. 所以 u 和v 都是实常数. 故 )(z f 在区域D 内必为常数.(2) 设()f z u iv =+, 由题设 u 为实常数, 而)(z f 在区域D 内解析,由C.R.条件知0v u x y ∂∂=-=∂∂, 0v u y x∂∂==∂∂v 也是实常数.所以 )(z f 在区域D 内必为常数.小结:1.函数在一点解析与函数在一点可导不是等价命题;函数在一个区域上解析与函数在一个区域上可导是等价命题.2.判断函数的解析性时最好将其转化为运用推论即对应实、虚部函数是否具有一阶连续偏导数,是否满足柯西-黎曼条件来判定.3.多项式复函数、整数次幂的幂函数、有理函数(分母不为零时)在整个复平面上解析.解析函数的四则运算解析(作商式运算时分母不为零).4.函数的导数公式只须记住:()u v f z i x x∂∂'=+∂∂及柯西-黎曼方程,则在求导数时可根据条件写出相应公式.易犯错误:函数在一点的解析性与在一个区域上的解析性概念混淆.判断函数解析性时方法不妥或错误运用概念.不能正确灵活地求函数的导数.。

第二章解析函数

第二章解析函数
z x iy 处可微且满足C-R条件
u x
v y
u
v
y x
(C-R条件)
运算法则
1 在区域D内解析的两个函数 f (z)与g(z)的和、差、
积、商(除去分母为零的点外)在D内解析;
2 设函数 h g z在 z 平面上的区域D内解析,函数
f h在 h平面上的区域G内解析,如果对D内
z0
z
lim
z0
nz
n 1
n
n 1
2!
z n 2 z
nzn1
所以
f z nzn1
例2 证明 f (z) Re z 在全平面处处不可导。
证明 因为对任意一点 z0
f z f z0 Re z Re z0 Re z z0
z z0
z z0
z z0
分别考虑直线 Re z Re z0 及直线 Im z Im z0 在前一直线上,上式恒等于0;在后一直线
故也称 f z在z0处可微。
df z0 f z0 z 为f z在z0处的微分
如果 f z 在区域D内处处可导(可微), 则称 f z在D内可导(可微)。
例1 求函数 f (z) z(n n为正整数)的导数。 解 因为
f z z f z
lim
z0
z
z zn zn
lim
u ax by 1
v bx ay 2
其中1 Re z z, 2 Im z z
是关于| z | 的高阶无穷小。 根据二元实函数的微分定义,u( x, y)和v( x, y)在点 z 可微,且有
u a= v , u b= v
x y y
x
即C—R条件成立。
“充分性”由u x, y , v(x, y)在点(x, y)处可微,有

考点03 充分、必要条件的2种判断方法(解析版)

考点03  充分、必要条件的2种判断方法(解析版)

2021-2022学年《高考数学方法研究》(人教A 版2019) 专题一 集合与常用逻辑用语考点3 充分、必要条件的2种判断方法【方法点拨】1. 定义法:根据p 推q ,q 推p 是否成立进行判断。

2. 集合法:根据p ,q 成立与对应的集合之间的包含关系进行判断。

【高考模拟】1.已知,a b ∈R ,则“6a b +>”是“3a >且3b >”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件【答案】B【分析】根据充分必要条件的定义分别判断充分性和必要性即可.【解析】 ,a b ∈R ,若6a b +>,则,a b 的大小无法确定,不能得出3a >且3b >,故充分性不成立, 若3a >且3b >,则6a b +>,故必要性成立,∴“6a b +>”是“3a >且3b >”的必要而不充分条件.故选:B.2.设a ∈R ,则“1a >-”是“2log (23)1a ->”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B【分析】先解不等式2log (23)1a ->,再用集合法判断.【解析】由2log (23)1a ->解得:52a >记()51,,,2A B ⎛⎫=-+∞=+∞ ⎪⎝⎭∵B A ⊆,∴“1a >-”是“2log (23)1a ->”的必要不充分条件.故选:B【点睛】结论点睛:有关充要条件类问题的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,q 对应集合与p 对应集合互不包含.3.已知函数y =f (x )的定义域为A ,则“x A ∀∈,都有f (x )≥4”是“函数y =f (x )最小值为4”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【分析】根据充分必要条件,函数最值可判断必要性,利用特殊函数形式,可判断充分性,即可得解.【解析】若“()f x 在A 上的最小值为4”则“x A ∀∈,()4f x ≥”成立,即必要性成立;函数()254f x x =+≥恒成立,但()f x 在A 上的最小值不是4,即充分性不成立, “x A ∀∈,()4f x ≥”是“()f x 在A 上的最小值为4”的必要不充分条件.故选:B.4.对于实数x ,“1x <”是“||1x <”的( )条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要【答案】B【分析】根据充分条件、必要条件的定义判断即可.【解析】当1x <时,例如当21x =-<,但||1x >,故充分性不成立;反之,若||1x <,则11x -<<,故必要性成立.5.已知a ,b ,c 是实数,则下列命题是真命题的( )A .“a b >”是“22a b >”的充分条件B .“a b >”是“22a b >”的必要条件C .“a b >”是“22ac bc >”的充分条件D .“a b >”是“22ac bc >”的必要条件【答案】D【分析】 利用22a b a b >⇔>来判断AB ;利用2c ≥0来判断CD.【解析】对于A ,a b >a b >⇔22a b >,故“a b >”是“22a b >”的充分条件为假命题;对于B ,22a b >a b⇔>a b >,故“a b >”是“22a b >”的必要条件为假命题;对于C ,当2c =0时,a b >22ac bc >,故“a b >”是“22ac bc >”的充分条件为假命题;对于D ,()2220ac bc a b c >⇒>≠,故“a b >”是“22ac bc >”的必要条件为真命题.故选:D6.已知a ,b 为实数,则“0a b >>”是“lg lg a b >”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件 【答案】C【分析】利用lg y x =为增函数,分别判断充分性和必要性.【解析】充分性:∵lg y x =为增函数,∴0a b >>时有lg lg a b >,故充分性满足;必要性:∵lg y x =为增函数,∴lg lg a b >时可以得到0a b >>,故必要性满足;∴“0a b >>”是“lg lg a b >”的充要条件.【点睛】判断充要条件的四种方法:(1)定义法;(2)传递性法;(3)集合法;(4)等价命题法.7.命题p :220x x --<是命题q :01x <<的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【答案】B【分析】解一元二次不等式,利用充分条件、必要条件即可判断.【解析】 22012x x x --<⇔-<<,所以p q ,反之q p ⇒.故p 是q 的必要不充分条件.故选:B8.设R θ∈,则“sin θ<”是“04πθ<<”的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 【答案】B【分析】解正弦不等式结合充分条件和必要条件的定义进行判断即可.【解析】当sin 2θ<时, 则32,22,22,44k k k k k Z ππθπππππ⎡⎫⎛⎤∈+⋃++∈⎪ ⎢⎥⎣⎭⎝⎦,当04πθ<<时,0sin 2θ<<,即“sin θ<”是“04πθ<<”的必要而不充分条件 故选:B 9.若,a b ∈R ,使||||6a b +>成立的一个充分不必要条件是( )A .6a b +≥B .6a ≥C .6b <-D .||3a ≥且3b ≥【答案】C【分析】利用不等式的性质以及充分条件、必要条件的定义逐一判断即可.【解析】A ,3+36≥,不满足6a b +> ;B ,660a b =≥=,,不满足6a b +> ;C ,由6b <-可得6a b +>,反之,6a b +>,得不到6b <-,如2,5a b ==-.D ,33≥,33≥,不满足6a b +>.故选:C10.设a R ∈,则“2a =”是“24a =”的( )A .必要不充分条件B .充要条件C .充分不必要条件D .既不充分也不必要条件 【答案】C【分析】根据充分必要条件的定义判断.【解析】若2a =,可以推出24a =,故充分性成立,若24a =,则2a =±,不能推出2a =,故必要性不成立,所以“2a =”是“24a =”的充分不必要条件.故选:C.11.命题“[1,2]x ∀∈,230x a -≥”为真命题的一个必要不充分条件是( )A .4a ≤B .2a ≤C .3a ≤D .1a ≤【答案】A【分析】 “[1,2]x ∀∈,230x a -≥”为真命题可转化为[]23,1,2x a x ≥∈恒成立,可得2a ≤,根据充分必要条件可选出答案.【解析】若“[1,2]x ∀∈,230x a -≥”为真命题,得23,[1,2]x a x ≥∈恒成立,只需()2min 33a x≤=, 所以4a ≤时,不能推出“[1,2]x ∀∈,230x a -≥”为真命题,“[1,2]x ∀∈,230x a -≥”为真命题时推出4a ≤,故4a ≤是命题“[1,2]x ∀∈,230x a -≥”为真命题的一个必要不充分条件,故选:A .【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.12.已知a ,b ,R c ∈,则“a b >”是“22ac bc >”成立的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 【答案】C【分析】根据充分,必要条件的定义判断.【解析】当0c 时,22ac bc =,所以“a b >”不能推出22ac bc >,反过来,当22ac bc >,时,20c >,能推出a b >,所以“a b >”是“22ac bc >”成立的必要不充分条件.故选:C13.“a b >且c d >”是“a b d c ->-”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【答案】B【分析】根据充分必要条件定义判断即可得结果.【解析】当a b >且c d >时,0a b ->,0d c -<,所以a b d c ->-;反之不一定成立,如4a =,1b =,3d =,2c =满足a b d c ->-,但不满足a b >且c d >.故选:B14.已知命题2:320p x x -+≤,命题22:440q x x m -+-≤.若p 是q 的充分不必要条件,则m 的取值范围是( )A .(,0]-∞B .[1,)+∞C .{0}D .(,1][1,)-∞-+∞ 【答案】D【分析】先求出命题,p q 为真时,x 的范围,再根据充分不必要条件得出关于m 的不等关系,从而可得结论.【解析】 2:320p x x -+≤,12x ≤≤,22:440q x x m -+-≤,22m x m -≤≤+,p 是q 的充分不必要条件,则2122m m ⎧-≤⎪⎨+≥⎪⎩,1m ≥,∴1m ≤-或m 1≥. 故选:D .15.“3πα=”是“()tan πα-=的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【分析】根据充分条件和必要条件的定义即可判断.解:充分性:3πα=, ()2tan tan tan 333πππαπ⎛⎫∴-=-==- ⎪⎝⎭, 即3πα=能推出()tan 3πα-=-,即充分性成立,必要性:()tan 3πα-=-,则()23k k z ππαπ-=+∈, 则()3k k z παπ=-∈,故()tan 3πα-=-推不出3πα=, 故必要性不成立,故“3πα=”是“()tan 3πα-=-”的充分不必要条件.故选:A.16.a ∈R ,|a |<4成立的一个必要不充分条件是( )A .a <4B .|a |<3C .a 2<16D .0<a <3【答案】A【分析】利用集合法判断.【解析】因为|a|<4的解集是()4,4-,A. 因为()4,4- (),4-∞,所以a<4是|a|<4成立的一个必要不充分条件;B. 因为()3,3- ()4,4-,所以|a|<3是|a|<4成立的一个充分不必要条件;C. 因为a2<16的解集是()4,4-,所以a2<16是|a|<4成立的一个充要条件;D. 因为()0,3 ()4,4-,所以0<a<3是|a|<4成立的一个充分不必要条件;17.已知,m n 是平面α内的两条相交直线,且直线l n ⊥,则“l m ⊥”是“l α⊥”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 【答案】A【分析】根据线面垂直的判定定理和性质,以及充分条件、必要条件的判定方法,即可求解.【解析】当l m ⊥时,因为,m n 是平面α内的两条相交直线,l n ⊥,根据线面垂直的判定定理,可得l α⊥;当l α⊥时,因为m α⊂,所以l m ⊥,综上,“l m ⊥”是“l α⊥”的充要条件.故选:A.18.已知平面α,直线,l m 且//m α,则“l m ⊥”是“l α⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .不充分也不必要条件 【答案】B【分析】利用充分条件、必要条件的定义,结合线面垂直的判定定理即可得出选项.【解析】直线,l m 且//m α,若“l m ⊥”,不一定推出l α⊥,因为线面垂直的判定定理,需满足线垂直于面内的两条相交线,充分性不满足; 反之,l α⊥,则直线l 垂直于面内的任意一条直线,由//m α,可得l m ⊥, 必要性满足,所以“l m ⊥”是“l α⊥”的必要不充分条件.故选:B19.设R a ∈,则“a >是“22a >”的( ) A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件【答案】A首先根据22a >得到a >a <.【解析】由22a >,解得a >a <则当a >22a >成立.当22a >时,a >3a =-时,满足22a >,但a >.所以“a >是“22a >”的充分不必要条件.故选:A【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 20.已知ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,则“0,3B π⎛⎤∈ ⎥⎝⎦”是“2b ac =”的() A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件【答案】C【分析】分别从充分性和必要性入手进行分析即可得解.【解析】 充分性:若0,3B π⎛⎤∈ ⎥⎝⎦,则2221cos 122a c b B ac +-≤=<,即2222ac a c b ac ≤+-<,即222222a c ac b a c ac +-<≤+-,并不能得出2b ac =一定成立,故充分性不成立; 必要性:若2b ac =,由余弦定理得:2221cos 222a c ac ac ac B ac ac +--=≥=,因为()0,B π∈,所以0,3B π⎛⎤∈ ⎥⎝⎦,故必要性成立, 综上,“0,3B π⎛⎤∈ ⎥⎝⎦”是“2b ac =”的必要不充分条件, 故选:C.【点睛】 方法点睛:判断充要条件的四种常用方法:定义法、传递性法、集合法、等价命题法.21.“关于x 的不等式2340x mx -+≥的解集为R ”的一个必要不充分条件是( )A .4433m -≤≤B .423m -<≤C .4433m -<≤D .403m -≤< 【答案】B【分析】求出“关于x 的不等式2340x mx -+≥的解集为R ”成立时实数m 的取值范围,再结合必要不充分条件的定义可得出结论.【解析】由关于x 的不等式2340x mx -+≥的解集为R ,可得()23440m ∆=--⨯≤,解得4433m -≤≤,所以m 的取值范围是4433m -≤≤. 根据必要不充分条件的概念可知B 项正确.故选:B.22.已知x ∈R ,则“21x >”是“2x <”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不必要也不充分条件 【答案】A【分析】 解不等式21x >,利用集合的包含关系判断可得出结论. 【解析】 解不等式21x >,可得2210x x x--=<,解得02x <<,{}02x x << {}2x x <,因此,“21x >”是“2x <”的充分不必要条件.故选:A.23.“()0,απ∈”是“sin 0α>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】根据充分条件和必要条件的定义即可求解.【解析】由()0,απ∈,可得sin 0α>由sin 0α>可得()22k k k Z παππ<<+∈,所以sin 0α>得不出()0,απ∈, 可得()0,απ∈”是“sin 0α>”的充分不必要条件,故选:A24.设x ∈R ,则“1x >”是“11x <”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【答案】A【分析】解不等式11x <,利用集合的包含关系判断可得出结论.【解析】 解不等式11x <,即1110x x x --=>,解得0x <或1x >. {}1x x > {0x x <或}1x >,因此,“1x >”是“11x <”的充分不必要条件.故选:A.25.清远市是广东省地级市,据此可知“学生甲在广东省”是“学生甲在清远市”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件【答案】C利用充分性必要性的定义,先考虑充分性,再考虑必要性.【解析】先考虑充分性:学生甲在广东省,则学生甲不一定在清远市,所以“学生甲在广东省”是“学生甲在清远市”的非充分条件;再考虑必要性:学生甲在清远市,则学生甲一定在广东省,所以“学生甲在广东省”是“学生甲在清远市”的必要条件. 所以“学生甲在广东省”是“学生甲在清远市”的必要非充分条件.故选:C【点睛】方法点睛:充分必要条件的判定,常用的方法有:(1)定义法;(2)集合法;(3)转化法.要根据已知条件灵活选择方法判断.26.一个平面内存在一条与另一个平面垂直的直线是这两个平面垂直的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【分析】利用线面垂直的判定定理来判断.【解析】根据线面垂直的判定定理:一个平面内存在一条与另一个平面垂直的直线可以推出这两个平面垂直;反过来,两个平面垂直也能够推出一个平面内存在一条与另一个平面垂直的直线.故选:C【点睛】判断充要条件的四种方法:(1)定义法;(2)传递性法;(3)集合法;(4)等价命题法.27.命题 :p a b >,命题:q a c b c +>+(其中,,a b c ∈R ),那么p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【分析】利用充分条件和必要条件的定义即可判断得出正确选项.【解析】若a b >,则a c b c +>+,所以命题p 可以得出命题q 成立,若a c b c +>+则a c c b c c +->+-,即a b >,所以所以命题q 可以得出命题p 成立, 所以p 是q 的充要条件,故选:C28.设x 、y R ∈,则“0x >,0y >”是“0xy >”的( )A .充分不必要条件B .必要不充分分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】利用充分条件、必要条件的定义判断可得出结论.【解析】充分性:若0x >且0y >,则0xy >,充分性成立; 必要性:若0xy >,则00x y >⎧⎨>⎩或00x y <⎧⎨<⎩,必要性不成立. 因此,“0x >,0y >”是“0xy >”的充分不必要条件.故选:A.29.已知22:1,:1p x y q x y +≤+≤,则p 是q 的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【分析】 分别把221x y +≤和1x y +≤表示的区域表示出来,利用集合法判断.【解析】不等式221x y +≤表示单位圆及其内部的区域,1x y +≤表示以(1,0)±和(0,1)±为顶点的正方形及其内部的区域,画图可知q 对应的区域被p 对应的区域包含,所以p 是q 的必要不充分条件.故选:B【点睛】结论点睛:有关充要条件类问题的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,q 对应集合与p 对应集合互不包含.30.使“不等式241122x x -+⎛⎫> ⎪⎝⎭成立”的一个充分不必要条件是( ) A .1x <B .0x <C .1x >D .0x >【答案】B【分析】 根据指数函数的性质,求得不等式的解集,再结合充分不必要条件和选项,即可求解.【解析】 由不等式241122x x -+⎛⎫> ⎪⎝⎭,可得24122x x -++>,即241x x -+>+,解得1x <,结合选项,可得“不等式241122xx-+⎛⎫>⎪⎝⎭成立”的一个充分不必要条件可以是0x<.故选:B.。

复变函数第二章 解析函数

复变函数第二章 解析函数

第 一 节 解 析 函 数 的 概 念
( 5)
f ( z ) ′ g ( z ) f ′ ( z ) − f ( z ) g ′ ( z ) , g (z) ≠ 0 = 2 g ( z) g ( z)
( 6)
{
f g ( z )
}

= f ′ ( w ) g ′ ( z ) , 其中w = g ( z )
dw 可见:可导 ⇔ 可微, f ′ ( z0 ) = 且 dz
z = z0
如果f ( z ) 在区域D内每一点可微,
则称f ( z ) 在D内可微.
记作 dw = f ′ ( z ) dz
第 一 节 解 析 函 数 的 概 念
二、解析函数 定义 1o 如果f ( z ) 在z0 及z0的某邻域内处处可导,
设w = f ( z ) 定义于区域D, z0 ∈ D , z0 + ∆ z ∈ D
f ( z0 + ∆ z ) − f ( z0 ) 如果 lim 存在 ∆ z →0 ∆z 则 称 f ( z ) 在 z0点 可 导 , 而 极 限 值 为 f ( z ) 在 z0点 dw 的导数,记作 f ′ ( z0 ) 或 dz z = z0
∴ ∆ u = a ∆ x − b ∆ y + o1 ∆ v = b∆ x + a ∆ y + o2
反之,不成立。
( 2)
( 3)
f ( z ) 在区域D内解析
⇔ f ( z ) 在 区 域 D内 可 导 。
f ( z ) 在 z0 解析 ⇔
f ( z ) 在 z0的某邻域 N δ ( z0 )内解析。
第 一 节 解 析 函 数 的 概 念

复变函数第三讲解析函数的充要条件初等函数

复变函数第三讲解析函数的充要条件初等函数
u v 1 u v iii) 求导数: f' ( z ) i x x i y y

前面我们常把复变函数看成是两个实函数拼 成的, 但是求复变函数的导数时要注意, 并不是两个 实函数分别关于x,y求导简单拼凑成的.
二. 举例
例1 判定下列函数在何处可导,在何处解析:
若沿平行于实轴的方式 zቤተ መጻሕፍቲ ባይዱz z ( y0 )
f(z z)f(z) f(z)lim z 0 z [u (x x ,y )iv (x x ,y )] [u (x ,y )iv (x ,y )] lim x 0 x u (x x ,y )u (x ,y ) v (x x ,y )v (x ,y ) lim i lim x 0 x 0 x x
1 u v v u i i y y y y
f ' ( z ) 存在 u v v u i i x x y y u v x y
定义 方程

u x v x
记忆
v u x y
u y v y
Cauchy-Riemann方程
u v v u x y x y
上述条件满足时,有
f ' ( z ) u iv u iu v iu v iv x x x y y y y x
定理2 函数f (z)=u(x, y)+iv(x, y)在D内解析充要 条件是 u(x, y) 和 v(x, y)在D内可微,且 满足Cauchy-Riemann方程
第三讲 解析函数的充要条件 初等函数
§2.2 解析函数的充要条件

1. 解析函数的充要条件

解析函数的概念和柯西—黎曼条件

解析函数的概念和柯西—黎曼条件
1解析函数的四则运算如果的和差乘积和商商的情形要求分母函数不为零在区域d内仍解析并且2解析函数的复合运算设函数3反函数解析的法则设函数在区域g内解析且则由例3及上述法则知则由例4及上述法则知它在z平面上解析且1210称为实变复值函数则可直接由定义21求得实变复值函数的导数公式212柯西黎曼条件本段我们从复变函数的代数表示所有偏导数都存在并且连续并不能保证应当不是互相独立的而必须适合一定的条件
f ( z ) z n 在 z 平面上解析, f ( z ) z , Re z , Im z , | z | 在 z 平面上处处不解析。
■ 类似于一元实函数的导数法则,下面,可平行地给出解析函数的相应法则: (1) (解析函数的四则运算) 如果 f ( z ), g ( z ) 都在区域 D 内解析,则 f ( z ), g ( z ) 的和、差、乘积和商(商的情形要 求分母函数不为零)在区域 D 内仍解析,并且
z 0
o(z ) 0 ,则称 f ( z ) 在 z0 可微,线性部分 z
A( z0 )z 称为 f ( z ) 在 z0 的微分,记为 df ( z0 ) A( z0 )z.
由定义不难证明:
f ( z ) 在 z0 可导 f ( z ) 在 z0 可微且 A( z0 ) f ' ( z0 ) 。
( f ( z ) g ( z )), f ( z ) g '( z ) ( f ( z ) g ( z )) ' f ( z ) g ( z ) f ( z ) g ( z ) f ( z) f ( z ) g ( z ) f ( z ) g ( z ) . g 2 ( z) g ( z)
是一个定义在区域 D 内的函数。 ■ 当二元实函数 u ( x, y ) 及 v( x, y ) 给定时,此函数也就完全确定。 ■ 但如果 u ( x, y ) 和 v( x, y ) 互相独立, 即使 u ( x, y ) 及 v( x, y ) 对 x 与 y 所有偏导数都存 在并且连续,并不能保证 f ( z ) 是可微的。 例如, w z x iy 处处连续,并且 u x, v y 对 x 和 y 的一切偏导数都存在且连 续,但由例 1 知, w z 却是一个处处不可微的函数。 ■ 因此,如果 f ( z ) 可微,它的实部 u ( x, y ) 和虚部 v( x, y ) 应当不是互相独立的,而必 须适合一定的条件。 下面,来探讨这种条件。 若 f ( z ) u ( x, y ) iv( x, y ) 在点 z x iy 可微(可导) ,则

第二章 解析函数

第二章 解析函数
③ 设函数f (z),g (z) 均可导,则
[f (z)±g (z)] =f (z)±g(z),
[f (z)g(z)] = f (z)g(z) + f (z)g(z)
f (z) f ' ( z ) g( z ) f ( z ) g' ( z ) [ ]' , ( g( z ) 0) 2 g( z ) g (z) 由以上讨论
在(x,y)处满足
u u v v 1. , , , 在( x, y )点处存在且连续; x y x y 2. 在( x, y )点处满足Cauchy Riemann 条件
那么f(z)在z=x+iy处可导。
• 2.2.2 函数解析的充要条件 • 定理1 设函数 f ( z) u( x, y) iv( x, y) 在区域 D 内有定义,则 f ( z )在 D 内解析的充分必要条 件为 u, v 在 D 内任一点 z x iy处 (1)可微; (2)满足
ex1
试用C-R条件判定下列函数在何处可导,在何处解析:
w z
2
解 设z=x+iy w=x2+y2 u= x2+y2 , v=0 则
u 2x x
u 2y y
v 0 x
v 0 y
仅在点z = 0处满足C-R条件,故
w z 仅在0点可导,但处处不解析 。
2
例2: 设函数f(z)=x2+axy+by2+i(cx2+dxy+y2),问 常数a,b,c,d取何值时,f(z)在复平面内处 处解析。
例1 求函数 f ( z ) z 的导数(n 为正整数).
n
解 因为
k k ( z z )n Cn z (z )nk k 0

第三次解析函数

第三次解析函数
2
2 2
z平面上的每一点都是函 数z Re z, 2 z Re z , z 的奇点。
1 函数 是解析函数,点 z 0与点z 1是函数的 z ( z 1) 两个奇点。
2. 函数解析的条件
(1) 必要条件
若f ( z ) u( x, y) iv( x, y)在点z0 x0 iy0 处解析,则u( x, y)与 v( x, y)在点( x0 , y0 )的某邻域内可偏导,且 满足柯西- 黎曼方程。
(1) 若f ( z)在点z0处可导,则必在 z0处连续,反之不然。
证明: 按定义证明,见P20.
u v u v , 为f ( z ) u iv的柯西 - 黎曼 注: 称关系式 x y y x (Cauchy Riem ann )方程.
4. 函数可导的充分条件
3. 解析函数的运算法则
定理1 设w=f (z)及w=g(z)是区域D内的解析函数, 则 f (z)±g(z),f (z)g(z) 及 f (z) g(z) (g (z)≠0时) 均是D内的解析函数。 定理 2 设 w=f (h) 在 h 平面上的区域 G 内解析, h=g(z) 在 z 平面上的区域 D 内解析, h=g(z)的函数值 集合 G,则复合函数w=f [g(z)]在D内处处解析。



e e cos z 2 eiz e iz sin z. 2i
iz iz
iz iz e e ieiz ie iz 2 2

例5
1 已 知 f ( z ) ( z 5z ) , 求f ' ( z ) z 1
例2 解:
讨论函数f ( z) 2 z Re z的可导性 .

人教版数学高中2-1课件《充分条件与必要条件》

人教版数学高中2-1课件《充分条件与必要条件》

在数学中的应用
函数关系
在数学中,函数关系是一种重要的概 念。充分条件与必要条件的概念可以 帮助我们更好地理解函数的各种性质 ,例如单调性、奇偶性等。
证明方法
在数学证明中,充分条件与必要条件 的运用是非常常见的。它们可以帮助 我们更加严谨地证明各种数学命题, 确保我们的证明过程严密、准确。
03 充分条件与必要条件的证 明方法
02 充分条件与必要条件的应 用
在逻辑推理中的应用
推理依据
充分条件与必要条件是逻辑推理中的重要概念,它们帮助我 们理解命题之间的逻辑关系,从而进行有效的推理。
逻辑结构
充分条件和必要条件在逻辑结构上有着明确的区别。充分条 件是一个命题的真,能够确保另一个命题的真;而必要条件 则是另一个命题的真,必须要求这个命题的真。
逻辑推理实例
总结词
逻辑推理是充分条件与必要条件的重要应用领域,通过实例解析可以帮助学生更好地理 解概念。
详细描述
在逻辑推理中,充分条件与必要条件的概念经常被使用。例如,在推理“如果天下雨, 那么地面会湿”中,“天下雨”是“地面湿”的充分条件,因为只要下雨就一定会导致 地面湿。而“地面湿”是“天下雨”的必要条件,因为如果地面湿了,那一定是因为之
填空题及解析
填空题1
若``若$p$则$q$''是真命题,则``若非$q$则 非$p$''也是真命题,这两个命题在逻辑上 称为____命题。
解析
根据逆否命题的定义,若``若$p$则$q$''是 真命题,则其逆否命题``若非$q$则非$p$'' 也是真命题,这两个命题在逻辑上称为逆否
命题。
解答题及解析
前下过雨。
生活实例

高中数学的解析函数的性质及应用解析

高中数学的解析函数的性质及应用解析

高中数学的解析函数的性质及应用解析解析函数是高中数学中的重要概念,其性质及应用在数学学科及其他学科中具有广泛的应用。

本文将围绕解析函数的定义、性质和应用展开讨论。

一、解析函数的定义解析函数又称为复变函数,它是指在复数域上有定义的函数。

具体而言,对于一个定义在复数域上的函数f(z),如果对于复数域上任意一个复数z,该函数都有唯一的函数值w与之对应,那么f(z)即为解析函数。

解析函数的定义可以用数学符号表示为:f(z) = u(x, y) + iv(x, y),其中z = x + iy,u(x, y)和v(x, y)分别表示复变函数的实部和虚部。

二、解析函数的性质1. 连续性:解析函数在其定义域上连续,即实部和虚部都是连续函数。

2. 可微性:解析函数在其定义域上可导,即满足柯西-黎曼方程的充分必要条件。

柯西-黎曼方程表示为:∂u/∂x = ∂v/∂y,∂u/∂y = -∂v/∂x。

3. 奇点:解析函数在其定义域上无奇点,即没有使函数值发散或不唯一的点。

根据解析函数的性质,我们可以推导出一些重要的结论。

例如,解析函数的导函数也是一个解析函数,解析函数的连续叠加仍然是一个解析函数等。

三、解析函数的应用解析函数的应用非常广泛,不仅在数学学科中有重要意义,也被应用于其他学科中。

1. 数学学科中的应用:解析函数可以用于复数域的积分计算,例如对于沿闭合曲线C的积分∮Cf(z)dz,由于解析函数是可导的,我们可以通过柯西定理将曲线内部的积分等于曲线上的积分,简化计算。

2. 物理学中的应用:解析函数被广泛应用于物理学中的电磁场、流体力学等领域。

例如,对于电势、磁场等物理量的描述往往使用解析函数的方法,通过假设解析函数满足某些条件,可以方便地求解实际问题。

3. 工程学中的应用:解析函数在工程学中的应用也非常重要。

例如,在信号处理领域,解析函数可以用于信号的频谱分析、信号的模拟与合成等方面。

总之,解析函数作为高中数学中的重要概念,其性质和应用在数学学科及其他学科中都有广泛的应用。

复变函数第2章解析函数

复变函数第2章解析函数

2019/8/11
20
证 : (1) 若 f (z) 0,即
f (z) u i v 1 u v 0 x x i y y
于是 u v u v 0 x x y y
所以 u、v 为常数, 即 f (z) u iv 为常数。
(7)f (z) 1 , 其中, w f (z) 与 z (w) 是两个 ( w )
互为反函数的单值函数且 (w) 0。
2019/8/11
7
4、解析函数概念
定义. 若函数 w f (z) 在点 z0 及 z0 的某领域内 处处可导, 称 f (z) 在 z0 解析。
点 z0 z D, 若极限
lim f (z0 z) f (z0 )
z0
z
存在, 则称函数 f (z) 在 z0 点可导或可微。此极限值 称为 f (z) 在 z0 点的导数, 记作 :
f (z0 )

dw dz zz0
2019/8/11
2

f (z0 )
lim
z0
于是,由定理知 f (z) 在复平面上处处解析。
(2) f (z) x2 iy2
u( x, y) x2 , v( x, y) y2
u 2x, u 0, v 0, v 2 y
x
y x y
在复平面连续且 u v y x
但仅当 y x 时才有 u v x y
有理分式函数 P(z) 在 Q(z) 0的区域内为解析函数。 Q(z)
2019/8/11
12
二、函数解析的充分必要条件
定理 ( 函数解析的充要条件 )
函数 f (z) u( x, y) iv( x, y) 在其定义域 D内解析的充要 条件是 :

解析函数

解析函数

x
y
欲使 u v , u v , x y y x
2x ay dx 2 y, 2cx dy ax 2by,
所求 a 2, b 1, c 1, d 2.
例8 如果 f (z) 在区域 D 内处处为零 , 则 f (z) 在
区域 D 内为一常数.
证 Q f (z) u i v v i u 0, x x y y
两个互为反函数的单值函数, 且(w) 0
2、解析函数的概念及其运算
定义2.2 如果函数 f (z) 在 z0 及 z0 的邻域内处处 可导, 那末称 f (z) 在 z0 解析. 如果函数 f (z)在 区域 D内每一点解析, 则称 f (z)在 区域 D内解析. 或称 f (z)是 区域 D内的一 个解析函数 ( 全纯函数或正则函数 ) .
x iy
x iy
1 i y
1
i
x y
1 ik 1 ik
x
由于 k 的任意性,
z 1 ki 不趋于一个确定的值. z 1 ki
lim h(z0 z) h(z0 )不存在.
z0
z
因此 h(z) z 2 仅在 z 0 处可导, 而在其他点都 不可导,根据定义, 它在复平面内处处不解析.
(1) 如果能用求导公式与求导法则证实复变函 数 f (z) 的导数在区域 D内处处存在, 则可根据 解析函数的定义断定 f (z) 在 D内是解析的.
(2) 如果复变函数 f (z) u iv 中 u,v 在 D内 的各一阶偏导数都存在、连续(因而 u, v( x, y) 可微)并满足 C R 方程, 那么根据解析函数 的充要条件可以断定 f (z) 在 D内解析.
(3) f (z) 常数;
(4) f (z)解析;

第二章 解析函数Analyticfunction第一讲

第二章  解析函数Analyticfunction第一讲

第二章解析函数(Analytic function)第一讲授课题目:§2.1解析函数的概念§2.2解析函数与调和函数的关系教学内容:复变函数的导数、解析函数的概念与求导法则、函数解析的充分必要条件、调和函数的概念、共轭调和函数、解析函数与调和函数的关系.学时安排:2学时教学目标:1、切实理解掌握解析函数的概念2、掌握函数解析的充分必要条件,判断函数的解析性3、了解复变函数导数的定义教学重点:函数解析的充分必要条件教学难点:解析函数与调和函数的关系教学方式:多媒体与板书相结合P思考题:1、2、习题二:1-12作业布置:51板书设计:一、解析函数的概念二、函数解析的充分必要条件三、解析函数与调和函数的关系参考资料:1、《复变函数》,西交大高等数学教研室,高等教育出版社.2、《复变函数与积分变换学习辅导与习题全解》,高等教育出版.3、《复变函数论》,(钟玉泉编,高等教育出版社,第二版)2005年5月.4、《复变函数与积分变换》苏变萍陈东立编,高等教育出版社,2008年4月.课后记事:1、解析函数的概念基本掌握2、函数解析的充分必要条件掌握不太好3、已知调和函数,求作解析函数的方法不灵活4、加强课后辅导教学过程:§2.1 解析函数的概念(The conception of analytic function )一、复变函数的导数(Derivative of complex function ) 定义(Definition )2.1 设)(z f w =是在0z 的某邻域内有定义,对于邻域内任一点z z ∆+0.如果zz f z z f o z ∆-∆+→∆)()(lim 00 存在有限的极限值复数A ,则称)(z f 在0z 处可导,极限A 称为)(z f 在0z 处的导数,记作)('0z f ,或0z z dz dw=. 即z z f z z f z f z ∆∆∆)()(lim )('0000-+=→0)z ( |)(|)('0→+=∆∆∆∆z o z z f w 由此可得()()()dzz f z df z z f z z f z z f 00000 )()(''=记作处可微。

解析函数

解析函数

【证明】设 f (z) zn ,故
f (z z) f (z) (z z)n zn
z[nzn1 n(n 1) zn2z (z)n1] 2
lim f (z z) f (z) nzn1
z 0
z
例 2.1.2 讨论函数 f (z) z 在复平面上的可导性.
【解】由
f (z z) f (z)
即 ux v y,显然在复平面处处不满足C-R条件,故 原函数在复平面处处不可导。 说明:上述例题告诉我们,用C-R条件来判断函数不 可导是方便的.但当满足C-R条件时,函数就一定可 导吗?
例2.1.4 讨论函数w f (z) | Im z 2 | 在点 z0 0 处的可导性.
【解】 首先考察 C-R 条件是否满足.
1. 直角坐标形式的柯西—黎曼条件
即已知一个函数可导,得出其必须满足的条件.
设w f (z) u(x, y) iv(x, y) 在区域 D 内可导,则
由函数可导的定义,使用直角坐标,考察沿两个不同的方
向 z 0 ,得到的极限值应该相等.
注意到:
f (z z) f (z) z
u(x x, y y) iv (x x, y y) [u(x, y) iv (x, y x iy
其中 令 由上式得
lim (z) 0
z 0
f (z z) f (z) u i v ,
f (z) a i b, (z) 1 i 2
u i v (a ib)(x i y) (1 i 2)(x i y) (ax by 1x 2y) i(bx ay 2x 1y)
iz z
由于沿 e方向和沿 er 方向的导数应该相等,比较可 得极坐标形式的柯西-黎曼条件 (2.1.10)。

解析函数

解析函数

6
当 z0 0 时, 令 z0 z 沿直线 y y0 k ( x x0 ) 趋于 z0 , y 1 i x i y 1 ik z x z x iy 1 i y 1 ik x z 1 ki 由于 k 的任意性, 不趋于一个确定的值 . z 1 ki f ( z0 z ) f ( z0 ) lim 不存在 z 0 z 2 因此, h( z ) z 仅在 z 0 处可导, 而在其他点都
不可导,根据定义,它 在复平面内处处不解析 .
7
定理1 函数的解析点一定是它的可导 点.反之不真;点 z0 为函数 的解析点 的充分必要条件是点 z0 为其可导点所构 成的集合的内点。 推论2 复变函数不会只在有限个点或者一 条曲线上解析,它的全体解析点的集合 一定是开集。
如果f(z)再z0不解析,那么称z0为的奇点
1 2 2 2 arccos[ x / ( x + y ) ]( y >0) 或 v(x, y)= , 1 -arccos[x /(x 2 + y 2 )2 ]( y <0)
2
x
通过求偏导数的计算,不论为哪种形式,均有 u'x = v'y = x / ( x 2 + y 2 ) , u'y = -v'x = y / ( x 2 + y 2 )
不等价,但在区域内解析与在该区域内可导是等 价的.
4
证明:
事实上,复变函数在区域内解析
显然在该区域内可导.
反过来,设 f ( z ) 在区域 D内可导, 则 z D, 必存在 z 的某个邻域 U , 使得 U D, 由 f ( z ) 在区域 D内可导,必有 f ( z ) 在 U 内可导, 即 f ( z )点 z 处解析,由z 的任意性,得证 .

解析函数

解析函数
0
充分条件
偏导数 ux ,vy , vx ,uy 连续 满足C-R条件
x x0 y y0
lim
f ( z) u iv v u lim i y y 0 z iy y y
意义
可导函数的虚部与 实部不是独立的, 而是相互紧密联系 的。
柯西—黎曼条件的应用
(d)
g ( z) 0
f g ( z )
f ( w) g ( z ), 其中 w g ( z ).
(e)
1 f ( z ) , 其中w f ( z )与z ( w)是 ( w)
两个互为反函数的单值 函数且 ( w) 0
说明
如果函数w=f(z)在区域B内的每一点可导, 则称f(z)在区域B内可导:
kx
的趋向得到不同的值,故原函数在z0=0 处不可导。 本例题告诉我们即使函数满足C-R条件,仍然可 能不可导.那么C-R条件还需加上什么条件才能保 证函数可导呢?因此需要讨论可导的充分必要条件 .
定理
设函数f (z)=u(x,y)+iv(x,y)定义在区域D内,则f (z)在D内一点z=x+iy可导的充要条件是:u(x,y)与 v(x,y)在点(x,y)可微,并且在该点满足CauchyRiemann(柯西—黎曼)方程
极坐标下的Cauchy-Riemann条件
u 1 v , r r v 1 du r r d
三、解析函数的概念
1、定义 若函数w=f (z)在点z0的及其邻域内处处可导,则称函 数w=f (z)在点z0处解析。 若函数w=f (z)在区域D内处处可导,则称函数w=f (z) 在区域D内解析,或称f (z)是区域D内的解析函数。 若w=f (z)在点z0不解析,则称点z0为w=f (z)的奇 点。

解析函数的两个充要条件之间的关系

解析函数的两个充要条件之间的关系

解析函数的两个充要条件之间的关系复变函数是实变函数在复数域上的推广,其主要核心是解析函数。

解析函数除了拥有与实变函数相同的一些性质以外还具备一些独有的良好性质如无穷可微性,满足方程以及能展成泰勒级数等。

复分析主要通过微分、积分和级数的方法研究解析函数。

因此为了更好地研究学习解析函数,本文首先梳理判定函数解析的五个充要条件。

一、判定函数解析的五个充要条件定义1如果复变函数在区域内可微,则称是区域内的解析函数,或称在区域内解析。

若设在区域内有定义的解析函数为,则有如下五个判定函数解析的充分必要条件:充要条件1二元函数在区域内可微,在内满足方程。

充要条件2函数在区域内连续,且对内任一周线只要及其内部全部含于内且。

充要条件3对任意,只要圆含于,则在内能展成的幂级数。

充要条件4二元函数在区域内连续,且在内满足方程。

充要条件5在区域内是的共轭调和函数。

由如上的等价条件,不难看出其中的充要条件1,4,5均是利用二元实函数来描述的,也就是说利用二元实函数满足的性质就完全可以判定复变函数的解析性。

由于充要条件是一种等价关系,所以上述五个充要条件是彼此等价的。

但是,充要条件4从形式上显然是要强于充要条件1的,而且在数学分析中,多元实变函数偏导连续仅仅是该函数可微的充分不必要条件,这就让我们不得不好奇它们之间的等价性是有什么性质来保证的。

为此,我们不妨将这两个充要条件分别描述成如下两个完整的定理。

定理1函数在区域内解析的充分必要条件是二元实函数在区域内可微且在内满足方程:,.定理2函数在区域内解析的充分必要条件是二元实函数在区域内连续,在内满足方程。

二、两个充分必要条件的证明与等价在给出三个定理的具体证明之前,首先回顾一下解析函数具有着与实变函数完全不同的独有的良好性质:无穷可微性,即解析函数的导数仍为解析函数,从而它的任意阶阶导数仍为解析函数。

定理1的证明:(充分性)由及的可微性有对于内任意一点,其中及是的高阶无穷小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档