大众汽车标准 _VW91104概要

合集下载

大众标准中文版

大众标准中文版

大众汽车集团标准 TL 244 2010年12月版分类号:50223关键字:锌,镍,钝化处理,密封,无Cr(VI),防腐蚀,表面保护锌/镍-合金涂覆层表面保护要求旧版本TL 244: 1987-10, 1992-05, 1993-11, 1995-12, 2002-05, 2004-12, 2006-08, 2007-02变更相对于 TL244: 2007-02 版本,作了如下更改:--补充了热处理后零件的抗拉强度≦ 1200Mpa 部分;--添加了 Ofl-r647 和 Ofl-r648 两种涂覆方法;--原表 2 中关于含铬的表面保护类型已删除;--添加了图 1 和图 2;--添加了 PV 1209,PV 1200 和 PV1210 三种测试依据;--镀层表面形态的要求有所增加;--镍的上限值有所改变;--原第 4 条关于镀层厚度的测量的内容加入到部分;--原部分的要求有所改变;--参考标准有更新;--标准重组。

1 范围本标准规定了抗拉强度为 Rm≦ 1000Mpa(按 VW 137 50 的特征字母 r)的铁材料和钢制件上的电解离析和无Cr( VI)后处理的锌/镍合金涂覆层的要求。

此外还定义了抗拉强度值大于 1000Mpa时的应用极限。

本标准定义了合金涂覆不适用于抗拉强度 Rm>1200Mpa 和表面硬度>370HV 的钢制件。

而且适用于抗拉强度值在 1000Mpa 和 1200Mpa之间的钢制件时,必须按 DIN EN ISO4042 作热处理。

这些当作坚固防腐层(稳定等级为 6)的涂覆层,亦特别适用于除了腐蚀负荷增加和温度负荷增加至150°C(例如:发动机室和刹车系统)之外的部件以及螺栓拧紧系统。

银色涂覆层(例如:Ofl-r642,Ofl-r643,Ofl-r645和Ofl-r647)特别适用于导线连接(接地线连接)。

这些涂覆层特别适用于内部传动的紧固元件,以避免附加的施力作用。

vw线束标准

vw线束标准

VW线束标准是指大众汽车集团(Volkswagen Group)在汽车线束领域的技术标准和规范。

该标准旨在确保线束在性能、质量和安全性方面达到一致标准,以保障车辆和乘客的安全。

以下是关于VW线束标准的一些要点:
1.线束是汽车电气系统的核心组成部分,负责将车辆各个电气元件连接起来,实现电力传输和信息
传递。

2.VW线束标准的制定旨在确保线束在性能、质量和安全性方面达到一致标准。

该标准涉及线束的
规格、材料、工艺、测试等方面的要求。

3.VW线束标准规定了线束的截面积、颜色、标识、连接方式等方面的要求,以确保线束的可靠性、
耐久性和安全性。

4.VW线束标准还规定了线束与其他汽车组件的兼容性和接口要求,以确保车辆的整体性能和可靠
性。

5.VW线束标准不仅适用于大众汽车集团旗下的品牌,也适用于其他汽车制造商的汽车线束领域。

该标准的推广和应用有助于提高整个汽车行业的电气系统性能和安全性。

总之,VW线束标准是一种技术标准和规范,旨在确保汽车电气系统的性能、质量和安全性达到一致标准。

该标准的推广和应用有助于提高整个汽车行业的电气系统性能和安全性。

大众汽车标准_VW 01055-Y

大众汽车标准_VW 01055-Y

Vertragspartner erhalten die Norm nur über die zuständige Beschaffungsabteilung.Confidential. All rights reserved. No part of this document may be transmitted or reproduced without the prior written permission of a Standards Department of the Volkswagen Group.Parties to a contract can only obtain this standard via the responsible procurement department.© VOLKSWAGEN AGN o r m v o r A n w e n d u n g a u f A k t u a l i t ät p r üf e n / C h e c k s t a n d a r d f o r c u r r e n t i s s u e p r i o r t o u s a g e .T h e E n g l i s h t r a n s l a t i o n i s b e l i e v e d t o b e a c c u r a t e . I n c a s e o f d i s c r e p a n c i e s t h e G e r m a n v e r s i o n s h a l l g o v e r n .Q U E L L E : N O L I SSeite 2VW 010 55: 1996-122 Theoretical Principles2.1 Component-Oriented Reference SystemOne of the basic ideas forming the basis for the reference point system is the component-oriented coordinate system according to VW 010 52.A vehicle is dimensioned by means of a global coordinate system (mathematical vehicle coordinate system), the origin of which is defined to be in the center at the level of the front axle of a vehicle (see VW 010 59 Part 1; VW 010 52 is the binding reference for the vehicle coordinate system), Figure 1.A Vertical plane S Longitudinal center plane D Horizontal planeFigure 1. Global coordinate system for vehiclesStarting from the axes of this coordinate system, grid lines are spread out parallel to the axes. These grid lines, spaced 100 mm apart, theoretically penetrate the vehicle. These grid lines serve to find all points on the vehicle. In other words, they help to determine the position of each vehicle component. Dimensioning is also performed with the aid of these grid lines.The reference point system is based on a component-oriented reference system.The origin of the component reference system is defined by the intersection point of three refer-ence planes. The reference planes are formed via the RPS main mountings defined on the compo-nent.When several parts are assembled, these parts are toleranced with respect to each other.After the parts are joined, the ASSY is described by a combined component-oriented reference system. This is formedby adoption of one of the existing reference systems orby forming a new reference system using the existing reference points.The specification of the new reference system depends on the function of the ASSY.Seite 3VW 010 55: 1996-122.2 Standard Sizes/Characteristics for RPS MountingsMultiple-use location holes with high precision requirements must be adequately strong.In general, the standard sizes according to Table 1 and Table 2 shall be used. In case of holes in RPS surfaces, it must be ensured that the bearing surfaces are of adequate size and provide proc-ess assurance.The specified dimensions shall be projected – parallel to the axes – onto the component.Table 1.Recommended standard valuesFor further standard sizes see VW 010 77Designation Nominal dimen-sionTol.Graphical representationL o c at i o n h o l e s ,p l u g g a b l eRound hole see VW 01077101520Square25+16 x 2010 x 20Rectangle15 x 20+1Ø 15Ø 20S u r f a c e sCircleØ 25+11020E d g e sEdge length "a"25+1Table 2.Recommended standard valuesFor further standard sizes see VW 010 78Designation Nominal dimen-sion w x lTol.Graphical representationLong holeL o c a t i o n h o l e s ,p l u g g a b l eLong hole in angle positionsee VW 01078Seite 4VW 010 55: 1996-123 The 3-2-1 RuleEvery rigid body possesses six degrees of freedom in three-dimensional space: three translational degrees parallel to the axes of a reference system and three rotatory degrees around the axes, Figure 2.Figure 2. The degrees of freedom in three-dimensional spaceIn order to support a non-rotationally-symmetric body in a uniquely determinate manner, it must be fixed in all six possible directions of movement. The 3-2-1-rule provides for such unique fixing. It determines the following main-mounting distribution:E.g. 3 mountings in z direction2 mountings in y direction1 mounting in x directionImplementation of this rule is shown based on the following representation, Figure 3.Figure 3. Application of the 3-2-1 ruleThe three mountings in z direction restrict three degrees of freedom: translation in z direction and rotation around the x and y axes. The pin in the round hole prevents motion parallel to the axes in the x and y directions and, finally, the pin in the long hole prevents rotation around the z axis, Fig-ure 3.This rule applies equally to any other rigid component, even if its structure is much more complex. With a system of rigid bodies, the elements of which are interconnected by joints or guides, more than 6 degrees of freedom must be fixed using additional main mountings.For non-rigid components, additional support points must be defined for supporting the compo-nents according to RPS aspects.RPS 1 shall be the point that binds the most degrees of freedom.Seite 5VW 010 55: 1996-124 Designation and Drawing Representation4.1 RPS DesignationAll RPS points must be included in the part drawing.The designation is subdivided as follows:•Main mounting points=Capitals?H =Hole? F =Surface?T =Theoretical pointis the mean of two support points •Support points=Small letters?h =Hole? f =Surface?t =Theoretical pointis the mean of two support points •Mounting types?Location holes/pins=Code letter H,h?Surfaces/edges/ball/tip=Code letter F,f?Theoretical point=Code letter T,t •Fixing directions=Small letters?x, y, z for component-oriented reference systems parallelto the coordinate system?a, b, c for rotated, component-oriented reference systems Examples of designation:Fixing directionCode letter for surface as main mountingFixing directionsCode letter for hole as main mountingDesignation with numberingFixing directionCode letter for surface as main mountingDesignation with numberingFixing directionCode letter for surface as support pointDesignation with numberingNumbering begins with the RPS 1 point for each single part and for each assembly.Seite 6VW 010 55: 1996-124.2 Drawing RepresentationDrawing representation takes place according to the valid drawing guidelines.The RPS surfaces shall be identified by means of cross-hatching.If a part drawing does not exist yet, RPS Dimensions Sheet FE 515 1) shall be used.As soon as the part drawing exists, the specifications from the RPS Dimensions Sheet are adopted directly in the drawing or adopted in text macro NO-F23 2). Administration of these specifications in the text macro is mandatory.4.3 Procedure for Assemblies (ASSY) with Components with no Separate Drawing (ND): The RPS points for components with no drawing (ND) must be identified by specifying the item number or part number.A drawing exists for part 1; ND for parts 2 and 3, Figure 4.A RPS 1 Hxy; RPS 1 Hxy for Item 3S RPS 2 Hx only for Item 3D RPS 1 Hxy only for Item 2F RPS 2 Hy; RPS 2 Hy for Item 2Fig. 4ASSY with RPS pointsGraphical representation, not adopted in drawing1) Stored in design data administration system under FEO 000 5152) Stored in design data administration system under NOF 000 023Seite 7VW 010 55: 1996-12 5 Dimensioning and Tolerancing5.1 GeneralDimensions and tolerances can be entered directly in the drawing or via the table, Figure 5.The starting point for dimensioning the components is generally the origin of the reference system. Form and functional dimensions with tolerances shall always be referenced to the origin of the ref-erence system.Example: The holes within a hole group are dimensioned with respect to each other. The position of the hole group is dimensioned with respect to the reference planes.In the fixing direction, the main mountings are positioned without tolerance with respect to the vehi-cle coordinate system / reference system.The origin/reference point is shown in the drawing or table. If two or three fixing directions are bound at one point, tolerancing must be separated according to the hole or surface. In this case, the surface must be identified one line lower in the table. Here, the surface is set to zero in the tol-erance zone. In the line in which the hole is set to zero, the tolerance zone for the surface shall be identified with a horizontal line, see the table in Figure 5.The support-point tolerances shall be defined according to the requirements.5.2 Component-Oriented Reference Systems Parallel to the Coordinate SystemThe origin of the reference system is defined without tolerances in the global vehicle coordinate system by means of a translation, Figure 55.3 Rotated, Component-Oriented Reference SystemsWith rotated reference systems, the theoretical angles of rotation must be specified in RPS Dimen-sions Sheet FE 515 1) or in the drawing table text macro NO-F23 2).If there are several angles of rotation, the angle specification and thus the sequence of rotations shall be obtained from the drawing. "See drawing" must be added to the table instead of the angle entry.The position of the reference point is determined by means of its x, y and z coordinates in the global vehicle coordinate system.Angles of rotation around the x, y and z axes are entered using mathematically positive or negative values. Positive angles are specified counterclockwise and negative angles clockwise.In the coordinate system, the horizontal axis is assigned an angle of zero.Nominal dimensions and tolerances are specified in a, b and c values in the RPS table.The fixing directions of the RPS points are specified as a, b and c values in the table and/or draw-ing, e.g. RPS 1 HabFc, Figure 6 and Figure 7.1), 2)see page 6Seite 8VW 010 55: 1996-12A if necessaryFig. 5Dimensioning with text macro NO–F23Seite 9VW 010 55: 1996-12A Reference point S View RSeite 10VW 010 55: 1996-12A Reference point S View R6 Universal Use6.1 GeneralThe purpose of the RPS is to provide process assurance/capability and repeat accuracy for the procedures in order to make them independent of setting work performed by the worker.The reference points must be used in all manufacturing, assembly, inspection and installation pro-cesses.In case of self-contained function sectors such as the side panel tank flap, a reference change in combination with functional dimensions to RPS planes is permissible.Prior to the specification of RPS points, it is absolutely necessary to define the functions of the sin-gle part and the relevant assemblies with their required functional tolerances.Reference points that were established at the beginning of a process must be kept for as long as possible. In order to avoid changes to arranged reference points, they are jointly defined – as early as possible in the design and development process – in consultation with all departments partici-pating in the production process.Reference points must be positioned at stable areas of a component that will remain unchanged even in further development and/or production processes.Reference points on components that move relative to the body during driving operation can be considered according to the 3-2-1 rule only in the actual design position.The RPS points on components that are used several times in vehicles and thus have multiple ref-erences to the global coordinate system can be shown without a global coordinate reference in the technical drawing.The reference point system is equally oriented toward the production process, toward the function sectors and toward the strategic quality goals, e.g. audit, process capability.6.2 Specification of Reference PointsParallelism to the coordinate system (holes and surfaces) must be observed when entering the reference points. In the case of rotated systems, parallelism to the reference planes must be o b-served.The RPS points must be produced in the tool sequence in which the greatest dimensional stability is attained.Whenever possible, reference points must be produced with a standardized shape (hole, surface), which must be defined in detail.If holes cannot be made in a component, surfaces or edges must be used to specify reference points.In the case of COP parts (transfer parts), the respective reference-point positions arise in the ASSY.6.3 Specification of Function SectorsUse of the RPS on a complex portion of the vehicle such as the dashboard requires a structure that addresses the development and design engineering systems and includes all parts, single parts and assemblies.A function sector includes all components in the visible and covered areas that directly affect their surroundings with their function points.The specification of reference planes depends on the spatial and geometric position relationship of a component with its surroundings.The reference planes are identical for a function sector. In other words, components or component groups and the surroundings have the same starting basis, Figure 8.A Dashboard ASSY function sector S Airbag function sectorD Center-vent function sector F Air outlet vent function sector FS Fig. 87 Referenced StandardsVW 010 52VW 010 59 T1VW 010 77VW 010 78。

VW91101_汽车环境标准: 汽车零件,生产材料,运行材料 避免有害物质

VW91101_汽车环境标准: 汽车零件,生产材料,运行材料 避免有害物质

Q U E L L E : N O L I S应用之前要检查标准的新颖性。

电子制作的标准文件真实可信,无需签名即生效。

页号:1 /4 专业责任标准化 EKDV/4 Ottmar Bartels EKDV K-EFU Günter Damme 电话:+49-5361-9-25454 电话: +49-5361-9-25644 Manfred Terlinden 保密文件。

保留所有权利。

未经大众汽车公司标准化部门的事先许可不得传播或者复制。

康采恩标准VW 91101版本:2010-11分类号: 97210关键词: 避免有害物质,环境标准汽车环境标准; 汽车零件,生产材料,运行材料避免有害物质先前版本VW 91101: 1993-11, 1996-10, 1999-04, 2001-05, 2004-04, 2007-11更改相对于VW 91101: 2007-11 进行了以下更改: – 修改了章节4,对要求进行了详细化并补充了关于供应商的通知义务内容 1 应用范围 .................................................................................................................................. 1 2 标记 ......................................................................................................................................... 2 3 概念 ......................................................................................................................................... 2 4 要求 ......................................................................................................................................... 2 4.1 汽车驾驶室内的排放限制.......................................................................................................... 2 4.2 需要申报的材料和禁止使用的材料 ........................................................................................... 2 4.3 大众汽车康采恩中超出VDA 232-101之外的材料禁用规定 ..................................................... 3 4.4 供应商的通知义务 .................................................................................................................... 3 5 一起适用的资料 .. (4)1 应用范围环境目标:目标和规定根据VW 91100本标准对于相关材料、制品或者产品做出规定,它们中文内容仅供参考页号:2VW 91101: 2010-11– 通过大众汽车康采恩汽车销售国法律,或者– 与法律规范和使用地点无关而是通过大众公司康采恩内部决定禁止使用、限制使用或者服从其他管理规定。

大众标准中文版

大众标准中文版

大众汽车集团标准TL 2442010年12月版分类号:50223关键字:锌,镍,钝化处理,密封,无Cr(VI),防腐蚀,表面保护锌/镍-合金涂覆层表面保护要求旧版本TL 244: 1987-10, 1992-05, 1993-11, 1995-12, 2002-05, 2004-12, 2006-08, 2007-02变更相对于 TL244: 2007-02 版本,作了如下更改:--补充了热处理后零件的抗拉强度≦ 1200Mpa 部分;--添加了 Ofl-r647 和 Ofl-r648 两种涂覆方法;--原表 2 中关于含铬的表面保护类型已删除;--添加了图 1 和图 2;--添加了 PV 1209,PV 1200 和 PV1210 三种测试依据;--镀层表面形态的要求有所增加;--镍的上限值有所改变;--原第 4 条关于镀层厚度的测量的内容加入到部分;--原部分的要求有所改变;--参考标准有更新;--标准重组。

1 范围本标准规定了抗拉强度为 Rm≦ 1000Mpa(按 VW 137 50 的特征字母 r)的铁材料和钢制件上的电解离析和无Cr( VI)后处理的锌/镍合金涂覆层的要求。

此外还定义了抗拉强度值大于 1000Mpa时的应用极限。

本标准定义了合金涂覆不适用于抗拉强度 Rm>1200Mpa 和表面硬度>370HV 的钢制件。

而且适用于抗拉强度值在 1000Mpa 和 1200Mpa之间的钢制件时,必须按 DIN EN ISO4042 作热处理。

这些当作坚固防腐层(稳定等级为 6)的涂覆层,亦特别适用于除了腐蚀负荷增加和温度负荷增加至150°C(例如:发动机室和刹车系统)之外的部件以及螺栓拧紧系统。

银色涂覆层(例如:Ofl-r642,Ofl-r643,Ofl-r645和Ofl-r647)特别适用于导线连接(接地线连接)。

这些涂覆层特别适用于内部传动的紧固元件,以避免附加的施力作用。

大众汽车标准_VW 01106-1_EN_2004-07-01

大众汽车标准_VW 01106-1_EN_2004-07-01

Gas-Shielded Arc WeldingThe English translation is believed to be accurate. In case of discrepancies the German version shall govern.Sheet Steel Joints Design, Type, Quality AssuranceVW 011 06-1Konzernnorm Descriptors: welding, gas-shielded arc welding, steel, MIG welding, MAG welding, TIG welding, sheet steel, sheet steel joint, sheet metal ContentsPage1 2 2.1 2.2 3 3.1 3.2 4 4.1 4.2 4.3 5 5.1 5.2 5.3 5.4 5.5 6 7Scope .................................................................................................................................. 2 Abbreviations and definitions .............................................................................................. 2 Abbreviations ...................................................................................................................... 2 Definitions ........................................................................................................................... 3 Gas-shielded arc welding procedure................................................................................... 4 Tungsten inert-gas welding (TIG)........................................................................................ 4 Gas-shielded metal arc welding (MIG/MAG)....................................................................... 4 General requirements ......................................................................................................... 5 Materials.............................................................................................................................. 5 Design ................................................................................................................................. 8 Weld dimensions............................................................................................................... 10 Requirements for welds and quality assurance of welds .................................................. 12 Weld quality....................................................................................................................... 12 Penetration depths ............................................................................................................ 12 Weld types ........................................................................................................................ 13 Special weld types ............................................................................................................ 18 Evaluation of imperfections ............................................................................................... 23 Drawing entries ................................................................................................................. 23 Referenced standards....................................................................................................... 24Changes The following changes have been made as compared to VW 011 06-1, 2003-05: Referenced standards updated Standard edited Section 5.1 shortened Section 5.4 extended by special weld types (multiple front weld; corner joint) Section 5.4.1: requirements revised Previous issues 1997-01; 2003-05Preface The following basic regulations are based on experience gained with partially and fully mechanized equipment and implemented tests and also on accepted engineering standards such as DIN standards and DVS specifications.Form FE 41 - 01.03Page 1 of 25Fachverantwortung/Responsibility K-QS-32 Herr Dr. Witt Tel.: 7 36 23 Normung/Standards (EZTD, 1733) Fischer Tel.: +49-5361-9-2 79 95 Sobanski© VOLKSWAGEN AGConfidential. All rights reserved. No part of this document may be transmitted or reproduced without the prior written permission of a Standards Department of the Volkswagen Group. Parties to a contract can only obtain this standard via the responsible procurement department.Check standard for current issue prior to usage.Klass.-Nr./Class. No. 04 81 7July 2004Page 2 VW 011 06-1: 2004-07 1 ScopeThis standard applies to the design, layout and quality assurance of arc-welded sheet steel joints which are predominantly subject to dynamic loads. It comprises the following procedures according to DIN EN ISO 4063: Reference no. 131 135 141 for: of: Method Metal inert-gas welding Metal active-gas welding Tungsten inert-gas welding Code MIG MAG TIGbutt and fillet welds, lap welds, plug welds and special weld types bright uncoated and coated sheet steel as well as of both high-alloyed steels and premium steels; for examples see Section 4.1; Workpiece thickness 0.5 mm to 6 mm test characteristics of quality level B (high requirement) according to DIN EN ISO 5817, see also DVS specification 0705.with:All fusion-welded joints to which this scope is not applicable require the clarification of the responsible engineering departments. Special measures made necessary because of the component, e.g. change to the quality level for specific imperfections, are permissible and shall be entered in the drawing. 2 2.1 a f1,2 fL fSt Fi h l L s s1,2 sN t1 t2 HAZ Σt ∅ Abbreviations and definitions Abbreviations Calculated throat thickness Penetrations on sheets 1 and 2 Penetration length Penetration at the face surface Joining plane Gap size Throat length Length Throat thickness Throat thickness with respect to sheets 1 and 2 smallest common throat thickness Thickness of sheet 1 Thickness of sheet 2 Heat-affected zone Sum total of sheet thicknesses Diameter mm mm mm mm or % (of face surface) mm mm mm mm mm mm mm mm mm mmPage 3 VW 011 06-1: 2004-072.2DefinitionsFüThe following definitions are valid for the application of this standard: 2.2.1 Weld jointJoint created by fusion welding. It comprises the weld, fusion line, heat-affected zone and unaffected base material (Figure 1).1 2Legend: 1 = weld 2 = heat-affected zone 3 = fusion line, fusion zone344 = unaffected base material Figure 1 – Fusion weld jointNOTE Weld and fusion line may be identical. 2.2.1.1 Weld The area where the workpiece(s) is/are joined at the weld joint. The weld comprises the base material and/or the filler metal. 2.2.1.2 Fusion line Borderline between the base metal and/or filler material melted during welding and the metal that remains solid. 2.2.1.3 Weld metal Material that solidified after welding, comprising either the base material or filler metal and base material. Some elements in the weld metal can come from casings and/or accessory materials (DIN ISO 857-1). 2.2.1.4 Heat-affected zone HAZ Area of the base material that remained solid, but, due to the energy applied during welding, experienced microstructural changes related to temperature.Page 4 VW 011 06-1: 2004-072.2.1.5 Unaffected base material Area of the base material that experienced no evident microstructural changes as a result of the energy applied during welding. 2.2.2 Same types of materialMaterials which do not differ significantly in terms of their chemical composition and their suitability for welding (DIN 8528-1). 2.2.3 Different types of materialMaterials which differ significantly in terms of their chemical composition and their suitability for welding. 3 Gas-shielded arc welding procedureGas-shielded arc welding is a form of fusion welding. An electrical arc is used as the heat source. It burns between the electrode and the workpiece. In this process, the arc and the weld pool are protected from the atmosphere by a shield of protective gas. The classification into the following procedures depends on the electrode type: 3.1 Tungsten inert-gas welding (TIG)In this procedure, an arc is ignited between a non-consumable tungsten electrode and the workpiece. Argon, helium, mixtures of both and sometimes added active gases, are used to form the protective atmosphere. The filler metal is (as in the case of gas welding) fed from the side. 3.2 Gas-shielded metal arc welding (MIG/MAG)In this procedure, an arc is ignited between the melting end of the wire electrode (filler metal) and the workpiece. The welding current flows via sliding contacts in the electric current guide of the gun to the wire electrode. When inert gases (low-activity gases, e.g. noble gases such as argon, helium or mixtures of both) are used as protective atmosphere, this is called metal inert-gas welding (MIG). When active gases are used (e.g. CO2, or mixtures containing CO2, or, in some cases, mixtures of CO2 and oxygen), this is called metal active-gas welding (MAG). This procedure is used to weld unalloyed and low-alloy steels.Page 5 VW 011 06-1: 2004-074General requirementsWelds that are subject to mandatory documentation shall be evaluated according to the relevant type-specific and/or component-specific test specifications (PV). Deviations with respect to the specified weld geometries and weld layouts shall be detailed in the drawing and verified by testing. They shall be described in test specifications (PV). Further requirements with respect to gas-shielded arc welding are contained in the following documents: VW 011 06-2 VW 011 06-3 VW 011 42 Shielded Arc Welding - Rework on Sheet Metal Connections Gas-Shielded Arc Welding – Part 3: Al Welded Joints Welded Seam Repairs on Aluminum Structures – Product Evaluation and Notes on ProcedureWhen creating arc-welded sheet steel joints, the greatest possible design strength in accordance with the design goal must be realized while also ensuring sufficient reliability and a favorable cost/quality ratio. For this purpose, every weld joint must be suitable for welding, i.e. the dimensions of the welding equipment and the accessibility of the weld according to DVS 0929 must be taken into consideration for design. Weldability for service of a sheet steel joint is given if the component, on the basis of its design (Section 4.2) and with the material used (Section 4.1), remains functional (Section 4.3) under the intended operating stresses (Figure 2).Material Welding suitabilityWeldability of the partWelding capability ManufacturingWeldability for service DesignFigure 2 – Representation of weldability according to DIN 8528-1 4.1 MaterialsThe following list is not complete. The following products and materials have good welding properties: a) Cold-rolled flat products made from soft steels for cold forming: DIN 1623-1 (02.83)1) DIN EN 10130 Material no. St 12 DC01 1.0330 St 13 DC03 1.0347 St 14 DC04 1.0338 1) DIN 1623-1 was replaced in October 1991 by DIN EN 10130.Page 6 VW 011 06-1: 2004-07b) c) d)Cold-rolled strips DC01 to DC04 with the surface finishes BK, RP, RPG according to DIN EN 10139. Hot-rolled strips with ≤ 0.20% C content, e.g. according to TL 1111. Hot-rolled products of structural carbon steels DIN 17100 (01.80)2) DIN EN 10025 Material no. St 37-2 -1.0037 St 37-2 R St37-2 S 235 JR 1.0114 St 37-3 S 235 JO 1.0116 St 52-3 S 355 J2G3 1.0570 Conditionally weldable: St 50-2 E295 1.0050 2) DIN 17100 was replaced in March 1994 by DIN EN 10025.The following products and materials are also weldable:e) f)g)Cold-rolled strip and sheet with higher yield point for cold working made from micro-alloyed steels (SEW 093 of March 1987) Isotropic micro-alloyed cold-rolled strip (according to VW 500 17) is a further development of the traditional micro-alloyed cold-rolled strip ZStE260 to ZStE420 (formerly SEW 093). NOTE VW 500 17 defines the material requirements of isotropic micro-alloyed steels, placing particular emphasis on the mechanical properties. Cold-rolled flat products with high yield point for cold working made from micro-alloyed steels: DIN EN 10268 Material no. H240LA 1.0480 H280LA 1.0489 H320LA 1.0548 H360LA 1.0550 H400LA 1.0556 DIN EN 10292 Material No. H260LAD+Z, +ZF 1.0929 H300LAD+Z, +ZF 1.0932 H340LAD+Z, +ZF 1.0933 H380LAD+Z, +ZF 1.0934 H420LAD+Z, +ZF 1.0935 Hot-rolled flat products made from steels with a high yield point for cold working: DIN EN 10149-2 Material no. S315MC 1.0972 S355MC 1.0976 S420MC 1.0980 S460MC 1.0982 S500MC 1.0984 S550MC 1.0986 S600MC 1.8969 S650MC 1.8976 S700MC 1.8974h)Page 7 VW 011 06-1: 2004-07i)Cold-rolled strip and sheet with higher yield point for cold working made from phosphorus-alloy steels SEW 094 Material no. ZStE220P 1.0397 ZStE260P 1.0417 ZStE300P 1.0448 DIN EN 10 292 Material no. H220PD+Z, +ZF 1.0358 H260PD+Z, +ZF 1.0431 H300PD+Z, +ZF 1.0443 Strip and sheet from stainless steels (DIN EN 10088-2): e.g. austenitic steels X5CrNi18-10 1.4301 or ferritic steels X2CrTi12 1.4512j)Page 8 VW 011 06-1: 2004-074.2DesignFüThe following specifications and the notes on design from the DVS 0929 Specification are used as the basis for the production-friendly design of arc-welded sheet-steel joints. 4.2.1 Joint typesThe weld joint is the area in which the parts are joined by welding. The respective type of joint is determined by the arrangement of the parts with respect to each other (extension, reinforcement, branching), see Table 1. Table 1 – Joint types (DIN EN 12345) Position of parts Description The parts lie in the same plane and touch against each other end to end The parts lie on top of one another in parallel, e.g. in explosive cladding The parts lie in parallel on top of one another and overlap. The parts meet at right angles (Tshaped) and lie on top of one another Two parts lying in the same plane meet on a third part that lies between them at right angles (forming a double T shape) One part meets the other at an angle. The edges of two parts meet at an angle of more than 30° (corner)No. 1 2 3Type of joint Butt joint Edge joint Lap joint4T-joint5Double T-joint6Bevel joint7Corner joint8Front jointThe edges of two parts meet at an angle of 0° to 30°9Multiple jointThree or more parts meet at any angle Two parts, e.g. wires, lie on top of one another in a cross shape10Cross jointPage 9 VW 011 06-1: 2004-074.2.2Weld typesThe weld type is determined by the following: Type of weld joint Type and scope of preparation, e.g. gap optimization (see DIN EN ISO 5817 and DIN EN ISO 9692-1) Material Welding method. 4.2.2.1 Fillet weld The parts lie in two planes with respect to one another, form a fillet joint and are joined by welding. It is possible to differentiate between a fillet weld (Figures 3 and 5) and a double fillet weld (Figure 4) with and without edge preparationFigure 3 - Fillet weld on T-jointFigure 4 – Double fillet weld on T-jointFigure 5 - Fillet weld on bevel joint without edge preparation4.2.2.2 Square butt weld on butt joint, flanged weld The parts lie in one plane, form a gap and are joined by welding, see Figures 6 and 7.Figure 6 - Square butt weld 4.2.2.3 Lap weldFigure 7 – Flanged weldThe parts lie in parallel on top of one another. The face surface of the top sheet and the bottom sheet form a fillet. Both parts are joined by welding. This is termed lap weld (see Figure 8). Variant 1 Variant 2Figure 8 – Lap weldPage 10 VW 011 06-1: 2004-074.2.2.4 Front weld See Figure 9.Figure 9 – Front weld 4.2.2.5 Plug weld See Figure 10.Figure 10 – Plug weld 4.3 4.3.1 Weld dimensions Throat thicknessThe calculated throat thickness a is required for the calculation of the forces acting on a weld joint. For example, the following applies to the design of a fillet weld: a ≤ 0.7 tmin. In production, the actually measured throat thickness s must always be greater than or the same as the calculated throat thickness a. If the throat thickness s (Figure 11) cannot be determined directly, the smallest common throat thickness sN (Figure 12) can be used for an alternative criterion. The smallest common throat thickness sN is the shortest distance between the contact surfaces of component edge and weld metal and the surface of the weld (see also Figures 13 and 14).sN saaFigure 11 - Fillet weldFigure 12 - Fillet weld with deep penetrationPage 11 VW 011 06-1: 2004-07sNsNFigure 13 – Concave weldFigure 14 – Convex weldThe shortest (common) distance between both components of the weld joint shall be measured in order to determine the shortest common throat thickness sN. Excess weld metal must not be considered for convex welds (see Figure 14). 4.3.2 Weld lengthThe calculated weld length l is the weld length defined for the specific design by the designer. Both the starting and end areas (end crater) are used to determine the weld length. In order to improve the dynamic load capacity, the weld length can exceed the component length (Figure 15).l1 = Calculated weld length e.g. component length l2 = Weld seam length Figure 15 – Magnified weld length Proof of sufficient strength is provided by the component-specific strength tests.Page 12 VW 011 06-1: 2004-075Requirements for welds and quality assurance of weldsIn general, the welding quality requirements according to DIN EN 729-1 shall be taken into consideration together with the comprehensive quality requirements set out in DIN EN 729-2. The design of a weld shall be described clearly by indicating the weld’s length, thickness and quality. These requirements are part of the drawing specifications (also see Section 6). Unless other specifications are noted in the drawing, the requirements of Sections 5.1 to 5.5 shall apply. 5.1 Weld qualityIf there is no component-specific test specification, quality level B, high, specified in DIN EN ISO 5817, shall apply. The imperfections specified there are represented for square butt welds and fillet welds on a T-joint. The limit values for imperfections apply to other weld types, too (e.g., flanged weld, fillet weld on lap joint). Unequal weld leg lengths as an imperfection according to DIN EN ISO 5817 must not be evaluated for the fillet weld in joints of sheet metal in the body-in-white and in exhaust systems. 5.2 Penetration depthsThe weld joint is sufficient once a continuous crystalline joint with a measurable penetration depth of f ≥ 0.2 mm is created between the sheets involved. For certain weld types – e.g. fillet weld on lap joint or flanged weld – the penetrations f cannot always be determined if 100% of the face surfaces is included in the weld. Permissible penetration depths f < 0.2 mm shall be indicated in the drawing or specified in a component-specific test specification. The weld quality and/or strength must be verified by means of a dynamic strength test and a microscopic examination. NOTE: Due to the smaller “welding window” the test intervals for f < 0.2 mm (e.g. using microsections) shall be conducted at shorter time intervals or on smaller batch sizes. The processes shall be coordinated with all the departments involved (Design, Quality Assurance, Production).Page 13 VW 011 06-1: 2004-075.3 5.3.1Weld types Square butt weld on butt jointt1sFigure 16 - Square butt weld on butt joint s = throat thickness fSt = penetration The face surfaces (fSt ) shall be 100% melted. Design as flanged weld: s ≥ tmin. (see Figure 16) fSt ≥ 100 %SNt1Figure 17 – Flanged weld sN = smallest common throat thickness The face surfaces (fSt ) shall be 100% melted. sN ≥ tmin. (see Figure 17)t2t2Page 14 VW 011 06-1: 2004-075.3.2Front weldSNf1 SN fL2sNf2t1t2 t1a) b) Figure 18 – Front weld sN fL2. f1,2 tmin. t1 0.2 mmt2t1c)t2sN = smallest common throat thickness fL2 = penetration length f1,2 = penetration 5.3.3 Fillet weld on lap joints1 sN N af2t1hs2Figure 19 - Lap weld s1,2 sN a f2 h = throat thickness = smallest common throat thickness = calculated throat thickness = side wall penetration on the component t2: = gap size s1,2 0.7 tmin. sN f2 s1,2 and sN 0.7 tmin. a ≤ 0.7 tmin. (design recommendation) 0.2mm (see Figure 19)NOTE: If the throat thicknesses s1,2 cannot be determined directly, the smallest common throat thickness sN may be chosen as an alternative criterion.t2Page 15 VW 011 06-1: 2004-075.3.4Fillet weld with deep penetrationt1 f1 s1 sNt2aTheoretical root pointFigure 20 - Fillet weld with deep penetration s1,2 sN a f1,2 = throat thickness (with deep penetration) = smallest common throat thickness = calculated throat thickness = side wall penetration on component t1,2 s1,2 0.7 tmin. sN s1,2 and sN 0,7 tmin. a ≤ 0.7 tmin. f1,2 0.2 mm (see Figure 20)NOTE: If the throat thicknesses s1,2 cannot be determined on the microsection directly, the smallest common throat thickness sN may be chosen as an alternative criterion. 5.3.5 Fillet weld on bevel jointt1sN≤ 30°Figure 21 - Fillet weld on bevel joint sN = throat thickness f2 = penetration sN f2 tmin. 0.2 mm (see Figure 21)The face surface of the upper sheet must be 100 % melted.f2t2f2 s2Page 16 VW 011 06-1: 2004-075.3.6Multiple jointf1f2lt1t3Figure 22 – Three-sheet-T-joint f1,2,3 = penetration fSt1,2 = face surface penetration of t1,2 fSt3 = face surface penetration of t3 5.3.7 Corner joint f1,2,3 > 0.2 mm fSt1,2 ≥ insertion depth l fSt3 = 100% meltedsNt1t2Figure 23 – Corner joint The face surfaces of both sheets must be 100 % melted. Smallest common throat thickness sN ≥ tmin.t2Page 17 VW 011 06-1: 2004-075.3.8Plug weldFor plug weld see Figure 24. The values in Table 2 serve as reference values for the ratio of the sheet thickness to the hole diameter. Table 2 – Hole diameter and sheet thickness Sheet thickness used t (mm) up to 1.0 > 1.00 to 1.25 > 1.25 to 1.50 > 1.50 to 2.00 > 2.0 to 3.00 > 3.00 to 3.50 Hole diameter ∅ or L (mm) ≥6 ≥7 ≥8 ≥9 ≥ 10 ≥ 14 Optionally, long holes for narrow flanges W x L (mm) 6 x 10 6 x 12 8 x 12 -When there are gaps between the sheets, the length of the penetration fL must be equivalent to the length L or to the diameter of the hole, or exceed it. ∅ or L x Bt1 t2 fLf2fSt1,2 = face surface penetration of t1,2 fL = penetration length, width and/or diameter f2 = penetration depthfSt1,2 = 100 % melted fL ≥ ∅ or L or W f2 ≥ 0.2 mm Figure 24 – Plug weldThe face surfaces of the hole must be 100 % melted.Page 18 VW 011 06-1: 2004-075.4Special weld typesAdequate evaluation criteria shall be used to evaluate any special weld types that are not listed here. 5.4.1 Fillet weld on multiple lap jointS1t1 t2 t3 f3S2Figure 25 - Three-sheet lap weld The cross-sections of the upper sheets t1 and t2 must be 100 % melted and the throat thickness a of t1 and t2 must be met. If no specifications are made in the drawing, the following applies as reference value: a = 0.7 tmin2,3 The penetration depth f3 in sheet t3 shall be minimum 0.2 mm.Page 19 VW 011 06-1: 2004-075.4.2Multiple front weld sN2 sN1 sN3 F1 F2 Fi = joining plane i F3 *1) If it is clear that one sheet arrangement in a multiple-sheet arrangement is to be considered as a single sheet, then this sheet shall not be included in the overall evaluation when determining the throat thickness sN. t1 t2 t3 t4*1)Figure 26 – Four-sheet front weld In the case of multiple-sheet joints, the smallest common throat thickness sN of the relevant joining planes is used to determine the throat thickness s, as is the case for a multiple lap joint. Here the following applies: In the relevant joining plane (in Figure 26 - four-fold front weld with the joining planes F1, F2 and F3) the throat thickness sN must be ≥ Σ of the sheet thicknesses on the right and = Σ of the sheet thicknesses on the left of the joining plane. The following applies to Figure 26 as an example: sN1 ≥ t 1 sN2 ≥ ? t(3+4) sN3 ≥ ? t4 fSt = face surfaces t1 t4 < (t2 + t3 + t4 ) < (t1 + t2 + t3 ) t3 + t4 < (t1 + t2 ) fSt 1,2,3,4 = 100% meltedPage 20 VW 011 06-1: 2004-07sN4sN3sN 2 s N1t1 t t34t2Figure 27 – Multiple front weld For multiple front welds in exhaust systems (e.g., sheet layers on the exhaust pipe, Figure 27) the factor 0.7 applies in the determination of the smallest common throat thickness sN: sN1 ≥ 0.7 t1 sN2 ≥ 0.7 (t1 + t2) sN3 ≥ 0.7 (t1 + t2 + t3) sN4 ≥ 0.7 tpipe or or sN2 ≥ 0.7 (t3 + t4) sN3 ≥ 0.7 t4Page 21 VW 011 06-1: 2004-075.4.3Fillet welds on components with round cross sectionsf1 sNtaFigure 28 - Fillet weldt f1 = = t2 f2Figure 29 - Fillet weld with deep penetrationsFigure 30 – Concave fillet weld For Figures 28 and 30 determine the throat thickness s approximately: On workpieces with different geometrical shapes, the shortest distance of the median line between the two workpieces shall be selected as the dimension s. s = throat thickness s ≥ 0.7 tminFor fillet welds on components with a round cross section it is recommended to determine the smallest common throat thickness sN as shown in Figure 29. sN = smallest common throat thickness sN ≥ a. NOTE: In the event of imperfections, e.g. undercuts, DIN EN ISO 5817 shall apply.f2Page 22 VW 011 06-1: 2004-075.4.4Square butt weld on flanged jointf1 f2 t1 sN t2Figure 31 - Fillet weld on specially shaped workpieces sN = smallest common throat thickness f1,2 = penetration depth sN ≥ tmin. (see Figure 31) f1,2 ≥ 0.2 mmPage 23 VW 011 06-1: 2004-075.5 5.5.1Evaluation of imperfections Weld spatterWeld spatter must be avoided as far as possible. Any globules or welding residues that remain stuck to the parts and which could lead to an impairment of function are not permitted. Spatter-free areas shall be defined in the drawing or in a test specification. 5.5.2 General imperfectionsImperfections such as cracks, pores, lack of fusion, gap sizes shall be evaluated, unless otherwise indicated in the drawing, according to DIN EN ISO 5817, quality level B “high”. Unequal weld leg lengths shall not be evaluated for fillet welds on lap joint. For exhaust systems the gap size must not exceed 1.0 mm. 6 Drawing entriesThe graphical representation (for example see Figure 32), dimensioning and symbols for the welding procedures named in Section 1 shall be carried out according to DIN EN 22553.s8a6n x l (e)131/ VW01106-1/h Legend: s8 = actual throat penetration) 8 mm thickness (with deepva6 = design throat thickness (without deep penetration) 6 mm n = number of welds l = minimum weld length; tolerance +5 mm, unless otherwise indicated e = distance between the welds v = initial dimensionExplanation: Weld produced by means of metal inert-gas welding (code number 131 according to DIN EN ISO 4063); evaluation according to VW 011 06-1; horizontal position h according to DIN EN ISO 6947. Figure 32 - Example of application for interrupted fillet weld with initial dimension; symbolic representationPage 24 VW 011 06-1: 2004-077Referenced standards1 Steel Flat Products; Cold Rolled Sheet and Strip; Technical Delivery Conditions; Mild Unalloyed Steels for Cold Forming Weldability; Metallic Materials, Definitions Steels for General Structural Purposes; Quality Standard Quality Requirements for Welding - Fusion Welding of Metallic Materials – Part 1: Guidelines for Selection and Use Quality Requirements for Welding - Fusion Welding of Metallic Materials – Part 2: Comprehensive Quality Requirements Hot Rolled Products of Non-Alloy Structural Steels; Technical Delivery Conditions Stainless Steels - Part 2: Technical Delivery Conditions for Sheet/Plate and Strip of Corrosion-Resisting Steels for General and Construction Purposes Cold Rolled Low Carbon Steel Flat Products for Cold Forming – Technical Delivery Conditions Cold Rolled Uncoated Mild Steel Narrow Steel Strip for Cold Forming Technical Delivery Conditions Hot Rolled Flat Products Made of High Yield Strength Steels for Cold Forming – Part 1: General Delivery Conditions Hot Rolled Flat Products Made of High Yield Strength Steels for Cold Forming – Part 2: Delivery Conditions for Thermomechanically Rolled Steels Cold-Rolled Flat Products Made of High Yield Strength Micro-Alloyed Steels for Cold Forming - General Delivery Conditions Continuously Hot-Dip Coated Strip and Sheet of Steels with Higher Yield Strength for Cold Forming – Technical Delivery Conditions Welding - Multilingual Terms for Welded Joints with Illustrations Welded, Brazed and Soldered Joints - Symbolic Representation on Drawings Welding – Fusion-Welded Joints in Steel, Nickel, Titanium and Their Alloys (Beam Welding Excluded) – Quality Levels for Imperfections Welding and Allied Processes - Nomenclature of Processes and Reference Numbers Welds - Working Positions - Definitions of Angles of Slope and Rotation Welding and Allied Processes – Recommendations for Joint Preparation Part 1: Manual Metal-Arc Welding, Gas-shielded Metal-Arc Welding, Gas Welding, TIG Welding and Beam Welding of Steels Welding and Allied Processes – Vocabulary - Part 1: Metal Welding Processes Recommendations for Selection of Acceptance Levels according to DIN EN 25 817; Butt Welds and Fillet Welds on Steel Notes on Design for MIG/MAG Welding using Industrial Robots Cold-Rolled Strip and Sheet of Micro-Alloyed Steels with Higher Yield Point for Cold Forming – Technical Supply SpecificationsThe last publication date of withdrawn standards is provided in parentheses. DIN 1623-1 (02.83) DIN 8528-1 DIN 17100 (01.80) DIN EN 729-1 DIN EN 729-2 DIN EN 10025 DIN EN 10088-2 DIN EN 10130 DIN EN 10139 DIN EN 10149-1 DIN EN 10149-2 DIN EN 10268 DIN EN 10292 DIN EN 12345 DIN EN 22553 DIN EN ISO 5817 DIN EN ISO 4063 DIN EN ISO 6947 DIN EN ISO 9692-1 DIN ISO 857-1 DVS 0705 DVS 0929 SEW 093 (03.87)1In this section terminological inconsistencies may occur as the original titles are used.。

大众汽车标准_VW_10540-3

大众汽车标准_VW_10540-3
标准中心 修订
汽车零件
制造厂代码 用于国外工厂及其承制厂
1999 年6月 VW
105 40-3
01 15 5 共 3 页第1页
资料
同1983年10月版比较,作了如下修改:
─ 删除了菲律宾,葡萄牙,萨拉热窝 TAS (培斯),泰国,印度尼西亚, 乌拉圭,委内瑞拉
─ 增补了长春FAW(奥迪),台湾,Skoda(斯科达)公司,Seat(西雅特)公司, 上海大众
自己生产 供应商
卡门荷大众
自己生产
供应商 4
长春FAW(奥迪)
长春FAW(大众)
5 上海大众(SVW) 自己生产 供应商
布鲁克西尔大众 自己生产
供应商
6 台湾
自己生产
供应商
空位
代码 2BR
3ME
2VZ
5FA 5FV 5SV
6BE
6CC
范围1) 1AA ~ 2ZZ2) 3AA ~ 3ZZ 4AA ~ 4DZ 4JA ~ 4ZZ
audiag资料资料资料资料抄抄抄抄写写写写李李李李莉日日日日期010907期期期4821696576制造厂代码制造厂代码制造厂代码制造厂代码共共共共3页页页页第第第第1页页页页日期日期日期日期日日日日期020401期期期译译译译校校校校日日日日期270401期期期011551054032br3me1999年年年年6月月月月vw莉莉莉代码代码代码代码2vz国外工厂国外工厂国外工厂国外工厂43125fv5sv6be5技技技技校校校校66cc6ca6zz6ma6pz1aa2zz23aa3zz4aa4dz5aa5zz6aa6bz4ja4zz5fa1925761151384代码数代码数代码数代码数汽车零件汽车零件汽车零件汽车零件用于国外工厂及其承制厂用于国外工厂及其承制厂用于国外工厂及其承制厂用于国外工厂及其承制厂南非大众南非大众南非大众南非大众自己生产自己生产自己生产自己生产7上海大众上海大众上海大众上海大众svw自己生产自己生产自己生产自己生产供应商供应商供应商供应商1i和2剔除剔除剔除剔除2zv3剔除剔除剔除剔除va8和4剔除剔除剔除剔除za2和5剔除剔除剔除剔除zabzaezalzaozbrzdozfozfpzfszguzjjzpczstzwwzwnzzw和和和q两个字母不用因为这两个字母有混淆的危险两个字母不用因为这两个字母有混淆的危险两个字母不用因为这两个字母有混淆的危险两个字母不用因为这两个字母有混淆的危险和和和va9和和和zb2空位空位空位空位自己生产自己生产自己生产自己生产供应商供应商供应商供应商空位空位空位空位自己生产自己生产自己生产自己生产供应商供应商供应商供应商自己生产自己生产自己生产自己生产供应商供应商供应商供应商空位空位空位空位自己生产自己生产自己生产自己生产供应商供应商供应商供应商b至至至至西雅图西雅图西雅图西雅图h自己生产自己生产自己生产自己生产共共共共3页页页页第第第第2页页页页105403vw范围范围范围范围18aa国外工厂国外工厂国外工厂国外工厂尼日利亚大众尼日利亚大众尼日利亚大众尼日利亚大众秘鲁秘鲁秘鲁秘鲁8nz8va8zz代码代码代码代码98制造厂代码制造厂代码制造厂代码制造厂代码6za312供应商供应商供应商供应商4806ra6zz7aa7lz7ma7zz5sv312488oa8ra8pz8uz961204321449aa9ua9tz9zz8ha9arsetba7ca7da7e

大众标准目录(中文)

大众标准目录(中文)
CAD/CAM数据要求 特殊层指定的处理序列 CAD/CAM数据要求 CAD 系统CATIA V5在生产中的应用指导 CAD/CAM数据要求 CAD 系统PRO/ENGINEER CAD/CAM数据要求 CAD 系统CATIA V5 CAD/CAM数据要求 CAD系统CATIA V5术语 CAD/CAM数据要求 CATIA V5电线布线 CAD/CAM数据要求 处理链接适配器PCA CAD/CAM数据要求 CAD系统CATIA V5-商用车 CAD/CAM数据要求(数据质量)
录2 附

2006.12
5
VW 010 59-6
录3 附
EN
2007.07
5 5 6 7 8 9 10 11 12 13 13 14
VW 010 59-6
录4 附 VW 010 59-2 VW 010 66 VW 010 88 VW 010 98 VW 011 10 VW 011 27 VW 011 54 VW 011 55 VW 101 26-1 VW 101 26-2 VW 105 00
2000.06 2000.06 2002.12 2005.11 2005.11 2005.11 2005.11 2002.1 2002.12 2003.12
1974.11 1975.06 1975.06
1976.02 2005.05 1985.08 2005.09 1991.11 1995.02 2004.08 1991.11
CN/EN/DE 2004.07 EN EN/DE EN/DE EN CN/EN DE DE EN/DE 2006.01
2004.07 2007.04 2001.1 1977.12 2007.08 2006.01
2004.07

大众汽车标准VW

大众汽车标准VW

⼤众汽车标准VWn t i s s u e p r i o r t o u s a g e .N o r m v o r A n w e n d u n g a u f A k t u a l i t ?t p r üf e n / C h e c k s t a n d a r d f o r c u r r e T h e E n g l i s h t r a n s l a t i o n i s b e l i e v e d t o b e a c c u r a t e .I n c a s e o f d i s c r e p a n c i e s t h e G e r m a n v e r s i o n s h a l l g o v e r n .Confidential. All rights reserved. No part of this document may be transmitted or reproduced without the prior written permission of a Standards Department of the Volkswagen Group.Parties to a contract can only obtain this standard via the responsible procurement department.VOLKSWAGEN AGQ U E L L E : N O L I SPage 2VW 105 00: 2003-111 ScopeThis standard includes notes on the use of the company designation and the corporate wordmark "Volkswagen AG" and provides an overview of the identifications used for vehicle parts.2 Company designation, wordmarkdesignation2.1 CompanyCompany designations, such as "Volkswagen Aktiengesellschaft", are registered and legally protected company codes.In general, they identify factories, services, objects, information, memos etc. as belonging to a certain company.2.2 Wordmark of the Volkswagen Group - "Volkswagen AG"The wordmark "Volkswagen AG" is the exclusive Group brand. This brand is a registered trademark of Volkswagen AG and legally protected as such. It serves for identifying the origin of products and services produced by Volkswagen AG. It aims to symbolize both the unobtrusive self-image and the international importance of Volkswagen AG.3 Overview of vehicle parts identifications13.1 Logos - VW 105 14Logos acc. to this standard shall serve to identify original parts and to exclude unjustified claims in the case of product liability.3.2 Country of origin - VW 105 50Identification with the country of origin shall be based on existing laws and customs regulations.3.3 Manufacturer’s code - VW 105 40-1, VW 105 40-7Identification with the manufacturer’s code shall serve to identify the vehicle part manufacturer in the event of damage or product liability as well as the retraceability of parts.3.4 Part number (drawing number) - VW 010 98The identification of vehicle parts with the part number establishes the connection to the drawings and makes them easy to find in the spare parts areas and repair workshops.3.5 Date marking - VW 105 60Date marking is required to fulfill official requirements, to sort goods acc. to their indates and, in the event of damage, to ensure that the parts can be retraced.1 Notes for application, examples of entries, dimensions, etc. are provided in the standards named in Section 3.Page 3VW 105 00: 2003-113.6 Material designation - VDA 260All plastic vehicle components (including textiles) shall be identified acc. to VDA 260.Identification shall be applied at appropriate location so that the appearance of the product is not affected negatively. Assemblies such as seats, door trim panels, dashboards, etc. which are permanently attached to one another and whose material designation is not visible after installation, shall be provided with the specifications of the single parts.Metallic vehicle components shall be marked acc. to VDA 260, if pure-type recycling is economically viable or required for environmental reasons.3.7 Identification required by law or governmental agenciesThese identifications, for instance type approval marks on electric bulbs, strength specifications on high-strength joining elements, approval marks on safety glass, identification of hazardous substances, must be applied in a clearly visible manner at a suitable location on the respective parts.3.8 Identification of vehicle parts that require archiving - VW 010 64In addition to the identifications described in Sections 3.1 to 3.7, vehicle parts or assemblies whose data is recorded and archived over a long period of time for each vehicle to ensure retraceability, shall be identified with a bar code or 2-D code acc. to VW 010 64.4 RequirementsAll vehicle parts from outside and in-house manufacturing, which are standard production parts, spare parts, and accessories of the Volkswagen Group and its brands, must be identified acc. to this standard.The identification must be permanent, easily legible, and applied such that the part can be identified as an original part even when it is in its installed condition.The identification shall be defined on drawings, as described in VW 010 58, by means of the text macro NO-E2 acc. to VW 010 14 and in the performance specifications.For original parts of the vehicle brands of the Volkswagen Group, which are only sold as assemblies, a single identification shall suffice. If parts from assemblies are also sold individually, these shall likewise be identified.Identification may only be omitted,- if the identification is technically impossible, e.g. in the case of small parts,- if the identification would impact negatively on the driving or operational safety of the vehicle.If due to space restrictions only a partial identification is possible, the following order of priority is to be observed (identifications that are not to be applied shall crossed out on the drawings):1. Logos acc. to VW 105 142. Country of origin acc. to VW 105 503. Manufacturer’s code acc. to VW 105 40-1 (VW 105 40-7)4. Part number5. Date marking acc. to VW 105 606. Material code acc. to VDA 260Alternative parts identification can be specified by the responsible design department in consultation with 4-VO-4 (Original Parts Product Definition), Quality Assurance, and the Standards Department EZTD Technical Documentation.Page 4VW 105 00: 2003-114.1 DesignationEntries in drawings and performance specifications:Parts identification acc. to VW 105 00.5 Identification of communications mediaThe brand logos for identifying communications media serve to clarify the corporate strategy. They serve as graphic identification symbols for the Group brands and are used in advertising, forms, company stationary, packaging, and similar.They comply with the fundamental separation within the framework of the multi-brand strategy. Brand logos shall not be combined. If the sender is actually several brands, these are combined under the umbrella of the Volkswagen Group (see Section 2.2, Wordmark of the Volkswagen Group).Notes on use, as well as the relevant valid status of the brand logos, are contained in CI-Net (the Corporate Identify Internet site) of the Group brands.6 Vehicle product namesProduct names such as Golf, Sharan, Audi TT, Fabia, Ibiza, etc. are sales designations stipulated by the Marketing department and are registered wordmarks of Volkswagen AG. Spelling of these wordmarks shall be uniform.standards27 ReferencedVW 010 14 Technical Drawings; Drawing Frames and Text MacrosVW 01058 Technical Drawings; Type of LetteringVW 010 64 Coding on Vehicle PartsVW 010 98 Part Number SystemVW 105 14 Logos; Identification for Vehicle PartsVW 105 40-1 Manufacturer’s code; For vehicle partsVW 105 40-7 Identification of Valve SpringsVW 105 50 Country of Origin Identification; Vehicle PartsVW 105 60 Date Marking; Vehicle PartsVDA 260 Automotive Components, Identification of Materials (available only in German)2 In this section terminological inconsistencies may occur as the original titles are used.。

大众标准

大众标准

大众集团标准TL 52440版本:2009.04类别编号:55121描述:聚酰胺6-GF,PA6,玻璃纤维增强,注射成型,吸管,PA6-GF30,PA6-GF35PA6,玻璃纤维增强,已完成部分材料要求2011年9月2种类型:没有附录,A 以下内容增加到2009年4月的版本中注意增加的使用限制。

不适用新设计和图纸改变之前版本由以下代替:TL 52440::1996-01,2002-10 VW50134-PA6-7-AVW50134-PA6-8-A标准部门EKDV,1733改动与TL 52440:2002-10比较,以下内容有改动:--粘度测量取消--延伸裂缝敏感度增加--抗老化测试修改1 范围该供货技术规范(TL-德语缩写)规定了组成PA6-GF30或PA6-GF35等部件的吸管的材料要求。

2 描述关于35%玻璃纤维增强的描述例子:PA6-GF35按TL 52440-A3 要求3.1 主要要求首次供货和更改的批准按VW011 55.放射性按VW 501 80(如果图纸中有要求)抗大气腐蚀性能按VW 501 85(如果图纸中有要求)避免有害物质按VW 911 01为了全面、彻底地检验,需用5个成品部件3.2 物理特性这些成品部件的内里、外表都不得有诸如流淌线、收缩孔、裂纹之类的缺陷和加工上的缺点。

在肋条和加强处如果有缩孔,也只有在成品部件的功能未受其损害时才是容许的。

成品部件必须可以实现完美无缺的装配。

玻璃纤维受其损害时才是容许的。

成品部件必须可以实现完美无缺的装配。

玻璃纤维在材料中的分布必须十分均匀,使得成品部件在其三个不同部位上取出的试样中,相互之间玻璃纤维含量之差不大于1.0%3.3制造方法注射成型法3.4规格—TL 524 40聚酰6含增强玻璃纤维30%—TL 524 40-A 聚酰胺6含增强玻璃纤维35%3.5标记法按VDA260—TL 524 40 >PA6-GF30<—TL 524 40-A >PA6-GF35<3.6预处理单项试验所需要的试样,在试验之前,至少要在ISO554-23/50规定的标准气候中预处理72h3.7测试结果的评估所取得的数值要适用于成品部件每次单项测试和成品部件的任何部件。

vw标记标准 -回复

vw标记标准 -回复

vw标记标准-回复什么是VW标记标准?VW标记标准,或称为伏尔加标记,是一种用于标识和验证产品的标准。

该标准由德国大众汽车集团(Volkswagen Group)制定,并在其旗下的各个品牌中使用。

VW标记标准通过对产品质量和性能的严格要求,确保产品在市场上的持续竞争力和可靠性。

VW标记标准的相关历史和背景伏尔加标记标准于1962年开始在大众汽车集团内部使用,最初是为了确保大众汽车持续提供高质量的产品。

随着时间的推移,VW标记标准逐渐发展成为整个汽车行业中广泛使用的质量控制和验证标准。

VW标记标准的目的和重要性VW标记标准的目的是确保产品在设计、制造和服务方面达到一定的质量标准。

它的重要性在于确保消费者购买到可靠、安全和符合性能要求的汽车和相关产品。

VW标记标准的详细要求和实施细节VW标记标准的要求包括对产品的设计、工艺、材料和制造过程的严格要求。

它涵盖了从原材料的选择和测试,到产品设计和工艺的验证,再到最终产品的测试和验收等方面。

这些要求通过一系列的测试和验证程序来保证产品达到预期的质量标准。

VW标记标准的实施细节包括以下几个方面:1. 材料和零件的选择:VW标记标准要求使用符合特定标准的原材料和零部件,以确保其质量和可靠性。

2. 工艺和制造过程的验证:VW标记标准要求对产品的工艺和制造过程进行严格的验证,以确保其质量控制和准确性。

3.产品的测试和验收:VW标记标准要求对产品进行一系列的测试和验收,包括性能测试、安全测试和可靠性测试,以确保产品的符合性和可靠性。

4.质量控制和监测:VW标记标准要求建立有效的质量控制和监测机制,以检测和纠正产品中的质量问题。

VW标记标准的影响和应用VW标记标准的影响远远超出了大众汽车集团自身。

作为一种行业标准,VW标记标准被许多其他汽车制造商和供应商所采用。

它确保了产品的可持续性和降低了产品质量相关的风险。

在全球范围内,VW标记标准已经成为衡量产品质量和可靠性的重要指标。

大众通用材料标准版本日期明细清单

大众通用材料标准版本日期明细清单

158
TL534_01112008_D
159
TL1010标准-1997-05
160
TL52231_01062010_D
161
TL52277_EN_2002-10-01
162
TL52277_en_021992
163
TL52388_Ing_03-2005
164
TL52452 2010
165
TL52452_Ingles-2003
73
GMP[1].PE.008-1998
74
GMW22-2002
75
GMW3029-2000
76
GMW3044-2005
77
GMW3059_2005
78
GMW3205-2000
79
GMW3232-2007
80
GMW3235-2011
81
GMW8081-2005
82
GMW14122Sep2010
83
GMW14444 Material Related Interior Part Performance-2006
TL_527_Englisch-2013
175
TS-INT-001-2004-05
176
TS-INT-001-2012_draft
177
TS-INT-001-2014
178
TS-INT-001_2008_UPDATE-081206
179
TS-INT-002
180
VDA260-1990-08
181
VDA 260-2007-04
197
VW50105_CH_08.2000
198
VW50106_07.2000

大众常用标准汇总

大众常用标准汇总

大众常用标准汇总LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】一、焊接标准VW 01101类似国标中描述焊接类型并用图例表示的标准。

对各种焊接进行了概括的介绍,并规定了各种标准的图示符号,是焊接里很概括的一章。

eg:VW 01103凸点焊标准(weld projection),图示表示了不同的凸点焊情况,规定了不同厚度的板件进行凸点焊时凸点的直径、高度等。

eg:VW 01105点焊标准(spot weld),详细介绍了点焊的设计思想、焊点排布、强度计算和校合,以及焊接头的布置和形状参考,有图示、查表表格和例题,教科书般的详尽标准。

规定了焊接点的熔深要求、焊接头大小标准、缩印要求。

焊接后表面等级OG1\OG2\OG3的定义。

规定了图纸表注标准。

使用此标准焊接的熔深、劈凿(或者母材撕裂)都以VW01105为认可标准(Acceptance criteria)。

实验方法也定义为VW01105,实际上此标准内第3 章有具体的实验标准比如PV6702等。

考虑到VW01105比较全面而且大众认可,所以不把具体的小标准作为实验方法。

VW 01105-2 针对铝制金属的特殊焊接要求,包括特殊的熔深、劈凿要求。

eg:VW 01105-3 镀锌合金的特殊焊接要求,对焊板、焊接头有比较详细的描述,对校合计算过程有详细介绍,熔深和劈凿依然参考VW01105-1。

VW 01105-4 针对大厚度钢和高强度钢的焊接标准,介绍了特殊的技术要求和过程控制。

介绍了“焊接强度——焊接时间”图,介绍了标准的图纸表注方法。

eg:VW 01106弧焊、二氧化碳保护焊、熔焊标准。

规定了图纸标注的标准。

详尽规定了不同钢板焊接时的要求和标准,图例表示了各种焊接情况下焊缝的形式。

介绍了应力计算标准、涂层材料。

规定了不同钢材焊接时焊缝的评估标准。

认可标准和实验方法均为VW 01106。

1.4TFSI基础简介

1.4TFSI基础简介

大众1.4TSI 简介大众1.4L TSI 发动机 1L-1.4L 最佳发动机奖 2006年最佳新引擎奖图1 1.4TSI 发动机构造图2 1.4TSI 供气过程示意(1) FSI 技术德国大众公司于2001年推出FSI (Fuel Stratified Injection )燃油分层喷射技术,该技术直接将燃油以较高压力精确地喷入燃烧室内。

与传统的汽油燃油喷射技术相比,FSI 的功率可提高10%以上,而燃油消耗却降低了10%。

德国大众公司通过将增压技术和FSI 技术相结合,最新推出的这款双增压器分层燃烧直接喷射TSI (Twincharged stratified injection )发动机,具有小巧、宁静、节能、大扭矩和高环保性等特点(2) 双增压系统TSI 的增压系统采用两级串联增压方式,其独特之处在于系统的第一级采用了罗茨式机械增压器,第二级为废气涡轮增压器。

增压系统的气路也由两级组成,即:第一级进气管、进气转换阀、罗茨式机械增压器、增压进气管1、连接管1和第二级的增压进气管2、中冷器连接管2、涡轮增压器、电子节气门组成(图2)。

进气转换阀由系统自动控制,以调整空气在气路中的方向和流量,从而使系统的增压压力与发动机工况相匹配。

罗茨式机械增压器直接由发动机通过传动带驱动,提高了发动机在低转速的进气压力,瞬态响应加快,也提高了低速转矩特性。

与普通机械增压器不同的是,罗茨式增压器并不是被发动机驱动不停地工作,而是由电控系统通过电磁离合器切换实现动力传递的接合和分离。

当发动机在高转速范围,由于废气能量高,涡轮增压器充分发挥作用,机械增压器和涡轮增压器的工作被电控系统自动转换。

控制转换阀确保了不同工况点空气通道的转换,当废气涡轮增压器单独工作时,空气转换阀完全开启,进气流不经过机械增压器,直接供给涡轮增压器空气,空气被增压后经过中冷器后进入节气门。

对于这种两级串联布置形式的双增压器系统,最大的挑战是避免压气机出现喘振或阻塞,并把两个串联增压器的相互作用调整到与发动机工况图3 1.4TSI 功率扭矩图图3 机械增压器简图相匹配。

大众汽车标准_VW 01141-2 参考译文

大众汽车标准_VW 01141-2 参考译文

1999.03激光焊—铝平点焊、质量保证1、总则1.1、范围阐述了激光铝平点焊中不规则的评价标准。

此标准适用于厚度为0.8毫米到5毫米原材料。

评价的是生产的质量而不是性能。

性能必须通过合适的冲击实验、耐力实验和功能实验来做出客观的评价。

实验需由有资格的人员在有必要装备的实验室来完成。

1.2、要求的有效性如果标准在图纸中做出陈述,要求应适合所有的焊缝。

在个别情况下,图纸规定了违背条款,这些条款具备优先权。

2、评价焊缝必须符合所列的评价标准。

对于每300毫米的焊缝,在三个位置取样,要求至少每10毫米一次。

在焊缝的起点/终点不少于10毫米处进行焊接情况的评定。

同样适用于未提及的焊缝。

实际的实验计划优于所规定的说明。

3、测试3.1外部特性根据表一,通过可视测试。

3.2内部特性根据表二,通过底层截面来评定。

如有疑义,根据3.2测试的特性可适用于依据3.1测试的特性换言之以3.2测试的特性为标准。

3.3解释说明t 原料厚度to 原料上部厚度tu 原料下部厚度h 规定标准高度/深度b 规定标准宽度r 半径a 焊缝厚度Fachverantwortung/Responsibility Normung/Standards (EZTD, 1733)EBKR, Dr. Welsch PP-F2, Müller-Rogait PP-F1, Siegel Fischer Tel: +49-5361-9 2 79 95 Sobanski Vertraulich. Alle Rechte vorbehalten. Weitergabe oder Vervielfältigung ohne vorherige schriftl. Zustimmung einer Normenabteilung des Volkswagen Konzerns nicht gestattet.Vertragspartner erhalten die Norm nur über die zuständige Beschaffungsabteilung.Confidential. All rights reserved. No part of this document may be transmitted or reproduced without the prior written permission of a Standards Department of the Volkswagen Group.Parties to a contract can only obtain this standard via the responsible procurement department.~ VOLKSWAGEN AG4、评定标准表一:不规则特性,外部测试(可视测试)序号不规则名称标注极限值1 连接部件间隙(在小部分也应做出评定)图一标准高度小于等于0.3毫米此规定仅适合于焊接状态。

大众汽车标准_VW 01141-2 参考译文概要

大众汽车标准_VW 01141-2 参考译文概要

Vertragspartner erhalten die Norm nur über die zuständige Beschaffungsabteilung.Confidential. All rights reserved. No part of this document may be transmitted or reproduced without the prior written permission of a Standards Department of the Volkswagen Group.Parties to a contract can only obtain this standard via the responsible procurement department.1999.03 ~ VOLKSWAGEN AG4、评定标准表一:不规则特性,外部测试(可视测试)Page 3VW 010 89: 2003-022.3 Graphical representationThe spacer areas are always shown on the single part drawing, not on the assembly drawing.The spacers may partially protrude from the flange area (e.g. as the result of subsequent trimming of the flange).The position of the spacers is always oriented to the material vector (see Figure 2).Supplementary to the graphical representation of laser welded joints (according to VW 011 41-1 or DIN EN 22 553), the position of the spacers is represented as in figure 1. A dash-dot line identifies the spacer area. Legend: Shape A = Information on spacer direction and sheets involved Figure1 – Graphicalrepresentation (on a flange,for example)The shape letter describesthe embossing direction of thespacers relative to thedirection of the materialvector.! Shape A Spacer isembossed inthe direction ofthe materialvector, 2-sheetjoint, contact onone side; entryin the data seton layer 190! Shape B Spacer is embossed in the opposite direction to the material vector, 2-sheet joint, contact on one side; entry in the data set on layer 191! Shape C Spacer is embossed on alternate sides in the middle sheet (exception: see section 2.2, first paragraph), 3-sheet joint, contact on both sides; entry in the data set on layer 192.Shape A Shape B Shape C!Figure 2 - Spacer shapes (draft not to scale)The distance between the spacers on the indicated flange area shall be geometrically even; the distances to the edge of the contact area (first/last spacer) shall be adhered to.Page 4VW 010 89: 2003-022.4 Specifications in the 3D CAD model (data set)The representation in the 3D model initially corresponds to the representation in the drawing. The spacer areas are represented using a dash-dot line, but not as protrusions.The area limits shall be created on discrete layers in the 3D model (for the CAD system CATIA on layer 190 for shape A, layer 191 for shape B and layer 192 for shape C, see VW 010 59-3, appendix1).2.5 Definition of the spacer positionThe exact spacer position is defined in the SET1).The tool manufacturer (represented by the planning department for single parts) enters the exact position of the spacers into the data set. Each spacer is represented by a 10 mm line on layer 193 in the spacer direction.The data set is provided to the ASSY planning department for review. Any additions such as the insertion of spacers in the ASSY are made on layer 194 (body construction scope).In the case of supply parts, the spacers are defined between the supplier and design department based on specifications from Manufacturing Planning.2.6 Effects on the body-in-white assemblyThe addition of spacers can cause the vehicle dimensions to change by the total of the spacer height values. The resulting deviations in the nominal dimensions of the vehicle shall be compensated in the assembly by agreement.2.7 OtherDegassing must always be ensured for laser welded joints. This can be done using other measures, not described in this standard, agreed with the body construction engineering department without changing the spacer specifications in the drawing.3 Referenced standardsPV 6719VW 010 55VW 010 59-3, app. 1 VW 011 41-1 DIN EN 22 553 39D 962 Laser Welding on Coated Steels; Plain Butt Weld at the Lap Joint; Multiple Sheet WeldingReference Point System (RPS); DrawingsRequirements for CAD/CAM Data, Process-Specific Layer Assignment Laser Welding of Sheet Steel; Design, Execution, Quality Assurance Welding and Brazing Seams; Symbolic Representation in Drawings Operating Equipment Standard: Stamp for Spacers for Laser Welding1) SET: Simultaneous Engineering Team (see PEP manual)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档