高等数学(大一)汇总题库

合集下载

大一高等数学练习题及答案解析

大一高等数学练习题及答案解析

大一高等数学练习题及答案解析 11.2.limx?0xx?.1?1x?1?x2005??ex?e?x?dx?x?y2.3.设函数y?y由方程?1xe?tdt?xdy确定,则dxx?0tfdt?ff?1fx14. 设可导,且,,则f?x??5.微分方程y4y??4y?0的通解为 .二.选择题1.设常数k?0,则函数个; 个; 1个; 0个.2.微分方程y4y?3cos2x 的特解形式为.y?Acos2x; y?Axcos2x;f?lnx?x?ke在内零点的个数为.y?Axcos2x?Bxsin2x;y?Asin2x..下列结论不一定成立的是.*f?x?dx??f?x?dxc,d?a,bca若,则必有;f?x?dx?0a,bf?0a若在上可积,则;若f?x?是周期为T的连续函数,则对任意常数a都有 xba?Taf?x?dx??f?x?dxT;tf?t?dtfx0若可积函数为奇函数,则也为奇函数. f?x??4. 设1?e1x1x2?3e, 则x?0是f的.连续点; 可去间断点;跳跃间断点; 无穷间断点. 三.计算题 1 .计算定积分x3e?xdx2.2.计算不定积分xsinxcos5x.xxa,t2处的切线的方程. .求摆线?y?a,在4. 设F??cosdt,求F?.5.设四.应用题 1.求由曲线y?xn?nlimxnn,求n??.x?2与该曲线过坐标原点的切线及x轴所围图形的面积.222.设平面图形D由x?y?2x与y?x所确定,试求D绕直线x?旋转一周所生成的旋转体的体积.ta?1,f?a?at在内的驻点为 t. 问a为何值时t最小?并求3. 设最小值.五.证明题设函数f在[0,1]上连续,在内可导且1ff=?1试证明至少存在一点??, 使得f?=1. 一.填空题: 11..limx?x?0e.4e.dy确定,则dxx?0121?1x?1?x2005??ex?e?x?dx?x?y3.设函数y?y由方程?1e?tdt?x?e?1.12x24. 设f?x?可导,且x1tfdt?f,f?1,则f?x??e2x.5.微分方程y4y??4y?0的通解为y?e二.选择题: .1.设常数k?0,则函数个; 个; 1个; 0个.2.微分方程y4y?3cos2x 的特解形式为y?Acos2xy; ?Axcos2x; ?y?Axcos2x?Bxsin2x; y?Asin2x.下列结论不一定成立的是f?lnx?x?k内零点的个数为. e 在若?c,da,b?,则必有dcf?x?dx??f?x?dxabb;f?x?dx?0a,bf?0a若在上可积,则;若f?x?是周期为T的连续函数,则对任意常数a都有a?Taf?x?dx??f?x?dxT;xtf?t?dtfx0 若可积函数为奇函数,则也为奇函数. f?x??1?e1x1x2?3e, 则x?0是f的.. 设连续点; 可去间断点;跳跃间断点; 无穷间断点. 三.计算题: 1.计算定积分?0 解:2x3e?xdx202.2设x2?t,则?x3e?xdx??1?t12tedttde?t0220-------221??t22?t?te??edt?002?? -------22131e?2?e?te?2022--------22.计算不定积分解:xsinx5cosx.xsinx111?xdx?dx?xd??4?cos5x?cos4x?4?cos4x4??cosx?--------3 x1dtanx44cosx4x113tanx?tanx?C4cos4x1-----------?xa,t2处的切线的方程..求摆线?y?a,在,a)2解:切点为 -------2k?dyasint?s)t??dxt??a即y?x?a.-------24. 设.设F??cosdt22F2xcosxcos. ,则xn?nn?1)?limxnn,求n??.1nilnxn??ln1ni?1n ---------解:n1i1limlnxn?lim?ln??lndx0n??n??nni?1--------------12ln2101?x =------------22ln2?1e?limxne 故 n??=xln10??x1四.应用题 1.求由曲线y?x?2与该曲线过坐标原点的切线及x轴所围图形的面积.解:大一高等数学期末考试试卷一、选择题2ex,x0,1. 若f??为连续函数,则a的值为.ax,x01 3-12. 已知f??2,则limh?0f?f的值为.h13-113. 定积分?2?的值为. ?20-2124. 若f在x?x0处不连续,则f在该点处.必不可导一定可导可能可导必无极限二、填空题1.平面上过点,且在任意一点处的切线斜率为3x2的曲线方程为 .2. ?dx? . ?113. limx2sinx?01= . x4. y?2x3?3x2的极大值为三、计算题1. 求limx?0xln. sin3x22. 设y?求y?.. 求不定积分?xlndx.4. 求?30?x,x?1,? fdx,其中f??1?cosx?ex?1,x?1.?5. 设函数y?f由方程?edt??costdt?0所确定,求dy. 00ytx6. 设?fdx?sinx2?C,求?fdx.3??7. 求极限lim?1??. n2n?四、解答题1. 设f??1?x,且f?1,求f. n2. 求由曲线y?cosxx??与x轴所围成图形绕着x轴旋转一周2??2所得旋转体的体积.3. 求曲线y?x3?3x2?24x?19在拐点处的切线方程.4. 求函数y?x[?5,1]上的最小值和最大值.五、证明题设f??在区间[a,b]上连续,证明bafdx?b?a1b[f?f]??f??dx.2a标准答案一、 1 B; C; D; A.二、 1 y?x?1;2; 0;0.三、 1 解原式?limx?5x5分 x?03x21分2分 x??lxn2d分 ?212x?[lndx2分21?x1?[ln?x2]?C1分解令x?1?t,则分03fdx1fdt 1分122t1??1dt 1分 1?cost1分 ?0?[et?t]1e2e1 1分两边求导得ey?y??cosx?0,分ycosx 1分 ye?cosx 1分 sinx?1cosx?dy?dx分 sinx?1解 ?fdx?12?fd2?C4分3??lim1?解原式=??n2n?322n3?32分 =e2分四、1 解令lnx?t,则x?et,f??1?et, 分 f??dt=t?et?C.2分 ?f?1,?C?0, 分fxex. 1分解 Vx2??2??cosxdx分 ?2202cos2xdx2分 ?解 ?22. 分 6x?1分 y??3x2?6x?24,y令y0,得x?1. 1分当x?1时,y0; 当1?x时,y0,分 ?为拐点, 1分该点处的切线为y?3?21. 分解y??1??2分令y??0,得x3?. 1分435y52.55,y,y1,分 ?4?435y5y最大值为. 分 ?最小值为?4?4五、证明bafdf?分 ab[f]aaf[2xdx分a[2x?df分 bbb[2x?]f?a?2?afdx分[f?f]?2?afdx,分移项即得所证分 bbb大一高数试题及答案一、填空题________ 11.函数y=arcsin√1-x+────── 的定义域为_________ √1-x2_______________。

大一高等数学考卷及答案

大一高等数学考卷及答案

专业课原理概述部分一、选择题(每题1分,共5分)1.若函数f(x)在x=a处可导,则f'(a)等于()A.f(a)B.f(a+h)-f(a)/h(h趋于0)C.lim(f(a+h)-f(a))/h(h趋于0)D.f(a+h)-f(a)2.下列函数中,在x=0处连续但不可导的是()A.y=|x|B.y=x^2C.y=x^3D.y=1/x3.若函数f(x)在区间I上单调递增,则f'(x)在I上()A.必大于0B.必小于0C.可以为0D.不存在4.设函数f(x)在区间(a,b)内可导,且f'(x)>0,则f(x)在(a,b)内()A.单调递增B.单调递减C.有极值点D.无极值点5.设函数f(x)在x=a处连续,且lim(f(x)-f(a))/(x-a)=L,则f(x)在x=a处()A.可导,f'(a)=LB.可导,f'(a)不存在C.不可导D.无法确定二、判断题(每题1分,共5分)1.若函数f(x)在x=a处可导,则f(x)在x=a处一定连续。

()2.若函数f(x)在区间I上单调递增,则f'(x)在I上一定大于0。

()3.若函数f(x)在区间I上有极值点,则f'(x)在I上一定存在零点。

()4.若函数f(x)在区间I上连续,则f(x)在I上一定可积。

()5.若函数f(x)在区间I上可导,则f(x)在I上一定连续。

()三、填空题(每题1分,共5分)1.函数f(x)=x^3-3x在x=1处的导数为______。

2.函数f(x)=e^x在x=0处的导数为______。

3.函数f(x)=lnx在x=1处的导数为______。

4.函数f(x)=sinx在x=π/2处的导数为______。

5.函数f(x)=cosx在x=0处的导数为______。

四、简答题(每题2分,共10分)1.简述导数的定义。

2.简述连续与可导的关系。

3.简述罗尔定理。

4.简述拉格朗日中值定理。

(完整word版)《高等数学(1)》练习题库

(完整word版)《高等数学(1)》练习题库

华中师范大学网络教育 《高等数学(1)》练习测试题库一.选择题1.函数y=112+x 是( ) A.偶函数 B.奇函数 C 单调函数 D 无界函数 2.设f(sin 2x )=cosx+1,则f(x)为( )A 2x 2-2B 2-2x 2C 1+x 2D 1-x 2 3.下列数列为单调递增数列的有( )A .0.9 ,0.99,0.999,0.9999B .23,32,45,54C .{f(n)},其中f(n)=⎪⎩⎪⎨⎧-+为偶数,为奇数n nn n n n1,1 D. {n n 212+}4.数列有界是数列收敛的( )A .充分条件 B. 必要条件 C.充要条件 D 既非充分也非必要 5.下列命题正确的是( )A .发散数列必无界B .两无界数列之和必无界C .两发散数列之和必发散D .两收敛数列之和必收敛6.=--→1)1sin(lim21x x x ( ) A.1 B.0 C.2 D.1/2 7.设=+∞→x x xk)1(lim e 6 则k=( )A.1B.2C.6D.1/6 8.当x →1时,下列与无穷小(x-1)等价的无穷小是( )A.x2-1B. x3-1C.(x-1)2D.sin(x-1)9.f(x)在点x=x0处有定义是f(x)在x=x0处连续的()A.必要条件B.充分条件C.充分必要条件D.无关条件10、当|x|<1时,y= ()A、是连续的B、无界函数C、有最大值与最小值D、无最小值11、设函数f(x)=(1-x)cotx要使f(x)在点:x=0连续,则应补充定义f(0)为()A、B、e C、-e D、-e-112、下列有跳跃间断点x=0的函数为()A、xarctan1/xB、arctan1/xC、tan1/xD、cos1/x13、设f(x)在点x0连续,g(x)在点x0不连续,则下列结论成立是()A、f(x)+g(x)在点x0必不连续B、f(x)×g(x)在点x0必不连续须有C、复合函数f[g(x)]在点x0必不连续D、在点x0必不连续14、设f(x)= 在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b满足()A、a>0,b>0B、a>0,b<0C、a<0,b>0D、a<0,b<015、若函数f(x)在点x0连续,则下列复合函数在x0也连续的有()A、B、C、tan[f(x)]D、f[f(x)]16、函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л]B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)17、在闭区间[a ,b]上连续是函数f(x)有界的()A、充分条件B、必要条件C、充要条件D、无关条件18、f(a)f(b) <0是在[a,b]上连续的函f(x)数在(a,b)内取零值的()A、充分条件B、必要条件C、充要条件D、无关条件19、下列函数中能在区间(0,1)内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x4-4x+120、曲线y=x2在x=1处的切线斜率为()A、k=0B、k=1C、k=2D、-1/221、若直线y=x与对数曲线y=logx相切,则()aA、eB、1/eC、e xD、e1/e22、曲线y=lnx平行于直线x-y+1=0的法线方程是()A、x-y-1=0B、x-y+3e-2=0C、x-y-3e-2=0D、-x-y+3e-2=023、设直线y=x+a与曲线y=2arctanx相切,则a=()A、±1B、±л/2C、±(л/2+1)D、±(л/2-1)24、设f(x)为可导的奇函数,且f`(x0)=a,则f`(-x0)=()A、aB、-aC、|a|D、025、设y=㏑,则y’|x=0=()A、-1/2B、1/2C、-1D、026、设y=(cos)sinx,则y’|x=0=()A、-1B、0C、1D、不存在27、设yf(x)= ㏑(1+X),y=f[f(x)],则y’|x=0=()A、0B、1/ ㏑2C、1D、㏑228、已知y=sinx,则y(10)=()A、sinxB、cosxC、-sinxD、-cosx29、已知y=x㏑x,则y(10)=()A、-1/x9B、1/ x9C、8.1/x9D、-8.1/x930、若函数f(x)=xsin|x|,则()A、f``(0)不存在B、f``(0)=0C、f``(0) =∞D、f``(0)= л31、设函数y=yf(x)在[0,л]内由方程x+cos(x+y)=0所确定,则|dy/dx|x=0=()A、-1B、0C、л/2D、232、圆x2cosθ,y=2sinθ上相应于θ=л/4处的切线斜率,K=()A、-1B、0C、1D、233、函数f(x)在点x0连续是函数f(x)在x0可微的()A、充分条件B、必要条件C、充要条件D、无关条件34、函数f(x)在点x0可导是函数f(x)在x0可微的()A、充分条件B、必要条件C、充要条件D、无关条件35、函数f(x)=|x|在x=0的微分是()A 、0B 、-dxC 、dxD 、 不存在36、极限)ln 11(lim 1xx x x --→的未定式类型是( )A 、0/0型B 、∞/∞型C 、∞ -∞D 、∞型37、极限 012)sin lim(→x x xx 的未定式类型是( ) A 、00型 B 、0/0型 C 、1∞型 D 、∞0型 38、极限 xx x x sin 1sin lim20→=( )A 、0B 、1C 、2D 、不存在39、x x 0时,n 阶泰勒公式的余项Rn(x)是较x x 0 的( )A 、(n+1)阶无穷小B 、n 阶无穷小C 、同阶无穷小D 、高阶无穷小40、若函数f(x)在[0, +∞]内可导,且f`(x) >0,xf(0) <0则f(x)在[0,+ ∞]内有( )A 、唯一的零点B 、至少存在有一个零点C 、没有零点D 、不能确定有无零点41、曲线y=x 2-4x+3的顶点处的曲率为( )A 、2B 、1/2C 、1D 、042、抛物线y=4x-x 2在它的顶点处的曲率半径为( ) A 、0 B 、1/2 C 、1 D 、2 43、若函数f(x)在(a,b )内存在原函数,则原函数有( )A 、一个B 、两个C 、无穷多个D 、都不对44、若∫f(x)dx=2e x/2+C=( )A 、2e x/2B 、4 e x/2C 、e x/2 +CD 、e x/245、∫xe-x dx =( D )A、xe-x -e-x +CB、-xe-x+e-x +CC、xe-x +e-x +CD、-xe-x -e-x +C46、设P(X)为多项式,为自然数,则∫P(x)(x-1)-n dx()A、不含有对数函数B、含有反三角函数C、一定是初等函数D、一定是有理函数47、∫-10|3x+1|dx=()A、5/6B、1/2C、-1/2D、148、两椭圆曲线x2/4+y2=1及(x-1)2/9+y2/4=1之间所围的平面图形面积等于()A、лB、2лC、4лD、6л49、曲线y=x2-2x与x轴所围平面图形绕轴旋转而成的旋转体体积是()A、лB、6л/15C、16л/15D、32л/1550、点(1,0,-1)与(0,-1,1)之间的距离为()A、B、2 C、31/2D、21/251、设曲面方程(P,Q)则用下列平面去截曲面,截线为抛物线的平面是()A、Z=4B、Z=0C、Z=-2D、x=252、平面x=a截曲面x2/a2+y2/b2-z2/c2=1所得截线为()A、椭圆B、双曲线C、抛物线D、两相交直线53、方程=0所表示的图形为()A、原点(0,0,0)B、三坐标轴C、三坐标轴D、曲面,但不可能为平面54、方程3x2+3y2-z2=0表示旋转曲面,它的旋转轴是()A、X轴B、Y轴C、Z轴D、任一条直线55、方程3x2-y2-2z2=1所确定的曲面是()A、双叶双曲面B、单叶双曲面C、椭圆抛物面D、圆锥曲面56、设函数f(x)=──,g(x)=1-x,则f[g(x)]=()x111A.1-──B.1+ ──C. ────D.xxx1-x157、x→0 时,xsin──+1是()xA.无穷大量B.无穷小量C.有界变量D.无界变量58、方程2x+3y=1在空间表示的图形是()A.平行于xoy面的平面B.平行于oz轴的平面C.过oz轴的平面D.直线59、下列函数中为偶函数的是()A.y=e^xB.y=x^3+1C.y=x^3cosxD.y=ln│x│60、设f(x)在(a,b)可导,a〈x_1〈x_2〈b,则至少有一点ζ∈(a,b)使()A.f(b)-f(a)=f'(ζ)(b-a)B.f(b)-f(a)=f'(ζ)(x2-x1)C.f(x2)-f(x1)=f'(ζ)(b-a)D.f(x2)-f(x1)=f'(ζ)(x2-x1)61、设f(X )在 X =Xo 的左右导数存在且相等是f(X )在 X =Xo 可导的 ( ) A.充分必要的条件 B.必要非充分的条件 C.必要且充分的条件 D 既非必要又非充分的条件二、填空题1、求极限1lim -→x (x 2+2x+5)/(x 2+1)=( )2、求极限 0lim →x [(x 3-3x+1)/(x-4)+1]=( )3、求极限2lim →x x-2/(x+2)1/2=( )4、求极限∞→x lim [x/(x+1)]x =( )5、求极限0lim →x (1-x)1/x = ( )6、已知y=sinx-cosx ,求y`|x=л/6=( )7、已知ρ=ψsin ψ+cos ψ/2,求d ρ/d ψ| ψ=л/6=( ) 8、已知f(x)=3/5x+x 2/5,求f`(0)=( )9、设直线y=x+a 与曲线y=2arctanx 相切,则a=( ) 10、函数y=x 2-2x+3的极值是y(1)=( ) 11、函数y=2x 3极小值与极大值分别是( ) 12、函数y=x 2-2x-1的最小值为( ) 13、函数y=2x-5x 2的最大值为( )14、函数f(x)=x 2e -x 在[-1,1]上的最小值为( )15、点(0,1)是曲线y=ax 3+bx 2+c 的拐点,则有b=( ) c=( )16、∫xx 1/2dx= ( )17、若F`(x)=f(x),则∫dF(x)= ( ) 18、若∫f(x)dx=x 2e 2x +c ,则f(x)= ( ) 19、d/dx ∫a b arctantdt=( )20、已知函数f(x)=⎪⎩⎪⎨⎧=≠⎰-0,0,022)1(1x a x x t dt e x在点x=0连续, 则a=( ) 21、∫02(x 2+1/x 4)dx=( ) 22、∫49 x 1/2(1+x 1/2)dx=( ) 23、∫031/2a dx/(a 2+x 2)=( ) 24、∫01 dx/(4-x 2)1/2=( ) 25、∫л/3лsin(л/3+x)dx=( ) 26、∫49 x 1/2(1+x 1/2)dx=( ) 27、∫49 x 1/2(1+x 1/2)dx=( ) 28、∫49 x 1/2(1+x 1/2)dx=( ) 29、∫49 x 1/2(1+x 1/2)dx=( ) 30、∫49 x 1/2(1+x 1/2)dx=( ) 31、∫49 x 1/2(1+x 1/2)dx=( ) 32、∫49 x 1/2(1+x 1/2)dx=( )33、满足不等式|x-2|<1的X 所在区间为 ( ) 34、设f(x) = [x] +1,则f (л+10)=( ) 35、函数Y=|sinx|的周期是 ( )36、y=sinx,y=cosx 直线x=0,x=л/2所围成的面积是 ( ) 37、 y=3-2x-x 2与x 轴所围成图形的面积是 ( )38、心形线r=a(1+cosθ)的全长为()39、三点(1,1,2),(-1,1,2),(0,0,2)构成的三角形为()40、一动点与两定点(2,3,1)和(4,5,6)等距离,则该点的轨迹方程是()41、求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()42、求三平面x+3y+z=1,2x-y-z=0,-x+2y+2z=0的交点是( )43、求平行于xoz面且经过(2,-5,3)的平面方程是()44、通过Z轴和点(-3,1,-2)的平面方程是()45、平行于X轴且经过两点(4,0,-2)和(5,1,7)的平面方程是()46、函数y=arcsin√1-x^2 +──────的定义域为_________√1-x^2_______________。

大一《高等数学》期末考试题(精编汇总题)

大一《高等数学》期末考试题(精编汇总题)

一、单项选择题 (本大题有4小题, 每小题4分, 共16分)1.。

(A) (B)(C) (D)不可导。

2.。

(A)是同阶无穷小,但不是等价无穷小; (B)是等价无穷小;(C)是比高阶的无穷小;(D)是比高阶的无穷小。

3.若,其中在区间上二阶可导且,则( )。

(A)函数必在处取得极大值;(B)函数必在处取得极小值;(C)函数在处没有极值,但点为曲线的拐点;(D)函数在处没有极值,点也不是曲线的拐点。

(A)(B)(C)(D)。

二、填空题(本大题有4小题,每小题4分,共16分)4.。

5. .6.。

7.。

三、解答题(本大题有5小题,每小题8分,共40分)8.设函数由方程确定,求以及。

9.设函数连续,,且,为常数。

求并讨论在处的连续性.10.求微分方程满足的解。

四、解答题(本大题10分)11.已知上半平面内一曲线,过点,且曲线上任一点处切线斜率数值上等于此曲线与轴、轴、直线所围成面积的2倍与该点纵坐标之和,求此曲线方程.五、解答题(本大题10分)12.过坐标原点作曲线的切线,该切线与曲线及x轴围成平面图形D.(1)求D的面积A;(2)求D绕直线x = e旋转一周所得旋转体的体积V。

六、证明题(本大题有2小题,每小题4分,共8分)13.设函数在上连续且单调递减,证明对任意的,。

14.设函数在上连续,且,。

证明:在内至少存在两个不同的点,使(提示:设)一、单项选择题(本大题有4小题, 每小题4分, 共16分)1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. . 6.。

7。

8。

三、解答题(本大题有5小题,每小题8分,共40分)9.解:方程两边求导,10.解:11.解:12.解:由,知。

,在处连续。

13.解:,四、解答题(本大题10分)14.解:由已知且,ﻩ将此方程关于求导得ﻩ特征方程: 解出特征根:其通解为ﻩﻩﻩﻩ代入初始条件,得故所求曲线方程为:五、解答题(本大题10分)15.解:(1)根据题意,先设切点为,切线方程:由于切线过原点,解出,从而切线方程为:则平面图形面积(2)三角形绕直线x= e一周所得圆锥体体积记为V1,则曲线与x轴及直线x=e所围成的图形绕直线x=e一周所得旋转体体积为V2D绕直线x=e旋转一周所得旋转体的体积六、证明题(本大题有2小题,每小题4分,共12分)16.证明:故有:证毕。

高等数学(大一)题库

高等数学(大一)题库

(一)函数、极限、连续一、选择题:1、 在区间(-1,0)内,由( )所给出的函数是单调上升的。

(A);1+=x y (B);2x x y -= (C)34+-=x y(D)25-=x y2、 当+∞→x 时,函数f (x )=x sin x 是( )(A )无穷大量 (B )无穷小量 (C )无界函数 (D )有界函数 3、 当x →1时,31)(,11)(x x xxx f -=+-=ϕ都是无穷小,则f (x )是)(x ϕ的( ) (A )高阶无穷小 (B )低阶无穷小 (C )同阶无穷小 (D )等阶无穷小4、 x =0是函数1()arctanf x x=的( ) (A )可去间断点 (B )跳跃间断点; (C )振荡间断点 (D )无穷间断点5、 下列的正确结论是( )(A ))(lim x f xx →若存在,则f (x )有界;(B )若在0x 的某邻域内,有()()(),g x f x h x ≤≤且),(lim 0x g x x →),(lim 0x h x x →都存在,则),(lim 0x f x x →也 存在;(C )若f(x)在闭区间[a , b ]上连续,且f (a ), f (b )<0则方程f (x )=0,在(a , b )内有唯一的实根;(D ) 当∞→x 时,xx x x x a sin )(,1)(==β都是无穷小,但()x α与)(x β却不能比.二、填空题:1、 若),1(3-=x f y Z且x Zy ==1则f (x )的表达式为 ;2、 已知数列n x n 1014-=的极限是4, 对于,1011=ε满足n >N 时,总有ε<-4n x 成立的最小N 应是 ;3、 3214lim 1x x ax x b x →---+=+(b 为有限数) , 则a = , b = ; 4、 设,)(ax ax x f --=则x =a 是f (x )的第 类 间断点; 5、,0,;0,)(,sin )(⎩⎨⎧>+≤-==x n x x n x x g x x f 且f [g (x )]在R 上连续,则n = ;三、 计算题:1、计算下列各式极限: (1)x x x x sin 2cos 1lim0-→; (2)xxx x -+→11ln 1lim 0;(3))11(lim 220--+→x x x (4)xx x x cos 11sinlim30-→ (5)x x x 2cos 3sin lim 0→ (6)xx xx sin cos ln lim0→2、确定常数a , b ,使函数⎪⎩⎪⎨⎧-<<∞---=<<-+=1,11,11,arccos )(2x x x b x x a x f 在x =-1处连续.四、证明:设f (x )在闭区间[a , b ]上连续,且a <f (x )<b , 证明在(a , b )内至少有一点ξ,使()f ξξ=.(二)导数与微分一、填空题:1、 设0()f x '存在,则t t x f t x f t )()(lim 000+--+→= ;2、 ,1,321,)(32⎪⎩⎪⎨⎧≤>=x x x x x f 则(1)f '= ; 3、 设xey 2sin =, 则dy = ;4、 设),0(sin >=x x x y x则=dxdy; 5、 y =f (x )为方程x sin y + y e 0=x确定的隐函数, 则(0)f '= .二、选择题:1、)0(),1ln()(2>+=-a a x f x 则(0)f '的值为( )(A) –ln a (B) ln a (C)a ln 21 (D) 21 2、 设曲线21x e y -=与直线1x =-相交于点P , 曲线过点P 处的切线方程为( )(A) 2x -y -2=0 (B) 2x +y +1=0 (C) 2x +y -3=0 (D) 2x -y +3=03、 设⎪⎩⎪⎨⎧>-≤=0),1(0)(2x x b x e x f ax 处处可导,则( )(A) a =b =1 (B) a =-2, b =-1 (C) a =0, b =1 (D) a =2, b =14、 若f (x )在点x 可微,则xdyy x ∆-∆→∆0lim的值为( )(A) 1 (B) 0 (C) -1 (D) 不确定5、设y =f (sin x ), f (x )为可导函数,则dy 的表达式为( ) (A)(sin )f x dx ' (B)(cos )f x dx ' (C)(sin )cos f x x ' (D)(sin )cos f x xdx '三、计算题:1、 设对一切实数x 有f (1+x )=2f (x ),且(0)0f '=,求(1)f '2、若g(x)=⎪⎩⎪⎨⎧=≠0,00,1cos 2x x x x 又f (x )在x =0处可导,求))((=x x g f dx d3、 求曲线⎩⎨⎧=++=-+010)1(y te t t x y 在t =0处的切线方程4、 f (x )在x =a 处连续,),()sin()(x f a x x -=ϕ求)('a ϕ5、 设3222()x y y u x x =+⋅=+, 求.dudy 6、 设()ln f x x x =, 求()()n fx . 7、计算.(三)中值定理与导数的应用一、填空题:1、 函数f (x )=arctan x 在[0 ,1]上使拉格朗日中值定理结论成立的ξ= ;2、 若01lim sin 22ax x e b x →-=则a = , b = ; 3、 设f (x )有连续导数,且(0)(0)1f f '==则)(ln )0()(sin lim 0x f f x f x -→= ;4、x e y x sin =的极大值为 ,极小值为 ;5、 )10(11≤≤+-=x xxarctgy 的最大值为 ,最小值为 . 二、选择题:1、 如果a,b 是方程f(x)=0的两个根,函数f(x)在[a,b]上满足罗尔定理条件,那么方程f’(x)=0在(a,b)内( )(A )仅有一个根; (B )至少有一个根; (C )没有根; (D )以上结论都不对。

(完整word版)大一高数复习资料【全】

(完整word版)大一高数复习资料【全】

高等数学(本科少学时类型)第一章函数与极限第一节函数O函数基础(高中函数部分相关知识)(★★★)O邻域(去心邻域)(★)第二节数列的极限O数列极限的证明(★)【题型示例】已知数列X n,证明limXX n a【证明示例】N语言1•由X n a化简得n g ,N g2.即对0,N g 。

当彳n N时,始终有不等式X n a 成立,••• lim x aX第三节函数的极限O X X0时函数极限的证明(★)【题型示例】已知函数 f x,证明lim fX X0x A【证明示例】语言1•由f x A化简得0XXg ,g2.即对0,g当0XX。

时, 始终有不等式 f x A成立,• lim f x Ax XO X时函数极限的证明(★)【题型示例】已知函数f x,证明lim f X AX【证明示例】X语言1•由 f X A 化简得x gX g2.即对0,X g当X X时,始终有不等式 f x A 成立,• lim f x AX第四节无穷小与无穷大O无穷小与无穷大的本质(★)函数f x无穷小lim f x 0函数f x无穷大lim f xO无穷小与无穷大的相关定理与推论(★★)(定理三)假设f x为有界函数,g x为无穷小,则lim f x g x 0(定理四)在自变量的某个变化过程中,若 f x 为无穷大,则f 1 X为无穷小;反之,若f X为无穷小,且f x 0,则f 1x为无穷大【题型示例】计算:lim f x g x (或x )X X01 .••• f x < M •函数f x在x x0的任一去心邻域U x0,内是有界的;(••• f x < M,•函数f x在x D上有界;)2. lim g x0即函数g X是x X0时的无穷小;X X0(lim g x0即函数g X是X 时的无穷小;)3 .由定理可知lim f x g x 0X X0(lim f x g X0)X第五节极限运算法则O极限的四则运算法则(★★)(定理一)加减法则(定理二)乘除法则关于多项式p x、q x商式的极限运算m m 1p X 设:a°x a1x a mq x b°x n n1b nn m则有lim卫X a0n mX q X t b0n mf X0(特别地,当彳lim(不定型)时,通常分子X X0g x0分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值lim-x 3x 3x29【求解示例】解:1因为x 3,从而可得x 3,所以原式x 3X3 1 1 lim 2lim -limx 3x 9x 3x 3x 3x 3x 3 6x 3其中x 3为函数f X —的可去间断点x29倘若运用罗比达法则求解(详见第三章第二节):x3 °解:lim 2limx 3 X29 L X 3x 3x2 9limx3 2xO 连续函数穿越定理(复合函数的极限求解)(★★) (定理五)若函数 f x 是定义域上的连续函数, 那么,lim x x o f lim x x X 。

大一高数考试题库资料__另附_高数学习方法+高数公式库(大一必看)

大一高数考试题库资料__另附_高数学习方法+高数公式库(大一必看)

学年第二学期期末考试试卷(同济大学版)附答案一、单选题(共15分,每小题3分)1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( )A .(,)f x y 在P 连续B .(,)f x y 在P 可微C . 00lim (,)x x f x y →及 00lim (,)y y f x y →都存在 D .00(,)(,)lim (,)x y x y f x y →存在2.若xyz ln =,则dz 等于( ).ln ln ln ln .x x y y y y A x y + ln ln .x y yB xln ln ln .ln x xy yC yydx dy x+ ln ln ln ln .x x y y y x D dx dy x y + 3.设Ω是圆柱面222x y x +=及平面01,z z ==所围成的区域,则(),,(=⎰⎰⎰Ωdxdydz z y x f ). 2120cos .(cos ,sin ,)A d dr f r r z dz πθθθθ⎰⎰⎰ 21200cos .(cos ,sin ,)B d rdr f r r z dz πθθθθ⎰⎰⎰2122cos .(cos ,sin ,)C d rdr f r r z dz πθπθθθ-⎰⎰⎰ 21cos .(cos ,sin ,)xD d rdr f r r z dz πθθθ⎰⎰⎰4. 4.若1(1)nn n a x ∞=-∑在1x =-处收敛,则此级数在2x =处( ).A . 条件收敛B . 绝对收敛C . 发散D . 敛散性不能确定5.曲线222x y z z x y -+=⎧⎨=+⎩在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1)二、填空题(共15分,每小题3分)1.设220x y xyz +-=,则'(1,1)x z = . 2.交 换ln 1(,)exI dx f x y dy =⎰⎰的积分次序后,I =_____________________.3.设22z xy u -=,则u 在点)1,1,2(-M 处的梯度为 .4. 已知0!n xn x e n ∞==∑,则xxe -= .三、解答题(共54分,每小题6--7分)1.(本小题满分6分)设arctan y z y x =, 求z x∂∂,z y ∂∂.2.(本小题满分6分)求椭球面222239x y z ++=的平行于平面23210x y z -++=的切平面方程,并求切点处的法线方程.3. (本小题满分7分)求函数22z x y =+在点(1,2)处沿向量1322l i j =+方向的方向导数。

《高等数学(一)》期末复习题(答案)

《高等数学(一)》期末复习题(答案)

《高等数学(一)》期末复习题一、选择题1. 极限)x x →∞的结果是 ( C ).(A )0 (B ) ∞ (C ) 12(D )不存在 2. 设()xxx f +-=11ln,则)(x f 是 ( A ). (A )奇函数 (B) 偶函数 (C )非奇非偶函数 (D )既奇又偶函数 3. 极限21lim sinx x x→= ( A ) . (A )0 (B) 1 (C )+∞ (D )-∞ 4. 方程3310x x -+=在区间(0,1)内( B ).(A )无实根 (B )有唯一实根 (C )有两个实根 (D )有三个实根 5. 设()()ln 1f x x =+,g (x )=x ,则当0x →时,()f x 是()g x 的( A ).(A )等价无穷小 (B) 低阶无穷小(C )高阶无穷小 (D) 同阶但非等价无穷小 6. 下列变量中,是无穷小量的为( A ).(A ))1(ln →x x (B ))0(1ln +→x x (C )cos (0)x x → (D ))2(422→--x x x 7. 极限011lim(sinsin )x x x x x→- 的结果是( C ).(A )0 (B ) 1 (C ) 1- (D )不存在8. 下列函数中满足罗尔定理条件的是( D ).(A )()2,[0,1]f x x x =-∈ (B) 3(),[0,1]f x x x =∈ (C )(),[1,1]f x x x =∈- (D)4(),[1,1]f x x x =∈-9. 函数1cos sin ++=x x y 是( C ).(A )奇函数 (B )偶函数 (C )非奇非偶函数 (D )既是奇函数又是偶函数 10. 当0→x 时, 下列是无穷小量的是( B ).(A )1+x e (B) )1ln(+x (C) )1sin(+x (D) 1+x11. 当x →∞时,下列函数中有极限的是( A ).(A )211x x +- (B) cos x (C) 1xe(D)arctan x 12. 方程310(0)x px p ++=>的实根个数是 ( B ).(A )零个 (B )一个 (C )二个 (D )三个 13.21()1dx x '=+⎰( B ).(A )211x + (B )211C x++ (C ) arctan x (D ) arctan x c + 14. 定积分()f x dx ⎰是( A ).(A )一个函数族 (B )()f x 的的一个原函数 (C )一个常数 (D )一个非负常数15.函数(ln y x =+是( A ).(A )奇函数 (B )偶函数 (C ) 非奇非偶函数 (D )既是奇函数又是偶函数 16. 设函数在区间上连续,在开区间内可导,且,则( B ).(A) (B) (C) (D) 17. 设曲线221x y e-=-,则下列选项成立的是( C ). (A) 没有渐近线 (B) 仅有铅直渐近线 (C) 既有水平渐近线又有铅直渐近线 (D) 仅有水平渐近线 18. 设是的一个原函数,则等式( D )成立.(A )(B) (C ) (D)19. 设⎰+=C x dx x xf arcsin )(,则⎰=dx x f )(1( B ). (A )C x +--32)1(43 (B )C x +--32)1(31 (C )C x +-322)1(43 (D )C x +-322)1(32()f x []0,1()0,1()0f x '>()00f <()()10f f >()10f >()()10f f <F x ()f x ()dd d x f x x F x (())()⎰='=+⎰F x x f x c()()d '=⎰F x x F x ()()d dd d xf x x f x (())()⎰=20. 数列})1({nn n-+的极限为( A ).(A )1(B) 1-(C) 0(D) 不存在21. 下列命题中正确的是( B ).(A )有界量和无穷大量的乘积仍为无穷大量(B )有界量和无穷小量的乘积仍为无穷小量 (C )两无穷大量的和仍为无穷大量 (D )两无穷大量的差为零 22. 若()()f x g x ''=,则下列式子一定成立的有( C ).(A)()()f x g x = (B)()()df x dg x =⎰⎰(C)(())(())df x dg x ''=⎰⎰(D)()()1f x g x =+ 23. 下列曲线有斜渐近线的是 ( C ).(A)sin y x x =+ (B)2sin y x x =+ (C)1siny x x =+ (D)21sin y x x=+ 24. 函数)1,0(11)(≠>+-=a a a a x x f x x ( B ).(A )是奇函数 (B )是偶函数(C )既奇函数又是偶函数 (D )是非奇非偶函数 25. 下列函数中满足罗尔定理条件的是( D ).(A )]1,0[,1)(∈-=x x x f (B)]1,0[,)(2∈=x x x f (C )()sin ,[1,1]f x x x =∈- (D)]1,1[,)(2-∈=x x x f26. 若函数221)1(xx x x f +=+,则=)(x f ( B ). (A )2x (B )22-x (C )2)1(-x (D )12-x 27. 设函数,ln )(x x x f =则下面关于)(x f 的说法正确的是( A ).(A )在(0,e 1)内单调递减 (B)在(+∞,1e)内单调递减 (C )在(0,+∞)内单调递减 (D)(0,+∞)在内单调递增28. 设1)(+=x x f ,则)1)((+x f f =( D ).(A )x (B )x + 1 (C )x + 2 (D )x + 329. 已知0)1(lim 2=--+∞→b ax x x x ,其中a ,b 是常数,则( C ).(A )1,1==b a , (B )1,1=-=b a (C )1,1-==b a (D )1,1-=-=b a 30. 下列函数在指定的变化过程中,( B )是无穷小量.(A ) (B )(C ) (D )31. 设函数(),2x xe ef x -+=则下面关于)(x f 的说法正确的是( B ) .(A )在(0,)+∞内单调递减 (B)在(,0)-∞内单调递减 (C )在(,0)-∞内单调递增 (D)在(,)-∞+∞内单调递增32. 下列函数中,在给定趋势下是无界变量且为无穷大的函数是( C ).(A ))(1sin∞→=x xx y (B )())(1∞→=-n n y n (C ))0(ln +→=x x y (D ))0(1cos 1→=x xx y33. 设⎪⎩⎪⎨⎧≤>=0,0,1sin )(x x x xx x f ,则)(x f 在0=x 处( B ). (A )连续且可导(B )连续但不可导 (C )不连续但可导(D )既不连续又不可导34. 在下列等式中,正确的是( C ).(A )()()f x dx f x '=⎰ (B) ()()df x f x =⎰(C )()()df x dx f x dx=⎰ (D)[()]()d f x dx f x =⎰ 35. 曲线x x y -=3在点(1,0)处的切线是( A ).(A )22-=x y(B )22+-=x ye 1xx ,()→∞sin ,()xxx →∞ln(),()11+→x x x xx +-→110,()(C )22+=x y(D )22--=x y36. 已知441x y =,则y ''=( B ). (A ) 3x (B )23x (C )x 6 (D ) 6 37. 若x xf =)1(,则=')(x f ( D ).(A )x 1 (B )21x (C )x 1- (D )21x-38. 下列各组函数中,是相同的函数的是( B ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 39. 函数()()20ln 10x f x x a x ≠=+⎨⎪=⎩ 在0x =处连续,则a =( B ).(A )0 (B )14(C )1 (D )240. 曲线ln y x x =的平行于直线10x y -+=的切线方程为( A ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 41. 设函数()||f x x =,则函数在点0x =处( C ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 42. 设()f x 可微,则0()(2)limh f x f x h h→--=( D ).(A )()f x '- (B)1()2f x ' (C )2()f x '- (D)2()f x '43. 点0x =是函数4y x =的( D ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 44. 曲线1||y x =的渐近线情况是( C ). (A )只有水平渐近线 (B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线45.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( D ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭46.x x dxe e -+⎰的结果是( A ).(A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ (D )ln()x x e e C -++47. 下列各组函数中,是相同函数的是( C ).(A) ()f x x =和()g x =()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =48. 设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( D ).(A) 0 (B) 1 (C) 2 (D)不存在49. 设函数22456x y x x -=-+,则2x =是函数的( A ).(A) 可去间断点 (B) 跳跃间断点 (C) 无穷间断点 (D) 振荡间断点 50. 设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为( C ). (A) 0 (B)2π(C)锐角 (D)钝角 51. 曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( D ).(A) 12,ln2⎛⎫ ⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C) 1,ln 22⎛⎫ ⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭52. 函数2x y x e -=及图象在()1,2内是( B ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的 53. 以下结论正确的是( C ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.54. 设函数22132x y x x -=-+,则1x =是函数的( A ).(A )可去间断点 (B) 跳跃间断点 (C) 无穷间断点 (D) 振荡间断点 55. 设函数()y f x =的一个原函数为12x x e ,则()f x =( A ).(A) ()121x x e - (B)12xx e - (C) ()121x x e + (D) 12xxe56. 若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( D ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+57. 函数21,0e ,0xx x y x ⎧+<=⎨≥⎩在点0x =处( D ).(A )连续且可导 (B) 不连续且不可导 (C) 不连续但可导 (D) 连续但不可导 58. 函数 2)1ln(++-=x x y 的定义域是( C ).(A ) []1,2- (B ) [)1,2- (C )(]1,2- (D )()1,2- 59. 极限x x e ∞→lim 的值是( D ).(A )∞+ (B ) 0 (C )∞- (D )不存在 60. =--→211)1sin(limx x x ( C ).(A )1 (B ) 0 (C )21-(D )2161. 曲线 23-+=x x y 在点)0,1(处的切线方程是( B ).(A ) )1(2-=x y (B ))1(4-=x y (C )14-=x y (D ))1(3-=x y62. 函数, 0,0xx x y e x <⎧=⎨≥⎩在点0x =处( B ). (A )连续且可导 (B) 不连续且不可导 (C) 不连续但可导 (D) 连续但不可导 63. 下列各微分式正确的是( C ).(A ))(2x d xdx = (B ))2(sin 2cos x d xdx = (C ))5(x d dx --= (D )22)()(dx x d = 64. 设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( B ). (A )2sin x (B ) 2sin x - (C )C x +2sin (D )2sin 2x-65. 设()f x 可微,则0(2)()limh f x h f x h→+-=( D ).(A )()f x '- (B)1()2f x ' (C)2()f x '- (D)2()f x ' 66.⎰=+dx x xln 2( B ).(A )Cx x ++-22ln 212 (B )C x ++2)ln 2(21(C )C x ++ln 2ln (D )C xx++-2ln 1 67. 函数)1lg(12+++=x x y 的定义域是( B ).(A )()()+∞--,01,2 (B )()),0(0,1+∞- (C )),0()0,1(+∞- (D )),1(+∞-68. 设0tan 4()lim6sin x x f x x →+=,则0()lim x f x x→=( B ) .(A )1 (B )2 (C )6 (D )24 69. 下列各式中,极限存在的是( A ).(A ) x x cos lim 0→ (B )x x arctan lim ∞→ (C )x x sin lim ∞→ (D )x x 2lim +∞→70. =+∞→xx xx )1(lim ( D ). (A )e (B )2e (C )1 (D )e1 71. 设0sin 4()lim5sin x x f x x →+=,则0()lim x f x x→=( B ) .(A )0 (B )1 (C )5 (D )2572. 曲线x x y ln =的平行于直线01=+-y x 的切线方程是( C ).(A )x y = (B ))1)(1(ln --=x x y (C )1-=x y (D ))1(+-=x y73. 已知x x y 3sin = ,则=dy ( B ).(A )dx x x )3sin 33cos (+- (B )dx x x x )3cos 33(sin + (C )dx x x )3sin 3(cos + (D )dx x x x )3cos 3(sin + 74. 下列等式成立的是( C ).(A )⎰++=-C x dx x 111ααα (B )⎰+=C x a dx a x x ln (C )⎰+=C x xdx sin cos (D )⎰++=C xxdx 211tan 75. 极限01lim sinx x x→= ( A ) . (A ) 0 (B) 1 (C )+∞ (D) -∞ 76. 设()1cos f x x =-,()2g x x =,则当0x →时,()f x 是()g x 的( D ).(A )等价无穷小 (B) 低阶无穷小 (C ) 高阶无穷小 (D) 同阶但非等价无穷小 77. 计算⎰xdx x e x cos sin sin 的结果中正确的是( D ).(A )C e x +sin (B )C x e x +cos sin (C )C x e x +sin sin (D )C x e x +-)1(sin sin78. 5lg 1)(-=x x f 的定义域是( D ).(A )()),5(5,+∞∞- (B )()),6(6,+∞∞-(C )()),4(4,+∞∞- (D )())5,4(4, ∞- ()),6(6,5+∞79. 如果函数f (x )的定义域为[1,2],则函数f (x )+f (x 2)的定义域是( B ).(A )[1,2] (B )[1,2] (C )]2,2[- (D )]2,1[]1,2[ --80. 函数)1lg()1lg(22x x x x y -++++=( D ).(A )是奇函数,非偶函数 (B )是偶函数,非奇函数 (C )既非奇函数,又非偶函数 (D )既是奇函数,又是偶函数 81. 设()sin f x x x =,则)(x f 是( C ).(A )非奇非偶函数 (B) 奇函数 (C)偶函数 (D) 既奇又偶函数 82. 函数)10(1)(2≤≤--=x x x f 的反函数=-)(1x f( C ).(A )21x - (B )21x --(C ))01(12≤≤--x x (D ))01(12≤≤---x x 83. 下列数列收敛的是( C ).(A )1)1()(1+-=+n n n f n (B )⎪⎩⎪⎨⎧-+=为偶数为奇数n nn n n f ,11,11)((C )⎪⎩⎪⎨⎧+=为偶数为奇数n n n n n f ,11,1)( (D )⎪⎪⎩⎪⎪⎨⎧-+=为偶数为奇数n n n f nn n n ,221,221)(84. 设1111.0个n n y =,则当∞→n 时,该数列( C ).(A )收敛于0.1 (B )收敛于0.2 (C )收敛于91(D )发散 85. 下列极限存在的是( A ).(A )2)1(lim x x x x +∞→ (B )121lim -∞→x x (C )x x e 10lim → (D )x x x 1lim 2++∞→ 86. xx xx x x sin 2sin 2lim 22+-+∞→=( A ).(A )21(B )2 (C )0 (D )不存在 87. =--→1)1sin(lim 21x x x ( B ).(A )1 (B )2 (C )21(D )0 88. 下列极限中结果等于e 的是( B ).(A )xx x x x sin 0)sin 1(lim +→ (B )x xx x x sin )sin 1(lim +∞→ (C )xxx xxsin )sin 1(lim -∞→- (D )xxx xxsin 0)sin 1(lim +→89. 函数||ln 1x y =的间断点有( C )个. (A )1 (B )2 (C )3 (D )4 90. 下列结论错误的是( A ).(A )如果函数f (x )在点x =x 0处连续,则f (x )在点x =x 0处可导; (B )如果函数f (x )在点x =x 0处不连续,则f (x )在点x =x 0处不可导; (C )如果函数f (x )在点x =x 0处可导,则f (x )在点x =x 0处连续; (D )如果函数f (x )在点x =x 0处不可导,则f (x )在点x =x 0处也可能连续。

(完整版)高数一试题库

(完整版)高数一试题库

南京工业大学继续教育学院南京高等职业技术学校函授站《高等数学一》课程复习题库一. 选择题1. 0sin 3limx xx→=( )A.0B. 13C.1D.32. 0sin lim 22x axx→=,则a =( )A.2B. 12C.4D. 143. 0sin 5sin 3lim x x x x →-⎛⎫⎪⎝⎭=( ) A.0 B.12 C.1 D.2 4. 极限0tan 3lim x xx→等于( )A 0B 3C 7D 5 5.设()2,0,0x x x f x a x ⎧+<=⎨≥⎩,且()f x 在0x =处连续,则a =( )A.0B. 1-C.1D.26. 设()21,10,1ax x f x x ⎧+<=⎨≥⎩,且()f x 在1x =处连续,则a =( )A.1B. 1-C.-2D. 27. 设()21,02,0,0x x f x a x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处连续,则a =( )A.1B. 1-C.0D. 128.设2cos y x =,则y '=( )A. 2sin xB. 2sin x -C. 22sin x x -D. 22sin x x9. 设21y x -=+,则y '= ( ) A.32x - B.12x -- C.32x -- D.121x --+ 10.设5sin y x x -=+则y '=( )A .65cos x x --+B 45cos x x --+C.45cos x x ---D.65cos x x ---11. 设51y x =,则dy =( ) A.45x - .B.45x dx -- C. 45x dx D.45x dx - 12. 设1cos 2,y x =-则dy =( )A .sin 2xdxB sin 2xdx - C.2sin 2xdx D.2sin 2xdx - 13. 设()2ln 1,y x =+则dy =( )A .21dx x + B 21dx x -+ C.221xdx x + D.221xdxx-+ 14. ()1lim 1xx x →-=( )A. eB. 1e -C. 1e --D. e - 15.()xx x 2121lim +→ =( ) A0 B∞ Ce D2e16. 01lim 1xx x →⎛⎫+= ⎪⎝⎭( )A. eB. 1e -C.0D. 117.226lim 2x x x x →+--=( )A. 1B. -2C.5D. -118.2231lim2x x x x x →∞++=- ( ) A. 32- B. 23- C. 23 D. 3219.2lim 43x x x →∞+=- ( )A. 14B.0C. 23-D. 1220. 设()01f x '=,则()()0002limh f x h f x h→+-=( )A.2B.1C. 12D.0 21. 设()102f '=,则()()020limh f h f h →-=( ) A.2 B.1 C.12D.0 22.设1sin 3xy =+,则()0y '=( )A.0B. 13C.1D. 13-23. .设()2ln 1y x =+,则()1y '=( ) A.0 B.12 C.1 D. 12- 24. 设x y e -=,则()1y ''=( ) A. e B. 1e - C.0 D. 1 25.设y z x y =+,则(,1)e zy∂=∂( )A ,1e +B ,11e+ C , 2 D , 126. sin xdx =⎰( )A .sin x C +B sin xC -+ C. cos x C + D.cos x C -+27. 21xdx x =+⎰( ) A .()2ln 1x C ++ B ()22ln 1x C ++C. ()21ln 12x C ++ D. ()ln 1x C ++28. ()2x x dx +=⎰( )A .32x x C ++B 3212x xC ++ C. 321132x x C ++ D. 32x x C -+29. 112x dx =⎰( )A.2B.32 C. 23D.0 30. 1x e dx -=⎰( )A. 1e -B. 11e --C. 1e --D. 11e -- 31. ()1213xx dx --=⎰( )A . 0 B. 1 C .12 D . 2332.设2101()212x x f x x ⎧+≤≤=⎨<≤⎩,则20()f x dx ⎰=( )A . 1 B. 2 C . 83 D . 10333.设23z x y x =+-,则zx∂=∂( )A. 21x +B. 21xy +C. 21x +D. 2xy34.设e sin xz x y =,则22zx∂∂=( )A.e (2)sin x x y +B. e (1)sin x x y +C. e sin x x yD. e sin x y35.设3233z x y x y =-,则2zx y∂∂∂=( )A. 22318x xy -B. 366xy y -C. 218x y -D. 3229x x y -36.设函数()2sin z xy =,则22zx∂=∂( )42.cos()A y xy 42.cos()B y xy - 42.sin()C y xy 42.sin()D y xy -37.设xyz e =,则2zx y∂=∂∂( ) ().1xy A xy e + ().1xy B x y e + ().1xy C y x e + .xy D xye 38.微分方程0y y '-=,通解为( )A.x y e C =+B. x y e C -=+C. x y Ce =D. x y Ce -= 39. 微分方程20y x '-=,通解为( )A.2y x C =+B. 2y x C -=+C. 2y Cx =D. 2y Cx -= 40. 微分方程0xy y'+=,通解为( ) A.22y x C =+ B. 22y x C =-+ C. 22y Cx = D. 2y x C -=+41.幂级数02nn n x ∞=∑的收敛半径=( )A .12B.1C.2D. +∞ 42. 幂级数0n n x ∞=∑的收敛半径为( )A.1B.2C.3D.443.设0i n u ∞=∑与0i n v ∞=∑为正项级数,且i i u v <,则下列说法正确的是( )A.若0i n u ∞=∑收敛,则0i n v ∞=∑收敛B. 若0i n u ∞=∑发散,则0i n v ∞=∑发散C.若0i n v ∞=∑收敛,则0i n u ∞=∑收敛 B. 若0i n v ∞=∑发散,则0i n u ∞=∑发散44. 设函数()2x f x e =,则不定积分2x f dx ⎛⎫⎪⎝⎭⎰=( )A. 2x e C +B. x e C +C. 22x e C +D. 2x e C +45. 设()f x 为连续函数,则()ba d f x dx dx =⎰( )A. ()()f b f a -B. ()f bC. ()f a -D.0 46.设()0()sin ,xf t dt x x f x =⎰则=( )A ,sin cos x x x +B ,sin cos x x x -C ,cos sin x x x -D ,(sin cos )x x x -+ 47. 方程0x y z +-=表示的图形为( ) A.旋转抛物面 B.平面 C.锥面 D.椭球面48. 如果()f x 的导函数是,则下列函数中成为()f x 的原函数的是( )49. 当0x →时,与变量2x 等价的无穷小量是( )50. 当0x →时,21x e -是关于x 的( )A .同阶无穷小B .低阶无穷小C .高阶无穷小D .等价无穷小51. 当+→0x 时,下列变量中是无穷小量的是( ) A 、x 1 B 、x xsin C 、1-x e D 、x1 52.当0x →时,kx 是sin x 的等价无穷小量,则k =( )A.0B.1C.2D.353.函数33y x x =-的单调递减区间为( )A. (,1]-∞-,B. [1,1]-C. [1,)+∞D. (,)-∞+∞ 54.曲线3y x -=在点(1,1)处的切线的斜率为( )A.-1B.-2C.-3D.-455.1x =是函数()211x f x x -=-的( )A .连续点B .可去间断点C .跳跃间断点D .无穷间断点二、填空题1.()10lim 1sin xx x →+= .2. 若0sin lim2sin x mxx→=,则=m3. 0tan lim ______21x xx →=+4. xx x sin 121lim--→=5. 21lim 1xx x →∞⎛⎫- ⎪⎝⎭= .6. ()()2x 35lim 5321x x x →∞+=++7. 2241lim21x x x x →-+=+ 8. 201cos limx xx→-= 9. 30tan sin limx x xx →-= 10. arctan limx xx→∞=11.22lim 1xx x →∞⎛⎫+= ⎪⎝⎭12.设函数2ln y x x =,则y '=13.已知tan y x =,则y ''= .14.已知112+=x y ,则y '= 15.已知1=+xy e x ,则dydx= 16. 已知)12(sin 2-=x y ,则dydx=17.设20,()0,0xe x xf x x ⎧≠⎪⎪=⎨⎪⎪=⎩,则)(f 0'=___________。

高等数学习题库

高等数学习题库

高等数学(1)复习题一、选择题1.函数112-=x y 的定义域是( ) A . (-1,1) B .[-1,1]C .(,1][1,)-∞-⋃+∞D .(,1)(1,)-∞-⋃+∞2、函数1lg(2)y x =+的定义域是( ) A.(3,2)(1,)--⋃-+∞ B.(2,1)(1,)--⋃-+∞C.(3,1)(1,)--⋃-+∞D.(2,)-+∞3、函数1()ln(2)f x x =-的定义域是( ) A.(2,)+∞ B.(3,)+∞ C.(2,3)(3,)+∞D.(,2)(2,)-∞+∞4、下列各式中,运算正确的是( )5.设⎪⎪⎩⎪⎪⎨⎧>≤≤---<+=1,011,11,21)(2x x x x x x f ,则)2(-f = ( )A .23-B .3-C .0D .25 6.若0lim x x → f (x )存在, 则f (x )在点x 0是( ) A . 一定有定义B .一定没有定义C .可以有定义, 也可以没有定义D .以上都不对7.下列说法正确的是( )。

A .无穷小量是负无穷大量B .无穷小是非常小的数C .无穷大量就是∞+D .负无穷大是无穷大量8.下列说法正确的是( )A.若函数()f x 在点0x 处无定义,则()f x 在点0x 处无极限。

B.无穷小是一个很小很小的数。

C.函数()f x 在点0x 处连续,则有:00lim ()()x x f x f x →= D.在(,)a b 内连续的函数()f x 在该区间内一定有最大值和最小值。

9.函数11)(2--=x x x f ,当1→x 时的极是( ) A.2- B.2C.∞D.极限不存在10.极限1lim x →211x x -+=( ) A .0B.1C .2D .∞11.函数21()1x f x x -=+,当1x →-时的极限( ) A .2 B .2-C .∞D .极限不存在12.极限1lim x →211x x ++=( ) A .0B.1C .2D .∞13.311lim 1x x x →-=-( ) A.1B.2 C.3D.414.极限=-++-→221lim 221x x x x x ( ) A. 21B.1C .0D .∞ 15.下列各式中正确的是( )A .0sin lim0=→x x x B .1sin lim =∞→x x x C .0sin lim1=→x x x D .1sin lim 0=→xx x16.设0sin lim7x ax x →= 时,则a 的值是( ) A.17B.1C.5D.7 17、当x →0时,下列各等价无穷小错误的是( )A .arctan x ~xB .sin x 2 ~ x 2C . lg(1+x ) ~ xD .1-cos x ~21x 218、函数xx x x f sin )(+=,当∞→x 时的极限( ) A .0 B .∞C .-1D .119、当0x →时,ln(1x)+与x 比较是( )A.高阶无穷小量B.低阶无穷小量C.等价无穷小量D.同阶但不等价无穷小量20、2(1)y x =-在1x =处( )A.连续B.不连续C.不可导D.既不连续也不可导21、函数⎩⎨⎧≥+<+=0 30 32)(2x a x x x x f 在x = 0处连续,则a 的值是( ) A. 3 B. 2 C. 1 D. 022、函数y=ln (2 - x - x 2)的连续区间为( )A .(-1,2)B .(-2,1)C .(- ∞,1)∪(- ∞,1)D .(- ∞,-2)∪(1,+∞)23.下列说法错误的是( )A .可导一定连续B .不可导的点不一定没有切线C .不可导的点一定不连续D .不连续的点一定不可导24.函数f (x )在点 x 0连续是函数在该点可导的( )A .充分条件但不是必要条件B .必要条件但不是充分条件C .充分必要条件D .既不是充分条件, 也不是必要条件25.已知函数f (x )=,0,10,12⎩⎨⎧>+≤-x x x x 则在x =0处( ) A .间断B .不可导 C .f '(0) =-1 D .f '(0) =126、||x y =在0x =处( )A.连续不可导B.可导不连续C.可导且连续D.既不连续也不可导27.设y =x e -,则='y ( )A .x e -B . x 1x e --C .-x 1x e --D .-x e -28.导数等于21sin2x 的函数是( ) A .21sin 2x B .41cos2x C .21cos 2x D .1-21cos2x 29.若下列函数中( )的导数不等于1sin 22x A .1cos 24x B . 21sin 2x C .21cos 2x - D .11cos 24x - 30、设243y x =-,则()1f '等于( )A.0B.-6C.-3D.331.设ln y x x =+,则dy dx=( ) A.1x x + B.1x x + C.1x x +- D.1x x-+ 32.设()y f x =-,则y '=( )A.()f x 'B.()f x '-C.()f x '-D.()f x '--33.下列导数计算正确的是( )A.x x e e 22sin sin )(='B.()2112ln ln -='-x x C .21(arcsin )x '= D .x x 2sin )(sin 2='34.下列导数计算正确的是( )A.sin sin ()x x e e '=B.21(2log )2ln 2ln 2x x x x '+=+C.(1x'+=+D.211)2ln (ln +='+x x 35、半径为R 的金属圆片,加热后半径伸长了dR ,则面积S 的微分dS 是( )A .RdR πB .RdR π2C .dR πD .dR π236.设f (x )可微,则d(e f (x ) ) =( )A .f '(x )d xB .e f (x )d xC .f '(x ) e f (x )d xD .f '(x ) d(e f (x ) )37、边长为a 的正方形铁片,加热后边长伸长了d a ,则面积S 的微分dS 是( )A .a d aB .2a d aC .a 2d aD .d a38、设函数在点0x 可导,且0()f x '=2,则曲线()y f x =在点00(,())x f x 处的切线的倾斜角是( )A .锐角B .0C .90D .钝角39.设函数在点x 0可导, 且f '(x 0) >0, 则曲线y = f (x )在点(x 0, f (x 0))处的切线的倾斜角是( )A .00B .900C .锐角D .钝角40.设函数在点x 0可导, 且f '(x 0) =-3, 则曲线y = f (x )在点(x 0, f (x 0))处的切线的倾斜角是( )A .00B .1500C .锐角D .钝角41、设函数在点0x 可导,且0()f x '<0,则曲线()y f x =在点00(,())x f x 处的切线的倾斜角是( )A .0B .锐角C .90D .钝角42.曲线y = ln x 上某点的切线平行于直线y = 2x -3, 该点的坐标是 ( )A .(2, ln 21)B .(2,-ln 21)C .(21,-ln2)D .(21,ln2) 43.设函数在点0x 可导,且02()f x '=-,则曲线)(x f y =在点0x x =处的切线的倾斜角是( ).A .0°B .90°C .120°D .钝角44.设函数在点0x 可导,且3)(0-='x f ,则曲线)(x f y =在点0x x =处的切线的倾斜角是( ).A .0°B .90°C .锐角D .钝角45、函数x x x f -+=)1ln()(的单调减少区间是( )A .),0(+∞B .)0,(-∞C .(0,1)D .(-1,0)46、函数)1ln()(x x x f +-=的单调减少区间是( )A.),0(+∞B.)0,(-∞C.(0,1)D.(-1,0)47.x x y ln 22-=的单调递减区间为( )A .)21,0(B .11(,)(0,)22-∞-⋃C .),21(+∞D .11(,0)(,)22-⋃+∞ 48、曲线32y x x =+-在点(1,0)处的切线方程为( )A.2(1)y x =-B.4(1)y x =-C.41y x =-D.3(1)y x =-49.函数y = x 2e -x 及其图形在区间(1, 2)内是( )A .单调增加且是凸的B .单调减少且是凸的C .单调增加且是凹的D .单调减少且是凹的50、曲线()y f x =在区间[,]a b 上单调减少且为凸的,则( )A .()f x '>0或()0f x ''>B .()f x '>0或()0f x ''<C .()f x '<0且()0f x ''>D .()f x '<0且()0f x ''<51、曲线()y f x =在区间[,]a b 上单调增加且为凹的,则( )A .()f x '>0,()0f x ''>B .()f x '<0,()0f x ''<C .()f x '>0,()0f x ''<D .()f x '<0,()0f x ''>52、若在(,)a b 内,函数()f x 的一阶导数()f x '>0,二阶导数()f x ''<0,则函数()f x 在此区间内( )A.单调减少,曲线是凹的B.单调减少,曲线是凸的C.单调增加,曲线是凹的D.单调增加,曲线是凸的53.若在(,)a b 内,函数()f x 的一阶导数()f x '<0,二阶导数()f x ''>0,则函数()f x 在此区间内( )A.单调减少,曲线是凹的B.单调减少,曲线是凸的C.单调增加,曲线是凹的D.单调增加,曲线是凸的54.若曲线弧位于其上任一点切线的下方,则该曲线弧是( )A.单调增加B.单调减少C.凹弧D.凸弧55.点 x = 0是函数y = x 2 的( )A .驻点但非极值点B .拐点C .驻点且是拐点D .驻点且是极值点56、点0x =是函数4y x =的( )A.驻点但不是极值点B.拐点C.驻点且是极值点D.驻点且是拐点57、点0x =是函数3y x =的( )A .极值点但不是驻点B .驻点但不是极值点C .驻点且是极值点D .极值点且是拐点58、下列说法正确的是( )A.驻点一定是极值点B. 拐点一定是极值点C.极值点一定是拐点D. 极值点一定是驻点或导数不存在的点59、若()00f x '=,则0x 是函数()f x 的( )A.极值点B.最值点C.驻点D.非极值点60、函数x e x x f -=)(的极值是( )A . 0B . 1C . -1D . 261.函数()y f x =在0x x =处连续,且取得极值,则有( )A.0()0f x '=B.0()0f x ''<C.00()0()f x f x ''=或者不存在D.0()f x '不存在62. 函数)(x f y =在点0x x =处取得极大值,则必有()A .0()0f x '=B .0)(0>''x fC .0()0f x '=且0)(0>''x fD .0()0f x '=或)(0x f '不存在63、曲线3(1)y x =-的拐点是( )A.(1,8)-B.(1,0)C.(0,1)-D.(2,1)64.下列说法正确的是( )A.驻点一定是极值点B. 极值点一定是驻点或导数不存在的点C.极值点一定是拐点D. 拐点一定是极值点65、若()(),F x f x '=则()dF x ⎰=( )A.()f xB.()F xC.()F x C +D. ()f x C +66.设⎰dx x f )(= cos 2x + C ,则f (x ) =( )A .sin 2xB .-2sin 2xC .sin x + CD .-sin 2x67.设⎰dx x f )(= 2cos2x + C ,则f (x ) =( ) A .sin2x B .-sin 2x C .sin 2x + C D .-2sin 2x 68.若c x x dx x f ++=⎰cos sin )(,则,=)(x f ( )A.x x cos sin +B.x x cos sin -C.x x sin cos -D.x x cos sin --69.dx d52x x e dx ⎰= ( )A .42x x eB .52x x e dxC .42x x e dxD .52x x e70.⎰=dx x xf dx d)(( ) A.)(21x f B.dx x f )(21C .)(x xfD .dx x xf )(71.2()d xf x dx ⎰=( )A .21()2f x B .21()2f x dxC .2()xf x dxD .21()2xf x dx72.2()d x f x dx ⎰=( )A .2()xf xB .2()xf x dxC .2()x f x dxD .2()x f x73.⎰=xdx 2cos ( )A .2sin2x + CB .2cos2x +C C .12sin2x + CD .12cos2x + C 74.dx x x f 211⎰⎪⎭⎫ ⎝⎛'=( )A .)1(x f -+ C B .-)1(x f -+ C C .)1(x f + CD .-)1(x f + C 75.⎰dx x 21=( )A .C x +1B .C x +-1C .C x +2lnD .C x +2ln76、()23sin x e x dx -⎰=( )A.23cos x e x c ++B.23cos x e x +C.23cos x e x -D.1二、填空题1.函数y =22x -+ arcsin x 的定义域为____________. 2、函数y=2x x -定义域为。

大一高数基础练习题集

大一高数基础练习题集

《高等数学》(理工类)1.设()y f x =的定义域为(0,1],()1ln x x j =-,则复合函数[()]y f x j =的定义域为________;0ln 1,[1,)x x e £<Î2.已知0x +®时,a r c t a n x 与cos axx 是等价无穷小,则a =______;arctan 33lim1,3x xa ax a ®===;3.函数6cos 2sin p +=x x y ,则=y d ________;21(2cos 2sin 2)x x dx x -;4.函数x xe y -=的拐点为____________;(2)0,2xy e x x -¢¢=-==,2(2,2)e -5.设函数ïîïíì³+<=2,2,sin )(pp x x a x x x f ,当a =____时,)(x f 在2p=x 处连续;12p-;6. 设()y y x =是由方程20ye xy +-=所确定的隐函数,则y ¢=__;yy e x-+ 7.函数xx e x f --=111)(的跳跃间断点是______;(1)0,(1)1,f f -+==1x =; 8.定积分121(1sin )x x dx --+ò=________;120212x dx p -=ò9.已知点空间三个点,)2,1,2(),1,2,2(,)1,1,1(B A M 则ÐAMB = _______;3p ;10.已知(2,3,1)(1,(1,2,3)2,3)a b ==,则a b ´=_________。

(751)-,,二、计算题(每小题6分,共42 分)1.求极限220ln(1)1lim 2sin 2x x arc x ®+=。

大一高等数学试题及答案

大一高等数学试题及答案

大一高等数学试题及答案一、选择题(每题2分,共20分)1. 下列函数中,不是周期函数的是()。

A. y = sin(x)B. y = cos(x)C. y = e^xD. y = tan(x)2. 函数f(x) = x^2 + 3x - 2的零点个数是()。

A. 0B. 1C. 2D. 33. 极限lim(x→0) (sin(x)/x)的值是()。

A. 0B. 1C. 2D. 无穷大4. 曲线y = x^3 - 2x^2 + 3在x = 1处的切线斜率是()。

A. -1B. 0C. 1D. 25. 以下哪个不是微分方程dy/dx = y/x的解()。

A. y = x^2B. y = x^3C. y = x^(-1)D. y = x6. 定积分∫(0,1) x^2 dx的值是()。

A. 1/3B. 1/4C. 1/2D. 17. 函数f(x) = ln(x)在区间[1, e]上的值域是()。

A. [0, 1]B. [1, e]C. [0, e]D. [1, 2]8. 以下哪个是复合函数f(g(x))的导数()。

A. f'(g(x)) * g'(x)B. f(g(x)) * g'(x)C. f'(x) * g'(x)D. f(x) * g'(x)9. 以下哪个是泰勒级数展开的公式()。

A. f(x) = ∑[n=0 to ∞] (f^(n)(a) / n!) * (x - a)^nB. f(x) = ∑[n=1 to ∞] (f^(n)(a) / n!) * (x - a)^nC. f(x) = ∑[n=0 to ∞] (f^(n)(a) / (n+1)!) * (x - a)^nD. f(x) = ∑[n=1 to ∞] (f^(n)(a) / (n+1)!) * (x - a)^n10. 以下哪个是拉格朗日中值定理的条件()。

A. f(x) 在区间[a, b]上连续B. f(x) 在区间(a, b)上可导C. f(x) 在区间[a, b]上可导D. f(x) 在区间(a, b)上连续且可导答案:1-5 C B B C A 6-10 B A A D D二、填空题(每题2分,共10分)1. 若f(x) = x^3 - 4x^2 + 5x - 6,则f'(x) = __________。

《大一高等数学》试卷(十份)

《大一高等数学》试卷(十份)

《高等数学试卷》一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是( ).A.(){}21,22≤+≤y x y x B.(){}21,22<+<y x y xC.(){}21,22≤+<y x y x D (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1-6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz =( ).A.22B.22-C.2D.2-7.若p 级数∑∞=11n p n 收敛,则( ). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nnx 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x-21 10.微分方程0ln =-'y y y x 的通解为( ). A.x ce y = B.x e y = C.x cxe y = D.cx e y = 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z 2_____________________________.4.x+21的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分⨯6)1.设v e z usin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin,其中22224:ππ≤+≤y x D .4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程x e y y 23=-'在00==x y 条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点⎪⎭⎫ ⎝⎛31,1,求此曲线方程 .试卷3参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121.5.()xe x C C y 221-+= .三.计算题 1.()()[]y x y x y e x z xy +++=∂∂cos sin ,()()[]y x y x x e yz xy +++=∂∂cos sin . 2.12,12+=∂∂+-=∂∂z y y z z x x z . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-.4.3316R . 5.x xe ey 23-=.四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷4(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.函数()22arcsin y x z +=的定义域为( ).A.(){}10,22≤+≤y x y xB.(){}10,22<+<y x y xC.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.216.设223y xy x z ++=,则()=∂∂2,1xz ( ).A.6B.7C.8D.9 7.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是( ).A.条件收敛B.绝对收敛C.发散D.不能确定 10.微分方程0ln =-'y y y x 的通解为( ). A.cx e y = B.x ce y = C.x e y = D.x cxe y = 二.填空题(4分⨯5)1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________. 3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________. 4.211x+的麦克劳林级数是______________________. 5.微分方程03=-ydx xdy 在11==x y 条件下的特解为______________________________.三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.5.求微分方程023=+'+''y y y 的通解.四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.2.如图,以初速度0v 将质点铅直上抛,不计阻力,求质点的运动规律().t x x =(提示:g dtxd -=22.当0=t 时,有0x x =,0v dt dx =)试卷4参考答案一.选择题 CBABA CCDBA.二.填空题 1.211212+=-=-z y x . 2.()xdy ydx exy+.3.488=--z y x .4.()∑∞=-021n n n x . 5.x y =. 三.计算题1.k j i238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ .3.22,z xy xzy z z xy yz x z +-=∂∂+-=∂∂. 4.⎪⎭⎫ ⎝⎛-3223323πa . 5.x x e C e C y --+=221. 四.应用题 1.316. 2. 00221x t v gt x ++-=.《高数》试卷5(上)一、 填空题(每小题3分, 共24分)1. 函数219y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7.20_______________________.x td e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2.; 233lim 9x x x →--3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2x y x =+, 求(0)y '. 2. cos xy e =, 求dy . 3. 设x y xy e +=, 求dydx.四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2. ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷5参考答案一.1.(3,3)- 2.4a = 3.2x = 4.()x xe f e '5.126.07.22x xe - 8.二阶 二.1.原式=0lim 1x x x→= 2.311lim36x x →=+3.原式=112221lim[(1)]2x x e x--→∞+=三.1.221,(0)(2)2y y x ''==+2.cos sin xdy xedx =-3.两边对x 求写:(1)x y y xy e y +''+=+'x y x y e y xy yy x e x xy ++--⇒==--四.1.原式=ln 2cos x x C -+2.原式=2221ln(1)()ln(1)[ln(1)]222x x x d x x d x +=+-+⎰⎰=222111ln(1)ln(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰ =221ln(1)[ln(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x xe d x e e ==-⎰ 五. 2sin , 1.,,122t dy dy t t x y dx dxπππ======且当时切线:1,1022y x x y ππ-=--+-=即法线:1(),1022y x x y ππ-=--+--=即六.1231014(1)()33S x dx x x =+=+=⎰22211221(1)11()22V x dy y dyy y ππππ==-=-=⎰⎰七.特征方程:2312613032(cos 2sin 2)x r r r iy e C x C x -++=⇒=-±=+八.11()dxdxx x x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0x yC ==⇒= 1xx y e x-∴=《高等数学》试卷6(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为( d )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( c ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( c ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( a ) A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,22 5、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π) A 、R 2A B 、2R 2A C 、3R 2A D 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。

大一高数c题库及答案

大一高数c题库及答案

大一高数c题库及答案高等数学C是一门主要讨论运筹学、概率论及统计的课程,因而在解题时,往往需要掌握一定的相关概念才能有效地解题。

下面,是为大一高数C课程准备的一些常见题库及答案,仅供参考。

一、运筹学:1.极值问题问题:已知函数f(x,y)=2×2+3×3-2xy,求极值点。

答案:∂f/∂x=6x-2y=0∂f/∂y=-2x-6y=0结论:x=y=-1/3,点(-1/3,-1/3)为极值点,且为极小值,因其导数=0。

2.最佳化问题问题:f(x,y)=2×2+3×3-4xy,求使得函数最大的点。

答案:∂f/∂x=6x-4y=0∂f/∂y=-4x-6y=0结论: x=y=-1/2,点(-1/2,-1/2)为极大值,其值为f(-1/2,-1/2)=1。

二、概率论:1.条件概率问题问题:在一抽样中有五名男生和五名女生,其中有三名男生掌握C 语言,已知如果一名学生掌握C语言的概率为p,求在这抽样中掌握C 语言的女生的概率。

答案:设随机选取的是女生时的概率为q,p(女生掌握C语言|随机选取的是女生)=p(女生掌握C语言并且随机选取的是女生)/P(随机选取女生) = 3/5 / q由贝叶斯公式可知:p(女生掌握C语言并且随机选取的是女生)= p(女生掌握C语言)*p(随机选取女生/女生掌握C语言) = 3/10 * q/5综上可得:p(女生掌握C语言|随机选取的是女生)= 3/5三、统计学:1.描述性统计量问题问题:在一组数据中,X的最小值为xmin,最大值为xmax,求X 的中位数。

答案:根据定义,中位数即将数据集分为两个等大的部分,由此可求得中位数 = (xmin + xmax)/2以上内容提供了一些大一高数C课程常见题库及相应解答,希望能够为大家解决同学常见的题目疑难,学习更上一层楼。

(完整)高等数学考试题库(附答案)

(完整)高等数学考试题库(附答案)

高等数学考试题库(附答案)1. 解析:求函数 f(x) = x^2 在区间 [0, 2] 上的定积分。

2. 解析:求函数 f(x) = e^x 在区间 [1, 1] 上的定积分。

3. 解析:求函数 f(x) = sin(x) 在区间[0, π] 上的定积分。

4. 解析:求函数 f(x) = cos(x) 在区间[0, π/2] 上的定积分。

5. 解析:求函数 f(x) = ln(x) 在区间 [1, e] 上的定积分。

6. 解析:求函数 f(x) = x^3 在区间 [1, 1] 上的定积分。

7. 解析:求函数f(x) = √x 在区间 [0, 4] 上的定积分。

8. 解析:求函数 f(x) = 1/x 在区间 [1, 2] 上的定积分。

9. 解析:求函数 f(x) = tan(x) 在区间[0, π/4] 上的定积分。

10. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [0, 1] 上的定积分。

11. 解析:求函数 f(x) = x^2 + 1 在区间 [0, 1] 上的定积分。

12. 解析:求函数 f(x) = e^(x) 在区间 [0, 2] 上的定积分。

13. 解析:求函数 f(x) = sin^2(x) 在区间[0, π] 上的定积分。

14. 解析:求函数 f(x) = cos^2(x) 在区间[0, π/2] 上的定积分。

15. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [1, 1] 上的定积分。

16. 解析:求函数f(x) = √(1 x^2) 在区间 [1, 1] 上的定积分。

17. 解析:求函数 f(x) = x^3 3x^2 + 2x 在区间 [0, 2] 上的定积分。

18. 解析:求函数 f(x) = e^(2x) 在区间 [1, 1] 上的定积分。

19. 解析:求函数 f(x) = ln(x) 在区间 [1, e^2] 上的定积分。

20. 解析:求函数 f(x) = sin(x)cos(x) 在区间[0, π/2] 上的定积分。

大一高数题库及答案详解

大一高数题库及答案详解

大一高数题库及答案详解在高等数学的学习过程中,题库和答案详解是学生复习和巩固知识点的重要工具。

以下是一份大一高数题库及答案详解的示例内容:一、极限1. 求极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。

解:根据极限的定义,当 \(x\) 趋近于0时,\(\sin x\) 和\(x\) 的比值趋近于1。

因此,\(\lim_{x \to 0} \frac{\sin x}{x} = 1\)。

2. 求极限 \(\lim_{x \to \infty} \frac{3x^2 - 2x + 1}{2x^2 + x}\)。

解:分子和分母同时除以 \(x^2\),得到 \(\lim_{x \to \infty} \frac{3 - \frac{2}{x} + \frac{1}{x^2}}{2 + \frac{1}{x}}\)。

当\(x\) 趋近于无穷大时,\(\frac{2}{x}\) 和 \(\frac{1}{x^2}\) 都趋近于0,所以极限为 \(\frac{3}{2}\)。

二、导数1. 求函数 \(f(x) = x^3 - 2x^2 + x - 1\) 的导数。

解:根据导数的定义,\(f'(x) = 3x^2 - 4x + 1\)。

2. 求函数 \(y = \ln(x)\) 的导数。

解:自然对数函数的导数是 \(\frac{1}{x}\),所以 \(y' =\frac{1}{x}\)。

三、积分1. 求定积分 \(\int_0^1 x^2 dx\)。

解:首先求原函数,\(F(x) = \frac{x^3}{3}\)。

然后计算 \(F(1) - F(0) = \frac{1}{3} - 0 = \frac{1}{3}\)。

2. 求不定积分 \(\int \frac{1}{x} dx\)。

解:这是一个对数函数的积分,结果为 \(\ln|x| + C\)。

四、微分方程1. 解微分方程 \(y'' - 2y' + y = 0\)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(一)函数、极限、连续一、选择题:1、 在区间(-1,0)内,由( )所给出的函数是单调上升的。

(A);1+=x y (B);2x x y -= (C)34+-=x y(D)25-=x y2、 当+∞→x 时,函数f (x )=x sin x 是( )(A )无穷大量 (B )无穷小量 (C )无界函数 (D )有界函数 3、 当x →1时,31)(,11)(x x xxx f -=+-=ϕ都是无穷小,则f (x )是)(x ϕ的( ) (A )高阶无穷小 (B )低阶无穷小 (C )同阶无穷小 (D )等阶无穷小4、 x =0是函数1()arctanf x x=的( ) (A )可去间断点 (B )跳跃间断点; (C )振荡间断点 (D )无穷间断点5、 下列的正确结论是( )(A ))(lim x f xx →若存在,则f (x )有界;(B )若在0x 的某邻域内,有()()(),g x f x h x ≤≤且),(lim 0x g x x →),(lim 0x h x x →都存在,则),(lim 0x f x x →也 存在;(C )若f(x)在闭区间[a , b ]上连续,且f (a ), f (b )<0则方程f (x )=0,在(a , b )内有唯一的实根;(D ) 当∞→x 时,xx x x x a sin )(,1)(==β都是无穷小,但()x α与)(x β却不能比.二、填空题:1、 若),1(3-=x f y Z且x Zy ==1则f (x )的表达式为 ;2、 已知数列n x n 1014-=的极限是4, 对于,1011=ε满足n >N 时,总有ε<-4n x 成立的最小N 应是 ;3、 3214lim 1x x ax x b x →---+=+(b 为有限数) , 则a = , b = ; 4、 设,)(ax ax x f --=则x =a 是f (x )的第 类 间断点; 5、,0,;0,)(,sin )(⎩⎨⎧>+≤-==x n x x n x x g x x f 且f [g (x )]在R 上连续,则n = ;三、 计算题:1、计算下列各式极限: (1)xx x x sin 2cos 1lim0-→; (2)x xx x -+→11ln 1lim 0;(3))11(lim 220--+→x x x (4)xx x x cos 11sinlim30-→ (5)x x x 2cos 3sin lim 0→ (6)xx xx sin cos ln lim0→2、确定常数a , b ,使函数⎪⎩⎪⎨⎧-<<∞---=<<-+=1,11,11,arccos )(2x x x b x x a x f 在x =-1处连续.四、证明:设f (x )在闭区间[a , b ]上连续,且a <f (x )<b , 证明在(a , b )内至少有一点ξ,使()f ξξ=.(二)导数与微分一、填空题:1、 设0()f x '存在,则t t x f t x f t )()(lim 000+--+→= ;2、 ,1,321,)(32⎪⎩⎪⎨⎧≤>=x x x x x f 则(1)f '= ; 3、 设xey 2sin =, 则dy = ;4、 设),0(sin >=x x x y x则=dxdy; 5、 y =f (x )为方程x sin y + y e 0=x确定的隐函数, 则(0)f '= .二、选择题:1、)0(),1ln()(2>+=-a a x f x 则(0)f '的值为( )(A) –ln a (B) ln a (C)a ln 21 (D) 21 2、 设曲线21x e y -=与直线1x =-相交于点P , 曲线过点P 处的切线方程为( )(A) 2x -y -2=0 (B) 2x +y +1=0 (C) 2x +y -3=0 (D) 2x -y +3=03、 设⎪⎩⎪⎨⎧>-≤=0),1(0)(2x x b x e x f ax 处处可导,则( )(A) a =b =1 (B) a =-2, b =-1 (C) a =0, b =1 (D) a =2, b =14、 若f (x )在点x 可微,则xdyy x ∆-∆→∆0lim的值为( )(A) 1 (B) 0 (C) -1 (D) 不确定5、设y =f (sin x ), f (x )为可导函数,则dy 的表达式为( ) (A)(sin )f x dx ' (B)(cos )f x dx ' (C)(sin )cos f x x ' (D)(sin )cos f x xdx '三、计算题:1、 设对一切实数x 有f (1+x )=2f (x ),且(0)0f '=,求(1)f '2、若g(x)=⎪⎩⎪⎨⎧=≠0,00,1cos 2x x x x 又f (x )在x =0处可导,求))((=x x g f dx d3、 求曲线⎩⎨⎧=++=-+010)1(y te t t x y 在t =0处的切线方程4、 f (x )在x =a 处连续,),()sin()(x f a x x -=ϕ求)('a ϕ5、 设3222()x y y u x x =+⋅=+, 求.dudy 6、 设()ln f x x x =, 求()()n fx . 7、计算.(三)中值定理与导数的应用一、填空题:1、 函数f (x )=arctan x 在[0 ,1]上使拉格朗日中值定理结论成立的ξ= ;2、 若01lim sin 22ax x e b x →-=则a = , b = ; 3、 设f (x )有连续导数,且(0)(0)1f f '==则)(ln )0()(sin lim 0x f f x f x -→= ;4、x e y x sin =的极大值为 ,极小值为 ;5、 )10(11≤≤+-=x xxarctgy 的最大值为 ,最小值为 . 二、选择题:1、 如果a,b 是方程f(x)=0的两个根,函数f(x)在[a,b]上满足罗尔定理条件,那么方程f’(x)=0在(a,b)内( )(A )仅有一个根; (B )至少有一个根; (C )没有根; (D )以上结论都不对。

2、 函数x x f sin )(=在区间[-]2,2ππ上( ) (A )满足罗尔定理的条件,且 ;0=ξ (B )满足罗尔定理的条件,但无法求;ξ(C )不满足罗尔定理的条件,但有ξ能满足该定理的结论; (D )不满足罗尔定理的条件3、 如果一个连续函数在闭区间上既有极大值,又有极小值,则( )(A )极大值一定是最大值; (B )极小值一定是最小值;(C )极大值一定比极小值大; (D )极在值不一定是最大值,极小值不一定是最小值。

4、 设f (x )在(a , b )内可导,则()0f x '<是f (x )在(a , b )内为减函数的( )(A )充分条件; (B )必要条件; (C )充要条件; (D )既非充分又非必要条件。

5、 若f (x )在(a , b )上两次可导,且( ), 则f (x )在(a , b )内单调增加且是上凹的。

(A )0)(",0)('>>x f x f ; (B );0)(",0)('<>x f x f ; (C )0)(",0)('><x f x f ; (D )0)(",0)('><x f x f三、计算题:1、 求:22011(1)lim()sin x x x→- tan 0(2)lim x x x +→2、 求过曲线y =x ex-上的极大值点和拐点的连线的中点,并垂直于直线x =0的直线方程.四、应用题:1、 通过研究一组学生的学习行为,心理学家发现接受能力(即学生掌握一个概念的能力)依赖于在概念引人之前老师提出和描述问题所用的时间,讲座开始时,学生的兴趣激增,分析结果表明,学生掌握概念的能力由下式给出:2()0.1 2.643G x x x =-++,其中G (x )是接受能力的一种度量,x 是提出概念所用的时间(单位:min ) (a )、x 是何值时,学生接受能力增强或降低? (b )、第10分钟时,学生的兴趣是增长还是注意力下降? (c )、最难的概念应该在何时讲授? (d )、一个概念需要55的接受能力,它适于对这组学生讲授吗?五、证明题:证明不等式22arctan ln(1)x xx ≥+(四)不定积分一、选择题:1、 设)(x f 可微,则()f x =( )(A )⎰))(x df (B )⎰))((dx x f d (C )⎰)')((dx x f (D )⎰dx x f )('2、 若F (x )是)(x f 的一个原函数,则c F (x )( ))(x f 的原函数 (A )是 (B )不是 (C )不一定是3、 若⎰+=,)()(c x F dx x f 则⎰=+dx b ax f )(( )(A )c b ax aF ++)( (B )c b ax F a++)(1(C )c x F a+)(1(D )c x aF +)( 4、 设)(x f 在[a ,b ]上连续,则在(a ,b )内)(x f 必有( ) (A ) 导函数 (B ) 原函数 (C ) 极值 (D ) 最大值或最大值5、 下列函数对中是同一函数的原函数的有( )2211()sin cos 24与A x x - 2()ln ln ln 与B x x22() 与x x C e e 1()tan cot 2sin 与x D x x-+6、 在积分曲线族⎰=xdx y 3sin 中,过点)1,6(π的曲线方程是( )cx D xC cx B x A +-++-3cos )(3cos 31)(3cos 31)(13cos 31)(7、下列积分能用初等函数表出的是( ) (A )2x edx -⎰; (B); (C )ln dxx⎰; (D )ln x dx x ⎰. 8、已知一个函数的导数为2y x =,且x =1时y =2,这个函数是( )(A )2;y x C =+ (B )21;y x =+ (C )2;2x y C =+ (D ) 1.y x =+ 9、2ln xdx x=⎰( )(A )11ln x C x x ++;(B )11ln x C x x++; (C )11ln x C x x -+; (D )11ln x C x x --+. 10、10(41)dxx =+⎰( )(A )9119(41)C x ++; (B )91136(41)C x ++; (C )91136(41)C x -++; (D )111136(41)C x -++. 二、计算题:1、⎰++dx x x )1ln(22、1tan 1tan xdx x-+⎰ 3、⎰dx x xf )(" 3、 ⎰+++)3)(2)(1(x x x dx 5、x dx ⎰ 6、⎰+)1(x x dx7、2arccos x xdx ⎰三、求⎰,)(dx x f 其中⎪⎩⎪⎨⎧+∞<<≤≤+<<∞-=x x x x x x f 121010,1)((五)定积分及其应用一、填空题:1、 设)(x f 是连续函数,dt t xf x F x)()(0⎰=,则F '(x )= ;2、 设)(x f 是连续函数,则⎰-=---+ππdx x f x f x f x f )]()()][()([ ; 3、 111lim()12n n n n n→∞+++=+++ ; 4、设)(x f 是连续函数,f (0)= -1,则=⎰→3sin 0)(limxdtt f xxx ;5、函数)(x f =xe 在区间[a ,b ]上的平均值为 )(b a <.二、单项选择题:1、 设⎰<bab a dx x f )(,)(存在,则)(x f 在[a ,b ]上( )(A)可导 (B)连续 (C)具有最大值和最小值 (D)有界2、 设)(x f 是以T 为周期的连续函数,则⎰+∞→=nta an dx x f n)(1lim ( ) (A )T a f ⋅)( (B )dx x f T)(0⎰ (C )⎰adx x f 0)( (D )()f a3、 设⎰⎰⎰++=dx x f dx x f dxd dx x f dx d I )(')()(43存在,则I =( ) (A) ()f x (B) 2()f x (C) 2()f x C + (D) 04、)()(b a a x dxpba<-⎰,在( ) (A )P<1 时收敛,P ≥1时发散 (B )P ≤1 时收敛,P ≥1时发散 (C )P>1 时收敛,P ≤1时发散 (D )P ≥1 时收敛,P <1时发散5、 曲线)0(ln ,ln ,,ln b a b y a y y x y <<===及y 轴所围的图形面积为( ) (A)⎰baxdx ln ln ln (B)dx e xe e ba⎰(C)dx e yba⎰ln ln (D)xdx abe eln ⎰三、计算下列定积分:1、251⎰2、dx exx--+⎰1sin 244ππ3、⎰++12)1ln(dx x x 4、⎰-+a xa x dx22四、求下列极限:1、sin 0tan 0lim x x +→⎰⎰2、dt ttdt t xtxx sin )1(lim1sin 0⎰⎰+→五、设可导函数y =y (x )由方程⎰⎰=+-yxt x tdt dt e 00221sin 2所决定,试讨论函数y =y (x )的极值.六、已知抛物线)0,4(,)4(22>≠+-=a p a y p x ,求p 和a 的值,使得:(1) 抛物线与y=x+1相切;(2) 抛物线与0x 轴围成的图形绕0x 轴旋转有最大的体积.(六)向量代数 空间解析几何一、填空题:1、向量{}1,2,1a =与x ,y ,z 轴的夹角分别为,,αβγ,则α= ,β= ,γ= 。

相关文档
最新文档