北师大版七年级数学课堂练习册答案

合集下载

北师大版数学七年级下册第四章三角形第4节用尺规做三角形课堂练习

北师大版数学七年级下册第四章三角形第4节用尺规做三角形课堂练习

第四章三角形第4节用尺规做三角形课堂练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.尺规作图作AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于12CD长为半径画弧,两弧交于点P,作射线OP,由作法得OCP ODP△≌△的根据是()A.SAS B.ASA C.AAS D.SSS2.用直尺和圆规作两个全等三角形,如图,能得到△COD△△C'O'D'的依据是()A.SAA B.SSS C.ASA D.AAS3.不能用尺规作图作出唯一三角形的是()A.已知两角和夹边B.已知两边和夹角C.已知两角和其中一角的对边D.已知两边和其中一边的对角4.如图所示,过点P画直线a的平行线b的作法的依据是()A.两直线平行,同位角相等B.同位角相等,两直线平行C.两直线平行,内错角相等D.内错角相等,两直线平行5.已知△BOP 与OP 上点C ,点A (在点C 的右边),李玲现进行如下操作:△以点O 为圆心,OC 长为半径画弧,交OB 于点D ;△以点A 为圆心,OC 长为半径画弧MN ,交OA 于点M ;△以点M 为圆心,CD 长为半径画弧,交弧MN 于点E ,作射线AE ,操作结果如图所示,下列结论不能由上述操作结果得出的是( ).A .△ACD=△EAPB .△ODC=△AEMC .OB△AED .CD△ME6.下列作图属于尺规作图的是( ). A .画线段3cm MN =B .用量角器画出AOB ∠的平分线C .用三角尺作过点A 垂直于直线l 的直线D .已知α∠,用没有刻度的直尺和圆规作AOB ∠,使2AOB α∠=∠ 7.在△ABC 中,AB=AC ,△A=80°,进行如下操作:△以点B 为圆心,以小于AB 长为半径作弧,分别交BA 、BC 于点E 、F ; △分别以E 、F 为圆心,以大于12EF 长为半径作弧,两弧交于点M ;△作射线BM 交AC 于点D , 则△BDC 的度数为( ).A .100°B .65°C .75°D .105°8.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC =BC,则下列选项正确的是()A.B.C.D.评卷人得分二、填空题9.如图所示,已知线段a,用尺规作出△ABC,使AB=a,BC=AC=2a.作法:(1)作一条线段AB=_________ ;(2)分别以______ 、______为圆心,以________为半径画弧,两弧交于C点;(3)连接_________、________,则△ABC就是所求作的三角形.10.用不带刻度的直尺和圆规作一个角等于已知角的示意图如图,则可说明=A OB AOB'''∠∠,其中判断COD C O D'''∆∆≌的依据是______.11.已知,△AOB .求作:△A′O′B′,使△A′O′B′=△AOB .作法:△以________为圆心,________为半径画弧.分别交OA,OB于点C,D .△画一条射线O′A′,以________为圆心,________长为半径画弧,交O′A′于点C′,△以点________为圆心________长为半径画弧,与第2步中所画的弧交于点D′.△过点________画射线O′B′,则△A′O′B′=△AOB .12.如图,在△ABC中,△C=90°,△B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则△ADB=________.13.用尺规作一个角等于已知角如下图所示,则说明∠AOB=∠A′O′B′的依据是______(填“SSS” “SAS” “AAS” 或“ASA”)14.已知:AOB∠,求作AOB∠的平分线;如图所示,填写作法:△_________________________________________________________________.△ _________________________________________________________________.△ _________________________________________________________________.评卷人得分三、解答题15.如图,已知线段a和α∠,求作Rt ABC∆,使190,,2C BC a ABCα∠=︒=∠=∠(使用直尺和圆规,并保留作图痕迹).16.下面是小明设计的“已知两线段及一角作三角形”的尺规作图过程.已知:线段m,n及△O .求作:△ABC,使得线段m,n及△O分别是它的两边和一角.作法:如图,△以点O为圆心,m长为半径画弧,分别交△O的两边于点M ,N;△画一条射线AP,以点A为圆心,m长为半径画弧,交AP于点B;△以点B为圆心,MN长为半径画弧,与第△步中所画的弧相交于点D;△画射线AD;△以点A为圆心,n长为半径画弧,交AD于点C;△连接BC ,则△ABC即为所求作的三角形.请回答:(1)步骤△得到两条线段相等,即= ;(2)△A=△O的作图依据是;(3)小红说小明的作图不全面,原因是.17.如图,已知△α和△β,线段c,用直尺和圆规作出△ABC,使△A=△α,△B=△β,AB=c(要求画出图形,并保留作图痕迹,不必写出作法)18.如图,电信部门要在S区修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应修建在什么位置?请用尺规作图标出它的位置.19.已知:线段a,△α.求作:等腰△ABC,使其腰长AB为a,底角△B为△α.要求:用尺规作图,不写作法和证明,但要清楚地保留作图痕迹.20.按要求作图(保留组图痕迹,不必写作法)用直尺和圆规做一个角,使它等于△α参考答案:1.D【解析】【详解】解:以O为圆心,任意长为半径画弧交OA,OB于C,D,即OC=OD;以点C,D为圆心,以大于12CD长为半径画弧,两弧交于点P,即CP=DP;再有公共边OP,根据“SSS”即得△OCP△△ODP.故选D.2.B【解析】【分析】利用作法可以得到OD=OD′=OC=OC′,CD=C′D′,然后根据全等三角形的判定方法可判断△COD△△C'O'D'.【详解】解:由作法得OD=OD′=OC=OC′,CD=C′D′,所以可根据“SSS”证明△COD△△C'O'D'.故选:B.【点睛】本题考查作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.也考查了全等三角形的判定.3.D【解析】【分析】把尺规作图的唯一性转化成全等三角形的判定,根据全等三角形的判定方法逐项判定即可.【详解】A. 已知两角和夹边,满足ASA,可知该三角形是唯一的;B. 已知两边和夹角,满足SAS,可知该三角形是唯一的;C. 已知两角和其中一角的对边,满足AAS,可知该三角形是唯一的;D. 已知两边和其中一边的对角,满足SSA,不能确定三角形是唯一的.故选D. 【点睛】本题主要考查全等三角形的判定方法,解决本题的关键是要熟练掌握全等三角形的判定方法. 4.D 【解析】 【详解】解:如图所示,根据图中直线a 、b 被c 所截形成的内错角相等,可得依据为内错角相等,两直线平行. 故选D. 5.A 【解析】 【分析】证明△OCD△△AME ,根据平行线的判定定理即可得出结论. 【详解】在△OCD 和△AME 中, OC AM OD AE CD ME =⎧⎪=⎨⎪=⎩, △△OCD △△AME (SSS ),△△DCO =△EMA ,△O =△OAE ,△ODC =△AEM . △CD △ME ,OB △AE . 故.B.C.D 都可得到, △△OCD △△AME ,△△DCO =△AME ,则△ACD =△EAP 不一定得出, 故选:A. 【点睛】考查作图-作一个角等于已知角,全等三角形的判定与性质,平行线的判定等,比较基础. 6.D 【解析】 【详解】解:根据尺规作图的定义:只能用没有刻度的直尺和圆规作图,不难判断,只有D 选项属于尺规作图.故选D.【点睛】点睛:掌握尺规作图的概念.7.D【解析】【分析】利用等腰三角形的性质结合三角形内角和定理得出△ABC=△C=50°,再利用角平分线的性质与作法得出即可.【详解】△AB=AC,△A=80°,△△ABC=△C=50°,由题意可得:BD平分△ABC,则△ABD=△CBD=25°,△△BDC的度数为:△A+△ABD=105°.故选D.【点睛】此题主要考查了基本作图以及等腰三角形的性质,得出BD平分△ABC是解题关键.8.B【解析】【详解】由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.故选B.考点:作图—复杂作图9.a;A;B;2a;AC BC【解析】【详解】作法:(1)作一条线段AB=a;(2)分别以A. B 为圆心,以2a 为半径画弧,两弧交于C 点;(3)连接AC 、BC ,则△ABC 就是所求作的三角形.故答案为a ;A ;B ;2a ;AC ,BC.10.SSS【解析】【分析】观察作图过程,分别是以点O '为圆心,以OC (或OD )为半径作弧,再以C '为圆心,以CD 为半径作弧得到,根据全等三角形的判定定理可得结果【详解】解:由图可得△A O B '''的得出过程如下:先以点O '为圆心,以OC (或OD )为半径作弧,再以C '为圆心,以CD 为半径作弧,两弧相交于点D连结O D ''并延长,得射线O B ''即得△A O B '''由作图过程可知:在△COD 与△C O D '''中OD O D OC O C CD C D '''''=⎧'⎪=⎨⎪=⎩ 故COD C O D '''∆∆≌(SSS )故答案为:SSS【点睛】本题考查全等三角形的判定方法,解题的关键是能通过观察图形,理解作图过程 11. O 任意长 O′ OC C CD D′【解析】【分析】根据作一个角等于已知角的作图方法解答即可.【详解】△以O 为圆心,任意长为半径画弧.分别交OA , OB 于点C 、D .△画一条射线O′A′,以O′为圆心,OC 长为半径画弧,交O′A′于点C′,△以点C为圆心CD长为半径画弧,与第2步中所画的弧交于点D′.△过点D′画射线O′B′,则△A′O′B′=△AOB.故答案为:(1). O;(2). 任意长;(3). O′;(4). OC;(5). C ;(6). CD ;(7). D′【点睛】本题主要考查了作一个角等于已知角,是基本作图,需熟练掌握.12.125°【解析】【分析】根据角平分线的作法可得AD平分△CAB,再根据三角形内角和定理可得△ADB的度数.【详解】解:由题意可得:AD平分△CAB,△△C=90°,△B=20°,△△CAB=70°,△△CAD=△BAD=35°,△△ADB=180°﹣20°﹣35°=125°.故答案为125°.【点睛】此题主要考查了角平分线的作法以及角平分线的定义,熟练根据角平分线的定义得出△DAB度数是解题关键.13.SSS【解析】【详解】分析: 由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD△△C'O'D',则△COD△△C'O'D',即△A'O'B'=△AOB(全等三角形的对应角相等).详解: 作图的步骤:△以O为圆心,任意长为半径画弧,分别交OA,OB于点C,D,△任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′,△以C′为圆心,CD长为半径画弧,交前弧于点D′,△过点D′作射线O′B′,所以△A′O′B′就是与△AOB相等的角,作图完毕.在△OCD与△O′C′D′,O′C′=OCO′D′=ODC′D′=CD△△OCD△△O′C′D′(SSS ),△△A′O′B′=△AOB,显然运用的判定方法是SSS.故答案为:SSS.点睛:本题主要考查作已知角的等角的方法和原理,解决本题的关键是要熟练掌握作已知角的等角的方法.14. 以O 为圆心,适当长为半径作弧,交OA 于点M ,交OB 于点N ; 分别以M 、N 为圆心,大于12MN 的长为半径作弧,两弧在△AOB 内部交于点C ; 作射线OC .则射线OC 即为所求.【解析】【详解】(1)以O 为圆心,适当长为半径作弧,交OA 于点M ,交OB 于点N ;(2)分别以M 、N 为圆心,大于12MN 的长为半径作弧,两弧在△AOB 内部交于点C ; (3)作射线OC ,则射线OC 即为所求.点睛:本题考查了角平分线这一基本作图,是利用了三角形全等的SSS 判定方法进行作图的.15.见解析【解析】【分析】先作射线CM ,在CM 上截取CB=a ,过点C 作垂线CN ,垂足为C ,在点B 处作12ABC α∠=∠,角的另一边交射线CN 于点A ,即可得到图形.解:如下图,作1 2α∠的角;如图,Rt ABC∆为所求.【点睛】本题考查了基本作图,作三角形,作角,作线段,解题的关键是掌握基本作图的方法和步骤进行画图.16.(1)BD,MN; (2)三边对应相等的两个三角形全等;全等三角形的对应角相等;(3)小明没有对已知中的边和角的位置关系分类讨论.【解析】【分析】根据题意,按步骤解答即可.【详解】(1)BD,MN;(2)三边对应相等的两个三角形全等;全等三角形的对应角相等;(3)小明没有对已知中的边和角的位置关系分类讨论.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.17.详见解析.【解析】试题分析:先作△MAN=α,再在AM上取AB=c,再以B为顶点作△ABC=β,两角的一边交于点C,△ABC就是所求三角形.试题解析:如图,△ABC就是所求三角形.考点:尺规作图18.见解析.【解析】【分析】根据题意,电视信号发射塔既在线段AB的垂直平分线上,又在两条公路所夹角的平分线上.故两线交点即为发射塔的位置.利用角平分线的性质以及作法和线段垂直平分线的作法与性质分别得出即可.【详解】根据题意,电视信号发射塔既在线段AB的垂直平分线上,又在两条公路所夹角的平分线上.故两线交点即为发射塔的位置.如图所示:点P就是发射塔修建的位置.【点睛】本题考查了作图与角平分线以及垂直平分线的性质,解题的关键是熟练的掌握角平分线以及垂直平分线的性质并且能根据题意作图.19.见解析【解析】【分析】△作一底角△B为△α;△在△B的一边上截取AB=a;△以点A为圆心,AB长为半径画弧,与△B的另一边相交于点C,连接BC,△ABC就是所求的等腰三角形ABC.【详解】如图所示,△ABC即为所求.20.见解析【解析】【分析】根据作一个角等于已知角的方法作图即可.【详解】如图所示:【点睛】此题主要考查了基本作图,关键是熟练掌握作一个角等于已知角的方法.。

初一上册数学练习册答案(北师大版)

初一上册数学练习册答案(北师大版)
第 3 节 解 一 元 一 次 方 程 (二 )
1.C 2.A 3.B 4.C
8.狓=7
5.(1)-3狓-2狔+3;
9.12,14,16 10.2狔=9 11.狓= -115 12.4狓+0.8×3=6.8,狓=1.1
(2)-2狓+狔-
1; 3
(3)-10狓-
5 2狔+
5 3
6.去 分 母 ,等 式 的 性 质 2
(3)-90800000

4 3
10.这批 样 品 每 听 的 平 均 质 量 比 标 准 质 量
多 ,多 4g. 11.略
12.(1)1 290;(2)3914
17.4.92 元 18.对折狀 次裁开后可以得到2狀 张.一张厚
度为0.01 mm 的 纸,对 折 64 次 后 的 厚 度 大 约 为 264×0.01 mm≈1.8×1017mm =1.8×1014m,远 远 超 过 了 珠 穆 朗 玛 峰 的高度.
,犫=
- 13
14.犮<犪<犫 15.如 图 答 1 所 示 .
图答1
第3节 有理数的加减法
练习一
1.B 2.D 3.6+7=13(cm) 4.1500+(-600)=900(元)
5.0 6.-39,33 7.> 8.56
9.(1)-5;(2)-7;(3)-
1 4 ;(4)-
11 12
10.(1)17 辆 ;
卡 片 上 的 数 字 依 次 为 狓,狓+3,狓+6,狓+
9.(1)狓= -
1 4
;(2)=
-2265
10.把
狔=1




2-
1 3
(犿-狔)=2狔,
9,狓+12,则 狓+狓+3+狓+6+狓+9+狓

北师大版七年级数学下册随堂练习题第六章(6.1——6.3)(附答案)

北师大版七年级数学下册随堂练习题第六章(6.1——6.3)(附答案)

6.1感受可能性一、单选题1.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于122.下列事件中,属于不可能事件的是()A.某个数的绝对值大于0B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540D.长分别为3,4,6的三条线段能围成一个三角形3.下列事件属于必然事件的是()A.经过有交通信号灯的路口,遇到红灯B.任意买一张电影票,座位号是双号C.向空中抛一枚硬币,不向地面掉落D.三角形中,任意两边之和大于第三边4.下列语句描述的事件中,是随机事件的为()A.水能载舟,亦能覆舟 B.只手遮天,偷天换日C.瓜熟蒂落,水到渠成 D.心想事成,万事如意5.以下说法正确的是()A.地球绕着太阳转B.一次摸奖活动的中奖率是1%,那么摸100次必然会中一次奖C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件D.一个不透明的袋子中装有3个红球,5个白球,搅匀后从中任意摸出一个球,摸到红球的可能性大于摸到白球的可能性6.下列事件中,是不可能事件的是()A.打开数学课本刚好翻到第60页B.哥哥的年龄一定比弟弟的大C.在一小时内,你步行可以走50千米D.将油滴入水中,油会浮到水面上7.下列事件为必然事件的是()A.小王参加数学考试,成绩是70分B.打开电视机,CCTV第一套节目正在播放新闻C.明天气温会升高D.口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球8.下列事件:①在足球赛中,中国队战胜日本队;②长为2,3,4的三条线段能围成一个直角三角形;③任意两个正数的乘积为正;④抛一枚硬币,硬币落地时正面朝上.其中不属于确定性事件的有()A.1个B.2个C.3个D.4个9.“射击运动员射击一次,命中靶心”这个事件是( )A.确定事件B.必然事件C.不可能事件D.不确定事件二、解答题10.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.(1)打开电视机,正在播放动画片;(2)度量三角形的内角和,结果是180°;(3)测得某天的最高气温为100℃;(4)100件某种产品中有2件次品,从中任取1件恰好是次品.三、填空题11.“任意买一张电影票,座位号是5的倍数”,此事件是________。

名校课堂七年级上册数学北师大版答案2021

名校课堂七年级上册数学北师大版答案2021

名校课堂七年级上册数学北师大版答案2021
一、1. 一个正方形的边长是4厘米,它的面积是多少?
答案:一个正方形的面积是边长的平方,因此,这个正方形
的面积是4平方厘米,即16平方厘米。

2. 一个正方形的边长是6厘米,它的周长是多少?
答案:一个正方形的周长是边长的4倍,因此,这个正方形
的周长是6的4倍,即24厘米。

3. 一个长方形的长是6厘米,宽是4厘米,它的面积是多少?
答案:一个长方形的面积是长乘以宽,因此,这个长方形的
面积是6乘以4,即24平方厘米。

4. 一个长方形的长是6厘米,宽是4厘米,它的周长是多少?
答案:一个长方形的周长是长加宽的2倍,因此,这个长方
形的周长是6加4的2倍,即20厘米。

二、1. 将一个正方形的边长增加2厘米,它的面积将增加多少?
答案:将一个正方形的边长增加2厘米,它的面积将增加4平方厘米,即4倍的原面积。

2. 将一个正方形的边长减少2厘米,它的面积将减少多少?
答案:将一个正方形的边长减少2厘米,它的面积将减少4平方厘米,即4倍的原面积。

3. 将一个长方形的长增加2厘米,它的面积将增加多少?
答案:将一个长方形的长增加2厘米,它的面积将增加2乘以宽的面积,即2乘以宽的面积。

4. 将一个长方形的长减少2厘米,它的面积将减少多少?
答案:将一个长方形的长减少2厘米,它的面积将减少2乘以宽的面积,即2乘以宽的面积。

北师大版七年级上册数学书答案

北师大版七年级上册数学书答案

北师大版七年级上册数学书答案篇一:北师大版七年级上册数学配套练习(带答案)北师大七年级上第一章丰富的图形世界第1.1.1课时家庭作业生活中的立体图形1)学习目标:1.经历从现实世界中抽象出几何图表的过程,感受图形世界的丰富多彩。

2.在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱、棱台、球,并能用自已的语言描述它们的某些特征。

一.填空题:1.立体图形的各个面都是__________的面,这样的立体图形称为多面体.;2.图形是由________,_________,________构成的;3.物体的形状似于圆柱的有________________,类似于圆锥的有_____________________,类似于球的有__________________;(各举一例)4.围成几何体的侧面中,至少有一个是曲面的是______________;(举一例)5.正方体有_____个顶点,经过每个顶点有_________条棱,这些棱都____________;6.圆柱、圆锥、球的共同点是_____________________________;7.假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了______________,时钟秒针旋转时,形成一个圆面,这说明了_______________,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了___________________;8.圆可以分割成_____ 个扇形,每个扇形都是由___________________;9.从一个七边形的某个顶点出发,分别连结这个点与其余各顶点,可以把七边形分割成__________个三角形;10.在乒乓球、橄榄球、足球、羽毛球、冰球中,是球体的有;11.将下列几何体分类,柱体有:,锥体有(填序号);12.长方体由_______________个面_______________条棱_______________个顶点;13.半圆面绕直径旋转一周形成__________;二.选择题114.观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来()A B CD 15.从一个十边形的某个点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成三角形()(A)10个(B)9个(C)8个(D)7个16.如图的几何体是下面()平面图形绕轴旋转一周得到的()(A)(B)(C)(D)18.下面图形不能围成封闭几何体的是()(A)(B)(C)(D)三.解答题:19.指出下列平面图形是什么几何体的展开图:ACB20. ⑴.下面这些基本图形和你很熟悉,试一试在括号里写出它们的名称.2() () ( ) ()( )⑵. 将这些几何体分类,并写出分类的理由.第1.1.1课时家庭作业参考答案一、1.平;2.点、线、面;3.略;4.略;5.8,3,相等;6.都有一个面是曲面;7.点动成线,线动成面,面动成体;8.无数,一条弧和两条半径组成的;9.5;10.乒乓球、足球;11.(1)(2)(3),(5)(6);12.6,12,8;13.球体;二、14.D;15.C;16.B;17.A;三、18.长方体(四棱柱),圆锥,圆柱;19.(1)(从左至右)球、圆柱、圆锥、长方体、三棱柱;(2)按面分:曲面:球、圆柱、圆锥;平面:长方体、三棱柱;按柱体分:圆柱、长方体、三棱柱;球;圆锥;北师大七年级上第一章丰富的图形世界第1.1.2课时家庭作业(平面内的立体图形2)姓名学习目标:1.通过丰富的实例,进一步认识点、线、面、初步感受点、线、面之间的关系.2.进一步经历从现实世界中抽象出图形的过程,从构成图形的基本元素的角度认识常见图形;二.填空题:1.围成球的面有个;2.圆柱有_____ 个面组成,这些面相交共得____ 条线,圆锥的侧面展开图是____ ;3.圆锥是由_ __个面围成,其中__ _个平面,____个曲面,圆锥的侧面与底面3相交成条线,是线;4.圆柱的表面展开图是________________________ (用语言描述);5.图形所表示的各个部分不在同一个平面内,这样的图形称为图形;6.图形所表示的各个部分都在同一个平面内,称为图形;二.选择题:7.圆锥的侧面展开图是()(A)长方形(B)正方形(C)圆(D)扇形8.将半圆绕它的直径旋转一周形成的几何体是()(A)圆柱(B)圆锥(C)球(D)正方体9.如图所示的图形绕虚线旋转一周,所形成的几何体是(()10.以下立体图形中是棱柱的有((A)①⑤ (B)①②③ (C)①②④⑤ (D)①②⑤[ 11.下列说法中,正确的是((A)正方体不是棱柱(B)圆锥是由3个面围成(C)正方体的各条棱都相等(D)棱柱的各条棱都相等12.将一个直角三角形绕它的最长边旋转一周,得到的几何体是((A)(B)(C)(D)13.按组成面的平或曲划分,与圆锥为同一类几何体的是(4)))))(A)正方体(B)长方体(C)球(D)棱柱14.()(A)(B)(D)15.一个正方体锯掉一个角后,顶点的个数是()(A)7个(B)8个(C)9个(D)7个或8个或9个或10个三、解答题16.请写出下列几何体的名称() ( ) ( ) ( )( ) ( ) ( ) ( )17.如图,第二行的图形绕点划线旋转一周,便形成第一行的某个图形(几何体),将对应的两个图形用线联结起来.第1.1.2课时家庭作业参考答案一、1.一个;2.三,二,扇形;3.二,一,一,一,曲;4.由一个长方形和两个相等的圆形组成;5.平面;6.立体;[二、5篇二:2014年练习册上册数学七年级C北师大版答案篇三:七年级上册-北师大版-数学练习册解析与答案七年级上册-北师大版-数学练习册解析与答案北师大版七年级数学上册教学建议及期末调研要求⒈本学期(春节1月29日)的教学时间虽然不太长,但除去节假日外,实际上课也在20周左右(课时数120节),相对的下学期的时间短些;而七上教材教学课时为69—108节,七下教材教学课时为66—100节。

北师大版数学七年级上全册10分钟课堂小测(同步练习)含答案

北师大版数学七年级上全册10分钟课堂小测(同步练习)含答案

北师大版数学七年级上全册10分钟课堂小测第一章丰富的图形世界1生活中的立体图形第1课时认识几何体1.从下列物体抽象出来的几何体可以看成圆柱的是()2.下列图形不是立体图形的是()A.球B.圆柱C.圆锥D.圆3.下列图形属于棱柱的有()A.2个B.3个C.4个D.5个4.如图,电镀螺杆呈现出了两个几何体的组合,则这两个几何体分别是()A.圆柱和圆柱B.六棱柱和六棱柱C.长方体和六棱柱D.圆柱和六棱柱5.一个四棱柱一共有条棱,有个面;如果四棱柱的底面边长都是2cm,侧棱长都是4cm,那么它所有棱长的和是.6.将下列几何体分类:其中柱体是,锥体是,球体是(填序号).第2课时立体图形的构成1.下列几何体没有曲面的是()A.圆柱B.圆锥C.球D.长方体2.围成圆柱的面有()A.1个B.2个C.3个D.4个3.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是()A.点动成线B.线动成面C.面动成体D.以上答案都不对4.下列选项中的图形,绕其虚线旋转一周能得到左边的几何体的是()5.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.6.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?2展开与折叠第1课时正方体的展开图1.下面图形中是正方体的展开图的是()2.如图是正方体的一种展开图,其中每个面上都有一个数字,那么在原正方体中,与数字6相对面上的数字是()A.1B.4C.5D.23.如图,该几何体的展开图可能是()4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).第2课时柱体、锥体的展开与折叠1.下列立体图形中,侧面展开图是扇形的是()2.下面图形中,是三棱柱的侧面展开图的是()3.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()4.如图,沿虚线折叠能形成一个立体图形,它的名称是.5.指出下列图形分别是什么几何体的展开图(将对应的几何体名称写在下方的横线上).3截一个几何体1.如图,用一个平面去截一个圆柱,截得的形状应为()2.用平面去截一个几何体,若截面为长方形,则该几何体不可能是()A.正方体B.长方体C.圆柱D.圆锥3.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,得到的截面可能是圆的几何体是()A.①②④B.①②③C.②③④D.①③④4.如果用一个平面截一个几何体,截面形状是三角形,那么这个几何体可能是(写出两个几何体名称).5.如图是一个正方体,用一个平面去截这个正方体,截面形状不可能是(填序号).6.说出下列几何体被阴影部分所截得的截面的形状.4从三个方向看物体的形状1.如图是由5个相同的小正方体搭成的几何体,从正面看到的图形是()2.如图是某几何体从三个方向看到的图形,则这个几何体是()A.三棱柱B.三棱锥C.圆锥D.圆柱3.如图是由三个相同小正方体组成的几何体从上面看到的图形,那么这个几何体可以是()4.一个积木由若干个大小相同且棱长为1的正方体搭成,如图分别是从三个方向看到的形状图,则该积木中棱长为1的正方体的个数是()A.6个B.7个C.8个D.9个5.下面是用几个相同的小正方体搭成的两种几何体,分别画出从三个方向看到的几何体的形状图.第二章 有理数及其运算1 有理数1.下列各数中是负数的是( ) A.-3 B.0 C.1.7 D.122.飞机在飞行过程中,如果上升23米记作“+23米”,那么下降15米应记作( ) A.-8米 B.+8米 C.-15米 D.+15米3.下列说法正确的是( )A.非负数包括0和整数B.正整数包括自然数和0C.0是最小的整数D.整数和分数统称为有理数4.在“1,-0.3,+13,0,-3.3”这五个数中,非负有理数是 (写出所有符合题意的数).5.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示 .6.把下列各数填入表示它所在的数集的圈里.-18,227,3.1416,0,2001,-35,-0.142857,95%.数 轴1.下列所画数轴正确的是( )2.如图,点M 表示的数是( )A.1.5B.-1.5C.2.5D.-2.53.在0,-2,1,12这四个数中,最小的数是( )A.0B.-2C.1D.124.比较下列各组数的大小: (1)-3 1; (2)0 -2.3; (3)-23 -35.5.在数轴上,与表示数-1的点的距离为1的点表示的数是 .6.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是 .7.在数轴上表示下列各数,并用“〉”连接起来.1.8,-1,52,3.1,-2.6,0,1.3 绝对值第1课时 相反数1.-3的相反数是( ) A.-3 B.3 D.-13 D.132.下列各组数互为相反数的是( )A.4和-(-4)B.-3和13C.-2和-12 D.0和03.若一个数的相反数是1,则这个数是 .4.写出下列各数的相反数:(1)-3.5的相反数为 ; (2)35的相反数为 ;(3)0的相反数为 ; (4)28的相反数为 ; (5)-2018的相反数为 .第2课时 绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )3.比较大小:-5 -2,-12 -23(填“〉”或“〈”).4.计算:(1)|7|= ; (2)⎪⎪⎪⎪-58= ; (3)|5.4|= ; (4)|-3.5|= ; (5)|0|= .4 有理数的加法第1课时 有理数的加法法则1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝⎛⎭⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝⎛⎭⎫-212=-3 D.(-71)+0=71 5.每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是 kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2016)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝⎛⎭⎫-718+⎝⎛⎭⎫-16.第2课时 有理数加法的运算律1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( ) A.加法交换律 B.加法结合律 C.分配律 D.加法交换律与加法结合律2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法 律) =[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法 律) =( )+( )= . 3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎝⎛⎭⎫-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某运动员在东西走向的公路上练习跑步,跑步情况记录如下(向东为正,单位:m):1000,-1200,1100,-800,1400,该运动员跑完后位于出发点的什么位置?有理数的减法1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝⎛⎭⎫-23-112-⎝⎛⎭⎫-14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?有理数的加减混合运算第1课时 有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( ) A .7+3-5-2 B .7-3-5-2 C .7+3+5-2 D .7+3-5+22.计算8+(-3)-1所得的结果是( ) A .4 B .-4 C .2 D .-23.算式“-3+5-7+2-9”的读法正确的是( ) A .3、5、7、2、9的和 B .减3正5负7加2减9C .负3,正5,减7,正2,减9的和D .负3,正5,负7,正2,负9的和4.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a -b +c 的值为( )A .-1B .0C .1D .2 5.计算下列各题:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝⎛⎭⎫-312-⎝⎛⎭⎫-523+713.6.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.第2课时 有理数加减混合运算中的简便运算1.下列各题运用加法结合律变形错误的是( ) A .1+(-0.25)+(-0.75)=1+[(-0.25)+(-0.75)] B .1-2+3-4+5-6=(1-2)+(3-4)+(5-6) C .34-16-12+23=⎝⎛⎭⎫34+12+⎝⎛⎭⎫-16+23 D .7-8-3+6+2=(7-3)+(-8)+(6+2) 2.计算-256+15-116的结果是( )A .-345B .345C .-415D .4153.计算:(1)27+18-(-3)-18; (2)23-18-⎝⎛⎭⎫-13+⎝⎛⎭⎫-38;(3)-0.5+⎝⎛⎭⎫-14-(-2.75)-12; (4)314+⎝⎛⎭⎫-718+534+718;(5)7.54+(-5.72)-(-12.46)-4.28; (6)0.125+⎝⎛⎭⎫-418+⎝⎛⎭⎫-234+0.75.第3课时有理数加减混合运算的应用1.下表是某种股票某一周每天的收盘价情况(收盘价:股票每天交易结束时的价格):(1)填表,并回答哪天的收盘价最高,哪天的收盘价最低;(2)最高价与最低价相差多少?2.某次数学单元检测,708班A1小组六位同学计划平均成绩达到80分,组长在登记成绩时,以80分为基准,超过80分的分数记为正,低于80分的分数记为负,成绩记录如下:+10,-2,+15,+8,-13,-7.(1)本次检测成绩最好的为多少分?(2)该小组实际总成绩与计划相比是超过还是不足,超过或不足多少分?(3)本次检测该小组成员中得分最高与最低相差多少分?7 有理数的乘法第1课时 有理数的乘法法则1.计算-3×2的结果为( ) A .-1 B .-5 C .-6 D .12.-74的倒数是( )A .-74B .74C .-47D .473.下列运算中错误的是( ) A .(+3)×(+4)=12 B .-13×(-6)=-2C .(-5)×0=0D .(-2)×(-4)=8 4.下列计算结果是负数的是( ) A .(-3)×4×(-5) B .(-3)×4×0C .(-3)×4×(-5)×(-1)D .3×(-4)×(-5) 5.填表(想法则,写结果):6.计算:(1)(-15)×13; (2)-218×0;(3)334×⎝⎛⎭⎫-1625; (4)(-2.5)×⎝⎛⎭⎫-213.第2课时 有理数乘法的运算律1.用简便方法计算(-27)×(-3.5)+27×(-3.5)时,要用到( ) A .乘法交换律 B .乘法结合律C .乘法交换律、结合律D .乘法对加法的分配律 2.计算(-4)×37×0.25的结果是( )A .-37B .37C .73D .-733.下列计算正确的是( ) A .-5×(-4)×(-2)×(-2)=80 B .-9×(-5)×(-4)×0=-180C .(-12)×⎝⎛⎭⎫13-14-1=(-4)+3+1=0 D .-2×(-5)+2×(-1)=(-2)×(-5-1)=124.计算(-2)×⎝⎛⎭⎫3-12,用分配律计算正确的是( ) A .(-2)×3+(-2)×⎝⎛⎭⎫-12 B .(-2)×3-(-2)×⎝⎛⎭⎫-12 C .2×3-(-2)×⎝⎛⎭⎫-12 D .(-2)×3+2×⎝⎛⎭⎫-12 5.填空:(1)21×⎝⎛⎭⎫-45×⎝⎛⎭⎫-621×(-10) =21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×⎣⎡⎦⎤⎝⎛⎭⎫-45×( )(利用乘法结合律) =( )×( )= ; (2)⎝⎛⎫14+18+12×(-16)=14× +18× +12× (分配律) = = .1计算(-18)÷6的结果是( ) A .-3 B .3 C .-13 D .132.计算(-8)÷⎝⎛⎭⎫-18的结果是( ) A .-64 B .64 C .1 D .-1 3.下列运算错误的是( )A .13÷(-3)=3×(-3) B .-5÷⎝⎛⎭⎫-12=-5×(-2) C .8÷(-2)=-8×12 D .0÷3=04.下列说法不正确的是( ) A .0可以作被除数 B .0可以作除数C .0的相反数是它本身D .两数的商为1,则这两数相等 5.(1)6的倒数是 ;(2)-12的倒数是 .6.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝⎛⎭⎫-123÷⎝⎛⎭⎫-212; (4)⎝⎛⎭⎫-34÷⎝⎛⎭⎫-37÷⎝⎛⎭⎫-116.1.计算(-3)2的结果是( ) A .-6 B .6 C .-9 D .92.下列运算正确的是( ) A .-(-2)2=4 B .-⎝⎛⎭⎫-232=49 C .(-3)4=34 D .(-0.1)2=0.13.把34×34×34×34写成乘方的形式为 ,读作 .4.计算:(1)(-2)3; (2)-452; (3)-⎝⎛⎭⎫-372; (4)⎝⎛⎭⎫-233.10 科学记数法1.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A .1.3×104B .1.3×105C .1.3×106D .1.3×1072.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是( )A .182000千瓦B .182000000千瓦C .18200000千瓦D .1820000千瓦 3.用科学记数法表示下列各数: (1)地球的半径约为6400000m ; (2)赤道的总长度约为40000000m .11 有理数的混合运算1.计算-5-3×4的结果是( ) A .-17 B .-7 C .-8 D .-322.下列各式中,计算结果是负数的是( ) A .(-1)×(-2)×(-3)×0 B .5×(-0.5)÷(-0.21) C .(-5)×|-3.25|×(-0.2) D .-(-3)2+(-2)2 3.计算(-8)×3÷(-2)2的结果是( ) A .-6 B .6 C .-12 D .124.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x 平方乘以2减去5输出5.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝⎛⎭⎫12-23×12+32.6.室温是32℃,小明开空调后,温度下降了6℃,关掉空调后,空气温度每小时回升2℃,求关掉空调2小时后室内的温度.12用计算器进行运算1.用完计算器后,应该按()A.DEL键B.=键C.ON键D.OFF键2.用计算器求(-3)5的按键顺序正确的是()A.(-)()3x■5=B.3x■5()(-)=C.()(-)3x■5=D.()(-)35x■=3.按键顺序1-3x■2÷2×3=对应下面算式()A.(1-3)2÷2×3B.1-32÷2×3C.1-32÷2×3D.(1-3)2÷2×34.用计算器计算7.783+(-0.32)2≈(精确到0.01).第三章整式及其加减1字母表示数1.一辆汽车的速度是v千米/时,行驶t小时所走的路程为千米.2.每台电脑售价x元,降价10%后每台售价为元.3.若买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A.(4m+7n)元B.28mn元C.(7m+4n)元D.11mn元4.用字母表示图中阴影部分的面积.2 代数式第1课时 代数式1.下列书写格式正确的是( ) A .x5 B .4m÷n C .x(x +1)34 D .-12ab2.某种品牌的计算机,进价为m 元,加价n 元后作为定价出售.如果“五一”期间按定价的八折销售,那么售价为( )A .(m +0.8n)元B .0.8n 元C .(m +n +0.8)元D .0.8(m +n)元3.在式子:①m +5;②ab ;③a =1;④0;⑤π;⑥3(m +n);⑦3x >5中,代数式有 个.4.某超市的苹果价格如图所示,则代数式100-9.8x 可表示的实际意义是 .第2课时 代数式的求值1.当x =1时,代数式4-3x 的值是( ) A .1 B .2 C .3 D .42.当x =3,y =2时,代数式2x -y3的值是( ) A .43B .2C .0D .3 3.公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高.已知犯人的身高比其脚印长度a cm 的7倍少3cm .(1)用含a 的代数式表示出犯人的身高为 cm ; (2)若a =24,求犯人的身高.整 式1.下列各式中不是单项式的是( ) A .a 3 B .-15 C .0 D .3a2.单项式-2x 2y 3的系数和次数分别是( )A .-2,3B .-2,2C .-23,3D .-23,23.多项式3x 2-2x -1的各项分别是( ) A .3x 2,2x,1 B .3x 2,-2x,1C .-3x 2,2x ,-1D .3x 2,-2x ,-14.在代数式a +b ,37x 2,5a ,-m,0,a +b 3a -b ,3x -y 2中,单项式的个数是 个.5.多项式3x 3y +2x 2y -4xy 2+2y -1是 次 项式,它的最高次项的系数是 .6.下列代数式中哪些是单项式?哪些是多项式? xy 3,-34xy 2z ,a ,x -y ,1x ,3.14,-m ,-m 2+2m -1.7.若关于a ,b 的单项式-58a 2b m 与-117x 3y 4是次数相同的单项式,求m 的值.整式的加减第1课时合并同类项1.在下列单项式中与2xy是同类项的是()A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是()A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和m 23.下列运算中,正确的是()A.3a+2b=5abB.2a3+3a2=5a5C.3a2b-3ba2=0 C.5a2-4a2=14.计算2m2n-3nm2的结果为()A.-1B.-5m2nC.-m2nD.不能合并5.合并同类项:(1)3a-5a+6a;(2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.第2课时 去括号1.化简-2(m -n)的结果为( )A .-2m -nB .-2m +nC .2m -2nD .-2m +2n 2.下列去括号错误的是( )A .a -(b +c)=a -b -cB .a +(b -c)=a +b -cC .2(a -b)=2a -bD .-(a -2b)=-a +2b 3.-(2x -y)+(-y +3)去括号后的结果为( ) A .-2x -y -y +3 B .-2x +3 C .2x +3 D .-2x -2y +34.数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x 2+3xy)-(2x 2+4xy)=-x 2【】,其中空格的地方被钢笔水弄污了,那么空格中一项是( )A .-7xyB .7xyC .-xyD .xy 5.去掉下列各式中的括号:(1)(a +b)-(c +d)= ; (2)(a -b)-(c -d)= ; (3)(a +b)-(-c +d)= ; (4)-[a -(b -c)]= . 6.化简下列各式:(1)3a -(5a -6); (2)(3x 4+2x -3)+(-5x 4+7x +2);(3)(2x -7y)-3(3x -10y); (4)6a 2-4ab -4⎝⎛⎭⎫2a 2+12ab .第3课时 整式的加减1.化简x +y -(x -y)的结果是( ) A .2x +2y B .2y C .2x D .02.已知A =5a -3b ,B =-6a +4b ,则A -B 等于( ) A .-a +b B .11a +b C .11a -7b D .-a -7b3.已知多项式x 3-4x 2+1与关于x 的多项式2x 3+mx 2+2相加后不含x 的二次项,则m 的值是( )A .-4B .4C .12D .-124.若某个长方形的周长为4a ,一边长为(a -b),则另一边长为( ) A .3a +b B .2a +2b C .a +b D .a +3b5.化简:(1)(-x 2+5x +4)+(5x -4+2x 2);(2)-2(3y 2-5x 2)+(-4y 2+7xy).6.先化简,再求值:3a 2-ab +7-(5ab -4a 2+7),其中a =2,b =13.探索与表达规律第1课时 探索数字规律1.观察下列数据:0,3,8,15,24…它们是按一定规律排列的,依照此规律,第201个数据是( )A .40400B .40040C .4040D .4042.一组数23,45,67,89…按一定的规律排列,请你根据排列规律,推测这组数的第10个数应为( )A .1819B .2021C .2223D .24253.已知2+23=22×23,3+38=32×38,4+415=42×415…,若9+n m =92×nm (m ,n 为正整数),则m +n 的值为( )A .86B .88C .89D .904.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a ,b 的值分别为( )A .9,10B .9,91C .10,91D .10,110 5.观察下列各式,完成问题.1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…… (1)仿照上例,计算:1+3+5+7+…+99= ; (2)根据上述规律,请你用自然数n(n ≥1)表示一般规律.第2课时探索图形规律1.如图,第①个图形中一共有1个正方形,第②个图形中一共有3个正方形,第③个图形中一共有5个正方形……则第⑩个图形中正方形的个数是()A.18个B.19个C.20个D.21个2.如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒……则第n个图案中有根小棒.第2题图第3题图3.如图,按这种规律堆放圆木,第n堆应有圆木根.4.如图是用棋子摆成的“T”字图案.从图案中可以看出,第1个“T”字图案需要5枚棋子,第2个“T”字图案需要8枚棋子,第3个“T”字图案需要11枚棋子……(1)照此规律,摆成第4个图案需要几枚棋子?(2)摆成第n个图案需要几枚棋子?(3)摆成第2018个图案需要几枚棋子?第四章基本平面图形线段、射线、直线1.给出下列图形,其表示方法不正确的是()2.下列语句正确的是()A.延长线段AB到C,使BC=ACB.反向延长线段AB,得到射线BAC.取直线AB的中点D.连接A,B两点,并使直线AB经过C点3.小红家分了一套住房,她想在自己房间的墙上钉一根细木条,挂上自己喜欢的装饰物,那么小红至少需要几根钉子使细木条固定()A.1根B.2根C.3根D.4根4.根据图形填空:点B在直线上,图中有条线段,以点B为端点的射线有条.第4题图第5题图5.如图,工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖,用数学知识解释其中的道理是.6.已知平面上四点A、B、C、D如图所示.(1)画直线AB;(2)画射线AD;(3)直线AB、CD相交于点E;(4)连接AC、BD相交于点F.比较线段的长短1.下列说法正确的是()A.两点之间的连线中,直线最短B.若P是线段AB的中点,则AP=BPC.若AP=BP,则P是线段AB的中点D.两点之间的线段叫作这两点之间的距离2.如图,已知线段AB=6cm,点C是AB的中点,则AC的长为()A.6cmB.5cmC.4cmD.3cm3.现实生活中为何有人宁愿乱穿马路,也不愿从天桥或斑马线通过?用数学知识解释图中这一现象,其原因为()A.两点之间线段的长度,叫作这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短4.如图,D是AB的中点,E是BC的中点.若AC=8,EC=3,则AD=.5.如图,已知线段AB.(1)请用尺规按下列要求作图:①延长线段AB到C,使BC=AB;②延长线段BA到D,使AD=AC(不写画法,但要保留画图痕迹);(2)观察(1)中所作的图,直接写出线段BD与线段AC之间的长短关系;(3)若AB=2cm,求线段BD和CD的长度.角1.下列关于角的说法中,正确的是()A.角是由两条射线组成的图形B.角的边越长,角越大C.在角一边的延长线上取一点D.角可以看作由一条射线绕着它的端点旋转而形成的图形2.如图,能用∠1,∠ACB,∠C三种方法表示同一个角的是()3.将21.54°用度、分、秒表示为()A.21°54′B.21°50′24″C.21°32′40″D.21°32′24″4.如图,能用一个字母表示的角是,用三个大写字母表示∠1为,∠2为.第4题图第5题图第6题图5.如图,点Q位于点O的方向上.6.某钟面上午8时整时针和分针的位置如图所示,则时针和分针所成角的度数是.7.计算:(1)33°52′+21°50′;(2)108°8′-36°56′.角的比较1.如图,将∠1、∠2的顶点和其中一边重合,且∠1的另一边落在∠2的外部,则∠1与∠2的关系是( )A .∠1〉∠2B .∠1〈∠2C .∠1=∠2D .无法确定2.如图,已知∠AOB 、∠COD 都是直角,则∠1与∠2的关系是( )A .∠1>∠2B .∠1<∠2C .∠1=∠2D .无法确定第1题图 第2题图 第4题图 第5题图3.射线OC 在∠AOB 的内部,下列四个选项中不能判定OC 是∠AOB 的平分线的是( )A .∠AOB =2∠AOC B .∠AOC =12∠AOB C .∠AOC +∠BOC =∠AOB D .∠AOC =∠BOC4.如图,点O 在直线AB 上,射线OC 平分∠DOB.若∠DOC =35°,则∠AOD 等于( )A .35°B .70°C .110°D .145°5.把一副三角板按照如图所示的位置摆放形成两个角,分别设为∠α、∠β.若∠α=65°,则∠β的度数为 .6.如图,∠AOC =15°,∠BOC =45°,OD 平分∠AOB ,求∠COD 的度数.多边形和圆的初步认识1.下列图形中,多边形有()A.1个B.2个C.3个D.4个2.过某个多边形一个顶点的所有对角线将这个多边形分成了5个三角形,则这个多边形是()A.五边形B.六边形C.七边形D.八边形3.边长为1cm的正六边形的周长是cm.4.已知扇形的圆心角为120°,半径为3cm,则这个扇形的面积为cm2.5.某校学生来自甲、乙、丙三个地区,其人数比为2:3:5,如图所示的扇形图表示上述分布情况,求扇形甲、乙、丙圆心角的度数.6.如图,将多边形分割成三角形.(1)图①中可分割出个三角形;(2)图②中可分割出个三角形;(3)图③中可分割出个三角形;由此你能猜测出,n边形可以分割出个三角形.第五章 一元一次方程认识一元一次方程第1课时 一元一次方程1.下列是一元一次方程的是( )A .x 2-x =4B .2x -y =0C .2x =1D .1x=2 2.方程x +3=-1的解是( )A .x =2B .x =-4C .x =4D .x =-23.若关于x 的方程2x +a -4=0的解是x =-2,则a 的值是 .4.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x 名学生,则由题意可列方程为 .第2课时 等式的基本性质1.下列变形符合等式的基本性质的是( )A .若2x -3=7,则2x =7-3B .若3x -2=x +1,则3x -x =1-2C .若-2x =5,则x =5+2D .若-13x =1,则x =-3 2.解方程-34x =12时,应在方程两边( ) A .同时乘-34 B .同时乘4 C .同时除以34 D .同时除以-343.利用等式的基本性质解方程:(1)x +1=6; (2)3-x =7; (3)-3x =21.求解一元一次方程第1课时 利用移项解一元一次方程1.下列变形属于移项且正确的是( )A .由3x =5+2得到3x +2=5B .由-x =2x -1得到-1=2x +xC .由5x =15得到x =155D .由1-7x =-6x 得到1=7x -6x 2.解方程-3x +4=x -8时,移项正确的是( )A .-3x -x =-8-4B .-3x -x =-8+4C .-3x +x =-8-4D .-3x +x =-8+43.一元一次方程3x -1=5的解为( )A .x =1B .x =2C .x =3D .x =44.解下列方程:(1)13x +1=12; (2)3x +2=5x -7.5.下面是某位同学的作业,他的解答正确吗?如果不正确,请把正确的步骤写出来. 解方程:2x -1=-x +5.解:移项,得2x -x =1+5,合并同类项,得x =6.1.方程3-(x+2)=1去括号正确的是()A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是()A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10;(2)8y-6(y-2)=0;(3)4x-3(20-x)=-4;(4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个,那么他一共投进了多少个2分球,多少个3分球?1.对于方程5x -13-2=1+2x 2,去分母后得到的方程是( ) A .5x -1-2=1+2x B .5x -1-6=3(1+2x)C .2(5x -1)-6=3(1+2x)D .2(5x -1)-12=3(1+2x)2.方程x 4=x -15的解为( ) A .x =4 B .x =1 C .x =-1 D .x =-43.(1)若式子x -83与14x +5的值相等,则x = ; (2)若x 3+1与2x -73互为相反数,则x = . 4.解方程:(1)3x -52=2x 3; (2)4x +95-3+2x 3=1;(3)15(x +15)=12-13(x -7); (4)2y -13=y +24-1.5.某班同学分组参加活动,原来每组8人,后来重新编组,每组6人,这样比原来增加了2组,则这个班共有多少名学生?应用一元一次方程——水箱变高了1.内径为120mm 的圆柱形玻璃杯,和内径为300mm 、内高为32mm 的圆柱形玻璃盆可以盛同样多的水,则玻璃杯的内高为( )A .150mmB .200mmC .250mmD .300mm2.用一根长12cm 的铁丝围成一个长方形,使得长方形的宽是长的12,则这个长方形的面积是( )A .4cm 2B .6cm 2C .8cm 2D .12cm 23.将一个底面半径是5cm ,高为10cm 的圆柱体冰淇淋盒改造成一个直径为20cm 的圆柱体.若体积不变,则改造后圆柱体的高为多少?4.把一个三边长分别为3dm,4dm,5dm 的三角形挂衣架,改装成一个正方形挂衣架.求这个正方形挂衣架的面积.应用一元一次方程——打折销售1.如图是“大润发”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是()A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打()A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最低可打几折销售?应用一元一次方程——“希望工程”义演1.已知甲仓库储粮35吨,乙仓库储粮19吨,现调粮食15吨给两仓库,则应分配给两仓库各多少吨,才能使得甲仓库的储粮是乙仓库的两倍?2.希望中学团委组织65名新团员为学校建花坛搬砖,女同学每人每次搬6块,男同学每人每次搬8块.每人搬了4次,共搬了1800块,问这些新团员中有多少名男同学?3.在广州亚运会中,志愿者们手上、脖子上的丝巾非常美丽.某车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1800条或者脖子上的丝巾1200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?应用一元一次方程——追赶小明1.甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米,甲让乙先跑5米.设x秒后甲可追上乙,则下列所列方程中正确的是()A.6.5+x=7.5B.7x=6.5x+5C.7x+5=6.5xD.6.5+5x=7.52.小明和爸爸在一条长400米的环形跑道上,小明每秒跑9米,爸爸骑车每秒骑16米,两人同时同地反向而行,经过秒两人首次相遇.3.一轮船往返于A,B两港之间,逆水航行需3小时,顺水航行需2小时,水速是3千米/时,求轮船在静水中的速度.4.甲、乙两站相距300千米,一列慢车从甲站开往乙站,每小时行40千米,一列快车从乙站开往甲站,每小时行80千米.已知慢车先行1.5小时,快车再开出,则快车开出多少小时后与慢车相遇?第六章数据的收集与整理数据的收集1.下面获取数据的方法不正确的是()A.了解我们班同学的身高用测量方法B.快捷了解历史资料情况用观察方法C.抛硬币看正反面的次数用试验方法D.了解全班同学最喜爱的体育活动用访问方法2.在设计调查问卷时,下面的提问比较恰当的是()A.我认为猫是一种很可爱的动物B.难道你不认为科幻片比武打片更有意思吗C.你给我回答到底喜不喜欢猫D.请问你家有哪些使用电池的电器2普查和抽样调查1.下列调查方式不合适的是()A.了解我市人们保护海洋的意识采取抽样调查的方式B.为了调查一个省的环境污染情况,调查该省的省会城市C.了解观众对《红海行动》这部电影的评价情况,调查座位号为奇数的观众D.了解飞行员视力的达标率采取普查方式2.下列调查的样本具有代表性的是()A.了解全校同学喜欢课程情况,对某班男生进行调查B.了解某小区居民的防火意识,从每幢居民随机抽若干人进行调查C.了解商场的平均日营业额,选在周末进行调查D.了解某城区空气质量,在某个固定位置进行调查3.为了调查一批灯泡的使用寿命,适合采用的调查方式是(填“普查”或“抽样调查”).4.某中学为了解本校2000名学生所需运动服的尺码,在全校范围内随机抽取100名学生进行调查,这次调查的个体是.数据的表示第1课时扇形统计图1.某学生某月有零花钱100元,其支出情况如图所示,则下列说法不正确的是()A.捐赠款所对应的圆心角的度数为240°B.该学生捐赠款为60元C.捐赠款是购书款的2倍D.其他消费占10%2.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并调查了所有学生对该方案的意见.根据赞成、反对、无所谓三种意见的人数之比画出如图所示的扇形统计图,图中α的度数为.3.某地中小学大力提倡“2+2”素质教育,开展几年后取得了重大成果.小明对本学期全班50名同学所选择的活动项目进行了统计,根据收集的数据制作了下表:(1)请完善表格中的数据;(2)根据上述表格中的人数百分比,制作扇形统计图.第2课时频数直方图1.已知一组数据的最大值为46,最小值为27,在绘制频数直方图时,取组距为3,则这组数据应分成()A.5组B.6组C.7组D.8组2.某校测量了初三(1)班学生的身高(精确到1cm),按10cm为一段进行分组,得到如图所示的频数分布直方图,则下列说法正确的是()A.该班人数最多的身高段的学生数为7人B.该班身高最高段的学生数为7人C.该班身高最高段的学生数为20人D.该班身高低于160.5cm的学生数为15人3.阳泉同学参加周末社会实践活动,到“富乐花乡”蔬菜大棚中收集到20株西红柿秧上小西红柿的个数如下:3239455560546028564151364446405337474546(1)若对这20个数按组距为8进行分组,请补全频数分布表及频数直方图;(2)通过频数直方图分析此大棚中西红柿的长势.。

数学七年级上册练习册答案北师大版2020

数学七年级上册练习册答案北师大版2020

数学七年级上册练习册答案北师大版2020§1.1正数和负数(一)一、1. D 2. B 3. C二、1. 5米 2. -8℃ 3. 正西面600米 4. 90 三、1. 正数有:1,2.3,68,+123;负数有:-5.5,13,-11 2.记作-3毫米,有1张不合格3. 一月份超额完成计划的吨数是-20, 二月份超额完成计划的吨数是0, 三月份超额完成计划的吨数是+102.§1.1正数和负数(二)一、1. B 2. C 3. B二、1. 3℃ 2. 3℃ 3. -2米 4. -18m三、1.不超过9.05cm, 最小不小于8.95cm;2.甲地,丙地最低,的地方比最低的地方高50米3. 70分§1.2.1有理数一、1. D 2. C 3. D二、1. 0 2. 1,-1 3. 0,1,2,3 4. -10三、1.自然数的集合:{6,0,+5,+10…}整数集合:{-30,6,0,+5,-302,+10…}负整数集合:{-30,-302… }分数集合:{负分数集合:{121223,0.02,-7.2,2,1011,2.1…},-7.2,1011… }非负有理数集合:{0.02, 223,6,0,2.1,+5,+10…};1102. 有31人能够达到引体向上的标准3. (1) §1.2.2数轴一、1. D 2. C 3. C 二、1. 右 5 左 3 2.412(2)120093. -34. 10三、1. 略 2.(1)依次是-3,-1,2.5,4 (2)1 3. ±1,±3 §1.2.3相反数一、1. B 2. C 3. D二、1. 3,-7 2. 非正数 3. 3 4. -9 三、1. (1) -3 (2) -4 (3)2.5 (4) -62. -33. 提示:原式= 12(x2y12z)3=12(x2y4y12z)33。

北师大版七年级数学上册全册课时作业(共109页,附答案)

北师大版七年级数学上册全册课时作业(共109页,附答案)

北师大版七年级数学上册全册课堂练习(共109页,附答案)1.1生活中的立体图形1. 下面几何体中,全是由曲面围成的是()A. 圆柱B. 圆锥C. 球D. 正方体2. 下列说法错误的是()A. 长方体、正方体都是棱柱B. 三棱柱的侧面是三角形C. 直六棱柱有六个侧面、侧面为长方形D. 球体的三种视图均为同样大小的图形3. 如图,在一个棱长为6cm的正方体上摆放另一个正方体,使得上面正方体的四个顶点恰好均落在下面正方体的四条棱上,则上面正方体体积的可能值有()A. 1个B. 2个C. 3个D. 无数个4. 如图,左排的平面图形绕轴旋转一周,可以得到右排的立体图形,那么与甲、乙、丙、丁各平面图形顺序对应的立体图形的编号应为()A. ③④①②B. ①②③④C. ③②④①D. ④③②①5. 在下列几何体中,由三个面围成的有____,由四个面围成的有____.(填序号)6. 如图,在直六棱柱中,棱AB与棱CD的位置关系为____,大小关系是_____.7. 用五个面围成的几何体可能是_______.8. 若一个直四棱柱的底面是边长为1cm的正方形,侧棱长为2cm,则这个直棱柱的所有棱长的和是___cm.9. 由一个平面图形绕着它的一条边所在的直线旋转一周形成的几何体,叫做旋转体.如果有一个几何体,围成它的各个面都是多边形,那么这个几何体叫做________.在你所熟悉的立体图形中,旋转体有________,多面体有________.(要求各举两个例子)10. 一只小蚂蚁从如图所示的正方体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数一数,小蚂蚁有__种爬行路线.11. 探究:将一个正方体表面全部涂上颜色,试回答:(1)把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体,我们把仅有i个面涂色的小正方体的个数记为x i,那么x3=____,x2=____,x1=____,x0=____;(2)如果把正方体的棱四等分,同样沿等分线把正方体切开,得到64个小正方体,与(1)同样的记法,则x3=____,x2=____,x l=____,x0=____;(3)如果把正方体的棱n等分(n≥3),然后沿等分线把正方体切开,得到n3个小正方体,与(1)同样的记法,则x3=____,x2=____,x1=____,x0=____.答案1. C2. B3. D4. A5.(2)(6)6.平行相等7.四棱锥或三棱柱8. 169. 多面体圆柱、圆锥六棱柱、三棱锥10. 611.(1) 8 12 6 1(2) 8 24 24 8(3) 8 12(n﹣2) 6(n﹣2)2(n﹣2)3.(1)根据长方体的分割规律可得x3=8,x2=12,x1=6,x0=1.(2)把正方体的棱四等分时,顶点处的小正方体三面涂色共8个;有一条边在棱上的正方体有24个,两面涂色;每个面的正中间的4个只有一面涂色,共有24个;正方体正中心处的8个小正方体各面都没有涂色.故x3=8,x2=24,x1=24,x0=8.(3)由以上可发现规律:三面涂色8个,两面涂色12(n ﹣2)个,一面涂色6(n﹣2)2个,各面均不涂色(n﹣2)3个.1.2展开与折叠一、选择题1. 如图是一个长方体包装盒,则它的平面展开图是A. B.C. D.2. 圆锥的侧面展开图是A. 扇形B. 等腰三角形C. 圆D. 矩形3. 下列图形中,能通过折叠围成一个三棱柱的是( )A. B. C. D.4. 图(1)是一个小正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第格、第格、第格、第格,这时小正方体朝上一面的字是( )A. 梦B. 水C. 城D. 美5. 将一边长为的正方形纸片折成四部分,再沿折痕折起来,恰好能不重叠地搭建成一个三棱锥,则三棱锥四个面中最小的面积是( )A. B. C. D.7. 如图,点,,是正方体三条相邻的棱的中点,沿着,,三点所在的平面将该正方体的一个角切掉,然后将其展开,其展开图可能是( )A. B.C. D.8. 右图中是左面正方体的展开图的是( )A. B. C. D.9. 图1是一个正方体的展开图,该正方体从图 2 所示的位置依次翻到第格、第格、第格、第格、第格,此时这个正方体朝上一面的字是( )A. 我B. 的C. 梦D. 中10. 如图 1 是一个小正方体的侧面展开图,小正方体从图 2 所示的位置依次翻到第格、第格、第格、第格,这时小正方体朝上一面的字是( )A. 北B. 京C. 精D. 神二、填空题11. 小明在正方体盒子的每个面上都写了一个字,其平面展开图如下图所示,那么在该正方体盒子的表面,与“祝”相对的面上所写的字应是.12.图 1 是边长为的正方形纸板,裁掉阴影部分后将其折叠成如图 2 所示的长方体盒子,已知该长方体的宽是高的倍,则它的体积是.13. 若下图是某几何体的表面展开图,则这个几何体是.14. 立方体木块的六个面分别标有数字,,,,,,下图是从不同方向观察这个立方体木块看到的数字情况,数字和对面的数字的和是.15. 以下三组图形都是由四个等边三角形组成.能折成多面体的选项序号是.16. 印刷一本书,为了使装订成书后页码恰好为连续的自然数,可按如下方法操作:先将一张整版的纸,对折一次为页,再对折一次为页,连续对折三次为页,;然后再排页码.如果想设计一本页的毕业纪念册,请你按图 1、图 2 、图 3 (图中的,表示页码)的方法折叠,在图 4 中填上按这种折叠方法得到的各页在该面相应位置上的页码 .17. 马小虎准备制作一个封闭的正方体盒子,他先用 个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在右图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示) .18. 有一个正方体的六个面上分别标有数字 ,,,,,,从三个不同的角度观察这个正方体所得到的结果如图所示,如果标有数字 的面所对面上的数字记为 , 的面所对面上数字记为 ,那么的值为 .19. 如图是一个没有完全剪开的正方体,若再剪开一条棱,则得到的平面展开图可能是下列六种图中的 .(填写字母)三、解答题20. 把正方体的六个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况见下表:体,如图所示.问:长方体的下底面共有多少朵花?21. 如图所示,一个长方体的长、宽、高分别是,,,有一只蚂蚁从点出发沿棱爬行,每条棱不允许重复,则蚂蚁回到点时,最多爬行多远?并把蚂蚁所爬行的路线用字母按顺序表示出来.22. 如图所示是一个底面为正方形的长方体,把它的侧面展开后,恰好是一个边长为的正方形,求这个长方体的体积.答案1. A2. A3. C4. A5. C 7. D 8. D 9. A 10. A11. “成”12.【答案】13. 圆柱14. 715. (1)(3)16.17.18. 719. 、、20.解:因为长方体是由大小相同,颜色、花朵分布也完全相同的四个正方体拼成的,所以根据图中与红色的面相邻的有紫、白、蓝、黄色的面,可以确定出每个小正方体红色面对绿色面,与黄色面相邻的有白、蓝、红、绿色的面,所以黄色面对紫色面,与蓝色面相邻的有黄、红、绿、紫色的面,所以蓝色面对白色面,所以可知长方体下底面从左到右依次是紫色、黄色、绿色、白色,再由表格中花的朵数可知共有(朵).21.解:由于不能重复且最后回到点处,那么经过的棱数便等于经过的顶点数,当走的路线最长时必过所有顶点,则选择合理的路线时尽可能多地经过长为的棱即可.,所以最多爬行.路线举例:.22.解:答:这个长方体的体积是.1.3 截一个几何体1. 如图,用一个平面去截长方体,则截面形状为( )A. B. C. D.2. 棱长是1 cm的小立方体组成如图所示的几何体,那么这个几何体的表面积是( )A. 36 cm2B. 33 cm2C. 30 cm2D. 27 cm23. 如图中几何体的截面是( )A. B. C. D.4. 如图所示,用平面截圆锥,所得的截面形状是( )A. B. C. D.5. 用一个平面去截圆柱得到的图形不可能是( )A. B. C. D.6. 在医学诊断上,有一种医学影像诊断技术叫CT,它的工作原理是______________.7. 用一个平面截一个正方体,所得截面是一个三角形,则留下的较大的一块几何体一定有________个面.8. 如图中几何体是一个圆锥被一平面截下的,由________个面围成,面与面的交线有________条,其中直线有____条.底面形状是________.9. 下面几何体的截面分别是什么?__________ ____________ __________ ________10. 如图给出一个圆锥,用一个平面去截这个圆锥,若要得到下列图形,应怎样去截?11. 把一个边长为2 cm的立方体截成八个边长为1 cm的小立方体,至少需要截___次.12.如图,截一个正方体,可以得到三角形,但要得到一个最大的等边三角形,你会切吗?你能说出你的切法吗?13. 将图①的正方体切去一块,不同的切法可以得到图②~⑤的几何体,它们各有多少个面?多少条棱?多少个顶点?答案1. B2. A3. B4. D5. D6. 利用射线截几何体,图象重建原理7. 78.【答案】 (1). 3 (2). 4 (3). 3 (4). 有可能是半圆,有可能是弓形,但不可能是扇形9. (1). 长方形 (2). 圆 (3). 长方形 (4). 圆10. 解:如图所示.11. 312.解:如图所示.沿着对角线切即可.13. 解:1.4从三个方向看物体的形状一、选择题1. 如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( )A. B. C. D.2. 如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是( )A. B. C. D.3. 如图是一个螺母的示意图,它的俯视图是( )A. B. C. D.4. 下面是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是( )A. B. C. D.5. 如图是由正方体和圆锥组成的几何体,他的俯视图是( )A. B. C. D.6. 如图,这个几何体的主视图是( )A. B. C. D.7. 如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是()A.6B.4C. 3D. 28. 如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是()A. 3个或4个或5个B.4个或5个C. 5个或6个D. 6个或7个二、填空题9. 观察图1中的几何体,指出图2的三幅图分别是从哪个方向看到的.甲是从__________看到的,乙是从____________看到的,丙是从____________看到的.10. 如图所示是一个包装盒的三视图,则这个包装盒的体积是________________.11. 如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是(_______)12. 如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________________个小立方块.三、解答题13. 如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左面看到的形状图.14. 图中是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的主视图和左视图.15. 从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.16. 用小立方块搭一个几何体,使它从正面和从上面看的形状图如图所示.从上面看的形状图中,小方形中的字母表示该位置小立方块的个数,试回答下列问题.(1)x,z各表示多少?(2)y可能是多少?这个几何体最少由几个小立方块搭成?最多呢?答案1. C2. D3. B4. A5. D6. A7. A8. A9. (1). 上面 (2). 正面 (3). 左面10.11. 7212.【答案】5413. 解:如图所示,14.解: 如图所示:15.解:16.解:(1),.(2)可能是或,, .这个几何体最少由个立方体搭成,最多由个立方体搭成.2.1有理数1. 中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元,那么-80元表示()A. 支出20元B. 收入20元C. 支出80元D. 收入80元2. 下列说法错误的是()A. 负整数和负分数统称为负有理数B. 正整数、0、负整数统称为整数C. 正有理数与负有理数组成全体有理数D. 3.14是小数,也是分数3. 在-3.5,227,0,π2,0.616 116 111 6…(相邻两个6之间1的个数逐次加1)中,有理数的个数为()A. 1B. 2C. 3D. 44. 下列选项,具有相反意义的量是()A. 增加20个与减少30个B. 6个老师和7个学生C. 走了100米和跑了100米D. 向东行30米和向北行30米5. 吐鲁番盆地低于海平面155 m,记作-155 m,福州鼓山绝顶峰高于海平面919 m,记作_____m.6. 在有理数中,是整数而不是正数的是_________,是负数而不是分数的是______ .7. 某栏目有一竞猜游戏:两人搭档,一人用语言描述,一人回答,要求描述者不能说出答案中的字或数.如果现在给的数是0,那么你给搭档描述的是_______.8. 把有理数-3,2 017,0,37,-237填入它所属的集合内(如图).9. 一名足球守门员练习折返跑,从守门员守门的位置出发,向前记作正数,返回记作负数,他的记录(单位:m)如下:+5,-3,+10,-8,-6,+12,-10.(1)守门员是否回到了守门的位置?(2)守门员离开守门的位置最远是多少?10. 将一串有理数按下列规律排列,解答下列问题:(1)在A处的数是正数还是负数?(2)负数排在A,B,C,D中的什么位置?(3)第2018个数是正数还是负数?排在对应于A,B,C,D中的什么位置?答案1.C2.C3.C4.A5.+9196.负整数负整数7.既不是正数也不是负数的数(答案不唯一)8.解:如图所示,9. (1)守门员回到了守门的位置;(2)守门员离开守门的位置最远是12 m.10. (1)在A处的数是正数;(2)负数排在B和D的位置;(3)第2 018个数是正数,排在对应于C的位置.2.2数轴一.选择题1. 下列所画的数轴中正确的是()A. B.C. D.2. 在数轴上表示数-3,0,5,2,的点中,在原点右边的有()A. 0个B. 1个C. 2个D. 3个3. 在数轴上原点以及原点左边的点表示的数是()A. 正数B. 负数C. 零和正数D. 零和负数4. 下列说法正确的是()A. -4是相反数B. -与互为相反数C. -5是5的相反数D. -是2的相反数5. 如图所示,根据有理数a,b,c在数轴上的位置,下列关系正确的是()A. b>a>0>cB. a<b<0<cC. b<a<0<cD. a<b<c<06. 比较-2,-,0,0.02的大小,正确的是()A. -2<-<0<0.02B. -<-2<0<0.02C. -2<-<0.02<0D. 0<-<-2<0.02二.填空题7. 数轴上表示-3的点在原点____侧,距原点的距离是______;+7.3在原点的_____侧,距原点的距离是_____。

北师大版数学七年级上册第三章整式及其加减第2节代数式课堂练习

北师大版数学七年级上册第三章整式及其加减第2节代数式课堂练习

第三章整式及其加减第2节代数式课堂练习学校:___________姓名:___________班级:___________考生__________评卷人得分 一、单选题1.当x=﹣1时,代数式3x+1的值是( )A .﹣1B .﹣2C .4D .﹣42.下列式子中,符合代数式的书写要求的是( )A .112cB .2a b c ⨯⨯÷C .32x y ⋅÷D .52xy 3.下列式子中,不属于代数式的是( )A .3a +B .2mnC .23x +D .x y >4.已知多项式224x y +的值是2-,则多项226x y +-的值是( )A .7-B .1-C .1D .75.为了做一个试管架,在长为cm(6)a a >的木板上钻3个相同的小孔(如图),每个小孔的直径为2cm ,则用含a 的代数式表示x 为( )A .34a cm -B .34a cm +C .64a cm -D .64a cm + 6.能用代数式a+0.3a 表示含义的是( )A .妈妈在超市购买物品共需a 元,结账时买塑料袋又花了0.3元,妈妈共花了多少元B .1个长方形的长是a 米,宽是0.3a 米,这个长方形的周长是多少米C .小明骑行车的速度是a 千米/小时,行驶0.3a 小时后,自行车所行驶的路程是多少千米D .一套商品房原价为a 万元,现提价30%,那么现在的售价是多少万元7.根据流程图中的程序,当输入数值x 为-2时,输出数值y 为( )8.若2|2|(3)0x y ++-=,则x y -的值为( )A .-5B .5C .1D .-1评卷人得分 二、填空题 9.体育委员带了100元钱去买体育用品,已知一个足球a 元,一个篮球b 元,则代数式100-3a-2b 表示的意义为_________ .10.若a ,b 互为倒数,x ,y 互为相反数,则代数式4()53x y ab +++的值为____. 11.周末小光陪爸爸去陶瓷商城购买一些茶壶和茶杯,了解情况后发现甲、乙两家商店都在出售同样品牌的茶壶和茶杯,定价相同:茶壶每个30元,茶杯每个5元.现两家都有优惠:甲店“买一送一”(买1个茶壶送1个茶杯);乙店全场9折优惠.小光的爸爸需买茶壶5个,茶杯若干个(不少于5个).设购买茶杯x 个,若在甲店购买则需付________元;若在乙店购买则需付________元.(用含x 的代数式表示)12.某商场经销一种品牌的电视机,每台的进价为x 元,商场将进价提高20%作为零售价进行销售,过了一段时间,商场又以9折优惠价进行促销活动.这时这种品牌的电视机的售价是_________元.(用含x 的代数式表示)13.用代数式表示: (1)汽车每小时行驶70千米,t 小时行驶_________千米;(2)哥哥今年m 岁,哥哥比妹妹大n 岁,妹妹今年_________岁;(3)现有b 棵树排成a 行,则平均每行有_________棵树;(4)x 的5倍与y 的13的差的立方是_________. 14.下列各式中:①21mn -;①1()2S a b =+;①1b a +>;①a ;①a b x +;①7;其中____是代数式.(填序号)15.一个三位数,个位数字是a ,十位数字是b ,百位数字是c ,这个三位数是_________________.评卷人得分三、解答题 16.某超市在“元旦”期间对顾客实行优惠,规定一次性购物优惠办法:少于200元,不予优惠;高于200元但低于500元时,九折优惠;消费500元或超过500元时,其中500元部分给予九折优惠,超过500元部分给予八折优惠.根据优惠条件完成下列任务:(1)王老师一次性购物600元,他实际付款多少元?(2)若顾客在该超市一次性购物x 元,当x 小于500但不小于200时,他实际付款0.9x ,当x 大于或等于500元时,他实际付款多少元?(用含x 的代数式表示) (3)如果王老师两次购物货款合计820元,第一次购物的货款为a 元(200<a <300),用含a 的式子表示王老师两次购物实际付款多少元?17.一个塑料直角三角形模具,形状和尺寸如图所示.(1)求阴影部分的面积;(用含a ,b ,r 的代数式表示)(2)当5cm a =,4cm b =,1cm r =时,计算阴影部分的面积.18.某出租车收费标准为:起步价(行程在3千米以内的价格)为10元,超过3千米,每千米收费1.8元.(1)用代数式表示坐车m 千米(3m >)的价格;(2)当 5.5m =时,应收费多少元?(3)若一次坐车付费19元,则这次行车里程约为多少千米?19.如图所示,用代数式表示图中阴影部分的面积.20.观察下面这列数:12345 ,,,,, 25101726--(1)请你根据这列数的规律写出第8个数是_________,(2)再请你根据这列数的规律,写出表示第n个数的代数式.参考答案:1.B【解析】【详解】【分析】把x 的值代入进行计算即可.【详解】把x=﹣1代入3x+1,3x+1=﹣3+1=﹣2,故选B .【点睛】本题考查了代数式求值,熟练掌握运算法则是解本题的关键.2.D【解析】【分析】根据代数式的书写要求对各选项分析判断后利用排除法求解.【详解】解:A 、112c 应该写成32c ,故本项错误; B 、2a b c ⨯⨯÷应该写成2abc ,故本项错误; C 、32x y ⋅÷应该写成32xy ,故本项错误; D 、52xy 写法正确,故本项正确. 故选择:D.【点睛】本题考查了代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“ • ”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.3.D【解析】【分析】代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式,分别进行各选项的判断即可.【详解】解:A、是代数式,故本选项错误;B、是代数式,故本选项错误;C、是代数式,故本选项错误;D、不是代数式,故本选项正确;故选D.【点睛】本题考查了代数式的知识,注意将代数式与等式及不等式区分开来.4.A【解析】【分析】首先根据2x2+4y的值是-2,求出x2+2y的值是多少;然后应用代入法,求出多项式x2+2y-6的值是多少即可.【详解】解:①2x2+4y=-2,①2(x2+2y)=-2,①x2+2y=-1,①x2+2y-6=-1-6=-7故选:A.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;①已知条件化简,所给代数式不化简;①已知条件和所给代数式都要化简.5.C【解析】【分析】根据条件,4x加上三个圆的直径(6cm)的和是a cm.因而得方程4x+6=a,解关于x的方程.【详解】解:根据题意有4x+6=a,解得x=64acm故选C.【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,结合图形找出等量关系,列出方程,再求解.6.D【解析】【分析】根据每一选项的条件得出式子,从而判断选项.【详解】A、根据题意得:(a+0.3)元,故A选项不符合题意;B、根据题意得:2(a+0.3a)=2.6a(米),故B选项不符合题意;C、根据题意得:a(0.3a)=0.3a2(千米),故C选项不符合题意;D、根据题意得:(a+0.3a)万元,故D选项符合题意,故选D.【点睛】本题考查了列代数式,正确理解题意,弄清各数量之间的关系是解题的关键.7.B【解析】【分析】根据所给的函数关系式所对应的自变量的取值范围,将x的值代入对应的函数即可求得y 的值.【详解】①x=-2,不满足x≥1①对应y=-12x+5,故输出的值y=-12x+5=-12×(-2)+5=1+5=6.【点睛】能够根据所给的自变量的值结合各个函数关系式所对应的自变量的取值范围,确定其对应的函数关系式,再代入计算.8.A【解析】【分析】根据绝对值和平方的非负性可求出x ,y 的值,代入计算即可;【详解】①2|2|(3)0x y ++-=,①20x +=,30y -=,①2x =-,3y =,①235-=--=-x y .故答案选A .【点睛】本题主要考查了绝对值和平方的非负性,准确计算是解题的关键.9.体育委员买3个足球,2个篮球后剩余的钱数【解析】【分析】本题需先根据买一个足球a 元,一个篮球b 元的条件,表示出3a 和2b 的意义,最后得出正确答案即可.【详解】①买一个足球a 元,一个篮球b 元,①3a 表示体育委员买了3个足球,2b 表示买了2个篮球,①代数式100﹣3a ﹣2b :表示体育委员买3个足球,2个篮球后剩余的钱数. 故答案为体育委员买3个足球,2个篮球后剩余的钱数.【点睛】本题主要考查了列代数式,在解题时要根据题意表示出各项的意义是本题的关键. 10.8【解析】由a、b互为倒数,x、y互为相反数可得ab=1,x+y=0,再整体代入所求代数式即可.【详解】解:①由a、b互为倒数,x、y互为相反数,①ab=1,x+y=0,①4(x+y)+5ab+3=4×0+5×1+3=8.故答案为8.【点睛】本题考查了倒数和相反数的定义,解题的关键是要熟练掌握两数的关系与对应等式的转化.11.5x+125 4.5x+135【解析】【分析】由题意可知,在甲店买一把茶壶赠送茶杯一只,故需付5只茶壶的钱和x-5只茶杯的钱,已知茶壶和茶杯的钱,可列出付款关于x的式子;在乙店购买全场9折优惠,同理也可列出付款关于x的式子;【详解】解:设购买茶杯x只,①在甲店买一把茶壶赠送茶杯一只,且茶壶每把定价30元、茶杯每只定价5元,①在甲店购买需付:5×30+5×(x-5)=5x+125;①在乙店购买全场9折优惠,①在乙店购买需付:30×0.9×5+5×0.9×x=4.5x+135;故答案为5x+125;4.5x+135;【点睛】本题考查了列代数式问题,关键是根据题意列出代数式解答即可.12.1.08x【解析】【分析】根据题意可以得到最后打折后的零售价,从而可以解答本题.【详解】解:由题意可得,这种品牌该型号的电视机的零售价应该是:x (1+20%)×0.9=1.08x (元).故答案为1.08x .【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.13. 70t m-nb a 315x y 3-() 【解析】【分析】(1)已知速度是70千米/小时,时间是t 小时,则根据路程=速度×时间,即可解答问题. (2)“哥哥比妹妹大n 岁”,也就是妹妹比哥哥小n 岁,据此列出含未知数的式子即可; (3)“现有b 棵树排成a 行” ,据此列出含未知数的式子即可;(4)先计算x 的5倍,再减去y 的13,最后计算立方即可得到答案. 【详解】解:(1)t 小时行驶了70×t=70t (千米);(2)妹妹今年m-n (岁);(3)平均每行有b a 棵; (4)315x y 3-(); 故答案为(1)70t ,(2)m-n ,(3)b a ,(4)315x y 3-() 【点睛】此题考查用字母表示数,关键是把给出的字母当做已知数,再根据基本的数量关系列式. 14.①①①①【解析】【分析】根据代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式可得答案.【详解】解:①21mn -,①a ,①a b x +,①7,这四个是代数式;①1()2S a b =+是等式;①1b a +>是不等式.故答案为①①①①.【点睛】 此题主要考查了代数式,关键是掌握代数式的定义.15.10010c b a ++【解析】【分析】个位上的数字是几,表示几个一,十位上的数字是几就表示几个十,百位上的数字是几就表示几个百;由此求解.【详解】解:百位上的数字是c 表示:100×c=100c ;十位的数字是b 表示:10×b=10b ;个位上的数字a 表示:1×a=a ;这个数就可以表示为:100c+10b+a ;故答案为100c+10b+a .【点睛】本题考查了列代数式;掌握三位数的表示方法是解题的关键.16.(1)530元;(2)0.8x +50;(3)0.1a +706【解析】【分析】(1)根据题干,600元处于第三档,所以让500元部分按9折付款,剩下的100按8折付款即可;(2)根据题意,其中500元部分给予九折优惠,超过500元部分给予八折优惠即可得出答案;(3)根据题意可知,第一次购物实际付款为0.9a ,第二次购物的货款为(820-a )元,处于第三档,然后按照“其中500元部分给予九折优惠,超过500元部分给予八折优惠”计算,然后把两次的付款额相加即可得出答案.【详解】解:(1)由题意可得:500×0.9+(600﹣500)×0.8=530(元),答:他实际付款530元;(2)由题意可得,他实际付款:500×0.9+(x ﹣500)×0.8=(0.8x +50)元;(3)由题意可得,老师第一次购物实际付款为0.9a ,则第二次购物的货款为(820-a )元,①200<a <300,①520820620a <-<,①第二次购物实际付款为:50090%(820500)80%450(320)0.87060.8a a a ⨯+--⨯=+-⨯=-①老师两次购物实际付款:0.9a+706-0.8a =0.1a +706.【点睛】本题主要考查列代数式,读懂题意是解题的关键.17.(1)21ab πr 2-;(2)(10-π)cm 2 【解析】【分析】(1)因为图形中阴影部分面积不规则,所以可以用三角形面积减去圆的面积,即是阴影部分面积,直角三角形面积公式是12ab ,圆的面积是2πr ,表示出即可; (2)代入有关数据求值即可.【详解】解:(1)①直角三角形面积公式是两条直角边乘积的一半,①直角三角形面积是12ab , ①圆的面积是2πr ,①图中阴影部分面积是:21ab πr 2- (2)当a=5cm ,b=4cm ,r=1cm 时,①21ab πr 2-=12×4×5-π×21=(10-π)cm 2. 【点睛】此题主要考查了直角三角形的面积公式,以及圆的面积求法,发现阴影部分面积是两者之差是解决问题的关键,这也是在求阴影部分面积中一个常用方法.18.(1)1.8m+4.6元;(2)14.5元;(3)8千米.【解析】【分析】(1)根据行程超过3千米时的收费标准进行计算;(2)把m=5.5代入(1)中相应的代数式进行求值即可;(3)设他坐了x 千米,根据该乘客付费19元列出方程求解即可.【详解】(1)当行程超过3千米即x >3时,收费为:10+(m-3)×1.8=1.8m+4.6(元). (2)当m=5.5时,1.8m+4.6=1.8×5.5+4.6=14.5(元).答:乘客坐了5.5千米,应付费14.5元;(3)设他坐了x 千米,由题意得:10+(x-3)×1.8=19,解得x=8.答:他乘坐了8千米.【点睛】该题考查了一元一次方程的应用,列代数式及求代数式的值等问题;解决问题的关键是读懂题意,找到所求的量的等量关系,进而列出式子.19.图1中阴影部分的面积为mn pq -;图2中阴影部分的面积为24ab x -.【解析】【分析】图1中,用大长方形的面积减去小长方形的面积,用含有p ,q ,m ,n 的式子表示图中阴影部分的面积即可;图2中,用长方形的面积减去4个小正方形的面积,用含有a ,b ,x 的式子表示图中阴影部分的面积即可.【详解】图1中阴影部分的面积为mn pq -;图2中阴影部分的面积为24ab x -.【点睛】此题考查了列代数式,图形面积的求法,以及代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;①已知条件化简,所给代数式不化简;①已知条件和所给代数式都要化简.20.(1)865-;(2)()1211n n n --+ 【解析】【分析】 (1)先观察前面几个数,得到一定的规律,然后写出第8个数即可得到答案;(2)先分析前面几个数的特点,从前面几个数得到:()1211n n n --+; 【详解】(1)根据题意,从前面几个数得第8个数为:865-(2)观察数据得到: 第一个数:11211(1)112--=+ , 第二个数:21222(1)215--=-+, 第三个数:31213(1)3110--=+ ①这列数的规律得表示第n 个数的代数式是: ()1211n n n --+; 【点睛】 本题主要考查了数字的变化类问题,解决问题的关键是仔细观察数据并认真找规律.。

2020年北师大版数学七年级上册《有理数》课堂练习

2020年北师大版数学七年级上册《有理数》课堂练习

七年级数学上册2.1《有理数》课堂练习一、选择题1.下面四个数中,负数是( )A.-3 B.0 C.0.2 D.32.在-1,0,1,2这四个数中,既不是正数也不是负数的是( ) A.-1 B.0 C.1 D.23.如果+10%表示“增加10%”,那么“减少8%”可以记作( )A.-18% B.-8% C.+2% D.+8%4.下列说法正确的是()A.一个数前面加上“-”号,这个数就是负数;B.零既不是正数也不是负数C.零既是正数也是负数;D.若a是正数,则-a不一定就是负数5.下列语句:①不带“-”号的数都是正数;②正数前面加上“-”号表示的数就是负数;③不存在既不是正数,也不是负数的数;④0℃表示没有温度,其中正确的有( ) A.0个B.1个C.2个D.3个二、填空题6.向东走10米记作-10米,那么向西走5米,记作____________.7.某城市白天的最高气温为零上6℃,到了晚上8时,气温下降了8℃,该城市当晚8时的气温为_________.8.如果某股票第一天跌了3.01%,应表示为________,第二天涨了4.21%,?应表示为_____________.9.一种零件标明的要求是10±0.02 mm,表示这种零件的标准尺寸为直径10mm,该零件最大直径不超过____________mm,最小不小于____________mm,为合格产品.10.在图纸上零件的加工尺寸为20±0.003(mm),甲工人加工出来的零件尺寸为20.002mm,乙工人加工出来的零件尺寸为19.995mm,_______工人加工出来的零件合格,加工出来的零件允许的最小尺寸是_______mm.三、解答题11.把下列各数填在相应的括号内-7,3.5,-3.14,227,13,0,1713,0.03%,-314,10,-708.(1)自然数集合{ …}(2)负数集合{ …}(3)负分数集合{ …}12.在一次数学测验中,小丽得了95分,记为+15分,小强和小明分别得了100分和75分,他们的成绩应记多少?13.某老师把某一小组五名同学的成绩简记为:+20,-5,0,+18,-8,又知道记为0的成绩表示90分,正数表示超过90分,则五名同学的平均成绩为多少分?14.测量一座公路桥的长度,各次测得的数据是:255m,270m,265m,267m,258m(1)求这5次测量的平均值;(2)以求出的平均值为基准数,用正数、负数表示出各次测量的数值与平均值的差.15.某厂每月计划用煤500吨,把超过计划的用煤量用正数表示,不足计划的用煤量用负数表示,有5个月的用煤量记录如下:+1吨、-2吨、+1.5吨、-0.5吨、-1吨.(1)分别求出每个月的实际用煤量.(2)请说明,5个月的实际用煤量与5个月的计划用煤量相比节约了吗?1、在最软入的时候,你会想起谁。

七年级数学上册第2章《有理数的混合运算》课堂练习(北师大版)

七年级数学上册第2章《有理数的混合运算》课堂练习(北师大版)

2.11 有理数的混合运算一、选择题1.若m>0,n<0,则有( ) .A .0>-n mB .0>+n mC .032>+m mD .032>+n n2.已知523--+=x x x y ,当x=-3时,y=-20,当x=3时,y 的值是( ) .A .-17B .44C .28D .173.如果()()01122=-++b a ,那么()b a -2的值为( ) . A .0 B .4 C .-4 D .24.代数式()522+-a 取最小值时,a 值为( ) .A .a=0B .a=2C .a=-2D .无法确定5.六个整数的积36-f e d c b a =⋅⋅⋅⋅⋅,f e d c b a 、、、、、互不相等,则 =+++++f e d c b a ( ) .A .0B .4C .6D .86.计算()()2002200122-+-所得结果为( ) .A .2B .20012C .20012-D .20022二、填空题1.有理数混合运算的顺序是__________________________.2.已知m 为有理数,则2m _________0,12+m _________0,22--m _______0. (填“>”、“<”或“≥”=)3.平方得16的有理数是_________,_________的立方等于-8.4.()()()()=----10099654321Λ__________.5.一个负数减去它的相反数后,再除以这个负数的绝对值,所得商为__________.6.1-(-2)×(-3)÷3=____________;7.1-(-2)÷(-3)×3=____________.三、解答题1.计算(1)331624⨯÷+; (2))532(0)21(312-÷⨯--; (3))157125(24)3153(15-⨯-+-⨯; (4))8(161571)36()1855(-⨯+-⨯-; (5))]3()6.0321(4[2-÷⨯-+---; (6)])3(2[31)5.01(124--⨯⨯---. 2.计算:.)34()32()1()3(2)2.0(1)1(2220012222002÷+-⨯---+-⨯- 3.当n 为奇数时,计算nn2)1(1-+的值. 4.试设计一个问题,使问题的计算结果是26a .5.某户搬入新楼,为了估计一下该月的用水量(按30天计算).对该月的头6天水表的显示数进行了记录,如下表:而在搬家之前由于搞房屋装修等已经用了15吨水.问:(1)这6在每天的用水量;(2)这6天的平均日用水量;(3)这个月大约需要用多少吨水.6.如图,把一个面积为1的正方形等分成两个面积为21的长方形,接着把其中一个面积为21的长方形等分成两个面积为41的正方形,再把其中一个面积为41的正方形等分成两个面积为81的长方形,如此进行下去,试观察图形来计算:.2561814121++++Λ7.小明靠勤工俭学的收入维持上大学的费用,下面是小明一周的收支情况表(收入为正,单位:元)周一 周二 周三 周四 周五 周六 周日+15 +10 0 +20 +15 +10 +14-8 -12 -19 -10 -9 -11 -8(1)在一周内小明有多少节余;(2)照这样一个月(按30天计算)小明能有多少节余;(3)按以上支出,小明一个月(按30天计算)至少要赚多少钱,才以维持正常开支.参考答案一、选择题1.C 2.C 3.C 4.B 5.A 6.B二、填空题1.略;2.≥,>,<;3.4±,-2;4.1;5.-2.6.-17. -1三、解答题1.(1)70 (2)312 (3)542- (4)-385.5 (5)2.2 (6)61 2.4337- 3.04.以a 为棱长的正方体的表面积为26a 。

北师大版数学七年级下册第一章整式的乘除第6节完全平方公式课堂练习

北师大版数学七年级下册第一章整式的乘除第6节完全平方公式课堂练习

第一章整式的乘除第6节完全平方公式课堂练习学校:___________姓名:___________班级:___________考生__________ 评卷人 得分一、单选题1.在下列多项式的乘法中,不可以用乘法公式计算的是( ) A .()()22m n n m +- B .113322m m ⎛⎫⎛⎫+-- ⎪⎪⎝⎭⎝⎭C .()()5353m n m n -+D .()()m n m n -+-2.已知4x y -=,3xy =-,则22x y +=( ) A .22B .19C .16D .103.计算(x +1)2的结果是( ) A .x 2+1B .2x +1C .x 2+2x +1D .x 2+2x4.若216x ax -+是完全平方式,则a 的值等于( ) A .2B .4或4-C .2或2-D .8或8-5.利用图形中面积的等量关系可以得到某些数学公式,例如,根据图甲,我们可以得到的数学公式是:()2222m n m mnn +=++.你根据图乙能得到的数学公式是( )A .()222m n m n -=- B .()2222m n m mn n +=++C .()2222m n m mn n -=-+ D .()()22m n m n m n -=+-6.下列运算,正确的是( ) A .235x y x += B .()2239x x +=+ C .()2224xy x y =D .632x x x ÷=7.已知:8x y +=,12xy =,则22x y +的值是( ) A .40B .48C .52D .888.下列运算中正确的是( )A .33()a a -=- B .55()1a a ÷-=-C .32351128ab a b⎛⎫= ⎪⎝⎭ D .222(3)9a b a b -=-9.已知a =5+4b ,则代数式a 2﹣8ab +16b 2的值是( ) A .16 B .20C .25D .30评卷人 得分二、填空题 10.若221x x m -+-是一个完全平方式,则m =______. 11.a b c d叫做二阶行列式,它的算法是:ad ﹣bc ,请计算1223a a a a +---=_______.12.若多项式x 2﹣kxy +9y 2可以分解成(x ﹣3y )2.则k 的值为___.13.已知多项式a 2+4与一个单项式的和是一个多项式的平方,则满足条件的单项式是___(写出一个即可). 评卷人 得分三、解答题 14.学完整式的乘法公式后,爱思考的小丽同学为了探究公式之间的联系,她把一个长为2a ,宽为2b 的长方形沿图1中虚线用剪刀平均分成四个小长方形,然后拼成一个大正方形(如图2).请你根据小丽的操作回答下列问题:(1)图1中每个小长方形的长和宽分别为______,图2中大正方形的边长为______,中间小正方形(阴影部分)的边长为______(均用含a ,b 的式子表示);(2)小丽发现可以用两种方法求图2中小正方形(阴影部分)的面积,请你帮她写出来(直接用含a ,b 的式子表示,不必化简):方法1:________________________,方法2:________________________; (3)根据(2)中的结论,探究()2a b +,()2a b -,ab 间的等量关系;(4)根据(3)中的等量关系,解决如下问题:知a ,b 满足5a b +=,1a b -=,请求出ab 的值.15.如图①所示,把一个长2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后拼成如图①所示的一个正方形.(1)直接写出图①中阴影部分图形的边长;(2)请你用两种不同的方法表示图①中阴影部分的面积(用含m ,n 的代数式表示); (3)根据(2)中的结论,请你写出代数式()2m n +,()2m n -和mn 之间的数量关系,并利用计算加以验证.16.图a 是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图b 的形状拼成一个正方形.(1)你认为图b 中的阴影部分的正方形的边长等于________. (2)请用两种不同的方法求图b 中阴影部分的面积. 方法1:______________________; 方法2:______________________.(3)观察图b 你能写出下列三个代数式之间的等量关系吗? 代数式:22(),(),m n m n mn +-.______________________.(4)根据(3)题中的等量关系,解决如下问题:若9,8m n mn +==,求: ①22m n +的值; ①2()m n -的值.17.已知a ﹣b =4,ab =2,求下列各式的值: (1)(a +b )2 (2)a 3b +ab 318.已知x ﹣y =6,xy =7,求下列代数式的值: (1)3x ﹣y (3+4x ); (2)x 2+y 2.19.先化简,再求值:()()()222222x x y x y x y -+---,其中12x =,1y =.20.如图:用四块完全相同的小长方形拼成的一个“回形”正方形. (1)用两种不同代数式表示图中的阴影部分的面积,写出你得到的等式.(2)利用(1)中的结论计算:当a +b =2,ab =34时,求a ﹣b ;(3)根据(1)中的结论,直接写出x +1x 和x ﹣1x 之间的关系;若x +1x =3时,求x ﹣1x的值.参考答案:1.A 【解析】 【分析】根据完全平方公式及平方差公式逐一判断即可. 【详解】解:A 、()()22m n n m +-属于多项式乘多项式,不符合乘法公式,故符合题意;B 、2111333222m m m ⎛⎫⎛⎫⎛⎫+--=-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,符合完全平方公式进行运算,故不符合题意; C 、()()5353m n m n -+符合平方差公式进行运算,故不符合题意;D 、()()()2m n m n m n -+-=--,符合完全平方公式进行运算,故不符合题意; 故选A . 【点睛】本题主要考查完全平方公式及平方差公式,熟练掌握完全平方公式-()2222a b a ab b ±=±+及平方差公式-()()22a b a b a b +-=-是解题的关键.2.D 【解析】 【分析】根据完全平方公式的变形即可求解. 【详解】①4x y -=,3xy =-,①22x y +=()2x y -+2xy =16-6=10 故选D . 【点睛】此题主要考查完全平方公式的应用,解题的关键是熟知完全平方公式的特点. 3.C 【解析】 【分析】根据完全平方公式计算即可.【详解】解:(x+1)2=x2+2x+1,故选:C.【点睛】本题考查了完全平方公式,熟记完全平方公式是解决本题的关键.4.D【解析】【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定a的值.【详解】解:①x2-ax+16=x2-ax+42,①-ax=±2•x•4,解得a=8或-8.故选:D.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.5.C【解析】【分析】图乙中求边长为(m-n)的正方形的面积得到数学公式.【详解】解:图乙可得边长为(m-n)的正方形的面积=(m-n)2=m2-2mn+n2.故选C.【点睛】本题考查了完全平方公式的几何背景:运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.6.C【解析】【分析】直接利用合并同类项法则以及完全平方公式和积的乘方运算法则、同底数幂的乘除运算法则分别计算即可得出答案. 【详解】解:A 、2x 和3y 不是同类项,不能合并,故 A 错误;B 、()22369x x x +=++,故 B 错误;C 、()2224xy x y =,故 C 正确;D 、63633x x x x -÷==,故 D 错误;故选:C . 【点睛】此题主要考查了合并同类项以及完全平方公式和积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键. 7.A 【解析】 【分析】由完全平方公式变形:222()2x y x y xy +=+-,代入计算即可得到答案. 【详解】解:①8x y +=,12xy =, ①222()2x y x y xy +=+- =28212-⨯ =40; 故选:A . 【点睛】本题考查了完全平方公式变形求值,以及求代数式的值,解题的关键是掌握完全平方公式进行解题.【解析】 【分析】根据负指数幂的运算法则、同底数幂的除法及积的乘方、完全平方公式依次计算即可确定正确选项. 【详解】 A 、331a a -=,故A 选项错误; B 、()55551a a a a ⎡⎤÷-=÷-=-⎣⎦,B 正确,符合题意;C 、32361128ab a b ⎛⎫= ⎪⎝⎭,故C 选项错误;D 、()222396a b a ab b -=-+,故D 选项错误. 故选:B . 【点睛】题目主要考查了负指数幂、同底数幂的除法及积的乘方运算法则及完全平方公式,掌握运算方法及技巧是解题关键. 9.C 【解析】 【分析】利用完全平方公式得到:()2228164a ab b a b -+=-,然后根据54a b =+求解即可得到答案. 【详解】 解:①54a b =+ ①45a b -=①()2228164a ab b a b -+=- ①()22228164525a ab b a b -+=-== 故选C. 【点睛】本题主要考查了完全平方公式和代数式求值,解题的关键在于能够熟练掌握完全平方公式.【解析】 【分析】根据完全平方公式进行求解即可. 【详解】解:①221x x m -+-是一个完全平方式, ①()22211x x m x -+-=-, ①11m -=, ①2m =; 故答案为2. 【点睛】本题主要考查完全平方公式,熟练掌握完全平方公式是解题的关键. 11.2a ﹣7 【解析】 【分析】根据二阶行列式的计算法则列出算式,再利用整式的混合运算顺序和运算法则化简即可得. 【详解】解:原式=(a +1)(a -3)-(a -2)2 =a 2-3a +a -3-(a 2-4a +4) =a 2-3a +a -3-a 2+4a -4 =2a -7故答案为:2a -7. 【点睛】此题考查整式的混合运算,正确掌握多项式乘以多项式的计算法则以及完全平方公式是解题的关键. 12.6 【解析】 【分析】利用完全平方公式展开后对应系数相等,即可得出.【详解】解:①(x ﹣3y )2=x 2﹣6xy +9y 2,由题意得:x 2﹣kxy +9y 2= x 2﹣6xy +9y 2,①k =6.故答案为:6.【点睛】此题考查了因式分解一运用公式法,熟练掌握完全平方公式是解本题的关键.13.4a 或-4a 或4116a 【解析】【分析】根据完全平方公式分析即可解答.【详解】解:添加的方法有3种,分别是:添加4a ,得2244(2)a a a ++=+;添加4a -,得2244(2)a a a -+=-;添加4116a ,得4222114(2)164a a a ++=+, 综上所述,满足条件的单项式为414,4,16a a a -, 故答案为:4,4a a -,或4116a (任填一个). 【点睛】 此题考查完全平方公式,熟记完全平方式的特点是解题的关键.完全平方公式:()2222ab a ab b ±=±+.14.(1)a 、b ,a +b ,a -b ;(2)()24a b ab +-,()2a b -;(3)()()224a b ab a b +-=-;(4)6【解析】【分析】(1)由“一个长为2a ,宽为2b 的长方形沿图1中虚线用剪刀平均分成四个小长方形”可得每个长方形的长和宽,然后根据图形可求解问题;(2)根据图形及割补法可进行求解问题;(3)由(2)可直接进行求解;(4)由5a b +=,1a b -=可得()225a b +=,()21a b -=,然后根据(3)的关系式可进行求解.【详解】解:(1)由题意得:图1中每个小长方形的长和宽分别为a 、b ,图2中大正方形的边长为a +b ,中间小正方形(阴影部分)的边长为a -b ;故答案为a 、b ,a +b ,a -b ;(2)方法1:利用大正方形的面积减去四个小长方形的面积=小正方形的面积,即为()24a b ab +-;方法2:由(1)中小正方形的边长为a -b ,然后根据正方形面积公式求解,即为()2a b -;故答案为()24a b ab +-,()2a b -;(3)由(2)中的结论可得()2a b +,()2a b -,ab 间的等量关系为()()224a b ab a b +-=-; (4)①5a b +=,1a b -=,①()225a b +=,()21a b -=, 由(3)可得()()224a b ab a b +-=-,①2541ab -=,①6ab =.【点睛】本题主要考查完全平方公式的应用,熟练掌握完全平方公式是解题的关键.15.(1)m n -;(2)()2m n -,()24m n mn +-;(3)()()224m n m n mn -=+-,理由见解析【解析】【分析】(1)根据拼图即可得图①中的阴影部分的正方形的边长;(2)根据正方形和长方形的面积即可用两种不同的方法表示图①中阴影部分的面积: (3)根据(2)中的结论,即可写出三个代数式(m +n )2,(m −n )2,mn 之间的等量关系,再根据完全平方公式化简进行验证.【详解】解:(1)(1)观察图①中的阴影部分的正方形的边长为:m −n .故答案为:m n -;(2)两种不同的方法表示图①中阴影部分的面积:方法1:(m −n )2;方法2:(m +n )2−4mn故答案为:①()2m n -,①()24m n mn +-;(3)由(2)可得()()224m n m n mn -=+-理由:左边=222()2m n m n mn -=+-右边=222()424m n mn m n mn mn +-=++-222m n mn =+-22()()4m n m n mn ∴-=+-. 【点睛】 本题考查了完全平方公式的几何背景,解决本题的关键是熟练掌握完全平方公式. 16.(1)(m -n );(2)(m -n )2;(m +n )2-4mn ;(3)(m -n )2=(m +n )2-4mn ;(4)①65;①49.【解析】【分析】(1)根据小长方形的长减去小长方形的宽即可得到阴影部分的正方形的边长;(2)①根据小长方形的长减去小长方形的宽即可得到阴影部分的正方形的边长,进而求得阴影部分的面积;①根据大正方形的面积减去4个长方形的面积求得阴影部分的正方形的面积,进而求得阴影部分的面积;(3)根据完全平方公式的变形即可求得;(4)①根据222()2m n m n mn +=+-,将已知代入求解即可;①根据22()()4m n m n mn -=+-,将已知代入求解即可.【详解】(1)根据小长方形的长减去小长方形的宽即可得到阴影部分的正方形的边长, 小长方形的长为m ,宽为n ,∴阴影部分的正方形的边长为()m n -,故答案为:()m n -,(2)①方法同(1),则面积为:2()m n -,①根据大正方形的面积减去4个长方形的面积求得阴影部分的正方形的面积,即2()4m n mn +-,故答案为:2()m n -,2()4m n mn +-;(3)222222()2,()2m n m mn n m n m mn n +=++-=-+,22()()4m n m n mn ∴+--=,即22()()4m n m n mn -=+-,故答案为:22()()4m n m n mn -=+-,(4)①222()2m n m n mn +=+-,9,8m n mn +==,222916811665m n ∴+=-=-=,①22()()4m n m n mn -=+-,9,8m n mn +==,22()948813249m n ∴-=-⨯=-=.【点睛】本题考查了完全平方式与几何面积,掌握完全平方公式是解题的关键.17.(1)24;(2)40【解析】【分析】(1)利用(a +b )2=(a ﹣b )2+4ab ,变形整式后整体代入求值;(2)先因式分解整式,再利用a 2+b 2=(a ﹣b )2+2ab 变形整式后代入求值.【详解】解:(1)①a﹣b=4,ab=2,①原式=(a﹣b)2+4ab=42+4×2=16+8=24;(2)①a﹣b=4,ab=2,①原式=ab(a2+b2)=ab[(a﹣b)2+2ab]=2×(16+2×2)=2×20=40.【点睛】本题考查了整式的恒等变形和整体代入的思想方法,掌握和熟练运用完全平方公式的几个变形,是解决本题的关键.18.(1)3(x﹣y)﹣4xy,﹣10;(2)(x﹣y)2+2xy,50.【解析】【分析】(1)去括号化简,再代入求值即可;(2)先根据完全平方公式进行变形,再代入求出即可.【详解】解:(1)3x﹣y(3+4x)=3x﹣3y﹣4xy=3(x﹣y)﹣4xy①x﹣y=6,xy=7,①原式=3×6﹣4×7=18﹣28=﹣10.(2)x2+y2=(x﹣y)2+2xy①x﹣y=6,xy=7,①原式=62+2×7=36+14=50.【点睛】本题考查了完全平方公式,能熟记完全平方公式的变形是解此题的关键.19.4xy ,2【解析】【分析】根据多项式乘法和完全平方公式,平方差公式可以化简题目中的式子,然后将x、y 的值代入化简后的式子即可解答本题.【详解】解:原式()()222222444x x y x xy y =----+222222444x x y x xy y =-+-+-4xy =当12x =,1y =时,原式14122=⨯⨯= 【点睛】本题考查了整式的混合运算-化简求值,解答本题的关键是明确整式化简求值的计算方法. 20.(1)22(a b)(a b)+--或4ab ;(2)1a b -=;(3)15x x-=±. 【解析】【分析】(1)根据阴影部分的面积=4个小长方形的面积=大正方形面积-小正方形的面积,利用完全平方公式即可得出答案;(2)根据完全平方和与完全平方差公式之间的结构关系进行转化,然后将已知代入求解即可得出答案;(3)先把已知式子进行转化,即2310x x -+=转化为130x x -+=,再根据(1)得到的等式计算即可得出答案.【详解】解:(1)阴影部分的面积为22(a b)(a b)+--或4ab得到等式22=4a ()()b a b a b +--说明:222222=a 2(a (()2))4ab b ab b a a b a b b ++--+=+--左边=右边,等式成立.(2)2223=(a+b)4ab=24)4(1a b --⨯=- ①1a b -=(负值舍去)(3)根据(1)中结论,可得22114x x x x ⎛⎫⎛⎫-=+- ⎪ ⎪⎝⎭⎝⎭ ①2310x x -+=两边同时除以()0x x ≠可得130x x -+= ①13x x+= ①221145x x x x ⎛⎫⎛⎫-=+-= ⎪ ⎪⎝⎭⎝⎭ ①15x x-=± 【点睛】 本题考查的是完全平方公式,注意一个正数的平方根有两个,它们互为相反数.。

七年级数学北师大版上册课时练第5章《应用一元一次方程——打折销售》(含答案解析)

七年级数学北师大版上册课时练第5章《应用一元一次方程——打折销售》(含答案解析)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!课时练第5单元应用一元一次方程——打折销售1.某品牌服装店一次同时售出两件上衣,每件售价都是135元,若按成本计算,其中一件盈利25%,另一件亏损25%,则这家商店在这次销售过程中()A.盈利为0B.盈利为9元C.亏损为8元D.亏损为18元2.出售两件衣服,每件600元,其中一件赚25%,另一件赔25%,那么这两件衣服售出后商店是()A.赚80元B.亏80元C.不赚不亏D.以上答案都不对3.为迎接“双十一”购物节,东关街某玩具经销商将一件玩具按进价提高60%后标价,销售时按标价打折销售,结果相对于进价仍可获利20%,则这件玩具销售时打的折扣是()A.7.5折B.8折C.6.5折D.6折4.甲、乙两店分别购进一批无线耳机,每副耳机的进价甲店比乙店便宜10%,乙店的标价比甲店的标价高5.4元,这样甲乙两店的利润率分别为20%和17%,则乙店每副耳机的进价为()A.56元B.60元C.72元D.80元5.如图,表中给出的是某月的月历,任意选取“H”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能的是()A.63B.70C.96D.1056.小明在某月的日历上圈出了三个数a、b、c,并求出了它们的和为39,则这三个数在日历中的排位位置不可能的是()A.B.C.D.7.某药店在防治新冠病毒期间,市场上抗病毒用品紧缺的情况下,将某药品提价100%,物价部门查处后,限定其提价幅度只能是原价的14%,则该药品现在降价的幅度是()A.43%B.45%C.57%D.55%8.代数式与代数式k+3的值相等时,k的值为()A.7B.8C.9D.109.一轮船往返于A、B两港之间,逆水航行需3小时,顺水航行需2小时,水速是3千米/时,则轮船在静水中的速度是()A.18千米/时B.15千米/时C.12千米/时D.20千米/时10.幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为.11.一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.若水流速度是3千米/时,则甲、乙两码头之间的距离是千米.12.某工艺品车间有20名工人,平均每人每天可制作12个大花瓶或10个小饰品,已知2个大花瓶与5个小饰品配成一套,则要安排名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套.13.一旅客携带了30千克行李乘飞机,按民航规定,旅客最多可免费携带20千克行李,超出部分每千克按飞机票价的1.5%购买行李票,该旅客此次机票与行李票共花了920元,则他的飞机票价是元.14.为鼓励节约用电,某地对用户用电收费标准作如下规定:如果每月每户用电不超过100度,那么每度电价按0.55元收费,如果超过100度,那么超过部分每度电价按1元收费.某户居民在三月需缴纳电费105元,则该户共用电度.15.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有人.16.代数式5x +与5(x﹣1)的值互为相反数,则x的值为.17.某商场从厂家购进了A、B两种品牌足球共100个,已知购买A品牌足球比购买B品牌足球少花2800元,其中A品牌足球每个进价是50元,B品牌足球每个进价是80元.(1)求购进A、B两种品牌足球各多少个?(2)在销售过程中,A品牌足球每个售价是80元,很快全部售出;B品牌足球每个按进价加价25%销售,售出一部分后,出现滞销,商场决定打九折出售剩余的B品牌足球,两种品牌足球全部售出后共获利2200元,有多少个B 品牌足球打九折出售?18.机械厂加工车间有68名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人加工大、小齿轮,才能使每天加工的大、小齿轮刚好配套?19.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答,下表记录了5个参赛者的得分情况.参赛者答对题数答错题数得分A200100B19194C18288D14664E101040(1)参赛者答对一道题得多少分,答错一道题扣多少分?(2)参赛者F得76分,他答对了几道题?20.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺柱和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?21.佳乐家超市元旦期间搞促销活动,活动方案如下表:一次性购物优惠方案不超过200元不给予优惠优惠10%超过200元,而不超过1000元超过1000元其中1000元按8.5折优惠,超过部分按7折优惠小颖在促销活动期间两次购物分别支付了134元和913元.(1)小颖两次购买的物品如果不打折,应支付多少钱?(2)在此活动中,他节省了多少钱?22.某工程交由甲、乙两个工程队来完成,已知甲工程队单独完成需要60天,乙工程队单独完成需要40天(1)若甲工程队先做30天后,剩余由乙工程队来完成,还需要用时天(2)若甲工程队先做20天,乙工程队再参加,两个工程队一起来完成剩余的工程,求共需多少天完成该工程任务?参考答案1.D2.B3.A4.B5.C6.D7.A8.B9.B10.﹣2.11.60.12.5.13.800.14.150.15.7.16..17.解:(1)设购进A品牌足球x个,则购进B品牌足球(100﹣x)个,根据题意,得80×(100﹣x)﹣50x=2800,解得x=40.100﹣x=60.答:购进A品牌足球40个,则购进B品牌足球60个;(2)设有y个B品牌足球打九折出售,根据题意,得(80﹣50)×40+80×25%×(60﹣y)+[80×(1+25%)×90%﹣80]y=2200.解得y=20.答:有20个B品牌足球打九折出售.18.解:设需要安排x名工人加工大齿轮,则需要安排(68﹣x)名工人加工小齿轮,依题意有3×16x=2×10(68﹣x),解得x=20,68﹣x=68﹣20=48.故需要安排20名工人加工大齿轮,需要安排48名工人加工小齿轮.19.解:(1)由参赛选手A可得:答对1题得100÷20=5(分),设答错一题扣x分,根据参赛选手B的得分列得:19×5﹣x=94,解得:x=1,则答对一道题得5分,答错一道题扣1分;(2)设参赛选手F答对y道题,根据题意得:5y﹣1×(20﹣y)=76,解得:y=16,则参赛选手F答对16道题.20.解:(1)设调入x名工人,根据题意得:16+x=3x+4,解得:x=6,则调入6名工人;(2)16+6=22(人),设y名工人生产螺柱,根据题意得:2×1200y=2000(22﹣y),解得:y=10,22﹣y=22﹣10=12(人),则10名工人生产螺柱,12名工人生产螺母.21.解:(1)①∵134元<200×90%=180元∴小颖不享受优惠;②∵第二次付了913元>1000×85%=850元∴小颖享受优惠,其中1000元按8.5折优惠,超过1000元部分按7折优惠.设小颖第二次所购价值x元的货物,根据题意得85%×1000+(x﹣1000)×70%=913解得x=10901090+134=1224(元)答:小颖两次购买的物品如果不打折,应支付1224元钱;(2)1090﹣913=177(元)答:在此次活动中,他节省了177元钱.22.解:(1)设剩余由乙工程队来完成,还需要用时x天,依题意得:+=1解得x=20.即剩余由乙工程队来完成,还需要用时20天故答案是:20;(2)设共需x天完成该工程任务,根据题意得+=1解得x=36答:共需36天完成该工程任务.。

北师大版七年级上册数学书答案

北师大版七年级上册数学书答案

北师大版七年级上册数学书答案篇一:北师大版七年级上册数学配套练习(带答案)北师大七年级上第一章丰富的图形世界第课时家庭作业生活中的立体图形1)学习目标:1.经历从现实世界中抽象出几何图表的过程,感受图形世界的丰富多彩。

2.在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱、棱台、球,并能用自已的语言描述它们的某些特征。

一.填空题:1.立体图形的各个面都是__________的面,这样的立体图形称为多面体.;2.图形是由________,_________,________构成的;3.物体的形状似于圆柱的有________________,类似于圆锥的有_____________________,类似于球的有__________________;(各举一例)4.围成几何体的侧面中,至少有一个是曲面的是______________;(举一例)5.正方体有_____个顶点,经过每个顶点有_________条棱,这些棱都____________;6.圆柱、圆锥、球的共同点是_____________________________;7.假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了______________,时钟秒针旋转时,形成一个圆面,这说明了_______________,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了___________________;8.圆可以分割成_____ 个扇形,每个扇形都是由___________________;9.从一个七边形的某个顶点出发,分别连结这个点与其余各顶点,可以把七边形分割成__________个三角形;10.在乒乓球、橄榄球、足球、羽毛球、冰球中,是球体的有;11.将下列几何体分类,柱体有:,锥体有(填序号);12.长方体由_______________个面_______________条棱_______________个顶点;13.半圆面绕直径旋转一周形成__________;二.选择题114.观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来()A B CD 15.从一个十边形的某个点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成三角形()(A) 10个(B) 9个(C)8个(D)7个16.如图的几何体是下面()平面图形绕轴旋转一周得到的()(A)(B)(C)(D)18.下面图形不能围成封闭几何体的是()(A)(B)(C)(D)三.解答题:19.指出下列平面图形是什么几何体的展开图:ACB20. ⑴.下面这些基本图形和你很熟悉,试一试在括号里写出它们的名称.2() () ( ) ()( )⑵. 将这些几何体分类,并写出分类的理由.第课时家庭作业参考答案一、1.平;2.点、线、面;3.略;4.略;5.8,3,相等;6.都有一个面是曲面;7.点动成线,线动成面,面动成体;8.无数,一条弧和两条半径组成的;9.5;10.乒乓球、足球;11.(1)(2)(3),(5)(6);12.6,12,8;13.球体;二、14.D;15.C;16.B; 17.A;三、18.长方体(四棱柱),圆锥,圆柱;19.(1)(从左至右)球、圆柱、圆锥、长方体、三棱柱;(2)按面分:曲面:球、圆柱、圆锥;平面:长方体、三棱柱;按柱体分:圆柱、长方体、三棱柱;球;圆锥;北师大七年级上第一章丰富的图形世界第课时家庭作业(平面内的立体图形2)姓名学习目标:1.通过丰富的实例,进一步认识点、线、面、初步感受点、线、面之间的关系.2.进一步经历从现实世界中抽象出图形的过程,从构成图形的基本元素的角度认识常见图形;二.填空题:1.围成球的面有个;2.圆柱有_____ 个面组成,这些面相交共得____ 条线,圆锥的侧面展开图是____ ;3.圆锥是由_ __个面围成,其中__ _个平面,____个曲面,圆锥的侧面与底面3相交成条线,是线;4.圆柱的表面展开图是________________________ (用语言描述);5.图形所表示的各个部分不在同一个平面内,这样的图形称为图形;6.图形所表示的各个部分都在同一个平面内,称为图形;二.选择题:7.圆锥的侧面展开图是()(A)长方形(B)正方形(C)圆(D)扇形8.将半圆绕它的直径旋转一周形成的几何体是()(A)圆柱(B)圆锥(C)球(D)正方体9.如图所示的图形绕虚线旋转一周,所形成的几何体是(()10.以下立体图形中是棱柱的有((A)①⑤(B)①②③(C)①②④⑤(D)①②⑤[ 11.下列说法中,正确的是((A)正方体不是棱柱(B)圆锥是由3个面围成(C)正方体的各条棱都相等(D)棱柱的各条棱都相等12.将一个直角三角形绕它的最长边旋转一周,得到的几何体是((A)(B)(C)(D)13.按组成面的平或曲划分,与圆锥为同一类几何体的是(4)))))(A)正方体(B)长方体(C)球(D)棱柱14.()(A)(B)(D)15.一个正方体锯掉一个角后,顶点的个数是()(A) 7个(B) 8个(C) 9个(D) 7个或8个或9个或10个三、解答题16.请写出下列几何体的名称() ( ) ( ) ( )( ) ( ) ( )17.如图,第二行的图形绕点划线旋转一周,便形成第一行的某个图形(几何体),将对应的两个图形用线联结起来.第课时家庭作业参考答案一、1.一个;2.三,二,扇形;3.二,一,一,一,曲;4.由一个长方形和两个相等的圆形组成;5.平面; 6.立体;[二、5篇二:2014年练习册上册数学七年级C北师大版答案篇三:七年级上册-北师大版-数学练习册解析与答案七年级上册-北师大版-数学练习册解析与答案北师大版七年级数学上册教学建议及期末调研要求⒈本学期(春节1月29日)的教学时间虽然不太长,但除去节假日外,实际上课也在20周左右(课时数120节),相对的下学期的时间短些;而七上教材教学课时为69—108节,七下教材教学课时为66—100节。

北师大版数学七年级上册第二章有理数及其运算第10节科学计数法课堂练习

北师大版数学七年级上册第二章有理数及其运算第10节科学计数法课堂练习

第二章有理数及其运算第10节科学计数法课堂练习学校:___________姓名:___________班级:___________考生__________评卷人得分 一、单选题1.若一个整数12500…0用科学记数法表示为1.25×1010,则原数中“0”的个数为( )A .5B .8C .9D .102.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为( )A .3.5×107B .3.5×108C .3.5×109D .3.5×1010 3.把90 120写成10n a ⨯ (110a < ,n 为正整数)的形式,则a 为( ) A .9.012 B .0.9012 C .1 D .1.24.2017年12月10日,青岛地铁2号线东段正式开通,截至12月12日青岛地铁线网客流共850000人次.2号线东段的开通,带动了3号线客流量的增加,增加比例达16%.将数据850000用科学记数法表示为( )A .60.8510⨯B .58.510⨯C .48. 510⨯D .48510⨯5.根据国家旅游局数据中心综合测算,2017年国庆期间,全国累计旅游收入达四千八百亿元,四千八百亿元用科学记数法表示是( )A .8480010⨯B .104810⨯C .34.810⨯D .114.810⨯ 6.3(5)-×40000用科学记数法表示为( )A .125×105B .-125×105C .-500×105D .-5×106 7.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总 人口为4400000000人,这个数用科学记数法表示为( ) A .4.4×108 B .4.40×108 C .4.4×109 D .4.4×1010 8.截止到3月26日0时,全球感染新型冠状病毒肺炎的人数已经突破380000人,“山川异域,风月同天”,携手抗“疫”,刻不容缓.将380000用科学记数法表示为( )A .0.38×106B .3.8×106C .3.8×105D .38×104评卷人得分 二、填空题9.北京故宫的占地面积为7.2×105平方米,那么原数为________平方米.10.31m 的水中约含有93.3410⨯个水分子,则用科学记数法表示的数的原数是_______. 11.若26100000 2.61000000 2.610n ⨯=⨯=⨯,则n 的值是________.12.把-4.02×107还原为原数是______________.13.一天有8.64×104秒,一年如果按365天计算,用科学记数法表示一年有______秒.14.某种球形病毒,直径是0.01纳米,每一个病毒每过一分钟就能繁殖出9个与自己同样的病毒,假如这种病毒在人体中聚集到一定数量,按这样的数量排列成一串,长度达到1分米时,人就会感到不适,那么人从感染第一个病毒后,经过________分钟就会感到不适.(1分米=108纳米)15.科学家们发现,太空中距离银河系约2500000光年之遥的仙女星系正在向银河系靠近.其中2500000用科学记数法表示为_____.评卷人得分三、解答题 16.和你的同学一起完成,看谁做得又快又对.(1)用科学记数法表示下列式子的结果. 10×100=____;102×103=____;108×107=_____;试根据所填的结果推断10m ×10n =______(m ,n 为正整数).和其他同学讨论一下,这个结果怎样用语言叙述.利用结论计算:(2)光在真空中的传播速度为每秒3×105千米,太阳光射到地球上需要的时间约为5×102秒,则地球与太阳间的距离是多少千米(3)地球的质量为6×1013亿吨,太阳的质量是地球的质量的3.3×105倍,那么太阳的质量是多少亿吨?17.把下列用科学记数法表示的数还原成原数:(1)3.5×106;(2)1.20×105;(3)-9.3×104;(4)-2.34×108.18.用科学记数法表示下列各数:(1)3 600;(2)-100 000;(3)-24 000;(4)380亿.19.德国天文学家贝塞尔推出天鹅座第61颗暗星距地球102000000000000千米,比太阳距地球还远690000倍.(1)用科学记数法表示画线的两个数;(2)光速为300000千米/秒,从天鹅座第61颗暗星射出的光线到达地球需多少秒?20.有关资料显示,一个人每次在刷牙的过程中,如果一直打开水龙头,将浪费7杯水(每杯水约250毫升).某市有100万人口,如果某天早晨所有的人在刷牙的过程中都不关水龙头,那么将浪费多少毫升水(结果用科学记数法表示)?参考答案:1.B【解析】【分析】把10⨯写成不用科学记数法表示的原数的形式即可.1.2510【详解】解:10⨯表示的原数为12500000000,1?.2510∴原数中"0"的个数为8,故选B.【点睛】本题考查了把科学记数法表示的数还原成原数,科学记数法的表示的数na10⨯还原成原数时,n>0时,小数点则向右移动n位得到原数;n<0时,小数点则向左移动|n|位得到原数. 2.B【解析】【详解】350000000=3.5×108.故选:B.【点睛】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.3.A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】90120用科学记数法表示应为4a=故答案为A⨯所以9.0129.012010【点睛】此题主要考查科学记数法的表示方法,解题的关键是熟知科学记数法中110a ≤<. 4.B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:850000用科学记数法表示为8.5×105,故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.D【解析】【分析】 科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:四千八百亿=4800×108=4.8×1011.故选D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.D【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】36-⨯=-⨯=-=-⨯,(5)40000125400005000000510故选D.【点睛】本题考查的是科学记数法的表示方法,解答本题的关键是正确确定a的值以及n的值.7.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:4 400 000 000=4.4×109,故选C.8.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:380000=3.8×105.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.720000【解析】【详解】7.2×105平方米即为7.2的小数点向右移动5位,则7.2×105=720000.故答案是:720000.10.3340000000【解析】【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).数据9⨯中的a=3.34,指数n3.3410等于9,所以,需要把3.34的小数点向右移动9位,就得到原数;【详解】解:9334⨯=,1003.34000000故答案为3340000000.【点睛】一个用科学记数法表示的数还原成原数时,要先判断指数n的正负.n为正时,小数点向右移动n个数位;n为负时,小数点向左移动|n|个数位.11.6【解析】【分析】根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:6⨯=⨯=⨯,26100000 2.61000000 2.610故答案为6【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.-40200000【解析】【分析】根据科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.若科学记数法表示较小的数a×10-n,还原为原来的数,需要把a的小数点向左移动n位得到原数.【详解】-4.02×107=-4.02×10000000=-40200000.故答案为-40200000.【点睛】此题主要考查了将科学记数法表示成原数,正确把握定义是解题关键.13.3.153 6×107.【解析】【分析】先列式8.64×104×365计算,再用科学记数法表示即可.【详解】解:8.64×104×365=8.64×365×104=3153.6×104=3.153 6×107.故答案为:3.153 6×107.【点睛】本题主要考查了科学记数法,将原数表示成形式为a×10n的形式,其中1≤|a|<10,n为整数.确定a和n的值成为解答本题的关键.14.10【解析】【分析】先计算出多少个病毒的长度相当于1分米,再求得经过多长时间能繁殖出这些病毒即可.每一分钟,病毒就会增长为原来的十倍(1+9),1分米是0.01纳米的10的10次方倍,因此经过十分钟,就能达到一分米.【详解】1分米=108纳米,108÷0.01=1010,设x分钟感到不适,10x=1010,x=10.【点睛】本题考查了有理数的乘方法运算,乘方运算在实际问题的应用是难点.15.2.5×106【解析】【详解】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,2500000用科学记数法表示为2.5×106,故答案为2.5×106.16.(1)103;105 ;1015;10m+n;(2)地球与太阳间的距离是1.5×108千米;(3)太阳的质量是1.98×1019亿吨.【解析】【详解】试题分析:(1)科学记数法是指把一个数表示成a×10的n次幂的形式(1≤a<10,n 为整数.),同底数幂相乘底数不变指数相加.,10m×10n=10m+n.(2)距离等于速度乘以时间,计算结果用科学记数法表示为1.5×108(千米).太阳的质量等于地球的质量乘以倍数,结果用科学记数法来表示为1.98×1019(亿吨).(1)103 ;105;1015 ;10m+n.(2)3×105×5×102=15×107=1.5×108(千米).答:地球与太阳间的距离是1.5×108千米.(3)6×1013×3.3×105=19.8×1018=1.98×1019(亿吨).答:太阳的质量是1.98×1019亿吨.17.(1)3 500 000.(2)120 000.(3)-93 000.(4)-234 000 000.【解析】【详解】试题分析:将科学记数法表示的数,"还原"成通常表示的数,就是把的小数点向右移动位所得到的数.要看10的指数,指数是几就向右移动几位.试题解析:(1)3.5×106 =3 500 000;(2)1.20×105 =120 000;(3)-9.3×104 =-93 000;(4)-2.34×108 =-234 000 000.18.(1)3.6×103.(2)-1×105.(3)-2.4×104.(4)3.8×1010.【解析】【详解】试题分析:科学记数法是指把一个数表示成a×10的n次幂的形式(1≤a<10,n 为整数.)试题解析:(1)3600=3.6×103. (2)-100 000=-1×105 ;(3)-24 000=-2.4×104 ;(4)380亿=3.8×1010 .19.(1)143.410⨯;(2)到达地球需8⨯秒.⨯,56.9101.0210【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数;【详解】解:(1)14102000000000000 1.0210=⨯,5=⨯;690000 6.910(2)148⨯÷=⨯(秒).1.021******* 3.410所以到达地球需8⨯秒.3.410【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.将浪费1.75×109毫升水.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】7×250×1000000=1750000000=1.75×109(毫升).答:将浪费1.75×109毫升水.【点睛】本题主要考查了用科学记数法表示较大的数.计算出浪费水的总量是解题关键.答案第8页,共8页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档