材料结构和性能解答(全)
5.1_晶体材料的结构与物理性能
晶体缺陷
一方面对材料的某些性能产生不良影响 一方面也使材料的性能产生各种变化,达到材料
的改性,甚至赋于材料新的或特殊的性能。 改变晶体中缺陷的种类或缺陷的浓度,可制得所需性能 的晶体材料,是材料改性和制备新型或特殊性能材料的有效 方法之一,非整比化合物构成的材料即是其中的一类。
实例1:在钠蒸汽中加热NaCl晶体 氯化钠晶体中有少量钠原子掺入,此时,若晶体受到辐 射时,钠原子将电离为钠离子和自由电子,钠离子占据正常 正离子位置、电子占据负离子格点,形成Na1+δCl,此时电 子处于空缺位置,他们能够吸收可见光而使晶体材料带有颜 色,为绿色化合物 。
晶体的稳定性: 组成晶体的微粒是对称排列的,形成很规则的几何空 间点阵,组成点阵的各个原子之间,都相互作用着, 它们的作用主要是静电引力。对每一个原子来说,其 他原子对它作用的总效果,使它们都处在势能最低的 状态,因此很稳定,宏观上就表现为形状固定,且不 易改变。
晶体的范性:
晶体内部原子有规则的排列,引起了晶体各向不同的 物理性质。例如原子的规则排列可以使晶体内部出现 若干个晶面,立方体的食盐就有三组与其边平行的平 面。如果外力沿平行晶面的方向作用,则晶体就很容 易滑动(变形),这种变形还不易恢复,称为晶体的 范性。同样也可以看出沿晶面的方向,其弹性限度 小,只要稍加力,就超出了其弹性限度,使其不能复 原;
衍射效应 由于组成材料的周期性排列的晶体相当于三维光 栅,能使波长相当的x射线、电子流或中于流产生衍射 效应,这成为了解晶体材料内部结构的重要实验方法。 测定晶体立体结构的衍射方法,有X射线衍射、电 子衍射和中子衍射等方法。其中以X射线衍射法的应用 所积累的精密分子立体结构信息最多。 例:XRD谱图示例
(2)不同晶体材料的特殊性 不同的晶体材料具有不同的微观结构,使之区 别于其他的晶体,因而又使不同晶体材料之间各 有特点。 例:晶体缺陷形成非整比化合物构成的材料。
工程材料第二版习题解答
第一章材料的结构与性能一、材料的性能(一)名词解释弹性变形:去掉外力后,变形立即恢复的变形为弹性变形。
塑性变形:当外力去除后不能够恢复的变形称为塑性变形。
冲击韧性:材料抵抗冲击载荷而不变形的能力称为冲击韧性。
疲劳强度:当应力低于一定值时,式样可经受无限次周期循环而不破坏,此应力值称为材料的疲劳强度。
σ为抗拉强度,材料发生应变后,应力应变曲线中应力达到的最大值。
bσ为屈服强度,材料发生塑性变形时的应力值。
sδ为塑性变形的伸长率,是材料塑性变形的指标之一。
HB:布氏硬度HRC:洛氏硬度,压头为120°金刚石圆锥体。
(二)填空题1 屈服强度、抗拉强度、疲劳强度2 伸长率和断面收缩率,断面收缩率3 摆锤式一次冲击试验和小能量多次冲击试验, U型缺口试样和V型缺口试样4 洛氏硬度,布氏硬度,维氏硬度。
5 铸造、锻造、切削加工、焊接、热处理性能。
(三)选择题1 b2 c3 b4 d f a (四)是非题 1 对 2 对 3错 4错(五)综合题 1 最大载荷为2805.021038.5πσ⨯=F b断面收缩率%10010810010⨯-=-=A A A ϕ 2 此题缺条件,应给出弹性模量为20500MP,并且在弹性变形范围内。
利用虎克定律 320℃时的电阻率为13.0130℃时的电阻率为18.01二、材料的结合方式 (一)名词解释结合键:组成物质的质点(原子、分子或离子)间的相互作用力称为结合键,主要有共价键、离子键、金属键、分子键。
晶体:是指原子在其内部沿三维空间呈周期性重复排列的一类物质。
非晶体:是指原子在其内部沿三维空间呈紊乱、无序排列的一类物质。
近程有序:在很小的范围内(一般为几个原子间距)存在着有序性。
(二)填空题1 四,共价键、离子键、金属键、分子键。
2 共价键和分子键,共价键,分子键。
3 强。
4 强。
(三)选择题1 a2 b3 a(四)是非题1 错2 错3 对4 错(五)综合题1晶体的主要特点:○1结构有序;○2物理性质表现为各向异性;○3有固定的熔点;○4在一定条件下有规则的几何外形。
高分子材料的结构及其性能PPT(36张)
B、高弹性 随着温度的升高,当T>Tg 时,分子的动能增加,使链段的自由旋转成为可能,此时,试
样的形变明显增加,在这一区域中,试样变成柔软的弹性体,称为高弹态。 高弹态时,弹性模量显著降低,外力去除后,变形量可以回复,有明显的时间依赖性。由
如图16-7,在间同立构高聚物中, 原子或原子团会交替分布在主链两侧; 在全同立构高聚物中,原子或原子团 则全部排列在主链同一侧;而在无规立构高聚物中,主链两侧原子分布是随机的。
这种化学成分相同,但由于不对称取代基沿分子主链分布不同的现象,就叫做 高分子的立体异构现象。
2、大分子链的构象及柔性 高聚物结构单元是通过共价键重复连接形成线型大分子,共价键的特点是键能
2、单体 高分子化合物是由低分子化合物通过聚合反应获得。
组成高分子化合物的低分子 化合物称作单体。所以我们经 常说,高分子化合物是由单体 合成的,单体是高分子化合物 的合成原料。如图16-2,聚乙 烯是由乙烯(CH2=CH2)单 体聚合而成的。 高分子化合物的相对分子质 量很大,主要呈长链形,因此 常称作大分子链或者分子链。 大分子链极长,可达几百纳米以上,而截面一般小于1nm。
物,简称高聚物材料,是以高分子化合物为主要组分的有机 材料,可分为天然高分子材料和人工合成高分子材料两大类。 天然高分子材料包括如蚕丝、羊毛、纤维素、油脂、天然橡 胶、淀粉和蛋白质等。 人工合成高分子材料包括如塑料、合成橡胶、胶粘剂和涂料 等。工程上使用的主要是人工合成的高分子材料。
一、高聚物的基本概念 1、高聚物和低聚物 高分子化合物是指相对分子质量很大的化合物,其相对分子质量在5000
材料的结构与性能特点
材料的结构与性能特点第一章材料的结构与性能固体材料的性能主要取决于其化学成分、组织结构及加工工艺过程。
所谓结构就是指物质内部原子在空间的分布及排列规律。
材料的相互作用组成物质的质点(原子、分子或离子)间的相互作用力称为结合键。
主要有共价键、离子键、金属键、分子键。
离子键形成:正、负离子靠静电引力结合在一起而形成的结合键称为离子键。
特性:离子键没有方向性,无饱和性。
NaCl晶体结构如图所示。
性能特点:离子晶体的硬度高、热膨胀系数小,但脆性大,具有很好的绝缘性。
典型的离子晶体是无色透明的。
共价键形成:元素周期表中的ⅣA、ⅤA、ⅥA族大多数元素或电负性不大的原子相互结合时,原子间不产生电子的转移,以共价电子形成稳定的电子满壳层的方式实现结合。
这种由共用电子对产生的结合键称为共价键。
氧化硅中硅氧原子间共价键,其结构如图所示。
性能特点:共价键结合力很大,所以共价晶体的强度、硬度高、脆性大,熔点、沸点高,挥发度低。
金属键形成:由金属正离子与电子气之间相互作用而结合的方式称为金属键。
如图所示。
性能特点:1)良好的导电性及导热性;2)正的电阻温度系数;3)良好的强度及塑性;4)特有的金属光泽。
分子键形成:一个分子的正电荷部位与另一分子的负电荷部位间以微弱静电引力相引而结合在一起称为范德华键(或分子键)。
特性:分子晶体因其结合键能很低,所以其熔点很低,硬度也低。
但其绝缘性良好。
材料的结合键类型不同,则其性能不同。
常见结合键的特性见表1-1。
晶体材料的原子排列所谓晶体是指原子在其内部沿三维空间呈周期性重复排列的一类物质。
晶体的主要特点是:①结构有序;②物理性质表现为各向异性;③有固定的熔点;④在一定条件下有规则的几何外形。
理想的晶体结构1.晶体的基本概念(1) 晶格与晶胞晶格是指描述晶体排列规律的空间格架。
从晶格中取出一个最能代表原子排列特征的最基本的几何单元,称为晶胞。
晶胞各棱边的尺寸称为晶格常数。
(2) 晶系按原子排列形式及晶格常数不同可将晶体分为七种晶系(3) 原子半径原子半径是指晶胞中原子密度最大方向相邻两原子之间距离的一半。
钢结构简答题
钢结构简答题钢结构思考题及解答1.3 钢结构主要有哪些结构形式?钢结构的基本构件有哪⼏种类型?答:⑴钢结构的主要形式有钢框架结构、钢桁架及钢⽹架结构、悬索结构、预应⼒钢结构。
⑵根据受⼒特点构件可分为轴⼼受⼒构件、受弯构件、拉弯及压弯构件三⼤类。
钢结构还可与混凝⼟组合在⼀起形成组合构件,如钢-混凝⼟组合梁、钢管混凝⼟、型钢混凝⼟构件等。
1.4 钢结构主要破坏形式有哪些?有何特征?答:⑴钢结构破坏的主要形式包括强度破坏、失稳破坏、脆性断裂破坏。
⑵强度破坏特征:内⼒达到极限承载⼒,有明显的变形;失稳破坏特征:具有突然性,可分为整体失稳破坏与局部失稳破坏;脆性断裂破坏特征:在低于强度极限的荷载作⽤下突然断裂破坏,⽆明显征兆。
1.6 钢结构设计的基本⽅法是什么?答:基本⽅法:概率极限状态设计法、允许应⼒法。
2.1 钢材有哪两种主要破坏形式?各有何特征?答:⑴塑性破坏与脆性破坏。
⑵特征:塑性破坏断⼝呈纤维状,⾊泽发暗,有较⼤的塑性变形和颈缩现象,破坏前有明显预兆,且变形持续时间长;脆性破坏塑性变形很⼩甚⾄没有,没有明显预兆,破坏从应⼒集中处开始,断⼝平齐并呈有光泽的晶粒状。
2.2 钢材主要⼒学性能指标有哪些?怎样得到?答:①⽐例极限f:对应应变约为0.1%的应⼒;p②屈服点(屈服强度)f:对应应变约为0.15%的应⼒,即下屈服极限;yf:应⼒最⼤值;③抗拉强度uf:⾼强度钢材没有明显的屈服点和④条件屈服点(名义屈服强度)0.2屈服强度,定义为试件卸载后残余应变为0.2%对应的应⼒。
2.3 影响钢材性能的主要化学成分有哪些?碳、硫、磷对钢材性能有何影响?答:⑴铁、碳、锰、硅、钒、铌、钛、铝、铬、镍、硫、磷、氧、氮。
⑵碳的含量提⾼,钢材强度提⾼,但同时钢材的塑性、韧性、冷弯性能、可焊性及抗锈蚀能⼒下降;硫使钢材热脆,降低钢材冲击韧性,影响疲劳性能与抗锈蚀性能;磷在低温下时钢变脆,在⾼温时使钢塑性降低,但能提⾼钢的强度和抗锈蚀能⼒。
材料物理性能答案
材料物理性能答案材料的物理性能是指材料在物理方面所表现出来的特性和性能。
它包括了材料的力学性能、热学性能、电学性能、磁学性能等多个方面。
在工程实践中,对材料的物理性能有着非常高的要求,因为这些性能直接关系到材料在使用过程中的稳定性和可靠性。
下面将分别对材料的力学性能、热学性能、电学性能和磁学性能进行详细介绍。
首先,力学性能是材料最基本的性能之一。
它包括了材料的强度、韧性、硬度、塑性等指标。
强度是材料抵抗外部力量破坏的能力,韧性是材料抵抗断裂的能力,硬度是材料抵抗划痕的能力,塑性是材料在外力作用下发生形变的能力。
这些指标直接影响着材料在工程中的使用寿命和安全性。
其次,热学性能是材料在热学方面的表现。
它包括了材料的热膨胀系数、热导率、比热容等指标。
热膨胀系数是材料在温度变化时长度、面积或体积的变化比例,热导率是材料传导热量的能力,比热容是材料单位质量在温度变化时吸收或释放的热量。
这些指标对于材料在高温或低温环境下的稳定性和耐热性有着重要的影响。
再次,电学性能是材料在电学方面的表现。
它包括了材料的导电性、绝缘性、介电常数等指标。
导电性是材料导电的能力,绝缘性是材料阻止电流流动的能力,介电常数是材料在电场中的响应能力。
这些指标对于材料在电子器件、电力设备等方面的应用具有重要的意义。
最后,磁学性能是材料在磁学方面的表现。
它包括了材料的磁化强度、磁导率、矫顽力等指标。
磁化强度是材料在外磁场作用下磁化的能力,磁导率是材料传导磁场的能力,矫顽力是材料磁化和去磁化之间的能量损耗。
这些指标对于材料在电机、变压器等磁性设备中的应用具有重要的作用。
综上所述,材料的物理性能是材料工程中非常重要的一部分。
它直接关系到材料在使用过程中的性能和稳定性,对于材料的选用、设计和应用具有重要的指导意义。
因此,对材料的物理性能进行全面的了解和评价,是材料工程中必不可少的一项工作。
建筑材料常见问题解答--基本性质
建筑材料常见问题解答----- 建筑材料的基本性质1.一般的讲,建筑材料的基本性质可归纳为哪几类?答:一般的讲,建筑材料的基本性质可归纳为以下几类:物理性质:包括材料的密度、孔隙状态、与水有关的性质、热工性能等。
化学性质:包括材料的的抗腐蚀性、化学稳定性等,因材料的化学性质相异较大,故该部分内容在以后各章中分别叙述。
力学性质:材料的力学性质应包括在物理性质中,但因其对建筑物的安全使用有重要意义,故对其单独研究,包括材料的强度、变形、脆性和韧性、硬度和耐磨性等。
耐久性:材料的耐久性是一项综合性质,虽很难对其量化描述,但对建筑物的使用至关重要。
2.什么是材料的化学组成?答:材料化学组成的不同是造成其性能各异的主要原因。
化学组成通常从材料的元素组成和矿物组成两方面分析研究。
材料的元素组成,主要是指其化学元素的组成特点,材料的矿物组成主要是指元素组成相同,但分子团组成形式各异的现象。
3.建筑材料的微观结构主要有哪几种形式?各有何特点?建筑材料的微观结构主要有晶体、玻璃体和胶体等形式。
晶体的微观结构特点是组成物质的微观粒子在空间的排列有确定的几何位置关系。
一般来说,晶体结构的物质具有强度高、硬度较大、有确定的熔点、力学性质各向异性的共性。
建筑材料中的金属材料(钢和铝合金)和非金属材料中的石膏及水泥石中的某些矿物等都是典型的晶体结构。
玻璃体微观结构的特点是组成物质的微观粒子在空间的排列呈无序浑沌状态。
玻璃体结构的材料具有化学活性高、无确定的熔点、力学性质各向同性的特点。
粉煤灰、建筑用普通玻璃都是典型的玻璃体结构。
胶体是建筑材料中常见的一种微观结构形式,通常是由极细微的固体颗粒均匀分布在液体中所形成。
胶体与晶体和玻璃体最大的不同点是可呈分散相和网状结构两种结构形式,分别称为溶胶和凝胶。
溶胶失水后成为具有一定强度的凝胶结构,可以把材料中的晶体或其他固体颗粒粘结为整体。
如气硬性胶凝材料水玻璃和硅酸盐水泥石中的水化硅酸钙和水化铁酸钙都呈胶体结构。
物质结构与材料性能
物质结构与材料性能一.材料的物理结构1.材料共有的结构层次在实际生产、生活中使用的任何材料都是宏观物体。
它们都能被分割为若干微小的颗粒,这些颗粒靠拢成一个整体就形成了生产生活中使用的材料。
材料的颗粒虽然很小仍是由许多原子团(分子)或原子构成。
与这些颗粒相比,相应的分子或原子几乎可以看成是一些点。
点与点之间有着相对稳定的、大小不等的距离,从而使它们在颗粒中的空间分布形成各种形状的点阵。
原子虽小,仍有内部结构,由带正电的原子核和在核周围运动的电子组成。
原子核还有内部结构。
如果把原子放大成一个足球场,则原子核像是放在足球场中心的小米粒或黄豆粒,而电子则比灰尘还小,在足球场那末大的空间范围绕核飞舞。
原子之间、原子团之间、颗粒之间的相互作用,归根到底主要都是相距比较近的那些原子核、电子之间的相互作用的综合表现。
2.材料在物理结构上的差别依据上述对材料物理结构层次的认识,可以看出材料在结构上的差别在于:①构成材料的颗粒大小和结合的紧密程度的差别。
②分子、原子在颗粒中形成的空间点阵形状的差别及构成材料颗粒的原子间结合紧密程度的差别。
③材料颗粒中亚原子层次的结构和运动的差别,主要是颗粒中电子受束缚状况的差别。
④构成材料颗粒的原子种类的差别(即元素的差别)。
二.物理结构与材料性能从化学角度看,材料的化学组成、化学键决定材料的化学性质,而物理结构的差别将导致材料在机械、热、光、电磁等物理性能上的差别。
原则上,使用在差别发生层次上适用的物理理论去分析,就能得出大体符合实际的认识。
1.颗粒大小对材料性能的影响纳米材料(1)颗粒大小对材料性能的影响①颗粒越小,颗粒的表面积与其体积的比越大。
可见球形颗粒的表面积与其体积之比与半径R成反比。
因而颗粒越小颗粒的表面积与其体积之比越大,处于表面处的原子数所占的比例越大,由这些原子参与的相互作用越强烈。
在物理现象中表现为吸附能力增强,电磁作用增强等等。
在机械性能上表现为材料的韧性增大,以至通常情况下很脆的陶瓷,当其颗粒线度已近纳米数量级时,可具有良好的韧性。
材料力学性能 课后解答
第一章1.解释下列名词①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力⑦加工硬化:金属材料在再结晶温度以下塑性变形时,由于晶粒发生滑移, 出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。
⑧解理断裂:解理断裂是在正应力作用产生的一种穿晶断裂,即断裂面沿一定的晶面(即解理面)分离。
2.解释下列力学性能指标的意义弹性模量);(2)ζ p(规定非比例伸长应力)、ζ e(弹性极限)、ζ s(屈服强度)、ζ 0.2(屈服强度);(3)ζ b (抗拉强度);(4)n(加工硬化指数); (5)δ (断后伸长率)、ψ (断面收缩率)4.常用的标准试样有5 倍和10倍,其延伸率分别用δ 5 和δ 10 表示,说明为什么δ 5>δ 10。
答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。
5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。
试分析这两种故障的本质及改变措施。
答:(1)未装满载时已变形到最大位置:弹簧弹性极限不够导致弹性比功小;(2)使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,这是构件材料的弹性比功不足引起的故障,可以通过热处理或合金化提高材料的弹性极限(或屈服极限),或者更换屈服强度更高的材料。
材料力学性能习题及解答库
第一章习题答案一、解说以下名词1、弹性比功:又称为弹性比能、应变比能,表示金属资料汲取弹性变形功的能力。
2、滞弹性:在弹性范围内迅速加载或卸载后,随时间延长产生附带弹性应变的现象。
3、循环韧性:金属资料在交变载荷下汲取不行逆变形功的能力,称为金属的循环韧性。
4、包申格效应:先加载致少许塑变,卸载,而后在再次加载时,出现σ e 高升或降低的现象。
5、解理刻面:大概以晶粒大小为单位的解理面称为解理刻面。
6、塑性、脆性和韧性:塑性是指资料在断裂前发生不行逆永久(塑性)变形的能力。
韧性:指资料断裂前汲取塑性变形功和断裂功的能力,或指资料抵挡裂纹扩展的能力7、解理台阶:高度不同的相互平行的解理平面之间出现的台阶叫解理台阶;8、河流花式:当一些小的台阶汇聚为在的台阶时,其表现为河流状花式。
9、解理面:晶体在外力作用下严格沿着必定晶体学平面破裂,这些平面称为解理面。
10、穿晶断裂和沿晶断裂:沿晶断裂:裂纹沿晶界扩展,必定是脆断,且较为严重,为最初级。
穿晶断裂裂纹穿过晶内,能够是韧性断裂,也可能是脆性断裂。
11、韧脆转变:指金属资料的脆性和韧性是金属资料在不同条件下表现的力学行为或力学状态,在必定条件下,它们是能够相互转变的,这样的转变称为韧脆转变。
二、说明以下力学指标的意义1、E(G):E(G)分别为拉伸杨氏模量和切变模量,统称为弹性模量,表示产生100% 弹性变形所需的应力。
2、σr、σ、σ s:σ r:表示规定节余伸长应力,试样卸除拉伸力后,其标距部分的节余伸长达到规定的原始标距百分比时的应力。
σ:表示规定节余伸长率为%时的应力。
σs:表征资料的折服点。
3、σ b:韧性金属试样在拉断过程中最大试验力所对应的应力称为抗拉强度。
4、 n: 应变硬化指数,它反应了金属资料抵挡连续塑性变形的能力,是表征金属资料应变硬化行为的性能指标。
5、δ、δ gt 、ψ:δ是断后伸长率,它表征试样拉断后标距的伸长与原始标距的百分比。
材料科学基础名词解释(全)
材料科学基础名词解释(全)以下是一些与材料科学基础相关的名词解释:1. 材料科学:研究和应用材料的结构、性能和制备等方面的科学学科。
2. 结构:材料内部的原子、分子、晶格或微结构排列方式。
3. 性能:材料对外部条件的响应和表现,包括力学性能(强度、硬度)、热学性能(热传导性、热膨胀系数)、电学性能(导电性、绝缘性)、磁学性能等。
4. 制备:制备材料的过程,包括合成、加工、改性等步骤。
5. 结构性材料:材料的性能主要由其结构决定,如金属、陶瓷、聚合物等。
6. 功能性材料:材料具有特殊功能和性能,用于特定领域,如半导体材料、光电材料、磁性材料等。
7. 复合材料:由两个以上的材料组合而成,以综合各材料的优点,如纤维增强复合材料、金属-陶瓷复合材料等。
8. 纳米材料:具有纳米尺寸特征的材料,其性能和行为与宏观尺寸材料有显著差异,如纳米颗粒、纳米管、纳米薄膜等。
9. 腐蚀:材料与环境中的化学物质(如氧气、水等)相互作用导致材料失去原有性能的过程。
10. 界面:两种不同材料的接触面,界面性质对材料性能和使用寿命有重要影响。
11. 化学性质:材料在化学反应中的行为,如与酸碱反应、氧化还原反应、水解反应等。
12. 物理性质:材料在物理环境中的行为,如热膨胀、电导率、磁性等。
13. 析晶:材料中晶粒的形成和排列过程。
14. 晶体缺陷:晶体中的不完整或缺失的原子、离子或分子,如晶格缺陷、位错等。
15. 导电性:材料传导电流的能力,通常与材料内自由电子的存在和运动有关。
16. 绝缘性:材料不能传导电流的能力,通常与电子和离子的运动受到限制有关。
17. 改性:通过添加掺杂剂、添加剂或改变处理条件,改变材料的性能和特性。
18. 硬度:材料抵抗局部形变和划伤的能力。
19. 强度:材料抵抗外力破坏的能力。
20. 热处理:通过控制材料的加热和冷却过程,改变材料的组织结构和性能。
这些名词是材料科学基础中常见的,但并不包含所有相关的名词解释。
混凝土结构设计 第一章材料的力学性能-习题 答案要点
第一章材料的力学性能一、填空题1、钢筋混凝土及预应力混凝土中所用的钢筋可分为两类:有明显屈服点的钢筋和无明显屈服点的钢筋,通常分别称它们为软钢,和硬钢。
2、对无明显屈服点的钢筋,通常取相当于残余应变为0.2%时的应力作为假定的屈服点,即条件屈服强度。
3、碳素钢可分为低碳钢、中碳钢和高碳钢。
随着含碳量的增加,钢筋的强度提高、塑性降低。
在低碳钢中加入少量锰、硅、钛、铬等合金元素,变成为普通低合金钢。
4、钢筋混凝土结构对钢筋性能的要求主要是强度、塑性、焊接性能、粘结力。
5、钢筋和混凝土是不同的材料,两者能够共同工作是因为两者之间的良好粘结力、两者相近的膨胀系数、混凝土包裹钢筋避免钢筋生锈6、光面钢筋的粘结力由胶结力、摩擦力、挤压力三个部分组成。
7、钢筋在混凝土中应有足够的锚固长度,钢筋的强度越高、直径越粗、混凝土强度越低,则钢筋的锚固长度就越长。
8、混凝土的极限压应变包括弹性应变和塑性应变两部分。
塑性应变部分越大,表明变形能力越大,延性越好。
9、混凝土的延性随强度等级的提高而降低。
同一强度等级的混凝土,随着加荷速度的减小,延性有所增加,最大压应力值随加荷速度的减小而减小。
10、钢筋混凝土轴心受压构件,混凝土收缩,则混凝土的应力增加,钢筋的应力减小。
11、混凝土轴心受拉构件,混凝土徐变,则混凝土的应力减小,钢筋的应力增大。
12、混凝土轴心受拉构件,混凝土收缩,则混凝土的应力增大,钢筋的应力减小。
13、混凝土轴心抗压强度的标准试件尺寸为150*150*300或150*150*150 。
14、衡量钢筋塑性性能的指标有延伸率和冷弯性能。
15、当钢筋混凝土构件采用HRB335级钢筋时,要求混凝土强度等级不宜低于C20;当采用热处理钢筋作预应力钢筋时,要求混凝土强度不宜低C40 。
二、判断题1、混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。
(N)2、采用边长为100mm的非标准立方体试块做抗压试验时,其换算系数是0.95。
2020年高考化学之考前抓大题10 物质结构与性质(二)(解析版)
大题10 物质结构与性质(二)1.锌在工业中有重要作用,也是人体必需的微量元素。
回答下列问题:(1)Zn 原子核外电子排布式为________。
(2)黄铜是人类最早使用的合金之一,主要由Zn 和Cu 组成。
第一电离能I 1(Zn)________I 1(Cu)(填“大于”或“小于”)。
原因是______________________。
(3)ZnF 2具有较高的熔点(872 ℃),其化学键类型是________;ZnF 2不溶于有机溶剂而ZnCl 2、ZnBr 2、ZnI 2能够溶于乙醇、乙醚等有机溶剂__。
(4)《中华本草》等中医典籍中,记载了炉甘石(ZnCO 3)入药,可用于治疗皮肤炎症或表面创伤。
ZnCO 3中,阴离子空间构型为________,C 原子的杂化形式为______。
(5)金属Zn 晶体中的原子堆积方式如图所示,这种堆积方式称为________。
六棱柱底边边长为acm ,高为ccm ,阿伏加德罗常数的值为N A ,Zn 的密度为________g·cm -3(列出计算式)。
【答案】(1)[Ar]3d 104s 2(或1s 22s 22p 63s 23p 63d 104s 2)(2)大于 Zn 核外电子排布为全满稳定结构,较难失电子(3)离子键 ZnF 2为离子化合物,ZnCl 2、ZnBr 2、ZnI 2的化学键以共价键为主,极性较小 (4)平面三角形 sp 2(5)六方最密堆积(A 3型)【解析】(1)Zn 原子核外有30个电子,分别分布在1s 、2s 、2p 、3s 、3p 、3d 、4s 能级上,其核外电子排布式为1s 22s 22p 63s 23p 63d 104s 2或[Ar]3d 104s 2,故答案为:1s 22s 22p 63s 23p 63d 104s 2或[Ar]3d 104s 2;(2)轨道中电子处于全满、全空、半满时较稳定,失去电子需要的能量较大,Zn 原子轨道中电子处于全满状态,Cu 失去一个电子内层电子达到全充满稳定状态,所以Cu 较Zn 易失电子,则第一电离能Cu <Zn ,故答案为:大于;Zn核外电子排布为全满稳定结构,较难失电子;(3)离子晶体熔沸点较高,熔沸点较高ZnF 2,为离子晶体,离子晶体中含有离子键;根据相似相溶原理知,极性分子的溶质易溶于极性分子的溶剂,ZnF 2属于离子化合物而ZnCl 2、ZnBr 2、ZnI 2为共价化合物,ZnCl 2、ZnBr 2、ZnI 2分子极性较小,乙醇、乙醚等有机溶剂属于分子晶体极性较小,所以互溶,故答案为:离子键;ZnF 2为离子化合物,ZnCl 2、ZnBr 2、ZnI 2的化学键以共价键为主,极性较小; (4)ZnCO 3中,阴离子CO 32-中C 原子价层电子对个数=3+4+2-322⨯=3且不含孤电子对,根据价层电子对互斥理论判断碳酸根离子空间构型及C 原子的杂化形式分别为平面正三角形、sp 2杂化,故答案为:平面正三角形;sp 2;(5)金属锌的这种堆积方式称为六方最密堆积,该晶胞中Zn 原子个数=12×16+2×12+3=6,六棱柱底边边长为acm ,高为ccm ,六棱柱体积2)×3×c]cm 3,晶胞密度=m V ,故答案为:六方最密堆积(A 3型)。
材料性能学课后习题与解答
材料性能学课后习题与解答(总21页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--绪论1、简答题什么是材料的性能包括哪些方面[提示] 材料的性能定量地反映了材料在给定外界条件下的行为;解:材料的性能是指材料在给定外界条件下所表现出的可定量测量的行为表现。
包括○1力学性能(拉、压、、扭、弯、硬、磨、韧、疲)○2物理性能(热、光、电、磁)○3化学性能(老化、腐蚀)。
第一章单向静载下力学性能1、名词解释:弹性变形塑性变形弹性极限弹性比功包申格效应弹性模量滞弹性内耗韧性超塑性韧窝解:弹性变形:材料受载后产生变形,卸载后这部分变形消逝,材料恢复到原来的状态的性质。
塑性变形:微观结构的相邻部分产生永久性位移,并不引起材料破裂的现象。
弹性极限:弹性变形过度到弹-塑性变形(屈服变形)时的应力。
弹性比功:弹性变形过程中吸收变形功的能力。
包申格效应:材料预先加载产生少量塑性变形,卸载后再同向加载,规定残余应力(弹性极限或屈服强度)增加;反向加载,规定残余应力降低的现象。
弹性模量:工程上被称为材料的刚度,表征材料对弹性变形的抗力。
实质是产生100%弹性变形所需的应力。
滞弹性:快速加载或卸载后,材料随时间的延长而产生的附加弹性应变的性能。
内耗:加载时材料吸收的变形功大于卸载是材料释放的变形功,即有部分变形功倍材料吸收,这部分被吸收的功称为材料的内耗。
韧性:材料断裂前吸收塑性变形功和断裂功的能力。
超塑性:在一定条件下,呈现非常大的伸长率(约1000%)而不发生缩颈和断裂的现象。
韧窝:微孔聚集形断裂后的微观断口。
2、简答(1) 材料的弹性模量有那些影响因素为什么说它是结构不敏感指标解:○1键合方式和原子结构,共价键、金属键、离子键E高,分子键E低原子半径大,E小,反之亦然。
○2晶体结构,单晶材料在弹性模量在不同取向上呈各向异性,沿密排面E大,多晶材料为各晶粒的统计平均值;非晶材料各向E同性。
POSS(笼型聚倍半硅氧烷)的基本结构及性能
POSS(笼型聚倍半硅氧烷)的基本结构及性能POSS分子结构中的硅氧笼(silicon-oxygen cage)是一种六面全封闭的三维笼状结构,硅原子和氧原子交替组成笼的骨架,每个硅原子周围还连接着一些有机碳基团。
这种结构使POSS既具有高度有序的无机硅氧骨架,又具有有机基团的柔性和多样性。
POSS具有许多优秀的性能,主要包括以下几个方面:1.富有透明性:POSS分子中有机基团对光的吸收较小,因此POSS材料具有很好的透明性,可以用于制备透明的薄膜、涂层等。
2.高度机械强度:POSS分子中的硅氧笼具有高度稳定的三维结构,使得POSS材料具有较高的机械强度和硬度。
同时,POSS分子中的有机基团也可以通过共价键与其他材料相互连接,进一步增强材料的强度。
3.热稳定性:POSS材料在高温下具有较好的热稳定性,能够耐受高温条件下的热氧化、热分解等反应。
这使得POSS可以应用于高温环境下的材料,如高温润滑剂、高温结构材料等。
4.低介电常数:由于POSS材料主要由无机硅氧笼构成,硅氧键的极性较小,因此POSS材料具有较低的介电常数,有利于提高材料的电绝缘性能和电子性能。
5.易修饰性:POSS分子中的有机基团可以通过合成反应进行改变,可以引入不同的功能基团和官能团,进一步调节材料的性能。
因此,POSS 具有良好的修饰性,适用于不同领域的应用。
综上所述,POSS是一种具有高度有序的无机有机杂化材料,其基本结构是由有机碳基团和无机硅氧笼组成的复合结构。
POSS具有许多优秀的性能,如透明性、高度机械强度、热稳定性、低介电常数和易修饰性。
这些性能使得POSS材料在各个领域都有广泛的应用前景,如透明薄膜、涂层、高温材料、电子器件等。
随着对POSS材料的深入研究,人们可以进一步探索其在各个领域的应用,为材料科学和工程带来更多的发展机遇。
材料的强韧化1-材料的结构与性能
C 材料晶粒度
超细,KIC越大;
D 组织中不变形的第二相或夹杂物颗粒
Kraff模型: KIC =nE(2πd)1/2 n应变硬化指数;d与第二相的平均间距:E杨氏模量
E 第二相组织
由于奥氏体相韧性优于铁素体相,在马氏体中存在少量残 余奥氏体韧性相,可以阻止裂纹发展或钝化。 相变吸能,提高韧性。
断裂韧性的应用
1、强度
• 强度:材料在外力作用下抵抗变形和破坏的能力。
1)比例极限σP: 应力与应变成比例关系的最大应力。 2)弹性极限σe:由弹性变形过渡到弹—塑性变形的应力。 3)屈服极限: ①屈服点σs:负荷不增加,甚至有所下降,试样还继
续发生明显变形的最小应力。
②屈服强度σ0.2:残余变形量为0.2%时的应力值。 4)抗拉强度(强度极限)σb:断裂前最大负荷的应力,
高碳弹簧钢:Uoe=面积OAB Uop=面积BACD UoT=面积OACD 低碳结构钢:Uoe=面积OA’B’ Uop=面积B’A’C’D’ UoT=面积OA’C’D’ 由于UoT=Uoe+Uop 当断裂时的应变εf远大于εe时,UoT≈Uop,韧性的两种 定义近似一致。 图中两种钢的弹性模量相同,但高碳弹簧钢的σp及对 应的εe较大,故弹性较大,在弹性范围内能贮存的弹性应 变能较多,有较大的回弹力。其抗拉强度σb虽大于低碳结 构钢,但εf却远小于低碳结构钢,综合σb及εf,高碳弹簧钢 的韧性低于低碳结构钢。
(2) 非金属的晶体结构
a. 陶瓷的组织结构: 陶瓷:是由金属和非金属的无机化合物所构成的多晶固体物质,
实际上是各种无机非金属材料的总称。
晶体结构:以离子键为主的离子晶体(呈晶态) 以共价键为主的共价晶体(呈非晶态) 组织:晶相:是主要组成相。
材料力学性能习题解答
第1章 常规力学性能 习题解答一、 名词解释1. 弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12. 弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。
弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等13. 说明下列力学性能指标的意义。
答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度二、简答题1. 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
材料物理性能课后答案
材料物理性能课后答案材料物理性能是指材料在外部作用下所表现出的物理特性,包括力学性能、热学性能、电学性能、磁学性能等。
了解材料的物理性能对于材料的选用、设计和应用具有重要意义。
下面是一些关于材料物理性能的课后答案,希望能对大家的学习有所帮助。
1. 什么是材料的力学性能?材料的力学性能是指材料在外力作用下所表现出的性能,包括抗拉强度、屈服强度、弹性模量、硬度等。
这些性能直接影响着材料的承载能力和使用寿命。
2. 为什么要了解材料的热学性能?材料的热学性能是指材料在温度变化下的性能表现,包括热膨胀系数、导热系数、比热容等。
了解材料的热学性能可以帮助我们选择合适的材料用于高温或低温环境,确保材料的稳定性和可靠性。
3. 材料的电学性能有哪些重要指标?材料的电学性能包括介电常数、电导率、击穿电压等指标。
这些性能直接影响着材料在电子器件中的应用,对于电子材料的选用和设计具有重要意义。
4. 什么是材料的磁学性能?材料的磁学性能是指材料在外磁场作用下的性能表现,包括磁化强度、磁导率、矫顽力等。
了解材料的磁学性能可以帮助我们选择合适的材料用于磁性材料和磁性器件的制备。
5. 如何评价材料的物理性能综合指标?材料的物理性能综合指标是综合考虑材料的力学性能、热学性能、电学性能、磁学性能等多个方面的性能指标,通过综合评价来确定材料的适用范围和性能等级。
这些综合指标可以帮助我们更好地了解材料的综合性能,为材料的选用和设计提供参考依据。
总结,了解材料的物理性能对于材料的选用、设计和应用具有重要意义,希望以上答案可以帮助大家更好地理解和掌握材料的物理性能知识。
对于材料物理性能的学习,需要多加练习和实践,才能真正掌握其中的精髓。
祝大家学习进步!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、离子键及其形成的离子晶体陶瓷材料的特征。
答:当一个原子放出最外层的一个或几个电子成为正离子,而另一个原子接受这些电子而成为负离子,结果正负离子由于库仑力的作用而相互靠近。
靠近到一定程度时两闭合壳层的电子云因发生重叠而产生斥力。
这种斥力与吸引力达到平衡的时候就形成了离子键。
此时原子的电中性得到维持,每一个原子都达到稳定的满壳层的电子结构,其总能量达到最低,系统处于最稳定状态。
因此,离子键是由正负离子间的库仑引力构成。
由离子键构成的晶体称为离子晶体。
离子晶体一般由电离能较小的金属原子和电子亲和力较大的非金属原子构成。
离子晶体的结构与特性由离子尺寸、离子间堆积方式、配位数及离子的极化等因素有关。
离子键、离子晶体及由具有离子键结构的陶瓷的特性有:A、离子晶体具有较高的配位数,在离子尺寸因素合适的条件下可形成最密排的结构;B、离子键没有方向性C、离子键结合强度随电荷的增加而增大,且熔点升高,离子键型陶瓷高强度、高硬度、高熔点;D、离子晶体中很难产生自由运动的电子,低温下的电导率低,绝缘性能优良;E、在熔融状态或液态,阳离子、阴离子在电场的作用下可以运动,故高温下具有良好的离子导电性。
F、吸收红外波、透过可见波长的光,即可制得透明陶瓷。
2、共价键及其形成的陶瓷材料具有的特征。
答:当两个或多个原子共享其公有电子,各自达到稳定的、满壳层的状态时就形成共价键。
由于共价电子的共享,原子形成共价键的数目就受到了电子结构的限制,因此共价键具有饱和性。
由于共价键的方向性,使共价晶体不密堆排列。
这对陶瓷的性能有很大影响,特别是密度和热膨胀性,典型的共价键陶瓷的热膨胀系数相当低,由于个别原子的热膨胀量被结构中的自由空间消化掉了。
共价键及共价晶体具有以下特点:A、共价键具有高的方向性和饱和性;B、共价键为非密排结构;C、典型的共价键晶体具有高强度、高硬度、高熔点的特性。
D、具有较低的热膨胀系数;E、共价键由具有相似电负性的原子所形成。
3、层状结构材料的各向异性。
答:层状结构中范德华力起着重要的作用,陶瓷的层状结构间有较强的若键存在使得层与层之间连接在一起。
蒙脱石和石墨的结构层内键合类型不同于层间键合类型,因此材料显示出较高的各向异性。
所有的这些层状结构的层与层之间很容易滑移,粘土矿物中的这种层状结构使它在有水的情况下容易发生塑性变形。
4、影响陶瓷材料密度的因素。
答:密度是指单位体积的质量,陶瓷材料的密度有四种表示方式,分别是:结晶学密度、理论密度、体积密度、相对密度。
前三种在制作过程中没有形成气孔,在结构内的原子间只有间隙。
陶瓷材料的密度主要取决于元素的尺寸,元素的质量和结构堆积的紧密程度。
相对原子质量大的元素构成的陶瓷材料显示出较高的密度,如碳化钨、氧化铪等。
金属键合和离子键合陶瓷中的原子形成紧密堆积,会使其密度比共价键键合陶瓷(较开放的结构)的密度更奥一些,如锆石英。
5、硬度所反映的材料的能力;静载荷压入法测定硬度的原理。
答:硬度代表材料抵抗硬的物体压陷表面或破坏的能力。
静载荷压入法测定硬度的基本原理:将一硬的物体在静载荷的作用下压入被测物体的表面,以凹面单位面积的载荷表示被测物体的硬度。
分为:布氏硬度、维式硬度和洛氏硬度三种。
6、影响陶瓷材料硬度的因素。
答:大多数陶瓷具有较高的硬度,但有部分陶瓷的硬度较低,这主要取决于化学键及其内部结构。
虽然硬度在一定程度上可以反映材料的耐磨损性,但是有些耐磨损性很好的陶瓷硬度也不是很大。
所以硬度测试不能代替耐磨损性测试来衡量材料的耐磨损性。
陶瓷、矿物、晶体的硬度主要取决于结合建类型、晶体结构和化学组成。
离子半径越小,离子电价越高、配位数越大、结合能越大,抵抗外力摩擦、刻划及压入的能力也就越强,所以硬度就较大.此外,陶瓷材料的微观结构、裂纹、杂质等都对硬度有影响。
温度对陶瓷的硬度也有影响,一般温度升高,硬度下降。
7、影响固体材料的熔点的主要因素。
答:固体材料的熔点主要取决于内部质点间结合力的大小,即晶体中化学键的类型和它的强弱程度。
结合力越大,破坏质点间的联系所需的能量就越大,熔点就越高;反之,则熔点就越低。
从微观上讲,融化过程是一个很复杂的过程,影响材料熔点的因素不是单一的,还和晶体结构的类型、配位状况、离子半径的大小、极化作用等许多因素有关。
8、结构陶瓷材料的力学性能特征。
答:与金属材料和有机材料不同,陶瓷材料具有弹性模量高、抗压强度和高温强度高、高温蠕变小等力学性能,同时其断裂韧性又比较低,表现出脆性断裂。
材料的弹性模量的工程意义;影响陶瓷材料的弹性模量的因素。
答:材料的弹性模量的工程意义:弹性模量在工程上反映了材料刚度大小,在微观上反映原子的键合强度。
键合越强,则使原子间隙加大所需的应力越大,弹性模量就越高。
因此弹性模量与陶瓷的键合类型有关,通常具有共价键的陶瓷其价键强,E值也高。
影响陶瓷材料的弹性模量的因素:若陶瓷材料的结合键在不同方向上有所不同,其E也不同;气孔率会影响陶瓷弹性模量,其影响总是使弹性模量降低;温度对材料的弹性模量也有影响,通常温度升高,弹性模量E稍微降低。
10、陶瓷材料的实际强度与理论强度。
答:陶瓷材料的强度,若根据原子键断裂来计算可得到理论强度;若将材料内部和表面的各种缺陷,如裂纹、气孔或夹杂物都考虑进去,则为实际强度。
材料的刚性(弹性模量)越大,表面能越大,原子间距越小,即结合得越紧密,理论强度越大。
但由于材料中存在着制造缺陷和结构缺陷,如气孔夹杂物、裂纹、团聚等,从而导致应力集中,使材料在远低于理论强度的载荷下发生断裂。
11、四点弯曲试验、三点弯曲试验、单轴向拉伸试验测定的强度值特点。
答:四点弯曲试件的最大应力是在两个加载点之间的整个拉伸表面内,拉伸应力从加载点至底部支点降为零。
三点弯曲强度测试的最大应力位于试件加载点对面的表面中线上,应力沿着试件两端呈线性下降,在试件底部支点处应力降为零。
拉伸强度实验在测量断面的整个体积内都处于最高应力状态,从而试件内缺陷都处于高应力下,因此对于给定的陶瓷材料,四点弯曲实验得出的强度值比三点弯曲实验得出的数值要低一些,单轴向拉伸顺眼得出的强度值低于弯曲强度值。
12、加载速率对陶瓷材料强度测定值的影响。
答:陶瓷的强度随加载速率的增加而增加。
从某种程度上讲,可以将强度随加载速率变化看作是缺陷对强度的影响,随加载速率而变化。
加载速率越大,缺陷对强度的影响越小。
对于相同的试样和相同的尺寸的裂纹,高速载荷下的强度测试值要比慢速载荷下的强度高的多,因为在慢速载荷上裂纹有足够的时间扩展。
13、单边切口梁法和压痕法测定材料断裂韧性的优缺点。
答:单边切口梁法定义:在矩形截面的长柱状陶瓷部件中部开一个很小的切口作为预置裂纹,切口宽度最好不大于0.25mm,切口深度约为试件的0.4~0.5倍,采用三点或四点弯曲对试样加载直至断裂。
主要优点是:①试样加工比较简单,采用矩形长试样[2mmx4mmx(36~40mm)],中间用金刚石圆形刀开一狭窄的切口(切口宽《0.25mm,深度为0.4~0.5W);②测定值比较稳定,可比较性好,又比较接近真实的Kic;③可在高温或不同介质与气氛中试验。
因此,该法已被许多国家用作标准方法。
缺点:断裂韧性受开口宽度的影响,Kic随切口宽度的增大而增大,这样,若开口宽度控制单边切口梁法所测定的断裂韧性Kic可能偏高。
压痕法定义:在陶瓷表面进行精密抛光,表面光洁度达到1μm以上,在硬度以上用Vickers 金刚石压头以适当的载荷加载,制造压痕及延压痕对角线扩展的裂纹。
主要优点:①对试样尺寸、数量要求低,便于制备,可用小尺寸样品测试断裂韧性;②试样加工简单,仅需对表面精密抛光;③不需预制裂纹,测试速度快;④不需要特殊的装置和夹具,只要不同的硬度计;⑤可以测试同一个试样的Kic的不均匀性。
缺点:①受材料组织均匀性影响,对某些材料,如气孔率高和组织非常不均匀的材料不适用;②测量值分散性大;③压痕应力场复杂,解析结果中含很多假设,各计算公式得到的值差别较大。
所以,应尽量增加测试点数,以提高结果准确性。
14、共价键陶瓷的热膨胀系数较低,而离子键陶瓷或金属材料相对较高的原因。
答:物体的体积或长度随温度的升高而增大的现象称为热膨胀性。
用热膨胀系数α来表征。
通常共价键陶瓷具有较低的热膨胀系数。
这是由于共价键的方向性使这类陶瓷中易产生一些空隙,受热时各原子产生振动的振幅中有一些被结构内的空隙和键角的改变所吸收,从而使整个部件的膨胀小的多。
而对于离子键陶瓷或金属材料,由于它们具有紧密堆积结构,受热时每个原子的振幅累积起来使得整个材料发生比较大的膨胀。
15、气孔对陶瓷材料热导率的影响。
答:热导率的物理意义是指在单位温度梯度下,单位时间内通过单位垂直面积的热量。
通常,陶瓷含有一定量的气孔,气孔对热导率的影响是较复杂的。
一般情况下,气孔的体积分数越高,陶瓷材料的热导率就越低,气孔率大的陶瓷保温材料往往具有很低的热导率。
对于陶瓷粉末和纤维材料,其热导率比烧结状态时低的多,这是因为这期间气孔又形成了连续相,因此,材料的热导率就会在很大程度上受气孔相的热导率的影响。
这也是通常情况下陶瓷粉末和纤维类材料能有良好的隔热性能的原因。
16、材料的抗热震性的概念。
陶瓷材料热应力的产生方式。
答:材料的抗热震性是指材料承受温度的急剧变化而不被破坏的能力。
也可称为抗热冲击性,或热稳定性。
由于温度变化而引起的内应力称为热应力。
热应力可能导致材料热冲击破坏或者热疲劳破坏。
而抗热震性实际上就是抵抗热应力。
陶瓷材料热应力的产生主要有一下集中方式:a、温度梯度引起热应力;b、热膨胀系数不同引起热应力;c、陶瓷部件被约束时产生热应力。
17、多晶陶瓷材料的热震破坏的类型。
答:多晶陶瓷材料的热震破坏有两种类型:一种是材料发生的瞬时断裂,抵抗这类破坏的性能称为抗热震断裂性,一般玻璃和致密陶瓷材料大都属于这种情况。
另一种是在热冲击循环作用下,材料表面开裂和剥落并不断延伸和发展,最终碎裂或失效,抵抗这类破坏的性能称为抗热震损伤性。
一般含有微孔的陶瓷和耐火材料及非均质的金属陶瓷容易发生此种特征的热震破坏。
18、影响热震断裂的因素及其影响情况。
答:对于因热应力是陶瓷发生瞬时断裂的情况,从R和R’银子可以知道,材料的强度σ、弹性模量E、热膨胀系数α和热导率λ是主要影响因素。
①提高材料强度σ有利于抗热震性的改善,而弹性模量ED大,弹性小,在热冲击条件下材料难以通过变形来波分抵消热应力,因而对抗热震性不利、另外,若使σ∕E提高对改善抗热震性也有利。
②热膨胀系数α。
在同样的温度下,α小的材料产生的热应力小,其R也大。
③热导率λ。
热导率大,材料内温度梯度会减小,温差应力就小,有利于改善抗热震性。
此外,断裂韧性高的陶瓷有利于抗热震性的改善。