第3章 环烷烃
合集下载
3环烷烃
环已烷及其衍生物的构象
平面结构中相邻碳形成全重叠式构象 键角为120
环己烷的椅式构象
(1) 环己烷椅式构象的画法
H 1 H H 2 H H
H
3 H H 4 H H
H 5 H 6
4 CH2 CH2 1
H H 2 3 H
H 6 H H
5
H
H
环已烷的六个碳原子都保持正常键角109°28′
a键
e键
a键转变成e键,e键转变成a键; 环上原子或基团的空间关系保持。
H3C
有二个不同取代基的环己烷衍生物
CH3 (CH3)2CH CH(CH3)2 CH3
两个规则
带有相同基团的多取代环己烷,那末在两个构象异 构体之间,总是有较多取代基取e键向位的构象为优势构 象。
带有不同基团的多取代环己烷,其优势构象总是体积 较大的基团取e键的向位。
8 7 6 5
9 10
1 2 3 4
(95%)
(5%)
4
3 5 H H 6
2 1
CH3与C3-H、C5-H有相互排斥 力,这称为1,3-二直立键作用。
CH3
(2)二取代环己烷的构象
1,2-二甲基环己烷
CH3 CH3 CH3
CH3
CH3
CH3 CH3
CH3
1,2-二甲基环己烷的平面表示法
CH3 CH3
CH3 CH3
CH3
CH3 CH3
Br
离子型 机理
+
Br2
Br
(3) 加HX:
室 温
+
HBr
CH3 CH2 CH2 Br
CH3
CH CH2 CH2
+
第3 环烷烃
第三章 环烷烃
第三章 环烷烃
• 环烷烃是环状的烷烃。环烷烃分子中碳原子相互以单键联结成闭合碳 环,其余的价全部与氢原子连接。 • 要将链状烷烃变为环状,需将链端两个碳原子上的氢原子去掉,因此 单环烷烃的通式为CnH2n。 • 多环烷烃中每成一个环,氢原子将减少两个,所以双环烷烃的通式为 CnH2n-2。 • 可想而知,环烷烃和烷烃的大多数性质相似。 • 许多有机化合物具有环状结构。
§3.4 环烷烃的稳定性和张力
环的稳定性 与环的大小 有关
环丙烷最不 稳定,环丁 烷次之,环 戊烷比较稳 定,环己烷 以上的大环 都稳定
环稳 定性
环大小
(Aldolf von Baeyer)
1885年拜尔
张力 学说
张力学说假定成环碳原子处于同一平面,并形成等边多 边形:
109.5° 49.5° 60° 109.5° 19.5° 90° 108° 1.5° 109.5°
环戊烷
甲基环丁烷
乙基环丙烷
1, 1-二甲基环丙烷 1, 2-二甲基环丙烷
1, 2-二甲基环丙烷还有顺( cis-,两个取代基在环平面同侧)、反 (trans-,取代基在环平面两侧)异构;反式-1, 2-二甲基环丙烷又有对 映异构。
顺式 bp37℃
反式 bp29℃
顺、反异 构
镜面
对映异构
顺反异构和对映异构都属于立体异构。 顺、反异构属于立体异构中的构型异构,两个顺反异构体之间要相互变 化,必须打开共价键才行,而这在常况下是不可能的。因此,二者是具有 不同物理性质的异构体。
CH3
CH3
CH3
1, 3-二甲基环戊烷
CH3
CH2CH3
反-1-甲基-4-异丙基环己烷
1,4-二甲基-1-乙基环己烷
第三章 环烷烃
• 环烷烃是环状的烷烃。环烷烃分子中碳原子相互以单键联结成闭合碳 环,其余的价全部与氢原子连接。 • 要将链状烷烃变为环状,需将链端两个碳原子上的氢原子去掉,因此 单环烷烃的通式为CnH2n。 • 多环烷烃中每成一个环,氢原子将减少两个,所以双环烷烃的通式为 CnH2n-2。 • 可想而知,环烷烃和烷烃的大多数性质相似。 • 许多有机化合物具有环状结构。
§3.4 环烷烃的稳定性和张力
环的稳定性 与环的大小 有关
环丙烷最不 稳定,环丁 烷次之,环 戊烷比较稳 定,环己烷 以上的大环 都稳定
环稳 定性
环大小
(Aldolf von Baeyer)
1885年拜尔
张力 学说
张力学说假定成环碳原子处于同一平面,并形成等边多 边形:
109.5° 49.5° 60° 109.5° 19.5° 90° 108° 1.5° 109.5°
环戊烷
甲基环丁烷
乙基环丙烷
1, 1-二甲基环丙烷 1, 2-二甲基环丙烷
1, 2-二甲基环丙烷还有顺( cis-,两个取代基在环平面同侧)、反 (trans-,取代基在环平面两侧)异构;反式-1, 2-二甲基环丙烷又有对 映异构。
顺式 bp37℃
反式 bp29℃
顺、反异 构
镜面
对映异构
顺反异构和对映异构都属于立体异构。 顺、反异构属于立体异构中的构型异构,两个顺反异构体之间要相互变 化,必须打开共价键才行,而这在常况下是不可能的。因此,二者是具有 不同物理性质的异构体。
CH3
CH3
CH3
1, 3-二甲基环戊烷
CH3
CH2CH3
反-1-甲基-4-异丙基环己烷
1,4-二甲基-1-乙基环己烷
第3章 环烷烃(武汉大学化学与分子科学学院)
饱和脂环烃— 饱和脂环烃—环烷烃 脂环烃 不饱和脂环烃—环烯烃、 不饱和脂环烃—环烯烃、环炔烃
环丙烷
环丁烷
环戊烷
环己烷
环戊二烯
环己烯
环辛炔
2
目录
3-1 3-2 3-3 3-4 3-5 小结 环烷烃的结构、分类、 环烷烃的结构、分类、异构和命名 环烷烃的稳定性与环大小的关系 环己环及其衍生物的构象 环烷烃的物理性质 环烷烃的化学性质 环烷烃的
5
环烷烃的分类 环烷烃的分类
单环 1. 按环数 二环 多环
小环( 小环(C3-C4) ) 普通环( 普通环(C5-C7) ) 中环( 中环(C8-C11) ) 大环( 大环(> C12) )
螺环:两环共用1 螺环:两环共用1个碳 2. 按环的 连接方式 螺[4.5]癸烷 癸烷 桥环: 桥环:共有两个或三个 以上的碳原子
22
环戊烷的构象:环戊烷具有信封式的构象,键角 戊烷的构象 环戊烷具有信封式的构象,
6
环烷烃的异构: 环烷烃的异构:构造异构和立体异构
构造异构: 1. 构造异构:由于环的大小及取代基位置的不同而有各 种构造异构体。 种构造异构体。 三元环最简单,无构造异构体。 ① 三元环最简单,无构造异构体。 含四个碳原子的单环烃( ),仅有 构造异构体: 仅有2个 ② 含四个碳原子的单环烃(C4H8),仅有 个构造异构体:
命名时,从桥头碳原子开始编号,从最长桥编到另一桥头碳; 命名时,从桥头碳原子开始编号,从最长桥编到另一桥头碳; 然后沿次长桥回到第一个桥头碳; 然后沿次长桥回到第一个桥头碳;再按桥渐短的次序将其余的桥 编号;按所含碳原子的总数,称为某烷。还要标明取代基的位置, 编号;按所含碳原子的总数,称为某烷。还要标明取代基的位置, 数目,名称,所含环的数目,桥的长短。 数目,名称,所含环的数目,桥的长短。
第三章 环烷烃
如何鉴别: 如何鉴别:
CH3-CH=CH2 CH3-CH2-CH3
褪褪 Br2/H2O
褪褪 KMnO4
×
褪褪
×
在强烈条件下,环烷烃也能被氧化。 在强烈条件下,环烷烃也能被氧化。 如:
OH
O
+ O2 (air)
环烷酸钴 140~180℃ ℃ 1-2.5MPa
+
氧化
HOOC
COOH
工业生产己二酸 锦纶-66单体 单体) (锦纶-66单体)
总之: 总之: 三元环的稳定性最小,最易开环; 三元环的稳定性最小,最易开环; 四元环的稳定性次之;也易开环; 四元环的稳定性次之;也易开环; 五元、六元环等,较稳定,不易开环。 五元、六元环等,较稳定,不易开环。 作业 : P73 二(4、5、6) 、 、 )
Ni + H2 200
+ 开环 加
Pt H2 300
CH3-CH2-CH2-CH2-CH3
(2)加成卤素 ) +
常温 Br2 CCl4
Br-CH2-CH2-CH2-Br
+ Br2
CCl4
Br-CH2-CH2-CH2-CH2-Br
棕红色褪去,用以鉴定环丙烷及环丁烷 鉴定环丙烷及环丁烷。 使Br2/CCl4棕红色褪去,用以鉴定环丙烷及环丁烷。
(3)加成卤化氢 )
+ HBr
CH3
CH3CH2CH2Br
+
HBr
CH3CHCH2CH3 Br
带有取代基的小环烷烃加成HX或 带有取代基的小环烷烃加成HX或Br2时,环 HX 的断裂是在取代基最多与最少的两个环碳原子 的断裂是在取代基最多与最少的两个环碳原子 加到含H多的碳上。( P67有错误 。(书 有错误!) 之间, 之间,且H加到含H多的碳上。(书P67有错误!)
《有机化学(第二版)》第3章:环烷烃
三、(小环)环烷烃的化学性质 、(小环) 小环
环烷烃的反应和烷烃相似( 个方面 个方面) 环烷烃的反应和烷烃相似(2个方面) 三元环、四元环不稳定,易开环, 三元环、四元环不稳定,易开环,生成开链化合物 1、氢解 、 Ni 40℃ 常压 ℃ 环丁烷在较高温度下反应: 环丁烷在较高温度下反应:
19:46
4 5 6 1 3
1-甲基 异丙烯基环己烯 甲基-4-异丙烯基环己烯 甲基 苧烯 4-甲基 环己烯 甲基-1-环己烯 甲基
2
如取代基为较长的碳链,将环作为取代基: 如取代基为较长的碳链,将环作为取代基: 3-环己基己烷 环己基己烷
19:46
环烷烃的异构
环的大小、 环的大小、侧链的长短及位置不同而产生构造异构体 4C
1,3-二溴丙烷 二溴丙烷
环丁烷、环戊烷常温下不 环丁烷、环戊烷常温下不和溴起加成反应 高温或者光照下发生取代反应 高温或者光照下发生取代反应
+
3、加HBr 、
+ HBr
Br2
hv
Br
CH 3 CH 2 CH 2 Br
室 温
常温下环丁烷、 常温下环丁烷、环戊烷不与 HBr反应 反应
CH 3 CH CH 2 CH 2 + HBr CH 3 CHCH 2 CH 3 Br 2-溴丁烷 溴丁烷
5
4°4’ °
6
-5°16’ °
7
-9°33’ °
从偏转角度来看,五员环应最稳定, 从偏转角度来看,五员环应最稳定,大于五员环或小于 五员环都将越来越不稳定。但实际上,五员, 五员环都将越来越不稳定。但实际上,五员,六员和更大的 环型化合物都是稳定的。这就说明张力学说存在缺陷。 环型化合物都是稳定的。这就说明张力学说存在缺陷。
有机化学第三章环烷烃
※ 在不同的环烃中键角大于或小于 109o28’,而正常的 SP3 杂化轨道之间的夹角为 109°28′ 即 C - C 之间的电子云 没有达到最大程度的重叠。
1 (109° 28′-60° )= 24° 64′ 2 1 (109° 28′-90° )= 9° 44′ 2 1 (109° 28′-108° )= 0° 44′ 2 1 (109° 28′-120° )= -5° 16′ 2
两个环共用两个或两个以上碳原子的化合物称桥环化合物。
3、环戊烷的结构
C:sp3杂化,轨道夹角109.5o,五边形内角为108o角张力: 109.5-108=1.5o 可见,环戊烷分子中几乎没有什么角张力,故五元 比较稳定,不易开环,环戊烷的性质与开链烷烃相似。
事实上,环戊烷分子中的五个碳原子亦不共 平面,而主要是以“信封式”构象存在,使 五元环的环张力可进一步得到缓解。
二、化学性质
结构分析:C-C, C-H σ键牢固,化性稳定,似烷烃;
但C3—C4环易破,环可以加成,似烯烃。
1、取代反应
+ Cl2 光照 + HCl Cl Cl + HCl
+ Cl2
加热 300oC
反应条件加强, 反应程度减弱。
2、加成反应
小环烷烃,特别是环丙烷,和一些试剂作用时易发生开环。 A: 加氢(随碳原子数增加,环的稳定性增加;加氢反应条 件也愈苛刻)
7 6 5 4 3
9 1 2 8
10
1 2 5
7
6
5 4
3 2 1 CH3
7 CH3
6
4
3
8
9
螺[2, 4]庚烷
7-甲基螺[4, 5]癸烷
1-甲基螺[3,5]-5-壬烯
第三章环烷烃
H (1 2 0 p m ) H CH3 CH3
(2 0 0 p m )
CH3
取代基的体积越大,e键的比例越高
C(CH
3)3
~100%
2) 二取代环己烷的构象
CH3 E=10.4 kJ/mol CH3 CH3 CH3
试比较顺式和反式 1,4-二甲基环己烷的稳定性。
H3 C CH3
CH3 a CH3 a
1-甲基螺[3.4]辛烷
2.编号从连接螺碳的小环的碳开始; 3.将编号和取代基名称写在螺字前.
2.桥环烃
两个环共用两个或两个以上碳原子的多环烃。两 个碳原子之间的距离叫桥,桥的交点为桥头碳。
二环[1.1.0]丁烷 bicyclo[1.1.0]butane
CH
3
二环[2.2.1]庚烷 bicyclo[2.2.1]heptane
四元环
60°
9 °44′
0 ° 44′ -5 °16 ′
五元环 六元环
109° 8′ 2
解释了小环化合物的性质,大环化合物的出现否 定了该学说。因六元环以上的环烷烃的碳原子能以正 常的键角成键,因此稳定性很高。
2.张力因素
引起分子不稳定的因素
范德华张力 非键原子之间的距离较近时引起的排斥作用。 角张力 键张力 扭转张力
信封式
4.环己烷及其衍生物的构象 (1) 环己烷的构象 极端构象: A)椅式构象 透视式
H 2 H H 1 H H 250pm H 3 H H 5 H H 4 H H
椅式
船式 纽曼投影式
H
H
H
H H
6 1
H H H
2 5
H H
4
H
6
交叉型
3
(2 0 0 p m )
CH3
取代基的体积越大,e键的比例越高
C(CH
3)3
~100%
2) 二取代环己烷的构象
CH3 E=10.4 kJ/mol CH3 CH3 CH3
试比较顺式和反式 1,4-二甲基环己烷的稳定性。
H3 C CH3
CH3 a CH3 a
1-甲基螺[3.4]辛烷
2.编号从连接螺碳的小环的碳开始; 3.将编号和取代基名称写在螺字前.
2.桥环烃
两个环共用两个或两个以上碳原子的多环烃。两 个碳原子之间的距离叫桥,桥的交点为桥头碳。
二环[1.1.0]丁烷 bicyclo[1.1.0]butane
CH
3
二环[2.2.1]庚烷 bicyclo[2.2.1]heptane
四元环
60°
9 °44′
0 ° 44′ -5 °16 ′
五元环 六元环
109° 8′ 2
解释了小环化合物的性质,大环化合物的出现否 定了该学说。因六元环以上的环烷烃的碳原子能以正 常的键角成键,因此稳定性很高。
2.张力因素
引起分子不稳定的因素
范德华张力 非键原子之间的距离较近时引起的排斥作用。 角张力 键张力 扭转张力
信封式
4.环己烷及其衍生物的构象 (1) 环己烷的构象 极端构象: A)椅式构象 透视式
H 2 H H 1 H H 250pm H 3 H H 5 H H 4 H H
椅式
船式 纽曼投影式
H
H
H
H H
6 1
H H H
2 5
H H
4
H
6
交叉型
3
环烷烃
Monosubstituted Cyclohexanes
• The two conformers of a monosubstituted cyclohexane are not equal in energy • The equatorial conformer of methyl cyclohexane is more stable than the axial by 7.6 kJ/mol
Conformations of Cyclobutane
• Cyclobutane has less angle strain than cyclopropane but more torsional strain because of its larger number of ring hydrogens • Cyclobutane is slightly bent out of plane - one carbon atom is about 25°above
six axial bonds perpendicular to the ring
6 个键是直立键,a键
six equatorial bonds near the plane of the ring
6 个键是平伏键, e键
Drawing the Axial and Equatorial Hydrogens
Conformational Mobility of Cyclohexane
• Chair conformations readily interconvert, resulting in the exchange of axial and equatorial positions by a ring-flip
有机化学课件 第三章 环烷烃
螺[3.4]辛烷
(c)螺环上的编号:从连接螺原子(不含)上的一个碳开始,先
编较小的环,然后经过螺原子再编大环。有取代基是在遵循
编号原则的基础上,使取代基位置号码加和数最小为原则. 例3:
5-甲基螺[2.4]庚烷
2 3
1
6 5
7 8
螺[4. 5]癸烷 spiro[4. 5]decane
4
10
9
除螺C外的碳原子数 (用"."隔开)
6-甲基二环[3.2.2]壬烷
1,7-二甲基二环[3.2.2]壬烷
桥头碳原子
10 9 8 7 1 2 3 4 5
桥头间的碳原子数 (用"."隔开) 环的数目 二环[4. 4. 0]癸烷 bicyclo[4. 4. 0]decane 组成桥环的 碳原子总数
6
十氢萘
桥 头 碳:几个环共用的碳原子,
环的数目:断裂二根C—C键可成链状烷烃为二环;断裂三根C—C 键可成链状烷烃为三环
实 例 四
H3C H
CH3 H
带有二个或二 个以上取代基 时,分子有对 称性,构型用 顺、反表示(
顺-1,2-二甲基环丙烷 cis-1,2-dimethylcyclopropane
英文用 “cis”
和“trans”表 示)。
二、双环化合物的命名
其中两个碳环共用一个碳原子的叫螺环化合物. 共用两个或以上碳原子的叫桥环化合物.
当碳原子的键角偏离109°28′时,便会产生一种恢复正 常键角的力量。这种力就称为张力。键角偏离正常键角越多, 张力就越大。 109°28′内角
偏转角度=
2 4
9o44’
N=3 偏转角度
24o44’
有机化学-环烷烃
➢ 环外基团作为环上的取 代基
1
1
2
2 3
➢ 取代基位置数字取最小
3 4
1, 3-二甲基环己烷
1, 3-dimethylcyclohexane
1-甲基-4-异丙基环己烷
4-isopropyl-1methylcyclohexane
CH3
CH3
H
H
H3C H
CH3 H
H3C
CH3
顺-1,3-二甲基环戊烷 (cis-1, 3-dimethylcyclopentane)
桥头碳原子
10 2
9
1
3
8
6
4
7
5
十氢萘
环的数目
桥头间的碳原子数
(用"."隔开)
二环[4. 4. 0]癸烷
bicyclo[4. 4. 0]decane
组成桥环的 碳原子总数
✓桥 头 碳:几个环共用的碳原子, ✓环的数目:断裂二根C—C键可成链状烷烃为二环;断裂三根C—C
键可成链状烷烃为三环 ✓桥头间碳原子数:不包括桥头C,由多到少列出 ✓环的编号方法:从桥头开始,先长链后短链
椅式构象
H
H
3
H
H
2
1
H H4
56
H H
H
H
H
H
H H3
4
H H
H
5
1H
6
2H
H
C4-C3
C6-C1
交叉式
2.50nm
H
H
HH
H~H之间距离均大于
HH H
H H
H
2.49nm
H
H的Van der Waal’s半
1
1
2
2 3
➢ 取代基位置数字取最小
3 4
1, 3-二甲基环己烷
1, 3-dimethylcyclohexane
1-甲基-4-异丙基环己烷
4-isopropyl-1methylcyclohexane
CH3
CH3
H
H
H3C H
CH3 H
H3C
CH3
顺-1,3-二甲基环戊烷 (cis-1, 3-dimethylcyclopentane)
桥头碳原子
10 2
9
1
3
8
6
4
7
5
十氢萘
环的数目
桥头间的碳原子数
(用"."隔开)
二环[4. 4. 0]癸烷
bicyclo[4. 4. 0]decane
组成桥环的 碳原子总数
✓桥 头 碳:几个环共用的碳原子, ✓环的数目:断裂二根C—C键可成链状烷烃为二环;断裂三根C—C
键可成链状烷烃为三环 ✓桥头间碳原子数:不包括桥头C,由多到少列出 ✓环的编号方法:从桥头开始,先长链后短链
椅式构象
H
H
3
H
H
2
1
H H4
56
H H
H
H
H
H
H H3
4
H H
H
5
1H
6
2H
H
C4-C3
C6-C1
交叉式
2.50nm
H
H
HH
H~H之间距离均大于
HH H
H H
H
2.49nm
H
H的Van der Waal’s半
第三章。环烷烃
翻转后: 翻转后:
21
在室温下环已烷的一种椅式构象通过σ 在室温下环已烷的一种椅式构象通过σ键旋转迅速转变成另 一种椅式构象: 一种椅式构象:
22
2. 船式构象
◇船式构象的基本形态
四个C 1,2,4,5四个C在同一平面 C-3,C-6均在该平面上方
船式构象中张力能每一项都不等于零: ◇船式构象中张力能每一项都不等于零: 范德华半径240pm 240pm, ≠0, 如:lH3-H6=183pm < 范德华半径240pm,故Enb≠0,同时非键作用使 H3键长和键角有变, ≠0, 键长和键角有变,使El≠0,Eφ≠0
第三章 环烷烃
(Cycloalkane )
1
分子中C原子以单键互相连接成闭合环。 ◇环烷烃 — 分子中C原子以单键互相连接成闭合环。 链成环需增加一个C 单键,同时减少两个H ◇通 式 — CnH2n,链成环需增加一个C-C单键,同时减少两个H,与烯 烃为同分异构体。 烃为同分异构体。
一、环烷烃的异构和命名
环稳定性: 环稳定性:
>
环开裂一般发生在含氢最多和含氢最少的两个碳原子之间。 环开裂一般发生在含氢最多和含氢最少的两个碳原子之间。
6
(2) 加溴 例:
开环加成
环丁烷、环戊烷等与溴的反应与烷烃相似: 环丁烷、环戊烷等与溴的反应与烷烃相似:
hv Br
+
Br2
7
(3) 加HBr 例:
在含H最少C与含H最多C间断裂,Br 加到含H最少C 在含H最少C与含H最多C间断裂,Br-加到含H最少C上
4
◇例子: 例子: 例1: 1-甲基-3-乙基环戊烷 甲基-
例2:
1
2
3
第三章 环烷烃
H H3C CH3 H
H H3C
H CH3
反-1,2-二甲基环丙烷 , 二甲基环丙烷
顺-1,2-二甲基环丙烷 , 二甲基环丙烷
这种立体异构体不能通过键的旋转而互变, 这种立体异构体不能通过键的旋转而互变,称 构型异构体,或顺反异构体 或顺反异构体。 为构型异构体 或顺反异构体。
三. 环烷烃的命名
1) 单环烷烃 a. 以环所含碳原子数的多少,称为环某烷; 以环所含碳原子数的多少,称为环某烷 环某烷; b. 对环上含有取代基的环烷烃,则要表明取代基的位 对环上含有取代基的环烷烃,则要表明取代基的位 数目,名称,其命名原则与直链烷烃相同。 置, 数目,名称,其命名原则与直链烷烃相同。
H
环己烷椅式构象
平伏键
画法 直立键
H
6
H H
5 2 4
H
H
H
1
H H
3
H
H
H
H
纽曼投影式: 纽曼投影式:
投影式中, 、 、 、 四个碳原子处于垂直于 在Newman投影式中,2、3、5、6四个碳原子处于垂直于 投影式中 纸面的平面上, 、 两个碳原子一个在上 一个在下。 两个碳原子一个在上, 纸面的平面上,1、4两个碳原子一个在上,一个在下。
二. 构造异构和立体异构
1)构造异构: )构造异构: 含四个碳的一元环有两种 两种; 三元环只有一种 三元环只有一种 ;含四个碳的一元环有两种;含五 个碳的环烷烃有: 个碳的环烷烃有:
CH3
CH3
环戊烷 1-甲基环丁烷
1-乙基环丙烷
CH3
H
CH2CH3
1,1-二甲基环丙烷
H3C
1,2-二甲基环丙烷
2 3 4 5
H H3C
H CH3
反-1,2-二甲基环丙烷 , 二甲基环丙烷
顺-1,2-二甲基环丙烷 , 二甲基环丙烷
这种立体异构体不能通过键的旋转而互变, 这种立体异构体不能通过键的旋转而互变,称 构型异构体,或顺反异构体 或顺反异构体。 为构型异构体 或顺反异构体。
三. 环烷烃的命名
1) 单环烷烃 a. 以环所含碳原子数的多少,称为环某烷; 以环所含碳原子数的多少,称为环某烷 环某烷; b. 对环上含有取代基的环烷烃,则要表明取代基的位 对环上含有取代基的环烷烃,则要表明取代基的位 数目,名称,其命名原则与直链烷烃相同。 置, 数目,名称,其命名原则与直链烷烃相同。
H
环己烷椅式构象
平伏键
画法 直立键
H
6
H H
5 2 4
H
H
H
1
H H
3
H
H
H
H
纽曼投影式: 纽曼投影式:
投影式中, 、 、 、 四个碳原子处于垂直于 在Newman投影式中,2、3、5、6四个碳原子处于垂直于 投影式中 纸面的平面上, 、 两个碳原子一个在上 一个在下。 两个碳原子一个在上, 纸面的平面上,1、4两个碳原子一个在上,一个在下。
二. 构造异构和立体异构
1)构造异构: )构造异构: 含四个碳的一元环有两种 两种; 三元环只有一种 三元环只有一种 ;含四个碳的一元环有两种;含五 个碳的环烷烃有: 个碳的环烷烃有:
CH3
CH3
环戊烷 1-甲基环丁烷
1-乙基环丙烷
CH3
H
CH2CH3
1,1-二甲基环丙烷
H3C
1,2-二甲基环丙烷
2 3 4 5
第三章--环烷烃PPT课件
31
Cyclohexane
船 式 构 象 球 棒 模 型
32
Cyclohexane
船 式 斯 陶 特 模 型
33
转环作用中的能量变化
半椅式
船式
扭船式
椅式
34
环己烷的椅式构象最稳定
✓ 角张力为0
✓ 采取邻位交叉式构象,扭转张力最小
✓
1,3-二a键相互作用小。因为H原子 范德华半径小,所以范德华张力为0
环数:使环状化合物 变成开链化合物所需 打破的碳碳键的数目
单环: 如
C
H
C
2
H
2
C
H
2
(
环
丙
烷
)
、
(环 己 烷 )
二环:如
(十 氢萘) 又叫二 环[4.4.0]癸烷
多环:二环以上。 如 金刚烷
螺环:共有1个碳 如 按环的连接方式 稠环:共有2个碳 如十氢萘
桥环:共有2个以上碳原子 如
3
二. 单环烷烃的命名
1,1-二甲基-4-乙基环己烷
4-Ethyl-1,1-dimethylcyclohexane 7
例3
CH3
CH3 CH CH3
CH 3 CH 2 C CH 2 CH 3 CH 3
1-甲基-2-异丙基环己烷 1-甲基-2-(1-甲基乙基)环己烷
3-甲基-3-环丁基环戊烷 (长链作母体) 8
环烷烃顺反异构
h
C H 2 H 2 CC H C l+ H C l
甲基环己烷+氯r
+Br2
Br
3. 环烯烃的氧化
O 3 Z n /H 2 O C H 3 C O C H 2 C H 2 C H (C H 3 )C H O
Cyclohexane
船 式 构 象 球 棒 模 型
32
Cyclohexane
船 式 斯 陶 特 模 型
33
转环作用中的能量变化
半椅式
船式
扭船式
椅式
34
环己烷的椅式构象最稳定
✓ 角张力为0
✓ 采取邻位交叉式构象,扭转张力最小
✓
1,3-二a键相互作用小。因为H原子 范德华半径小,所以范德华张力为0
环数:使环状化合物 变成开链化合物所需 打破的碳碳键的数目
单环: 如
C
H
C
2
H
2
C
H
2
(
环
丙
烷
)
、
(环 己 烷 )
二环:如
(十 氢萘) 又叫二 环[4.4.0]癸烷
多环:二环以上。 如 金刚烷
螺环:共有1个碳 如 按环的连接方式 稠环:共有2个碳 如十氢萘
桥环:共有2个以上碳原子 如
3
二. 单环烷烃的命名
1,1-二甲基-4-乙基环己烷
4-Ethyl-1,1-dimethylcyclohexane 7
例3
CH3
CH3 CH CH3
CH 3 CH 2 C CH 2 CH 3 CH 3
1-甲基-2-异丙基环己烷 1-甲基-2-(1-甲基乙基)环己烷
3-甲基-3-环丁基环戊烷 (长链作母体) 8
环烷烃顺反异构
h
C H 2 H 2 CC H C l+ H C l
甲基环己烷+氯r
+Br2
Br
3. 环烯烃的氧化
O 3 Z n /H 2 O C H 3 C O C H 2 C H 2 C H (C H 3 )C H O
第三章 环烷烃
有机化学中的同分异构现象
碳架异构体
位置异构体
( 结同 构分 异异 构构 体体 )
构造异构体
官能团异构体 互变异构体 价键异构体 构型异构体
几何异构体(不能旋转)
旋光异构体
立体异构体
构象异构体
交叉式构象 重叠式构象
电子互变异构体
* 分子式相同, 结构不同的化合物称为同分异构体, 也叫结构异构体
互变异构体: 因分子中某一原子在两个位置迅速移动而产生的 官能团异构体
那么,1,3和1,4二取代物呢?
结论:
(1)环己烷多元取代物中, e-取代基最多的构 象最稳定 (2)环己烷多元取代物中,大体积的取代基在 e-位的构象最稳定
3.环己烷环的平面表示法
3.6
多环烷烃的命名
① 螺环烃:两碳环共用一个碳原子(螺原子)
② 桥环烃:分子内环与环之间有两个或两个以上 共用碳原子的多环烃。
*若环上有取代基,则取代基的编号,名称放在母体前。若有 多个取代基:中文命名时,取代基的位次按顺序规则由小到 大排列;英文命名时,取代基的位次按英文字母排列; *编号的方式若有各种选择时, 要使取代基的号码尽可能小。
练
7 4 5 6 1 3 2
习
三环[2.2.1.02,6]庚烷
H3C
CH3
1,2,4-三甲基二环[4.3.0]壬烷
1、螺环烷烃的命名步骤
(1) 确定母体烃的名称:根据成环碳原子的数目确定母体烃的名称。
(2) 确定螺数:根据螺原子的个数分为单螺,二螺,三螺等。
(3) 编号: 编号从与端螺原子相邻的一个碳原子开始,沿多环的 边使所有的螺原子位号都尽可能小的路径编号。 (4) 标明结构:确定方括号内的数字,顺着环的编号次序,用数字 表明螺原子之间的碳原子数目,依次写在方括号内。 (5) 写出母体的名称:螺数、带有数字的方括号、母体烃的名称 三部分共同组成母体的名称; (6) 若有取代基,取代基的编号和名称放在母体前。若有多个取代 基,中文命名时,取代基的位次按顺序规则由小到大排列。英 文命名时,取代基的位次按英文字母排列。编号的方式若有各 种选择时, 要使取代基的号码尽可能小。
有机化学 第三章 环烷烃
环烷烃的张力是四者之和。
环丙烷的结构:
弯曲键
纽蔓投影式
环丁烷和环戊烷的构象:
折 叠 式 构 象
信 封 式 构 象
扭 曲 式 构 象
3.3.2 环己烷的构象 椅式构象和船式构象:
椅式构象是无张力环,稳定
船式构象存在扭转张力 和非键张力,不稳定
直立键 (a键) 和平伏键(e键)
直立键
平伏键
直 立 键 『 键 』
顺反异构:
——当环上有两个碳原子各连有不同的原子或 基团时就存在顺反异构.
例如:n=5时单环烷烃的构造异构
单环烷烃命名:
① “环”字 ② 取代基的位次和最小 ③ 小的号码表示小的取代基
顺反异构的命名:
双环烷烃:
通式CnH2n-2 根据两个碳环的位置关系分为:
命名:
隔离型双环烷烃: 联环烷烃:
立体透视式
锯架式
例:1,2-二甲基环己烷
顺式:
a,e
反式:
e,e
a,a
稳 定
反式
顺式
顺-1-甲基-4-叔丁基环己烷
稳 定
优势构象
顺-4-叔丁基环己醇
稳 定
优势构象
顺-1-甲基-3-氯环己烷
多取代环己烷:
全顺式-1,2,4-三甲基环己烷
十氢化萘的结构:
稳 定
第三章
环烷烃
环烷烃的定义、分类、异构和命名 环烷烃的性质 环烷烃的环张力和稳定性 环己烷的构象
3.1 脂环烃的定义、分类、异构和命名
脂环烃——具有环状碳骨架,而性质上与脂肪
烃相似的烃类。分为饱和脂环烃和不饱和脂环烃.
环烷烃——饱和脂环烃
环烷烃分类: 单环烷烃 双环烷烃 多环烷烃
环丙烷的结构:
弯曲键
纽蔓投影式
环丁烷和环戊烷的构象:
折 叠 式 构 象
信 封 式 构 象
扭 曲 式 构 象
3.3.2 环己烷的构象 椅式构象和船式构象:
椅式构象是无张力环,稳定
船式构象存在扭转张力 和非键张力,不稳定
直立键 (a键) 和平伏键(e键)
直立键
平伏键
直 立 键 『 键 』
顺反异构:
——当环上有两个碳原子各连有不同的原子或 基团时就存在顺反异构.
例如:n=5时单环烷烃的构造异构
单环烷烃命名:
① “环”字 ② 取代基的位次和最小 ③ 小的号码表示小的取代基
顺反异构的命名:
双环烷烃:
通式CnH2n-2 根据两个碳环的位置关系分为:
命名:
隔离型双环烷烃: 联环烷烃:
立体透视式
锯架式
例:1,2-二甲基环己烷
顺式:
a,e
反式:
e,e
a,a
稳 定
反式
顺式
顺-1-甲基-4-叔丁基环己烷
稳 定
优势构象
顺-4-叔丁基环己醇
稳 定
优势构象
顺-1-甲基-3-氯环己烷
多取代环己烷:
全顺式-1,2,4-三甲基环己烷
十氢化萘的结构:
稳 定
第三章
环烷烃
环烷烃的定义、分类、异构和命名 环烷烃的性质 环烷烃的环张力和稳定性 环己烷的构象
3.1 脂环烃的定义、分类、异构和命名
脂环烃——具有环状碳骨架,而性质上与脂肪
烃相似的烃类。分为饱和脂环烃和不饱和脂环烃.
环烷烃——饱和脂环烃
环烷烃分类: 单环烷烃 双环烷烃 多环烷烃
3环烷烃
一、加成反应: 加成反应:
催化加氢 H2/Ni,400C; , ; H2/Ni,1000C; , ; Br2(室温) 室温)
Br
Br
HBr(室温) (室温)
Br
Br
Br
Br
H2/Pt,3000C; , ;
不反应
不反应
不反应
不反应
不反应
从上面开环反应的条件可以看出,环的稳定性顺序是: 从上面开环反应的条件可以看出,环的稳定性顺序是: 六元环>五元环 四元环 三元环; 六元环 五元环>四元环 三元环; 五元环 四元环>三元环
ห้องสมุดไป่ตู้
(二)环丁烷和环戊烷: 环丁烷和环戊烷:
环丁烷与环丙烷相似, 键也是弯曲的, 键角约111.5, 环丁烷与环丙烷相似,C-C键也是弯曲的,C-C-C键角约 键也是弯曲的 键角约 , 其中四个C不在同一平面 呈信封式结构。 不在同一平面。 其中四个 不在同一平面。呈信封式结构。
H H H H H H H H
三、氧化: 氧化:
能发生燃烧反应,但不能被 氧化( 能发生燃烧反应,但不能被KMnO4氧化(区别于不饱和的烯 烃和炔烃); 烃和炔烃); 例:CH3
CH3 KMnO4 CH 3
+ O C CO2H
CH3 CH3
C C H CH3
CH3
CH3
环的张力(稳定性) §3 环的张力(稳定性)
一、环烷烃的燃烧热: 环烷烃的燃烧热:
最短桥
例:
CH3
3-甲基二环[4.4.0 ]癸烷 -甲基二环 癸烷
7,7-二甲基二环[2.2.1 ]庚烷 -二甲基二环 庚烷
§2 环烷烃的化学性质
环烷烃具有链状烷烃的通性,如能发生燃烧、卤代等反应; 环烷烃具有链状烷烃的通性,如能发生燃烧、卤代等反应; 三、四元环环烷烃同时具有烯烃的一些性质,如能进行加成 四元环环烷烃同时具有烯烃的一些性质, 而发生开环的反应; 而发生开环的反应; 而五六元环等大环环烷烃很稳定,不易发生开环反应。 而五六元环等大环环烷烃很稳定,不易发生开环反应。
第3章 环烷烃
返回
35
10
7
6
5 4
1
2
2,7,7-三甲基二环[2.2.1]庚烷
3
11
二. 环烷烃的物理性质和化学反应 (Physical Properties,Chemical Reactions of Cycloalkanes) 1. 物理性质(自学) 2. 化学反应 ①. 加 H2
+ +
H2 H2
Ni 40℃
Ni 100℃
1-甲基-2-乙基环戊烷
1-甲基-4-异丙基环己烷
CH 3 CH 3
顺-1,2-二甲基环丙烷
H H
6
H CH 3
CH 3
反- 1,3-二甲基环戊烷
H
CH3CH 2
CH( CH 3)2
反-1-乙基-3-异丙基环戊烷 2). 多环烃 螺环烃: ①. 确定母体:螺某烷(由螺环中总碳数确定)。 ②. 编号:先编小环后编大环。从小环中和螺碳相
3
2 4 5 1
26
6
2. 取代环己烷的构象 1). 一取代环己烷的构象
结论:一取代环己烷最稳定构象是取代基在e键上。
例:
H H H HH H H H HH H HH
H H H H H H H H H H H H
H
H H
95%
5%
27
CH(CH3)2
CH( CH 3)2
97%
C(CH3)3
C(CH 3)3
4 5 2 3 1 6 3 4 5
2
1 6
③. 椅式构象用纽曼投影式表示(从C3朝C4看,C1朝C6看)。
H H
4 2
H
6 1 5
H
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第20页
24。44′
60。
109。28′
90。 (109。28′-90。)/ 2 = 9。44′ 108。 (109。28′-108。)/ 2 = 0。44′
24。44′
120。 ( 120。-109。28′)/ 2 = 5。16′
(109。28′-60。)/ 2 = 24。44′
成功之处:能解释大多数实验事实. 不成功之处:对五员环及六员环的推测不对. 不成功原因:把分子都看成平面,实际上除三员环外,其 它环的碳原子都不在一个平面内.
H
H
在船型构象中,有的C-H键处于重叠式。
H
H H
45
HH 3 H
HH H
6
1
HH
2
H
1
H H
6 5
CCHH22 4
2
3
H H
HH H H
第31页
3.环己烷的α键与e键
α键—竖键(或直立键) e 键—横键(或平伏键)
ee
a 5a
ae6
a e
e
ae
4
3a 2
a
1
a a
a a
a
e e
e
ee e
● 10 4__10 6 秒/次 转环
③母体:按成环碳原子总数称为 “某烷”.
第8页
7
CH1 2CH3 2 CH3
8 CHCH3 3 CH2
6
5
4
2,8-二甲基-1-乙基- 二环[3.2.1] 辛烷
定编号: 编号从一个桥头碳开始,沿最长桥到另一
桥头碳,再沿次长桥回到起始桥头碳,最后是最 短桥的碳原子.
写取代基:
将取代基位次和名称放在“二环”之前即可.
第19页
二、张力学说(Strain theory)
1.拜尔(A.von Baeyer)张力学说
① 假设成环所有的碳原子都在同一平面上, 构成 正多边形。 ② 假设所有键角为109。28′(即四面体结构)。
根据假定:如果环中的夹角大于或小于109。28′就会产生张力, 键角变形 ,张力 ,环不稳定。
第11页
螺[2.4] 庚烷 螺[5.5] 十一烷
5CH31
6
4
7
2
83
5-甲基 螺[3.4]辛烷
定编号: 编号从较小环与螺原子相邻的碳开始, 沿小环经螺原子到较大的环.
写取代基
将取代基位次和名称放在“螺”之前即可.
第12页
§3.2 环烷烃的化学性质
1.氢解——催化加氢
CH2 CH2 + CH2
H2
第26页
1.环丙烷、环丁烷、环戊烷的构象:
H H
H H
H
115°
H
H
H
H
H
H
H
环丁烷
环戊烷
蝴蝶型
第27页
信封型
扭曲型
2.环己烷的构象
环己烷的碳骨架不是平面结构,C-C-C 键角为109.5°。通过旋转σ键和键角的改变,可 以得到两种极限构象:
椅型
船型
环己烷的椅型和船型构象
第28页
环己烷椅型构象
CH2 CH2 + HBr CH2
CH2-CH2-CH2
H
Br
H3C— CH CH2 + HBr CH2
CH3-CH-CH2-CH2
Br
H
取代环丙烷: 断键:断含氢最多和含氢最少的碳原子间的键。 氢原子:加到含氢较多的碳上。
第15页
练习:
CH3 C CH3
CH CH3
CH2
HBr
CH3 CH3
CH3 C CH CH2
反-丁烯二酸二甲酯
O
反-环己烯-4,5-二甲酸二甲酯
O
+
O
O
环戊二烯
O
O
丁烯二酸酐
第40页
三、卡宾(碳烯)合成法
光或热
CH2N2
重氮甲烷
: CH2 + N2
碳烯
CH3- CH=CH-CH3 + :CH2
CH3-CH -CH-CH3 CH2
+ :CH2
二环[4.1.0]庚烷
第41页
第9页
例如:
5
4
67
3
18
2
二环[4.2.0]辛烷
7 1
6
2
5 43
2,7,7-三甲基二环[2.2.1]庚烷
练习:
CH3 H3C
1,2,4-三甲基二环[4.3.0]壬烷
CH3
第10页
螺环烷烃(Spirocyclic hydrocarbon)
两个碳环共用一个碳原子的脂环烃.
螺原子
母体化合物:词头[两环碳原子数目表示]母体. ①词头:螺 ②两环碳原子数目表示:由小环到大环(螺原子 不包括在内),用圆点分开. ③母体:按成环碳原子总数称为 “某烷”.
第37页
§3-5 脂环烃的制备*
一、芳烃化合物还原法
+ 3 H2
Ni 180~250℃
+ H2 催化剂
四氢化萘
H2 催化剂
十氢化萘
第38页
二、分子内偶联法
1.武慈合成法——主要适合于制备三、四元环
CH2 Br CH2 CH2 Br
Na 或Zn
CH2 CH2 CH2
Br
K
Br
2.格氏试剂合成法——主要适合于制备四~七元环
H H
H H
H
H
H
H
H
H
第三章
环烷烃 H H
Chapter 3 Cycloalkane §3.1 环烷烃的分类和命名 §3.2 环烷烃的化学性质 §3.3 环烷烃的分子结构 §3.4 环烷烃的立体化学 §3.5 脂环烃的制备
第1页
§3.1 环烷烃的分类与命名
一、分类
小 环 烃: C3—C4
按
单环烃
Ni 40℃
CH2 CH2 CH2 CH2 + H2
CH2 CH2 CH2 + H2
CH2 CH2
Ni 110℃
Pt
330℃
CH2
CH2 CH2
CH2
+ CH2
H2
CH2
第13页
Pt
>300℃
CH3CH2CH3 CH3CH2CH2CH3
CH3CH2CH2CH2CH3
CH3CH2CH2CH2CH2CH3
环己烷船型构象
环己烷椅型和船型构象的模型
第29页
椅型构象和船型构象可以相互转变, 但椅型构象比船型构象稳定:
0.25 nm
5
6
1
0.18 nm
4
56
1
4
32
3
2
第30页
椅型
船型
椅型构象稳定的原因:所有的键处于交叉式
H
H
5
HH
H
4
H
H3
6H
1
H
HH
2
H
H1
H
H 6 CH2 2 H
H
5
H
C4 H2
3
普通环烃: C5— C7 中 环 烃: C8— C12
环
大 环 烃: C13 以上 螺环烃--- 仅共用一个
数
碳原子的多环脂环烃。
目
螺环烃:
共用的碳原子称为螺
、 大
多环烃 稠环烃:
小
桥环烃:
分
原子。
桥环烃--- 共用两个或 两个以上碳原子的多 环脂环烃。
第2页
二、 命名
1. 单环烃的命名
① 以相应的开链烃冠以“环”字来命名
第21页
2. 近代共价键理论解释环的稳定性
环丙烷的结构:
CH3
H
H
C
CH2 109.5°
60°CH3HC H105.5°CH
114°
H
丙烷及环丙烷分子中碳碳键 原子轨道交盖情况
第22页
从环丁烷开始,成环碳原子均不在同一平面上。
环丁烷
环戊烷
蝴蝶型
信封型
扭曲型
环己烷分子中无张力;而七到十二个碳原子组成的
2.燃 烧 热------指化合物燃烧时所放出的热量。
燃烧热的大小反映出分子内能的高低,从而说明化合 物的稳定性。
第18页
名称
表3-1 环烷烃的燃烧热
成环 碳数
分子燃烧热 /KJ·mol-1
-CH2-的 平均燃烧热
/KJ·mol-1
名称
成环 碳数
分子燃烧热 /KJ·mol-1
-CH2-的 平均燃烧热
环烷烃,环内氢原子间的扭转张力使它们的稳定性略
有下降.
当环进一步增大时, 稳定性与环
己烷相似。如环二十二烷就是无张 力环.
环二十二烷
第23页
§3.4 脂环烃的立体化学
立体化学是研究分子中的原子或原子团在 空间的排布不同而引起的异构现象。
烯键 顺反异构
碳环 构象异构 —- 单键旋转而呈现异构
一、环烷烃顺反异构
Cl Mg Cl 四氢呋喃
MgCl CF3S03Ag MgCl
第39页
3.狄尔斯-阿德尔合成法(双烯合成)
H +
COOCH3
H COOCH3
顺丁烯二酸二甲酯
H
具
COOCH3 H COOCH3
有 立 体
顺-环己烯-4,5-二甲酸二甲酯 专
CH3OOC H
COOCH3 H
一 性
+
H
H COOCH3
COOCH3
CH2 CH2 CH
5
或
24。44′
60。
109。28′
90。 (109。28′-90。)/ 2 = 9。44′ 108。 (109。28′-108。)/ 2 = 0。44′
24。44′
120。 ( 120。-109。28′)/ 2 = 5。16′
(109。28′-60。)/ 2 = 24。44′
成功之处:能解释大多数实验事实. 不成功之处:对五员环及六员环的推测不对. 不成功原因:把分子都看成平面,实际上除三员环外,其 它环的碳原子都不在一个平面内.
H
H
在船型构象中,有的C-H键处于重叠式。
H
H H
45
HH 3 H
HH H
6
1
HH
2
H
1
H H
6 5
CCHH22 4
2
3
H H
HH H H
第31页
3.环己烷的α键与e键
α键—竖键(或直立键) e 键—横键(或平伏键)
ee
a 5a
ae6
a e
e
ae
4
3a 2
a
1
a a
a a
a
e e
e
ee e
● 10 4__10 6 秒/次 转环
③母体:按成环碳原子总数称为 “某烷”.
第8页
7
CH1 2CH3 2 CH3
8 CHCH3 3 CH2
6
5
4
2,8-二甲基-1-乙基- 二环[3.2.1] 辛烷
定编号: 编号从一个桥头碳开始,沿最长桥到另一
桥头碳,再沿次长桥回到起始桥头碳,最后是最 短桥的碳原子.
写取代基:
将取代基位次和名称放在“二环”之前即可.
第19页
二、张力学说(Strain theory)
1.拜尔(A.von Baeyer)张力学说
① 假设成环所有的碳原子都在同一平面上, 构成 正多边形。 ② 假设所有键角为109。28′(即四面体结构)。
根据假定:如果环中的夹角大于或小于109。28′就会产生张力, 键角变形 ,张力 ,环不稳定。
第11页
螺[2.4] 庚烷 螺[5.5] 十一烷
5CH31
6
4
7
2
83
5-甲基 螺[3.4]辛烷
定编号: 编号从较小环与螺原子相邻的碳开始, 沿小环经螺原子到较大的环.
写取代基
将取代基位次和名称放在“螺”之前即可.
第12页
§3.2 环烷烃的化学性质
1.氢解——催化加氢
CH2 CH2 + CH2
H2
第26页
1.环丙烷、环丁烷、环戊烷的构象:
H H
H H
H
115°
H
H
H
H
H
H
H
环丁烷
环戊烷
蝴蝶型
第27页
信封型
扭曲型
2.环己烷的构象
环己烷的碳骨架不是平面结构,C-C-C 键角为109.5°。通过旋转σ键和键角的改变,可 以得到两种极限构象:
椅型
船型
环己烷的椅型和船型构象
第28页
环己烷椅型构象
CH2 CH2 + HBr CH2
CH2-CH2-CH2
H
Br
H3C— CH CH2 + HBr CH2
CH3-CH-CH2-CH2
Br
H
取代环丙烷: 断键:断含氢最多和含氢最少的碳原子间的键。 氢原子:加到含氢较多的碳上。
第15页
练习:
CH3 C CH3
CH CH3
CH2
HBr
CH3 CH3
CH3 C CH CH2
反-丁烯二酸二甲酯
O
反-环己烯-4,5-二甲酸二甲酯
O
+
O
O
环戊二烯
O
O
丁烯二酸酐
第40页
三、卡宾(碳烯)合成法
光或热
CH2N2
重氮甲烷
: CH2 + N2
碳烯
CH3- CH=CH-CH3 + :CH2
CH3-CH -CH-CH3 CH2
+ :CH2
二环[4.1.0]庚烷
第41页
第9页
例如:
5
4
67
3
18
2
二环[4.2.0]辛烷
7 1
6
2
5 43
2,7,7-三甲基二环[2.2.1]庚烷
练习:
CH3 H3C
1,2,4-三甲基二环[4.3.0]壬烷
CH3
第10页
螺环烷烃(Spirocyclic hydrocarbon)
两个碳环共用一个碳原子的脂环烃.
螺原子
母体化合物:词头[两环碳原子数目表示]母体. ①词头:螺 ②两环碳原子数目表示:由小环到大环(螺原子 不包括在内),用圆点分开. ③母体:按成环碳原子总数称为 “某烷”.
第37页
§3-5 脂环烃的制备*
一、芳烃化合物还原法
+ 3 H2
Ni 180~250℃
+ H2 催化剂
四氢化萘
H2 催化剂
十氢化萘
第38页
二、分子内偶联法
1.武慈合成法——主要适合于制备三、四元环
CH2 Br CH2 CH2 Br
Na 或Zn
CH2 CH2 CH2
Br
K
Br
2.格氏试剂合成法——主要适合于制备四~七元环
H H
H H
H
H
H
H
H
H
第三章
环烷烃 H H
Chapter 3 Cycloalkane §3.1 环烷烃的分类和命名 §3.2 环烷烃的化学性质 §3.3 环烷烃的分子结构 §3.4 环烷烃的立体化学 §3.5 脂环烃的制备
第1页
§3.1 环烷烃的分类与命名
一、分类
小 环 烃: C3—C4
按
单环烃
Ni 40℃
CH2 CH2 CH2 CH2 + H2
CH2 CH2 CH2 + H2
CH2 CH2
Ni 110℃
Pt
330℃
CH2
CH2 CH2
CH2
+ CH2
H2
CH2
第13页
Pt
>300℃
CH3CH2CH3 CH3CH2CH2CH3
CH3CH2CH2CH2CH3
CH3CH2CH2CH2CH2CH3
环己烷船型构象
环己烷椅型和船型构象的模型
第29页
椅型构象和船型构象可以相互转变, 但椅型构象比船型构象稳定:
0.25 nm
5
6
1
0.18 nm
4
56
1
4
32
3
2
第30页
椅型
船型
椅型构象稳定的原因:所有的键处于交叉式
H
H
5
HH
H
4
H
H3
6H
1
H
HH
2
H
H1
H
H 6 CH2 2 H
H
5
H
C4 H2
3
普通环烃: C5— C7 中 环 烃: C8— C12
环
大 环 烃: C13 以上 螺环烃--- 仅共用一个
数
碳原子的多环脂环烃。
目
螺环烃:
共用的碳原子称为螺
、 大
多环烃 稠环烃:
小
桥环烃:
分
原子。
桥环烃--- 共用两个或 两个以上碳原子的多 环脂环烃。
第2页
二、 命名
1. 单环烃的命名
① 以相应的开链烃冠以“环”字来命名
第21页
2. 近代共价键理论解释环的稳定性
环丙烷的结构:
CH3
H
H
C
CH2 109.5°
60°CH3HC H105.5°CH
114°
H
丙烷及环丙烷分子中碳碳键 原子轨道交盖情况
第22页
从环丁烷开始,成环碳原子均不在同一平面上。
环丁烷
环戊烷
蝴蝶型
信封型
扭曲型
环己烷分子中无张力;而七到十二个碳原子组成的
2.燃 烧 热------指化合物燃烧时所放出的热量。
燃烧热的大小反映出分子内能的高低,从而说明化合 物的稳定性。
第18页
名称
表3-1 环烷烃的燃烧热
成环 碳数
分子燃烧热 /KJ·mol-1
-CH2-的 平均燃烧热
/KJ·mol-1
名称
成环 碳数
分子燃烧热 /KJ·mol-1
-CH2-的 平均燃烧热
环烷烃,环内氢原子间的扭转张力使它们的稳定性略
有下降.
当环进一步增大时, 稳定性与环
己烷相似。如环二十二烷就是无张 力环.
环二十二烷
第23页
§3.4 脂环烃的立体化学
立体化学是研究分子中的原子或原子团在 空间的排布不同而引起的异构现象。
烯键 顺反异构
碳环 构象异构 —- 单键旋转而呈现异构
一、环烷烃顺反异构
Cl Mg Cl 四氢呋喃
MgCl CF3S03Ag MgCl
第39页
3.狄尔斯-阿德尔合成法(双烯合成)
H +
COOCH3
H COOCH3
顺丁烯二酸二甲酯
H
具
COOCH3 H COOCH3
有 立 体
顺-环己烯-4,5-二甲酸二甲酯 专
CH3OOC H
COOCH3 H
一 性
+
H
H COOCH3
COOCH3
CH2 CH2 CH
5
或