大连理工大学 矩阵与数值分析 第2节线性多步法20160306

合集下载

大连理工大学矩阵分析网上作业

大连理工大学矩阵分析网上作业

2010级工科硕士研究生《矩阵与数值分析》课程数值实验题目 一、设2211N N j S j ==−∑,分别编制从小到大和从大到小的顺序程序计算 100100001000000,,S S S ,并指出有效位数。

二、解线性方程组1.分别Jacobi 迭代法和Gauss ‐Seidel 迭代法求解线性方程组12342100112100,0121000120x x x x −−⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟−⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟−⎜⎟⎜⎟⎜⎟−⎝⎠⎝⎠⎝⎠ 迭代法计算停止的条件为:6)()1(3110max −+≤≤<−k j k j j x x .2. 用Gauss 列主元消去法、QR 方法求解如下方程组:12341212425327.2235113230x x x x ⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟−⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟−−−⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠ 三、非线性方程的迭代解法1.用Newton 迭代法求方程()22cos 60x x f x e x −=++−= 的根,计算停止的条件为:6110−+<−k k x x ;2.利用Newton 迭代法求多项式 43210.565.48 2.795.954=10x x x x −+−+的所有实零点,注意重根的问题。

四、数值积分分别用复化梯形公式和Romberg 公式计算积分821dx x∫要求误差不超过510−,并给出节点个数。

五、插值与逼近1.给定[]1,1−上的函数()22511xx f +=,请做如下的插值逼近: ⑴ 构造等距节点分别取5=n ,8=n ,10=n 的Lagrange 插值多项式;⑵ 构造分段线性取10=n 的Lagrange 插值多项式;⑶取Chebyshev 多项式()()x n x T n arccos cos ⋅=的零点: πnk x k 212cos−=,n k ,,1"= 作插值节点构造10=n 的插值多项式 ()x f 和上述的插值多项式均要求画出曲线图形(用不同的线型或颜色表示不同的曲线)。

大连理工大学《矩阵与数值分析》2005-2009年真题答案

大连理工大学《矩阵与数值分析》2005-2009年真题答案

大 连 理 工 大 学课 程 名 称: 计算方法 试卷: A 考试形式: 闭卷 授课院(系): 数学系 考试日期: 2005 年 12 月 12 日 试卷共 7 页一二三四五 六 七 总分 标准分 得 分装 一、填空(共30分,每空1.5分)(1)误差的来源主要有 、 、 、 .(2)要使 7459666.760=的近似值a 的相对误差限不超过310-,应至少取 位有效数字, 此时的近似值a = .订 (3)设⎪⎪⎭⎫⎝⎛--=4224A , 则1A = , 2A = , ∞A = , F A = ,谱半径)(A ρ= , 2-条件数)(2A cond = , 奇异值为 .线 (4)设44⨯∈CA ,特征值3,24321====λλλλ,特征值2是半单的,而特征值3是亏损的,则A 的Jordan 标准型=J.(5)已知x x x f 3)(2-=,则=-]1,0,1[f ,=-]3,1,0,1[f .(6)求01)(3=-+=x x x f 在5.0=x 附近的根α的Newton 迭代公式是:,其收敛阶 . (7)计算u u 5-=')10(≤≤t , 1)0(=u 的数值解的Euler 求解公式为 . 为使计算保持绝对稳定性, 步长h 的取值范围 .二、(12分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=820251014A 的Doolittle 分解和Cholesky 分解,并求解⎪⎪⎪⎭⎫ ⎝⎛=1085Ax .三、(6分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=622292221A 的QR 分解(Q 可表示为两个矩阵的乘积).四、(12分)根据迭代法f Bx x k k +=+)()1(对任意)0(x 和f 均收敛的充要条件为1)(<B ρ, 证明若线性方程组b Ax =中的A 为严格对角占优矩阵, 则Jacobi 法和G-S 法均收敛.五、(12分)求满足下列插值条件的分段三次多项式(]0,3[-和]1,0[), 并验证它是不是三次样条函数.27)3(-=-f , 8)2(-=-f , 1)1(-=-f , 0)0(=f , ]0,3[-∈x ;0)0(=f , 0)0(='f , 0)1(=f , 1)1(='f , ]1,0[∈x .六、(10分)证明线性二步法])13()3[(4)1(212n n n n n f b f b hbu u b u +++=--++++, 当1-≠b 时为二阶方法,1-=b 时为三阶方法, 并给出1-=b 时的局部截断误差主项.七、(18分)求]1,1[-上以1)(≡x ρ为权函数的标准正交多项式系)(0x ψ, )(1x ψ, )(2x ψ, 并由此求3x ])1,1[(-∈x 的二次最佳平方逼近多项式, 构造Gauss 型求积公式⎰-+≈111100)()()(x f A x f A dx x f , 并验证其代数精度.大 连 理 工 大 学课 程 名 称: 计算方法 试卷: A 考试形式: 闭卷 授课院(系): 数学系 考试日期: 2006 年 12 月 11 日 试卷共 8 页一二三四五 六 七 八 总分 标准分 得 分装订 一、填空(共30分,每空2分)线 (1)误差的来源主要有 .(2)按四舍五入的原则,取 69041575.422= 具有四位有效数字的近似值 a = ,则绝对误差界为 ,相对误差界为 .(3)矩阵算子范数M A ||||和谱半径)(A ρ的关系为: ,和 .(4)设44⨯∈CA ,特征值3,24321====λλλλ,特征值2是半单的,而特征值3是亏损的,则A 的Jordan 标准型=J.(5)已知x x x f 3)(2-=,则=]1,0[f ,=-]1,0,1[f .(6)求01)(3=-+=x x x f 在5.0=x 附近的根α的Newton 迭代公式是:.(7)使用Aitken 加速迭代格式)(1-=k k x x ϕ得到的Steffensen 迭代格式为:,对幂法数列}{k m 的加速公式为:.(8)1+n 点的Newton-Cotes 求积公式∑==nk k k n x f A f I 0)()(的最高代数精度为.(9)计算u u 7-=')10(≤≤t , 1)0(=u 的数值解的Euler 求解公式为 ,为使计算保持绝对稳定性, 步长h 的取值范围 .二、(10分) 设⎪⎪⎭⎫ ⎝⎛--=4224A , 计算1A ,2A ,∞A ,F A , 谱半径)(A ρ, 2-条件数)(2A cond , 和奇异值.三、(10分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=820251014A 的Doolittle 分解和Cholesky 分解.四、(4分)求Householder 变换矩阵将向量⎪⎪⎪⎭⎫ ⎝⎛=221x 化为向量⎪⎪⎪⎭⎫ ⎝⎛=003y .五、(12分)写出解线性方程组的Jacobi 法,G-S 法和超松弛(SOR )法的矩阵表示形式,并根据迭代法f Bx x k k +=+)()1(对任意)0(x 和f 均收敛的充要条件为1)(<B ρ, 证明若线性方程组b Ax =中的A 为严格对角占优矩阵, 则超松弛(SOR )法当松弛因子]1,0(∈ω时收敛.六、(12分)求满足下列插值条件的分段三次多项式(]0,3[-和]1,0[), 并验证它是不是三次样条函数. 27)3(-=-f , 8)2(-=-f , 1)1(-=-f , 0)0(=f , ]0,3[-∈x ;0)0(=f , 0)0(='f , 0)1(=f , 1)1(='f , ]1,0[∈x .七、(12分)证明区间],[b a 上关于权函数)(x ρ的Gauss 型求积公式∑==nk k k n x f A f I 0)()(中的系数⎰=bak k dx x l x A )()(ρ,其中)(x l k 为关于求积节点n x x x ,,10的n 次Lagrange 插值基函数,n k ,1,0=. 另求]1,1[-上以1)(≡x ρ为权函数的二次正交多项式)(2x ψ, 并由此构造Gauss型求积公式⎰-+≈111100)()()(x f A x f A dx x f .八、(10分)证明线性二步法])13()3[(4)1(212n n n n n f b f b hbu u b u +++=--++++, 当1-≠b 时为二阶方法, 1-=b 时为三阶方法, 并给出1-=b 时的局部截断误差主项.大连理工大学应用数学系数学与应用数学专业2005级试A 卷答案课 程 名 称: 计算方法 授课院 (系): 应 用 数 学 系 考 试 日 期:2007年11 月 日 试卷共 6 页一 二 三 四 五 六 七 八 九 十 总分标准分 42 8 15 15 15 5 / / / / 100 得 分一、填空(每一空2分,共42分)1.为了减少运算次数,应将表达式.543242161718141311681x x x x x x x x -+---++- 改写为()()()()()()()1816011314181716-+++---+-x x x x x x x x x ;2.给定3个求积节点:00=x ,5.01=x 和12=x ,则用复化梯形公式计算积分dxe x ⎰-12求得的近似值为()15.02141--++e e , 用Simpson 公式求得的近似值为()15.04161--++e e 。

第1章--1(矩阵与数值分析)

第1章--1(矩阵与数值分析)

,而
a1010.2718, kn3 n4 ,所以它是
e2.7182 8的1具8 有2 4位有效字的近似值。
如果取近似值 b 2 .7 1 8 2 1 0 1 0 .2 7 1 8 2 ,因
eb0.000091103 2
b 也只是 e 的具有4位有效数字的近似值。 同样我们可以分析出 a1010.271作8为 x0.02718 28
以求解20阶线性方程组为例,如果用Cramer法则求解, 在算法中的乘、除运算次数将大于
21!(约9.7×1020次)
使用每秒一亿次的串行计算机计算,完成运算耗时约30万年!
Cramer算法是“实际计算不了”的。为此,人们研究出著 名的Gauss消去法,它的计算过程已作根本改进,使得上述 例子的乘、除运算仅为3060次,这在任何一台电子计算机上 都能很快完成。
特别地,当 n时2,
f(x 1 ,x 2 ) f(a 1 ,a 2 ) x f1 A x 1 a 1 x f2 A x 2 a 2
现将上述估计式应用到四则运算.
(1)加法
fx1,x2x1x2
x1 x2 (a1 a2 ) x1 a1 x2 a2
两个近似数相加,其运算结果的 精度不比原始数据的任何一个精度高。
的绝对误差界和相对误差界。
解:ea0.000 28 ,因1此8 其绝2对误差界为:
e a 0.0003
相对误差界为: ea 0.00030.00011103705.0002。
a 2.718
此例计算中不难发现,绝对误差界和相对误差界并不唯一。 我们要注意它们的作用。
“四舍五入” 时误差界的取法
当准确值 位x数比较多时,常常按四舍五入的原则取
b0
,则有 x1 baab bb

数值分析(26)线性多步法

数值分析(26)线性多步法

其局部截断误差为
Rn1
19 720
h5
yn(5) (
)
xn2 xn1
由于积分区间在插值区间[ xn2 , xn1 ]内,故Adams隐式
公式又称为Adams内插公式
数值分析
数值分析
(3)米尔尼( Miline )公式
4 yn1 yn3 3 h(2 fn fn1 2 fn2 ) 称为Miline公式,其局部截断误差为
这就是四阶Adams显式公式。由于积分区间在插值
区间[ xn3 , xn ]外面,又称为四阶Adams外插公式。
由插值余项公式可得其局部截断误差为
Rn1
xn1 xn
F (4) ( x )
4!
3 j0
(x
xn j )dx
xn1 xn
y(5) ( x )
4!
3
(x
j0
xn j )dx
数值分析
2!
h2
y(4) n
3!
h3
y(5) n
4!
h4 O(h(5) )
数值分析
数值分析
将以上各公式代入并整理,得
yn1 (0 1 ) yn (1 1 0 1 ) yn' h
(1
2
1
1 ) yn''h2
( 1
6
1
2
1
2
) yn'''h3
(1
24
1
6
1
6
)
y(4) n
h4
(
1
120
5!
yn1 (0 1 ) yn (1 1 0 1 ) yn' h
(1

常微分方程数值解法2线性多步法

常微分方程数值解法2线性多步法
对于线性多步法,其收敛性取决于微分方程的解的性质和方法的阶数。一般来说,高阶方法具有更好 的收敛性。
03
常见的线性多步法
欧拉方法
总结词
欧拉方法是常微分方程数值解法中最简单的一种方法,它基于线性近似,通过已知的函 数值来估计新的函数值。
详细描述
欧拉方法的基本思想是利用已知的函数值来估计下一个点的函数值。具体来说,假设我 们有一个函数 (y = f(x)),在已知 (x_0) 处的函数值 (y_0 = f(x_0)) 的情况下,欧拉方法 通过线性插值来估计 (x_1) 处的函数值 (y_1),即 (y_1 = y_0 + h f(x_0)),其中 (h) 是
05
线性多步法的优缺点
优点
稳定性好
线性多步法在处理常微分方程时具有较好的数值稳定性, 能够有效地抑制数值振荡,提高计算结果的精度。
01
易于实现
线性多步法的计算过程相对简单,易于 编程实现,适合于大规模数值计算。
02
03
精度可调
通过选择不同的步长和线性多步法公 式,可以灵活地调整计算结果的精度, 满足不同的数值模拟需求。
改进方法的收敛性
研究收敛性条件
深入研究线性多步法的收敛性条件,了解哪些情况下方法可能不收 敛,并寻找改进措施。
优化迭代算法
通过优化迭代算法,提高方法的收敛速度和精度,减少迭代次数, 提高计算效率。
引入预处理技术
利用预处理技术对线性系统进行预处理,改善系统的条件数,提高方 法的收敛性。
拓展应用领域
在工程问题中的应用
控制系统设计
在工程领域中,线性多步法可以用于控制系统设计,通过 建立控制系统的数学模型,设计控制算法和控制器,实现 系统的稳定性和性能优化。

大连理工大学矩阵第二章(矩阵变换和计算)

大连理工大学矩阵第二章(矩阵变换和计算)

第二章 矩阵变换和计算一、内容提要本章以矩阵的各种分解变换为主要内容,介绍数值线性代数中的两个基本问题:线性方程组的求解和特征系统的计算,属于算法中的直接法。

基本思想为将计算复杂的一般矩阵分解为较容易计算的三角形矩阵. 要求掌握Gauss (列主元)消去法、矩阵的(带列主元的)LU 分解、平方根法、追赶法、条件数与误差分析、QR 分解、Shur 分解、Jordan 分解和奇异值分解.(一) 矩阵的三角分解及其应用 1.矩阵的三角分解及其应用考虑一个n 阶线性方程组b Ax =的求解,当系数矩阵具有如下三种特殊形状:对角矩阵D ,下三角矩阵L 和上三角矩阵U ,这时方程的求解将会变得简单. ⎪⎪⎪⎪⎪⎭⎫⎝⎛=n d dd D21, ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nnn n l l l l l l L21222111, ⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n u u u u u u U22212111. 对于b Dx =,可得解为i i i d b x /=,n i ,,2,1 =.对于b Lx =,可得解为1111/l b x =,ii i k k iki i l x lb x /)(11∑-=-=,n i ,,3,2 =.对于b Ux =,可得解为nn n n l b x /=,ii ni k k iki i l x lb x /)(1∑+=-=,1,,2,1 --=n n i .虽然对角矩阵的计算最为简单,但是过于特殊,任意非奇异矩阵并不都能对角化,因此较为普适的方法是对矩阵进行三角分解.1).Gauss 消去法只通过一系列的初等行变换将增广矩阵)|(b A 化成上三角矩阵)|(c U ,然后通过回代求与b Ax =同解的上三角方程组c Ux =的解.其中第k 步消元过程中,在第1-k 步得到的矩阵)1(-k A 的主对角元素)1(-k kka 称为主元.从)1(-k A 的第j 行减去第k 行的倍数)1()1(--=k kkk jkjk a a l (n j k ≤<)称为行乘数(子).2).矩阵A 的LU 分解对于n 阶方阵A ,如果存在n 阶单位下三角矩阵L 和n 阶上三角矩阵U ,使得LU A =, 则称其为矩阵A 的LU 分解,也称为Doolittle 分解.Gauss 消去法对应的矩阵形式即为LU 分解, 其中L 为所有行乘子组成的单位下三角矩阵, U 为Gauss 消去法结束后得到的上三角矩阵. 原方程组b Ax =分解为两个三角形方程组⎩⎨⎧==yUx b Ly .3).矩阵LU 分解的的存在和唯一性如果n 阶矩阵A 的各阶顺序主子式),,2,1(n k k =D 均不为零, 则必有单位下三角矩阵L 和上三角矩阵U ,使得LU A =, 而且L 和U 是唯一存在的.4).Gauss 列主元消去法矩阵每一列主对角元以下(含主对角元)的元素中, 绝对值最大的数称为列主元. 为避免小主元作除数、或0作分母,在消元过程中,每一步都按列选主元的Guass 消去法称为Gauss 列主元消去法.由于选取列主元使得每一个行乘子均为模不超过1的数,因此它避免了出现大的行乘子而引起的有效数字的损失.5).带列主元的LU 分解Gauss 列主元消去法对应的矩阵形式即为带列主元的LU 分解,选主元的过程即为矩阵的行置换. 因此, 对任意n 阶矩阵A ,均存在置换矩阵P 、单位下三角矩阵L 和上三角矩阵U ,使得LU PA =.由于选列主元的方式不唯一, 因此置换矩阵P 也是不唯一的. 原方程组b Ax =两边同时乘以矩阵P 得到Pb PAx =, 再分解为两个三角形方程组⎩⎨⎧==y Ux PbLy .5).平方根法(对称矩阵的Cholesky 分解)对任意n 阶对称正定矩阵A ,均存在下三角矩阵L 使T LL A =,称其为对称正定矩阵A 的Cholesky 分解. 进一步地, 如果规定L 的对角元为正数,则L 是唯一确定的.原方程组b Ax =分解为两个三角形方程组⎩⎨⎧==y x L bLy T .利用矩阵乘法规则和L 的下三角结构可得21112⎪⎪⎭⎫ ⎝⎛-=∑-=j k jkjj jjla l , jj j k jk ik ij ij l l l a l /11⎪⎪⎭⎫⎝⎛-=∑-=, i=j +1, j +2,…,n , j =1,2,…,n . 计算次序为nn n n l l l l l l l ,,,,,,,,,2322212111 .由于jj jk a l ≤,k =1,2,…,j .因此在分解过程中L 的元素的数量级不会增长,故平方根法通常是数值稳定的,不必选主元.6).求解三对角矩阵的追赶法 对于三对角矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=---n nn n n b a c b a c b a c b 11122211A , 它的LU 分解可以得到两个只有两条对角元素非零的三角形矩阵 ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=--n n n nu d u d u d u l l l 11221132,1111U L . 其中⎪⎪⎩⎪⎪⎨⎧=-====-==--n i c l b u n i u a l b u n i c d i i i i i i i i i ,,3,2,,,3,2,/1,,2,1,1111计算次序是n n u l u l u l u →→→→→→→ 33221. 原方程组b Ax =分解为两个三角形方程组⎩⎨⎧==y Ux b Ly . 计算公式为n i y l b y b y i i i i ,,3,2,,111 =-==-,.1,,2,1,/)(,/1 --=-==+n n i u x c y x u y x i i i i i nn n该计算公式称为求解三对角形方程组的追赶法.当A 严格对角占优时,方程组b Ax =可用追赶法求解, 解存在唯一且数值稳定.7).矩阵的条件数设A 为非奇异矩阵,⋅为矩阵的算子范数,称1)(cond -=A A A 为矩阵A 的条件数.矩阵的条件数是线性方程组b Ax =, 当A 或b 的元素发生微小变化,引起方程组解的变化的定量描述, 因此是刻画矩阵和方程组性态的量. 条件数越大, 矩阵和方程组越为病态, 反之越小为良态.常用的矩阵条件数为∞-条件数: ∞-∞∞=1)(cond AA A ,1-条件数: 1111)(cond -=AAA ,2-条件数: )()()(cond mi n max 2122A A A A AAA HHλλ==-.矩阵的条件数具有如下的性质: (1) 1)(cond ≥A ;(2) )(cond )(cond 1-=A A ;(3) )(cond )(cond A A =α,0≠α,R ∈α;(4) 如果U 为正交矩阵,则1)(cond 2=U ,)(cond )(cond )(cond 222A AU UA ==.一般情况下,系数矩阵和右端项的扰动对解的影响为定理 2.5 设b Ax =,A 为非奇异矩阵,b 为非零向量且A 和b 均有扰动.若A 的扰动δA 非常小,使得11<-A A δ,则)()(cond 1)(cond bδb AδA AA A A xδx +-≤δ.关于近似解的余量与它的相对误差间的关系有定理2.6 设b Ax =,A 为非奇异矩阵,b 为非零向量,则方程组近似解x ~的事后估计式为bx A b A xx x bx A b A ~)cond(~~)cond(1-≤-≤-.其中称x A b ~-为近似解x ~的余量,简称余量。

大连理工大学2017年研究生矩阵与数值分析考试

大连理工大学2017年研究生矩阵与数值分析考试

大连理工大学2017年研究生矩阵与数值分析考试大连理工大学2017年研究生矩阵与数值分析考试考试日期:2017年6月5日一、填空题(50分,每空2分)1.a=0.3000经过四舍五入具有4位有效数字,则,2.已知X=(1,5,12)T,Y=(1,0,a)T,则由X映射到Y的Householder矩阵为:,计算||H||2=,cond2(H)=3.根据3次样条函数的性质(后面-前面=a(x-x0)3),一个求其中的参数b==4.,写出隐式Euler格式:梯形法格式:5.已知A=XXT,其中X为n维列向量,则||A||2=,||A||F=,矩阵序列的极限:=6.A=LU,其解为,写出一步迭代后的改善格式:7.,请问通过幂法与反幂法计算出的特征值分别是,8.,=,=,=,=,=9.是Newton-cotes公式,则=,具有代数精度=10.f(x)=7x7+6x6+…+x,f[20,21,22….,28]=11.,=12.f(0)=1,f(1)=-1,f(2)=1,f(3)=19,请问对该节点进行插值后最高次的系数=还有2空没有回忆出来,但是比上面题目还简单,因此不用担心。

二、,(1)计算LU分解(2)利用LU求逆矩阵(3)写出G-S格式(12分)三、给出,计算该迭代式收敛到某个值,收敛阶(8分)答案:收敛到,且收敛阶为3,因为,,而四、y=ae-bx,利用最小二乘法计算。

(8分)x-1012ye-11ee2数据可能有错,但是不影响计算思路。

五、计算权函数为1,区间[-1,1]的二次正交多项式,并且据此计算的具有三次代数精度求积公式(8分)六、已知线性2步3阶法(14分)(1)写出局部截断误差(必须含有主项)(2)判断收敛性(3)写出绝对稳定区间答:提示:上面公式的与书上的不是同一个,注意计算的时候区分。

线性多步法

线性多步法
规定 yi=▽0yi 为f(x)在点xi处的零阶差分。
y ( k +1) (ξ ) ( x − xn )"( x − xn−k +1 )dx xn k! xn+1 1 = y ( k +1) (η) ( x − xn )"( x − xn−k +1 )dx xn k! =

xn+1

= β k h k +1 y ( k +1) (η )
定义1 设y(x)是初值问题(1).(2)的精确解, y ′ =f(x,y) y(a)=α
k
a≤x≤b (1) (2)
k
记 fi =f(xi ,yi ), yi≈wi ,过k个点 (xi ,fi )(i=n,n-1,…,n-k+1),作 f(x ,y )的插值多项式Pk-1(x):
多步法(11)在xi+1 (i=k,…,n-1)处的局部截断误差为
所给2步法是2阶方法。
5 3 (3) h yi + O(h4 ) 12
单步法:计算yn+1时,只用到前一步yn 的结果,提高方法的 精度,需要增加函数 f(x,y) 的计算次数。 多步法: 尽可能利用已得到的信息: y1 ,y2 ,…,yn ,提高 方法的精度。 对于初值问题 a≤x≤b y ′ =f(x,y) y(a)=α 设已求得近似解 y1 ,y2 ,…,yn ,现求yn+1 。
10.4 单步法的误差与稳定性
数值方法的误差
误差 局部截断误差(Local truncation error) 总体截断误差(Global truncation error)
定义2:若一种数值方法的局部截断误差Ti+1(h)= O(hp+1),则称 相应数值方法是 p 阶方法,其中p为正整数。 定义3:若一个p阶方法的局部截断误差为, Ti+1(h)=g(xi ,y(xi ))hp+1+ O(hp+2) 则第一个非零项:g(xi,y(xi))hp+1,称为该方法的局部截断误差主项。 Euler’s method是一阶方法。 梯形公式与改进Euler’s method均是2阶方法。

大连理工大学矩阵与数值分析上机作业

大连理工大学矩阵与数值分析上机作业
s=s+abs(x(i));
end
case2%2-范数
fori=1:n
s=s+x(i)^2;
end
s=sqrt(s);
caseinf%无穷-范数
s=max(abs(x));
end
计算向量x,y的范数
Test1.m
clearall;
clc;
n1=10;n2=100;n3=1000;
x1=1./[1:n1]';x2=1./[1:n2]';x3=1./[1:n3]';
xlabel('x');ylabel('p(x)');
运行结果:
x=2的邻域:
x =
1.6000 1.8000 2.0000 2.2000 2.4000
相应多项式p值:
p =
1.0e-003 *
-0.2621 -0.0005 0 0.0005 0.2621
p(x)在 [1.95,20.5]上的图像
程序:
[L,U]=LUDe.(A);%LU分解
xLU=U\(L\b)
disp('利用PLU分解方程组的解:');
[P,L,U] =PLUDe.(A);%PLU分解
xPLU=U\(L\(P\b))
%求解A的逆矩阵
disp('A的准确逆矩阵:');
InvA=inv(A)
InvAL=zeros(n);%利用LU分解求A的逆矩阵
0 0 0.5000 -0.2500 -0.1250 -0.0625 -0.0625
0 0 0 0.5000 -0.2500 -0.1250 -0.1250
0 0 0 0 0.5000 -0.2500 -0.2500

董波老师,大连理工大学,矩阵数值分析课件,第二章

董波老师,大连理工大学,矩阵数值分析课件,第二章
作业:
P85 3、6、8、9、12、15、17、 19、20(2)
第2章 矩阵变换和计算
2.1 矩阵的三角分解及其应用 2.2 特殊矩阵的特征系统 2.3 矩阵的Jordan分解 2.4 矩阵的奇异值分解
2.1 矩阵的三角分解及其应用
2.1.1 Gauss消去法与矩阵的LU分解 2.1.2 Gauss列主元消去法与带列主元的LU分解 2.1.3 对称矩阵的Cholesky分解 2.1.4 三对角矩阵的三角分解
(0) 2 (0) 3 (0) 4
第一步,消去 r
( 0) 2
、r
(0) 3
和r
( 0) 4
中的 x1 , 即用
4 (0) 8 (0) ( 0) 6 (0) ( 0) r r 1 r1 r3 和 r1 r4( 0) 得 2 、 2 2 2
四位数学家之一”(阿基米德、牛顿、高斯和欧拉)。
高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学 领域。人们评价到:若把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人 肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是 高斯。
从方程组角度考虑Gauss消去法
2 0 0 0
1 1 0 1 1 1 3 5 5 4 6 8
1 0 1 1 2 2 2 4


L2 L1 A
2 1 0 1 0 0 0 0
L3 L2 L1 A
1 1 1 1 1
1) ai(2 第i行 第2行 (1) , i 3,, n a22 a11 a12 a13 a1n b1 (1) (1) 0 a a 22 23 (1) (1) a2 n b2 0 ( 2) 0 a 33 (1) (1) ann bn ( 2) 0 0 a n3

大连理工大学矩阵与数值分析试卷-2013

大连理工大学矩阵与数值分析试卷-2013
13 ) 设 求 积 公 式
1 0 0 0
3 ⎞ ⎛2 5 ⎟ T ⎟ ; LL 分解中 L= ⎜ ⎜3 4 ⎜ − ⎟ ⎟ ⎝2 5⎠
1 1 2 2
0 ⎞ ⎟ 7 ⎟。 ⎟ 2 ⎠
Gauss 求 积 公 式 , 则
1 ∫ x + 1 f (x ) dx ≈ A f (x ) + A f (x ) + A f (x ) 为
2)为使二点数值求积公式 积节点和求积系数应为 (A) x0 = −

1
f ( x) 1 − x2
.
−1
dx ≈ A0 f ( x0 ) + A1 f ( x1 ) 具有最高的代数精度,其求
B
2 2 π 1 1 1 , x1 = ; A0 = A1 = ; (B) x0 = − , x1 = ; A0 = A1 = ; 2 2 2 2 2 2
⎛ ⎜ 即 V = ( v1 v2 ) = ⎜ ⎜ ⎜ ⎝ ⎛ ⎜ V1 = V = ⎜ ⎜ ⎜ ⎝ 1 2 1 2 1 ⎞ ⎛ ⎟ ⎜ 2⎟ 或 V = ( v1 v2 ) = ⎜ −1 ⎟ ⎜ ⎟ ⎜ 2⎠ ⎝ 1 2 1 2 ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ −1 ⎞ 2⎟ ⎟ ,因 rank(A)=1,故有 1 ⎟ ⎟ 2⎠ 1 ⎞ ⎛ 1 ⎞ ⎟ ⎜ ⎟ 2⎟ (1) = ⎜ 2 ⎟ , 由 U = (U1U 2 ) , 则 1 ⎟ ⎜ 1 ⎟ ⎟ ⎜ ⎟ 2⎠ ⎝ 2⎠
17). 为了减少运算次数,应将表达式.
4 x3 − 3x 2 − 2 x − 1 改写为 x4 + x2 + x − 1
( ( 4 x − 3) x − 2 ) x − 1 ; ( ( ( x + 0 ) x + 1) x + 1) x − 1

大连理工大学 矩阵与数值分析 第2节线性多步法20160306

大连理工大学 矩阵与数值分析 第2节线性多步法20160306
i = n, n −1, L, n − k
插值节点的不同取法就导致不同的多步法。
(1)Adams外插法(显式多步法)
取k+1个节点tn-k,…,tn-1,tn及函数值f(tn-i,u(tn-i)) i=k,…,1,0
构造区间[tn,tn+1]上逼近f(t,u(t))的k次Lagrange插值多项式Ln,k(t)
其中
k +1
∑ ( ) u = u + n+1
n h bk +1i f tn−i+1, un−i+1
i=0
=∫ ∏ bk+1i
0 k+1 τ + j dt
−1
j=0 j≠i
j−i
且 t = tn+1 +τ h , τ ∈[−1, 0]。
注: t − tn− j+1 = tn+1 +τ h − tn + ( j −1) h = (τ + j ) h
第1章 常微分方程初值问题数值解法
§2 线性多步法
§2 线性多步法
前节所讨论的方法如Euler方法、改进Euler方法都称为单步法 (单步长法)。 因为它们只利用前一个点的信息来计算下一个点,
即,只用初始点u0计算u1; 一般说来,只用un来计算un+1。
线性单步法一般说来,精度是较低的。 为提高精度,我们考虑
3)内插法是隐式格式(稳定性好),外插法是 显式格式。
2.2 待定系数法(基于Taylor展开式的求解公式) 用数值积分法只能构造一类特殊的多步法,其系数 一般只满足:
ak=1,ak-m=-1 al=0,当l≠k-m, k。
本节我们将基于Taylor展开式来构造出更一般的求 解公式。

大连理工大学矩阵与数值分析上机作业13388

大连理工大学矩阵与数值分析上机作业13388

大连理工大学矩阵与数值分析上机作业课程名称:矩阵与数值分析研究生姓名:交作业日时间:2016 年12 月20日1.1程序:Clear all;n=input('请输入向量的长度n:')for i=1:n;v(i)=1/i;endY1=norm(v,1)Y2=norm(v,2)Y3=norm(v,inf)1.2结果n=10 Y1 =2.9290Y2 =1.2449Y3 =1n=100 Y1 =5.1874Y2 =1.2787Y3 =1n=1000 Y1 =7.4855Y2 =1.2822Y3 =1N=10000 Y1 =9.7876Y2 =1.2825Y3 =11.3 分析一范数逐渐递增,随着n的增加,范数的增加速度减小;二范数随着n的增加,逐渐趋于定值,无群范数都是1.2.1程序clear all;x(1)=-10^-15;dx=10^-18;L=2*10^3;for i=1:Ly1(i)=log(1+x(i))/x(i); d=1+x(i);if d == 1y2(i)=1;elsey2(i)=log(d)/(d-1);endx(i+1)=x(i)+dx;endx=x(1:length(x)-1);plot(x,y1,'r');hold onplot(x,y2);2.2 结果2.3 分析红色的曲线代表未考虑题中算法时的情况,如果考虑题中的算法则数值大小始终为1,这主要是由于大数加小数的原因。

第3题3.1 程序clear all;A=[1 -18 144 -672 2016 -4032 5376 -4608 2304 -512];x=1.95:0.005:2.05;for i=1:length(x);y1(i)=f(A,x(i));y2(i)=(x(i)-2)^9;endfigure(3);plot(x,y1);hold on;plot(x,y2,'r');F.m文件function y=f(A,x) y=A(1);for i=2:length(A); y=x*y+A(i); end;3.2 结果第4题4.1 程序clear all;n=input('请输入向量的长度n:')A=2*eye(n)-tril(ones(n,n),0);for i=1:nA(i,n)=1;endn=length(A);U=A;e=eye(n);for i=1:n-1[max_data,max_index]=max(abs(U(i:n,i))); e0=eye(n);max_index=max_index+i-1;U=e0*U;e1=eye(n);for j=i+1:ne1(j,i)=-U(j,i)/U(i,i);endU=e1*U;P{i}=e0;%把变换矩阵存到P中L{i}=e1;e=e1*e0*e;endfor k=1:n-2Ldot{k}=L{k};for i=k+1:n-1Ldot{k}=P{i}*Ldot{k}*P{i};endendLdot{n-1}=L{n-1};LL=eye(n);PP=eye(n);for i=1:n-1PP=P{i}*PP;LL=Ldot{i}*LL;endb=ones(n,2);b=e*b; %解方程x=zeros(n,1);x(n)=b(n)/U(n,n);for i=n-1:-1:1x(i)=(b(i)-U(i,:)*x)/U(i,i);endX=U^-1*e^-1*eye(n);%计算逆矩阵AN=X';result2{n-4,1}=AN;result1{n-4,1}=x;fprintf('%d:\n',n)fprintf('%d ',AN);4.2 结果n=51.0625 -0.875 -0.75 -0.5 -0.06250.0625 1.125 -0.75 -0.5 -0.06250.0625 0.125 1.25 -0.5 -0.06250.0625 0.125 0.25 1.5 -0.0625-0.0625 -0.125 -0.25 -0.5 0.0625n=101.0625 -0.875 -0.75 -0.5 -0.0625 1.0625 -0.875 -0.75 -0.5 -0.0625 0.0625 1.125 -0.75 -0.5 -0.0625 0.0625 1.125 -0.75 -0.5 -0.0625 0.0625 0.125 1.25 -0.5 -0.0625 0.0625 0.125 1.25 -0.5 -0.0625 0.0625 0.125 0.25 1.5 -0.0625 0.0625 0.125 0.25 1.5 -0.0625 -0.0625 -0.125 -0.25 -0.5 0.0625 -0.0625 -0.125 -0.25 -0.5 0.0625 1.0625 -0.875 -0.75 -0.5 -0.0625 1.0625 -0.875 -0.75 -0.5 -0.0625 0.0625 1.125 -0.75 -0.5 -0.0625 0.0625 1.125 -0.75 -0.5 -0.0625 0.0625 0.125 1.25 -0.5 -0.0625 0.0625 0.125 1.25 -0.5 -0.0625 0.0625 0.125 0.25 1.5 -0.0625 0.0625 0.125 0.25 1.5 -0.0625 -0.0625 -0.125 -0.25 -0.5 0.0625 -0.0625 -0.125 -0.25 -0.5 0.0625同样的方法可以算出n=20,n=30时的结果,这里就不罗列了。

大连理工大学2006年数学分析考研试题答案

大连理工大学2006年数学分析考研试题答案

所以 H ( x) 是递增的函数。当 x ∈[0,1] 时有: H ( x) ≥ H (o) = 0 综 上 可 以 得 到 , 当 x ∈[0,1] 时 F '( x) ≥ 0 所 以 F (1) ≥ F (0) = 0 即 : 成立。■ 六.证:分两种情况讨论: 1)当 x ∈ (0,1) 时, ∫ t f (t )dt 的一致收敛性。 由于 λ ∈[a, b] , t 关于 t 是单调的,以及 ∀t ∈ (0,1] 有 t
n −1 − n )xn
的收敛范围. 上任意点处的切平面在各坐标轴上的截距之和等
7. 设函数 f ( x) = π − x, x ∈ (0, π ) ,将 f ( x) 展成正弦级数. 8. 试证曲面 于 a.
0
x + y + z = a (a > 0)
9. 计算积分 ∫ dx ∫
1
x
x
sin y dy . y
1 1 1 ≤ + (1 + ) 2 x '− x '' = L x '− x '' 2 (a + 1) a (a + 1)
在 [a, ∞) 上一致连续。 ■ 三.证: (用反证法)设 f ( x) 在 [ a, b ] 上无界,则对任意的 n ∈ N 存在 x ∈ [ a, b ] ,使得
2 2 2 2 1,2
=0
3
0
综上可以得到 f ( x, y) 在 x
2
+ y ≤1
2
的最大值为:
a + b + (a − c) 2 + 4b 2 2
最小值为:
a + b − (a − c) 2 + 4b 2 2

大连理工大学矩阵与数值分析上机作业13388

大连理工大学矩阵与数值分析上机作业13388

共享知识分享快乐大连理工大学矩阵与数值分析上机作业课程名称:矩阵与数值分析研究生姓名:12 交作业日时间:日20 月年2016卑微如蝼蚁、坚强似大象.共享知识分享快乐第1题1.1程序:Clear ;all n=input('请输入向量的长度n:') for i=1:n;v(i)=1/i;endY1=norm(v,1)Y2=norm(v,2)Y3=norm(v,inf)1.2结果n=10 Y1 =2.9290Y2 =1.2449Y3 =1n=100 Y1 =5.1874Y2 =1.2787Y3 =1n=1000 Y1 =7.4855Y2 =1.2822Y3 =1N=10000 Y1 =9.7876Y2 =1.2825Y3 =11.3 分析一范数逐渐递增,随着n的增加,范数的增加速度减小;二范数随着n的增加,逐渐趋于定值,无群范数都是1.卑微如蝼蚁、坚强似大象.共享知识分享快乐第2题2.1程序;clear all x(1)=-10^-15;dx=10^-18;L=2*10^3; i=1:L fory1(i)=log(1+x(i))/x(i); d=1+x(i); d == 1ify2(i)=1;elsey2(i)=log(d)/(d-1);endx(i+1)=x(i)+dx;end x=x(1:length(x)-1););'r'plot(x,y1,on holdplot(x,y2);卑微如蝼蚁、坚强似大象.共享知识分享快乐2.2 结果2.3 分析红色的曲线代表未考虑题中算法时的情况,如果考虑题中的算法则数值大小始终为1,这主要是由于大数加小数的原因。

第3题3.1 程序;clear all A=[1 -18 144 -672 2016 -4032 5376 -4608 2304 -512];x=1.95:0.005:2.05; i=1:length(x);for y1(i)=f(A,x(i)); y2(i)=(x(i)-2)^9;end figure(3);plot(x,y1);;on hold卑微如蝼蚁、坚强似大象.共享知识分享快乐);'r'plot(x,y2,F.m文件y=f(A,x)function y=A(1); i=2:length(A);for y=x*y+A(i);;end3.2 结果第4题卑微如蝼蚁、坚强似大象.共享知识分享快乐4.1 程序;clear all n=input('请输入向量的长度n:')A=2*eye(n)-tril(ones(n,n),0); i=1:n for A(i,n)=1;end n=length(A);U=A; e=eye(n);for i=1:n-1[max_data,max_index]=max(abs(U(i:n,i))); e0=eye(n);max_index=max_index+i-1; U=e0*U; e1=eye(n); j=i+1:n fore1(j,i)=-U(j,i)/U(i,i);endU=e1*U;中把变换矩阵存到P P{i}=e0;% L{i}=e1; e=e1*e0*e;endk=1:n-2for Ldot{k}=L{k}; i=k+1:n-1forLdot{k}=P{i}*Ldot{k}*P{i};endend Ldot{n-1}=L{n-1};LL=eye(n);PP=eye(n); i=1:n-1for PP=P{i}*PP;LL=Ldot{i}*LL;endb=ones(n,2);解方程 %b=e*b;x=zeros(n,1);x(n)=b(n)/U(n,n); i=n-1:-1:1for卑微如蝼蚁、坚强似大象.共享知识分享快乐x(i)=(b(i)-U(i,:)*x)/U(i,i);end计算逆矩阵%X=U^-1*e^-1*eye(n);AN=X'; result2{n-4,1}=AN;result1{n-4,1}=x;,n)'%d:\n'fprintf(fprintf('%d ',AN);4.2 结果n=51.0625 -0.875 -0.75 -0.5 -0.0625-0.0625 0.0625 -0.75 1.125 -0.5-0.0625 0.125 0.0625 1.25 -0.5-0.0625 0.1250.25 0.06251.50.0625-0.5-0.25-0.0625 -0.125n=101.0625 -0.875 -0.75 -0.5 -0.0625 1.0625 -0.875 -0.75 -0.5 -0.0625 -0.0625 1.125 0.0625 -0.75 -0.5 -0.5 0.0625 1.125 -0.75 -0.0625 -0.0625 0.0625 0.125 1.25 1.25 -0.0625 -0.5 0.0625 0.125 -0.5-0.0625 0.250.250.0625 0.1251.5 1.5 -0.0625 0.1250.06250.0625 -0.0625 -0.125 -0.25 0.0625 -0.5 -0.0625 -0.125 -0.25 -0.5 -0.0625 -0.75 1.0625 -0.5 -0.0625 -0.875 -0.5 -0.75 1.0625 -0.875 -0.0625 -0.5 0.0625 1.125 -0.5 0.0625 1.125 -0.75 -0.0625 -0.75 1.25 0.125 0.0625 -0.0625 -0.0625 -0.5 -0.5 0.0625 0.125 1.250.25-0.0625 -0.0625 1.50.1250.0625 0.0625 0.250.1251.5-0.0625 -0.125 -0.25 0.0625-0.5 0.0625 -0.0625 -0.125 -0.25-0.5同样的方法可以算出n=20,n=30时的结果,这里就不罗列了。

数值分析26线性多步法课件

数值分析26线性多步法课件

Pn1 )
预估 改进 校正 改进
数值分析
数值分析
完全类似,可以导出多环节的Mi ln e Ham min g 预估-校正公式
Pn1
yn3
4 3 h(2 fn
fn1
2 fn2 )
mn1
Pn1
112 121 (cn
pn )
Cn1
1 8 (9 yn
yn2 )
3 8 h[ f ( xn1 , mn1 ) 2
为四阶Adams隐式公式,其局部截断误差为
Rn1
19 720
h5
y(5) n
O(h6 )
数值分析
数值分析
(2)基于数值积分的Adams公式
基本思想是首先将初值问题化成等价的
积分形式
y( xn1 ) y( xn )
xn1 f ( x, y( x))dx
xn
xn1 F ( x )dx xn
用过节点xn , xn1,
K3
hf
( xn1
h, 2
yn1
K2 2
)
K4 hf ( xn1 h, yn1 K3 )
1 yn yn1 6 (K1 2K2 2K3 K4 )
xn a nh
(4)输出( xn , yn )
数值分析
数值分析
(5)若n 3,置n 1 n,返回 3;
否则,置n 1 n, 0 p0 , 0 c0 , 转6。 (6)计算 f3 f ( x3 , y3 ) x x3 h
数值分析
多步法中最常用的是线性多步法,它的一般形式为
k
k
j yn j h j f ( xn j , yn j )
j0
j0
其中 j , j均为常数.式中k 0,上式也可表示为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
un+1 = un + h f (tn , un )
k =0
un+1
= un
+
h [3
2
f (tn , un ) −
] ( ) f tn−1, un−1
k =1
un+1
=
un
+
h [23
12
f
(tn , un ) −16 f
( ) tn−1, un−1 + 5 f
( )] tn−2 , un−2
k =2
i = n, n −1, L, n − k
插值节点的不同取法就导致不同的多步法。
(1)Adams外插法(显式多步法)
取k+1个节点tn-k,…,tn-1,tn及函数值f(tn-i,u(tn-i)) i=k,…,1,0
构造区间[tn,tn+1]上逼近f(t,u(t))的k次Lagrange插值多项式Ln,k(t)
1)系数小,从而计算中内插法的舍入误差的影响 比外插法要小;
2)在同一个误差精度下,内插法比外插法可少算 一个已知量值。 这是由于在计算un+1时,内插法和外 插法所用的已知值相同,为k+1: un,un-1,…,un-k, 但是内插法的局部截断误差为O(hk+3), 外插法的局部 截断误差为O(hk+2)。
[ ] un+1
= un
+h
24
55
f (tn , un ) − 59 f (tn−1, un−1 ) + 37 f
( ) ( ) tn−2 , un−2 − 9 f tn−3 , un−3
它们分别为1阶、2阶、3阶、4阶差分法(格式)。
k =3
Adams外插公式的余项为:
∫ ( ( ) ( ( ))) ( ) ∫ ∏ ξ ξ ( ) f Rn,k =
其中
cl =
(1.2.33)
l = 0,1,L, p ,L
即有
⎧ c0 = α0 + α1 + L + αk
( ) ( ) L L L ⎪
⎪ ⎪
c1
= α1
+
2α 2
+L+
kα k
− (β0
+ β1
+L+ βk )
(1.2.34)
故此多步法称为Adams外插法。 Adams外插公式的系数表
i
0
1
2
3
4
b0i
1
2b1i
3
-1
12b2i
23
-16
5
24b3i
55
-59
37
-9
720b4i 1901 -2774 2616 -1274 251
k
∑ ( ) un+1 = un + h bk i f tn−i , un−i i=0
Adams外插公式中,几种常用的差分格式:

Lk [u(t);h] =
k

⎡⎣α ju (t
+
jh) − hβ ju′(t
+
jh)⎤⎦
(1.2.32)
j=0
设u(t)是初值问题的解,将u(t+jh)和 u′(t + jh) 在点t处进行
Taylor展开,

u(t + jh) = ∑ l=0
(
jh)l
l!
u(l) (t)
=
u(t)
+
jh 1!
当取 ϕ = f (tn , un ) 时,为Euler法;
当取 ϕ = f (tn+1 ) , un+1 时,为隐式Euler法;
当取 ϕ
=
h 2
⎡⎣
f
( tn ,
un
)+
f
(tn+1,
) un+1 ⎤⎦
时,为梯形法。
线性多步法的一般公式为:
k
k
∑ ∑ α jun+ j = h β j f n+ j , α k ≠ 0
f (t, u (t )) = Ln,k (t ) + rn,k (t )
(1.2.3)
其中rn,k(t)为插值余项。 代到(1.2.2)式中得
∫ ( ) ∫ ( ) ( ) ( ) u tn+1
= u tn
+ L tn+1
tn
n,k
t
dt +
r tn+1
tn n,k
t
dt
(1.2.4)
舍去余项
∫ ( ) Rn,k =
来近似替代(1.2.2)中的被积函数,这里{ti}为等距的插值节点列,
h=ti+1-ti,而插值基函数为
( ) ∏ ( () () ) li
t
=
= k t − tn− j
j=0 tn−i − tn− j
j≠i
ω ω′ tn−i
t t − tn−i
ω(t) = (t − tn )L(t − tn−k )
第1章 常微分方程初值问题数值解法
§2 线性多步法
§2 线性多步法
前节所讨论的方法如Euler方法、改进Euler方法都称为单步法 (单步长法)。 因为它们只利用前一个点的信息来计算下一个点,
即,只用初始点u0计算u1; 一般说来,只用un来计算un+1。
线性单步法一般说来,精度是较低的。 为提高精度,我们考虑
3)内插法是隐式格式(稳定性好),外插法是 显式格式。
2.2 待定系数法(基于Taylor展开式的求解公式) 用数值积分法只能构造一类特殊的多步法,其系数 一般只满足:
ak=1,ak-m=-1 al=0,当l≠k-m, k。
本节我们将基于Taylor展开式来构造出更一般的求 解公式。
2.待定系数法
其中
k +1
∑ ( ) u = u + n+1
n h bk +1i f tn−i+1, un−i+1
i=0
=∫ ∏ bk+1i
0 k+1 τ + j dt
−1
j=0 j≠i
j−i
且 t = tn+1 +τ h , τ ∈[−1, 0]。
注: t − tn− j+1 = tn+1 +τ h − tn + ( j −1) h = (τ + j ) h
k +1
∑ ( ) un+1 = un + h bk+1i f tn−i+1 , un−i+1 i=0
注意,被插值点t∈[tn,tn+1]包含在插值节点的决定区间[tn-k,tn+1] 故此多步法称为Adams内插法。
Adams内插公式的系数表
i (bk+1,i )
0
1
2
3
4
b0i
1
2b1i
1
1
12b2i
构造多步法。 所谓“多步法”,即当计算出若干个点之后,用几 个已计算出的点来计算下一个点。 在计算公式中的一个主要特征 就是, un+1不仅依赖于un ,而且也直接依赖于un-1,un-2,…等已经算 出的值。 它可以大大提高截断误差的阶。
在前面,我们介绍了基于数值积分的特殊的单步法、二步法。
显式单步法Euler公式:
(tn, un ) − 5 f
( ) tn−1, un−1 +
f
( ) tn−2 , un−2 ⎤⎦
它们分别为1阶、2阶、3阶、4阶差分法(格式)。
k =2
Adams外插公式的余项为:
∫ ( ) ∫ ∏ ( ( ) ( ( ))) ( ) Rn,k+1 =
r t tn+1
tn n, k +1
dt =
j=0
1!
2!
3!

+
jα j −
h
∑k
+
j=0
j2 2!
α
j−

j
h2
+L
∑ ∑ ∑ ( ) ∑ ⎛ k
=⎜

αj ⎟ u(t)
+

⎝ j=0 ⎠
l =1
1k l! j=0
jlα j −
1k l −1 ! j=0
jl−1β j
u(l) (t) hl
记为
( ) Lk [u(t); h] = c0u(t) + c1h u′(t) + c2h2u′′(t) + L + cph pu( p) (t) + cp+1O h p+1
k
∑ Lk [u (t); h] = α j j=0
− hβ j
将下式按h的同次幂合并同类项,
∑k
αj
j=0
u(t)
+
jh u′(t) +
1!
( jh)2 2!
u′′(t)
+
( jh)3 3!
u(3) (t)
+L
∑k

β jh u′(t)
+ jh2u′′(t)+
j2h32 u′′′(t) +
j3h34 u(4) (t) +L
因此称(1.2.1)为多步法 或 k-步法。
又因为(1.2.1)关于 un+ j, f n+源自j 是线性的,所以称为线性多步法。
为使多步法的计算能够进行,除给定的初值u0 外,还要
相关文档
最新文档