统计学三大分布及正态分布的关系
三大分布和正态分布的关系
三大分布和正态分布的关系三大分布是指均匀分布、正态分布和泊松分布。
在统计学中,这三个分布都是非常重要的基本概率分布之一。
正态分布是最为常见的一种概率分布,也被称为高斯分布或钟形曲线,因其形状呈钟形而得名。
均匀分布则是一种平均分布的概率分布,泊松分布则是一种描述稀有事件发生次数的概率分布。
首先,我们来探讨一下正态分布和均匀分布的关系。
首先需要了解的是,均匀分布是一种最简单的概率分布,它在给定区间内的各个取值概率相等,也就是说每个取值都是等可能发生的。
而正态分布则是一种近似正常分布的概率分布,它的概率密度在均值处达到最大值,两侧逐渐减小。
在正态分布中,大部分的值都集中在均值附近,并且对称分布。
均匀分布和正态分布在形状上有明显的区别。
均匀分布的概率密度函数是一个矩形,在给定区间内的取值概率是相等的,因此其形状是平坦的。
而正态分布的概率密度函数呈现钟形曲线,形状相对较高且对称。
在正态分布中,均值和标准差控制了曲线的位置和形状。
对于均匀分布,通过区间的长度可以控制分布的形状。
另外,均匀分布和正态分布在数学性质上也有一些区别。
对于均匀分布,其期望值和方差均可以通过区间的长度来计算。
例如,在[0,1]区间上的均匀分布的期望值为0.5,方差为1/12。
而对于正态分布,其期望值恒为均值μ,方差为标准差的平方σ^2。
在正态分布中,许多常见的统计推理方法都是基于正态分布的假设,这也是正态分布被广泛应用的原因之一。
此外,正态分布和均匀分布在实际应用中也有着不同的特点和用途。
正态分布广泛应用于实际测量的误差分布、自然现象的变异分布等。
在统计学中,许多假设检验和参数估计方法都是基于正态分布的推论,因此正态分布在统计学中具有重要作用。
而均匀分布常常用于随机数生成、模拟实验中,以及一些特定的情况下,如等可能事件的建模等。
最后,我们来讨论一下正态分布和泊松分布的关系。
正态分布和泊松分布是两种完全不同的概率分布。
正态分布是描述连续型随机变量的概率分布,而泊松分布则是描述离散型随机变量的概率分布。
统计学三大分布的应用
统计学三大分布的应用
统计学三大分布是指正态分布、t分布和卡方分布。
这些分布在统计学中应用广泛,下面将分别介绍其应用。
正态分布是自然界中最常见的分布之一,常用于描述连续性变量。
例如,身高、体重、智商等连续性变量都可以用正态分布来描述。
在假设检验、置信区间估计和回归分析等统计学方法中,正态分布也是一个非常重要的理论基础。
t分布是由威廉·塞德威克·高斯特(W.S.Gosset)于1908年提
出的,用来解决小样本量的问题。
t分布的形状与正态分布非常接近,但是在样本量较小的情况下,t分布的尾部更宽一些,因此在小样本量的情况下,使用t分布进行假设检验和置信区间估计更为合适。
卡方分布是概率论中一个重要的分布,通常应用于描述计数数据。
例如,在卡方检验中,卡方分布常常用来处理分类数据,如调查中统计“喜欢”或“不喜欢”某种产品或服务的人数。
卡方分布也常用于多项式回归和逻辑回归等模型中。
综上所述,正态分布、t分布和卡方分布在统计学中应用非常广泛,是统计学的重要组成部分。
对于从事统计学研究或相关领域的人员来说,深入理解和熟练运用这些分布是非常重要的。
- 1 -。
第五章_正态分布、常用统计分布和要点
正态曲线下每一小块面积就是随机变量 在该小 块取值xi 所出现的概率,曲线下的整个面积由无 数个小直方形拼成。
xi xi 每小块面积 长 宽 ( xi )xi P( xi xi ) 2 2 曲线下任意两点x1 x2的概率,就是对从 x1 到 x2 的
1.标准正态曲线在Z=0处达到最高点; 2.标准正态曲线以Z=0为中心,双侧对称; 3.标准正态曲线从最高点向左右缓慢下降,并无 限延伸,但永不与基线相交; 4.平均数为0,标准差为1; 5.标准正态曲线从最高点向左右延伸时,正负1 个标准差内向下向内弯,从正负1个标准差开 始,向下向外弯。
(二)正态分布与标准正态分布面积 之间的对应关系
( x u ) 2 2
( x)
1 2
x2 e 2
标准正态分布其实是一般正态分布的一个特 例,记作N(0,1),一般正态分布记作N(μ,σ2)。 一般正态分布之所以能变成唯一的标准正态 分布,就是把原来坐标中的零点沿着X轴迁到μ点, 并且以σ为单位记分。
σ=1
0
图5-5
(一)正态分布与标准正态分布的特点对比
表5-2
0 Z 图5-11
(1)求Z分数以上的概率是多少 ? 解:Z 1时, (Z ) 0.34134 , Z以上的概率为
0.5 0.34134 0.15866
那么Z 1以下的概率呢?
( Z ) 0.5 0.34134 0.15866
(2)两个Z分数之间的概率
第五章 正态分布、常用统计分 布和极限定理
一、什么是正态分布
正态分布(Normal Distribution)服从一类 确定的规律,又称为常态分布或高斯分 布。
如统计了96人的初婚年龄
概率论与数理统计 7.2 数理统计中的三大分布
7.2 数理统计中的三大抽样分布
在数理统计中,以标准正态变量为基石而构 造的三个著名统计量有着广泛的应用,这是因为 这三个统计量不仅有明确背景,而且其抽样分布 的密度函数有明显的数学表达式,它们被称为统 计中的“ 三大抽样分布 ” 。
1. 2 分布
数理统计
2分布是由正态分布派生出来的一种分布.
t1 (n) t (n)
o t (n)
x
t分布的上分位点t (n)可查表
求得,例t0.025(15) 2.1315.
当n 45时,对于常用的的值,可用正态近似 t (n) z
例3:X ~ t(15)
(1)求 0.01的上侧分位数; (2) P( X ) 0.05,求 ; (3)P( X ) 0.95 ,求 .
记为 t ~ t(n). t分布概率密度函数为:
f (t)
[(n 1)
2]
(1
t
2
)
n1 2
,
t
(n 2) n n
t 分布的图像
y N (0,1) 数理统计
t(n)
t分布的性质: 1. 设t ~ t(n),则E(t) 0, D(t) n (n 2) (n 2)
2. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形,
F分布的上分位点的性质:
F1 (n1, n2 )
1 F (n2 , n1 )
F分布的上分位点可查表求得.例,
F0.95 (12,9)
1 F0.05 (9,12)
1 2.80
0.357
例4. F ~ F (24,15),求 1,2 使 P(F 2 ) 0.025 P(F 1) 0.025
统计学三大分布与正态分布的差异
申请大学学士学位论文大学学士学位论文统计学三大分布与正态分布的差异年级专业:学生:指导教师:统计学三大分布与正态分布的差异中文摘要统计学是应用数学的一个分支,主要通过利用概率论建立数学模型,收集所观察系统的数据,进行量化的分析、总结,并进而进行推断和预测,为相关决策者提供依据和参考。
它被广泛的应用在各门学科之上,从物理和社会科学到人文科学,甚至被用来工商业及政府的情报决策之上。
而对数据的分析过程中就需要利用到数据的分布来研究分类。
在实际遇到的许多随机现象都服从或近似服从正态分布。
而由正态分布构造的三大分布在实际中有广泛的应用,因为这三大分布不仅有明确的背景,而且其抽样分布的密度函数有明显表达式,研究三大分布与正态分布有助于研究实际事例,比如经济安全与金融保险领域、人口统计等。
本文讨论了三大分布与正态分布,并将它们之间的密度函数进行比较说明.第二章介绍了正态分布的定义、性质,三大分布的定义、性质。
第三章介绍了正态分布与三大分布的密度函数,并将它们之间的密度函数进行比较关键词:正态分布;三大分布;密度函数The Difference between the Three Statistical Distributions andthe Normal DistributionAbstractStatistics is a branch of applied mathematics, the mathematical models are mainly established by the probability and statistics theory based on the collectingthe data, so as to conduct the quantitative analysis, and obtain the correct inference. It is widely used in the subjects, such as physical, social science, industrial and commercial field, and government intelligence decision. The process of the data analysis will need to use the data distributions to study.In practice, many random phenomena are obedient for the normal distributions, or approximately. And the three statistical distributions structured by the normal distributions have extensive applications, because these three distributions is explicitly background, and the sampling distribution density function have obvious expressions. Research on the distributions and normal distributions is useful for the study of economic security and financial insurance fields, population statistics, etc.This paper discusses the three statistical distributions and normal distributions, their density functions are compared.The second chapter presents the definition of the normal distribution, the distribution of nature, three definitions and properties.The third chapter covers a normal distribution and the density functions of the three distributions, and then the density functions are compared. Keywords: the normal distribution; Three distribution; Density function目录中文摘要 (2)英文摘要 (2)1 绪论 (5)1.1 问题的提出 (5)1.2 国外研究现状 (5)1.3 本文的主要工作 (6)2 基础知识介绍 (7)2.1 正态分布 (7)2.2 三大统计分布 (8)3 三大分布与正态分布的比较 (12)3.1 三大分布与正态分布的密度函数 (12)3.2 三大分布与正态分布的密度函数比较 (12)3.3 本章小结 (16)4 进一步工作 (16)参考文献 (17)致 (17)1 绪论统计学,最早是由Gottfried Achenwall(1749)所使用,代表对国家的资料进行分析的学问,也就是“研究国家的科学”。
统计学三大分布的应用
统计学三大分布的应用统计学是一门重要的学科,它通过收集、整理和分析数据来揭示事物之间的潜在规律和关系。
在统计学中,分布是一种揭示数据特征的重要工具。
在统计学中,有三大常见的分布,它们分别是正态分布、均匀分布和指数分布。
这些分布在各个领域都有广泛的应用,能够帮助我们更好地理解和解释现象。
首先,正态分布是统计学的核心概念之一。
正态分布也被称为高斯分布,它的形状近似为一个钟形曲线。
正态分布在自然界中广泛存在,例如人的身高、体重等,也在许多地方出现,如测试成绩、产品质量等。
统计学家常常使用正态分布来研究和描述各种现象,并通过计算均值和标准差来分析数据的集中度和离散程度。
正态分布也是许多假设检验和参数估计方法的基础,为我们进行科学研究和决策提供了强有力的工具。
其次,均匀分布是一种简单且常见的分布形式。
在均匀分布中,所有的取值都具有相同的概率。
这种分布可以用来模拟随机实验的结果,例如抛硬币的正反面、掷骰子的点数等。
均匀分布还在随机数生成、概率推断等方面发挥着重要作用。
在实际应用中,均匀分布也可以用来描述一些特定的自然现象,如某些地区的降雨量、温度等。
通过研究和理解均匀分布,我们可以更好地预测和解释这些现象。
最后,指数分布是描述事件发生时间的一种重要分布。
在指数分布中,事件发生的概率密度函数随时间指数级衰减。
这种分布常常用于研究和模拟一些连续系统的寿命、等待时间等。
指数分布也在信号处理、通信理论、生物学等领域中得到广泛应用。
通过对指数分布的研究,我们能够更好地理解和预测事件的发生模式,为我们提供关键信息,以便做出合理的决策。
总而言之,正态分布、均匀分布和指数分布是统计学中三大重要分布。
它们在各个领域都有广泛的应用,帮助我们更好地理解和解释现象,提供科学依据和决策支持。
通过对分布的研究和应用,统计学可以发挥重要作用,推动科学发展和社会进步。
概率论与数理统计中的三种重要分布
概率论与数理统计中的三种重要分布摘要:在概率论与数理统计课程中,我们研究了随机变量的分布,具体地研究了离散型随机变量的分布和连续型随机变量的分布,并简单的介绍了常见的离散型分布和连续型分布,其中二项分布、Poisson 分布、正态分布是概率论中三大重要的分布。
因此,在这篇文章中重点介绍二项分布、Poisson 分布和正态分布以及它们的性质、数学期望与方差,以此来进行一次比较完整的概率论分布的学习。
关键词:二项分布;Poisson 分布;正态分布;定义;性质一、二项分布二项分布是重要的离散型分布之一,它在理论上和应用上都占有很重要的地位,产生这种分布的重要现实源泉是所谓的伯努利试验。
(一)泊努利分布[Bernoulli distribution ] (两点分布、0-1分布)1.泊努利试验在许多实际问题中,我们感兴趣的是某事件A 是否发生。
例如在产品抽样检验中,关心的是抽到正品还是废品;掷硬币时,关心的是出现正面还是反面,等。
在这一类随机试验中,只有两个基本事件A 与A ,这种只有两种可能结果的随机试验称为伯努利试验。
为方便起见,在一次试验中,把出现A 称为“成功”,出现A 称为“失败” 通常记(),p A P = ()q p A P =-=1。
2.泊努利分布定义:在一次试验中,设p A P =)(,p q A P -==1)(,若以ξ记事件A 发生的次数,则⎪⎪⎭⎫⎝⎛ξp q 10~,称ξ服从参数为)10(<<p p 的Bernoulli 分布或两点分布,记为:),1(~p B ξ。
(二)二项分布[Binomial distribution]把一重Bernoulli 试验E 独立地重复地进行n 次得到n 重Bernoulli 试验。
定义:在n 重Bernoulli 试验中,设(),()1P A p P A q p ===-若以ξ记事件A 发生的次数,则ξ为一随机变量,且其可能取值为n ,,2,1,0 ,其对应的概率由二项分布给出:{}k n kk n p p C k P --==)1(ξ,n k ,,3,2,1,0 =,则称ξ服从参数为)10(,<<p p n 的二项分布,记为),(~p n B ξ。
统计学三大分布与正态分布的关系
统计学三大分布与正态分布的关系[1] 张柏林 41060045 理实1002班摘要:本文首先将介绍2χ分布,t 分布,F 分布与正态分布的定义及基本性质,然后用理论说明2χ分布,t 分布,F 分布与正态分布的关系,并且利用数学软件MATLAB 来验证之、1、 三大分布函数[2]1、12χ分布2()n χ分布就是一种连续型随机变量的概率分布。
这个分布就是由别奈梅(Benayme)、赫尔默特(Helmert)、皮尔逊分别于1858年、1876年、1900年所发现,它就是由正态分布派生出来的,主要用于列联表检验。
定义:若随机变量12n ,,X X …X 相互独立,且都来自正态总体01N (,),则称统计量222212n =+X X χ++…X 为服从自由度为n 的2χ分布,记为22~()n χχ、2χ分布的概率密度函数为122210(;),2()200n xn x e x nf x n x --⎧≥⎪⎪=Γ⎨⎪⎪<⎩ 其中伽玛函数1(),0t x x et dt x +∞--Γ=>⎰,2χ分布的密度函数图形就是一个只取非负值的偏态分布,如下图、卡方分布具有如下基本性质:性质1:22(()),(())2E n n D n n χχ==;性质2:若221122(),()X n X n χχ==,12,X X 相互独立,则21212~()X X n n χ++;性质3:2n χ→∞→时,(n )正态分布; 性质4:设)(~22n αχχ,对给定的实数),10(<<αα称满足条件:αχχαχα==>⎰+∞)(222)()}({n dx x f n P 的点)(2n αχ为)(2n χ分布的水平α的上侧分位数、 简称为上侧α分位数、 对不同的α与n , 分位数的值已经编制成表供查用、2()n χ分布的上α分位数 1、2t 分布t 分布也称为学生分布,就是由英国统计学家戈赛特在1908年“student”的笔名首次发表的,这个分布在数理统计中也占有重要的位置、定义:设2~0~X N χ(,1),Y (n ),,X Y 相互独立,,则称统计量/XT Y n=服从自由度为n 的t 分布,记为~()T t n 、t 分布的密度函数为1221()2(;)(1),.()2n n x t x n t n n n π+-+Γ=+-∞<<+∞Γt 分布的密度函数图t 分布具有如下一些性质:性质1:()n f t 就是偶函数,221,()()2t n n f t t e ϕπ-→∞→=;性质2:设)(~n t T α,对给定的实数),10(<<αα 称满足条件;ααα==>⎰+∞)()()}({n tdx x f n t T P 的点)(n t α为)(n t 分布的水平α的上侧分位数、 由密度函数)(x f 的对称性,可得 ).()(1n t n t αα-=-类似地,我们可以给出t 分布的双侧分位数,)()()}(|{|)()(2/2/2/αααα=+=>⎰⎰+∞-∞-n t n t dx x f dx x f n t T P 显然有.2)}({;2)}({2/2/αααα=-<=>n t T P n t T P对不同的α与n , t 分布的双侧分位数可从附表查得、t 分布的上α分位数 1、3F 分布F 分布就是随机变量的另一种重要的小样本分布,应用也相当广泛、 它可用来检验两个总体的方差就是否相等,多个总体的均值就是否相等、 F 分布还就是方差分析与正交设计的理论基础、定义:设22~(),~()X n Y m χχ,,X Y 相互独立,令则称统计量//X nF Y m=服从为第一自由度为n ,第二自由度为m 的F 分布、F 分布的密度函数图F 分布具有如下一些性质:性质1:若~(,),1/~(,)F F n m F F m n 则; 性质2:若)(~n t X ,则2~(1,)X F n ; 性质3:设),(~m n F F α,对给定的实数),10(<<αα称满足条件;ααα==>⎰+∞),()()},({m n F dx x f m n F F P的点),(m n F α为),(m n F 分布的水平α的上侧分位数、F分布的上α分位数F 分布的上侧分位数的可自附表查得、性质4:.),(1),(1m n F n m F αα-=此式常常用来求F 分布表中没有列出的某些上侧分位数、 1、4正态分布正态分布就是数理统计中的一种重要的理论分布 ,就是许多统计方法的理论基础、 高斯(Gauss)在研究误差理论时首先用正态分布来刻画误差的分布,所以正态分布又称为高斯分布、 正态分布有两个参数,μ与σ,决定了正态分布的位置与形态、 为了应用方便,常将一般的正态变量X 通过u 变换转化成标准正态变量u,以使原来各种形态的正态分布都转换为μ=0,σ=1的标准正态分布N (0,1)、 正态分布的密度函数与分布函数若连续型随机变量X 具有概率密度()f x 为22()21(),,2x f x ex μσπσ--=-∞<<+∞其中,(0)μσσ>为常数,则称X 服从参数为μσ,的正态分布,记为2~()X N μσ,、正态分布的密度函数图特征1:正态曲线(normal curve)在横轴上方均数处最高; 特征2:正态分布以均数为中心,左右对称;特征3:正态分布有两个参数,即均数μ与标准差σ、 μ就是位置参数,σ固定不变时,μ越大,曲线沿横轴越向右移动;反之,μ越小,则曲线沿横轴越向左移动、 σ就是形状参数,当μ固定不变时,σ越大,曲线越平阔;σ越小,曲线越尖峭、 通常用2N μσ(,)表示均数为μ,方差为2σ的正态分布、 用N (0,1)表示标准正态分布、 特征4:正态曲线下面积的分布有一定规律。
三大分布
0.4
f n ( x)
N(0,1) n = 10 n=5 n=2 n=1
0.3
0.2
0.1
0 -3
-2
-1
0
1
2
x
3
t-分布的概率密度函数
t分布的性质
1.以0为中心,左右对称的单峰分布; 2.t分布是一簇曲线,其形态变化与n(确 切地说与自由度ν)大小有关。自由度ν越 小,t分布曲线越低平;自由度ν越大,t分 布曲线越接近标准正态分布(u分布)曲线
2 2
2
F
X / n1
n n Γ ( 1 2 2 ) n1 n1 n2 f n1 , n 2 ( x ) Γ ( 2 ) Γ ( 2 ) n 2
n1 n 2
x 0,
n1 2
1
n1 1 x n2
t
n (x ) s
~ t ( n 1)来自 结论二:F sx1 , x2 , , x m
sx / 1
2 2 y
2
/
2 2
~ F ( m 1, n 1)
设 的样本,且此两样本相互独立,记
sx
2
2 y N ( 1 , 1 ) 的样本,1 , y 2 , , y n 是来自
sx / 1
2
2
( n 1) s
2 2
s /
2 y
2 2
~ F ( m 1, n 1)
所以
结论三:
( x y ) ( 1 2 ) sw 1 m n 1
~ t ( m n 2)
sw
( m 1) s ( n 1) s
统计三大分布
根据独立随机变量商的密度公式(3-32),
可以证明(过程从略):(6-13)中的
Tn
概率密度函数为
根据独立随机变量商的密度公式(3-32),可
以证明(过程从略):(6-13)中 Tn 的概率
密度函数为
, x . fn(x)
Γ(
n1 2
)
n
Γ(
n 2
)
1
x2 n
n1 2
(6-14)
另外,t -分布具有以下性质:
变量不小于该数的概率为 . 比如,若记 2-
变量
2 n
的
-上侧分位数为,则满足(见图
6.2).
fn (x)
2 (n)
x
图 6.2
对不太大的n,如
n
60,可用附表3查
2
(n)
的
值,而对较大的n,则可用(6-11)近似计
算
2 (n) n 2n U , (6-12)
其中U 是标准正态分布N(0,1)的 -上侧分位
数,可通过附表2查出.
二、t -分布
定则 自义称由6.2度T为设n nX的Y~XtN/ -n(0分,1)布,Y,(6~记-123作()n)所,Tn 服X~ t与从(n)Y的.独t分-立分布,布是
也称为学生分布,是英国统计学家戈塞特 (Goset,1876-1937)在1908年“Student”
的笔名首次发表的,这个分布在数理统计 中也占有重要的地位.
,则
顺便指出,自由度为1的t -分布也称为柯西
(Cauchy)分布,它以其数学期望和方差
均不存在而闻名(见例4.3).
记t -分布t(n) 的 -上侧分位数为t (n),附表4
给出了不同n和 所对应的t (n) 数值. 另外,
三大分布及构造原理
三大分布及构造原理在自然界中,存在着很多种类的分布规律,其中最常见的就是三大分布。
它们分别是均匀分布、正态分布和偏态分布。
均匀分布是指在一定范围内,各个数值的出现频率基本相同,没有明显的集中倾向。
可以用一个例子来说明,假设有一个果园,里面种植了100棵苹果树,每棵树上结出的苹果数量基本相同,这就是均匀分布。
均匀分布在很多领域都有应用,比如随机数生成、样本选择等。
正态分布是指在一定范围内,数值的出现频率呈现出钟形曲线的分布规律。
这个分布规律在自然界中非常常见,比如人的身高、体重等。
正态分布有一个重要的特点,就是均值、中位数和众数都是相等的,这意味着大部分的数据都集中在均值附近,而离均值越远的数据出现的概率越低。
偏态分布是指在一定范围内,数值的出现频率呈现出一侧高峰或两侧高峰的分布规律。
这种分布在自然界中也很常见,比如人的收入分布、物种的数量分布等。
偏态分布有两种情况,一种是正偏态分布,即右侧高峰,另一种是负偏态分布,即左侧高峰。
偏态分布的出现原因可能是由于外部环境的影响,比如资源分配的不均衡等。
这三种分布规律的存在,可以解释很多自然现象。
同时,它们也是统计学中的重要概念,可以用来描述和分析数据。
在实际应用中,我们可以根据不同的场景选择合适的分布模型,从而更好地理解和解释数据。
对于分析师来说,掌握这些分布规律的构造原理,可以帮助他们更准确地进行数据分析和预测,为决策提供科学依据。
三大分布及其构造原理是统计学中非常重要的概念,它们描述了自然界中的一些普遍规律。
通过研究和应用这些分布规律,我们可以更好地理解和解释数据,为科学研究和决策提供有力支持。
在实际应用中,我们应该根据具体情况选择合适的分布模型,并结合实际情况进行数据分析和预测。
三种分布
1.分布若n个相互独立的随机变量ξ₁、ξ₂、……、ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布(chi-square distribution),其中参数n称为自由度,正如正态分布中均值或方差不同就是另一个正态分布一样,自由度不同就是另一个分布。
记为或者卡方分布是由正态分布构造而成的一个新的分布,当自由度n很大时,分布近似为正态分布。
对于任意正整数k, 自由度为k的卡方分布是一个随机变量X的机率分布。
[1]2.特点概率密度函数其中,是伽玛函数。
期望和方差分布的均值为自由度n,记为E() = n。
分布的方差为2倍的自由度(2n),记为D() = 2n。
3. 性质1)分布在第一象限内,卡方值都是正值,呈正偏态(右偏态),随着参数n 的增大,分布趋近于正态分布;卡方分布密度曲线下的面积都是1.2) 分布的均值与方差可以看出,随着自由度n的增大,χ2分布向正无穷方向延伸(因为均值n越来越大),分布曲线也越来越低阔(因为方差2n越来越大)。
3)不同的自由度决定不同的卡方分布,自由度越小,分布越偏斜。
4) 若互相独立,则:服从分布,自由度为;服从分布,自由度为3概率表分布不象正态分布那样将所有正态分布的查表都转化为标准正态分布去查,在χ2分布中得对每个分布定制相应的概率值,这通过χ2分布表中列出不同的自由度来表示,在χ2分布表中还需要如标准正态分布表中给出不同P 值一样,列出概率值,只不过这里的概率值是χ2值以上χ2分布曲线以下的概率。
由于χ2分布概率表中要列出很多χ2分布的概率值,所以χ2分布中所给出的P 值就不象标准正态分布中那样给出了400个不同的P 值,而只给出了有代表性的13个值,因此χ2分布概率表的精度就更差,不过给出了常用的几个值,足够在实际中使用了。
查χ2分布概率表时,按自由度及相应的概率去找到对应的χ2值。
概率统计6.3三大分布
X Y
,
n
服从自由度为 n 的 t分布,记为 t ~ t(n).
(2)t 分布性质:①ht 的图形关于 t 0对称;
②由 t分布的下分位点的定义及ht图形的对称性知t n t1 n
3、(1)F 分布定义
设U ~ (2 n1),V ~ (2 n2) ,且U,V
独立,则称随机变量 F U / n1 V / n2
何值时,2 a X1 X2 2 b X3 2 服从自由度为多少的 2 分布?
2、设随机变量t ~ t(n) ,其概率密度为 ft(n)(x)
,若 ,则 P t t0.9(n) 0.2
t0.1 (n)
ft(n) (x)dx
有为多少?
3、设总体X ~ N(0, 2), X1, X2,.
0,
其他.
(y)的图形如下图所示:
对于给定的
,0
1, 称满足条件 PF
F (n1, n2 )
F (n ,n ) 1 2 x dx
F n1,n2 为 F n1,n2 分布的下α 分位点.
F 分布性质:
①F
(n1, n2 )
②当 n 充分大时其图形类似于标准正态变量概率密度的图形.但对
于较小 n,t 的分布与N 0,1分布相差很大.
③由 t分布的上 分位点的定义及ht 图形的对称性知 t1 n t n.
例2 设总体 X和 Y 相互独立且都服从N 0,32 分布,而样本 X1,..., X9 和 Y1,..., Y9分别
t2 U2
U2 1
~ F (1, n)
Vn Vn
VV
nn
统计学三大分布的应用
统计学三大分布的应用
统计学三大分布的应用着实多,这三大分布是正态分布、`t`分布
和χ2分布,在其各自领域都扮演着十分重要的角色。
首先正态分布可以用来描述很多自然事物,比如人体身高,体重,智力测试等等,它也是描述数据量很大的连续型变量,例如说回报率
等等,也可以用来作抽样采集,比如实施一个全国性的抽样调查,可
以用正态分布来对所有可能的值,一路分布一路抽样,进行百分比抽样。
`t`分布的应用也相当广泛,它和正态分布很相似,但它的尾部更
加隆起,所以会更集中在中间,它主要用于描述样本数量较小、但又
有很多衡量指标的情况,比如实验数据或者是调查数据,这样可以让
每一个样本数据都能有很好的效果,而不会产生太多偏差。
χ2分布在统计学上最常见的应用之一就是通过定性预测进行验证,它可以用来测量两个独立事件之间的相关性,也可以用来检验某一用
例的假设是否正确,比如说,当你想检验一个癌症患者是否会改善的
时候,你可以使用一个χ2分布来计算出变化的概率,看看改善的可
能性有多大。
另外,χ2分布也可以用来进行多元统计分析,其实就是
对多个变量之间的关系进行分析,比如说他们之间存在着多大的相关性。
总而言之,统计学三大分布都很重要,他们都有各自不同的应用
场景,并且有多种方式可以用来分析数据,比如简单的相关性分析,
多元统计分析,模型检验等等。
希望这些信息能够帮助大家更好的理
解这三大分布的应用,以充分发挥他们的优势。
3章几种常见的分布
在Gamma分布中:k=n(正整数)时的gamma分布可以看作n个独立的k=1的 gamma分布(即指数分布)之和,按照中心极限定理,独立同分布随机变量 之和趋于正态分布。
几种常见的分布
2019/5/27
1
分类
连续型随机分布
◆ 正态分布、均匀分布、指数分布、对数正态分布、柯西分布、 Gamma分布、瑞利分布、韦伯分布、三角形分布
离散型随机分布
◆ 二项分布、几何分布、超几何分布、泊松分布
三大抽样分布
◆ 卡方分布、F分布、t分布
分布之间的关系
2019/5/27
应用:在自然情况下,均匀分布极为罕见。在实际问题中,当我们无法区分在 区间内取值的随机变量取不同值的可能性有何不同时,我们就可以假定随机变 量服从区间上的均匀分布。
2019/5/27
4
三、指数分布(Exponential distribution)
应用:主要用于描述独立事件发生的时间间隔。自然界中有很多种“寿命”可 以用指数分布来描述,如电子元件的寿命、动物的寿命、电话的通话时间、服 务系统的服务时间等。
定义:已知一个事件在伯努利试验中每次的出现概率是p,在一连串伯努利 试验中,一件事件刚好在第r + k次试验出现第r次的概率。
2019/5/27
取r = 1,负二项分布等于几 何分布。其概率质量函数 为
13
十二、几何分布
定义:在第 n 次伯努利实验,才得到第一次成功的机率。更详细的说是:n 次伯努利试验,前 n-1 次皆失败,第 n 次才成功的概率。
应用:泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某 一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台 的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷 陷数,显微镜下单位分区内的细菌分布方分布
三大分布及正态总体统计量的分布
泊松分布在统计学中的应用
01
在计数数据分析和可靠性工程中,泊松分布在预测和解释随机 事件发生的频率方面非常有用。
02
在生物统计学中,泊松分布用于描述遗传变异和基因突变的频
率。
在物理学中,泊松分布用于描述放射性衰变和粒子碰撞的次数。
03
泊松分布的参数
λ
事件的平均发生率,决定了泊 松分布的形状和规模。
p
每次试验成功的概率,是一 个0到1之间的实数。
k
成功的次数,是一个0到n之 间的非负整数。
04
正态总体统计量的分布
样本均值的分布
1
样本均值是总体均值的无偏估计,其分布近似于 正态分布,当样本量足够大时,样本均值的分布具有对称性,即均值点是其对称 轴,标准差越小,分布越集中,对称性越好。
3
样本均值的标准误是衡量样本均值与总体均值差 异的指标,其计算公式为标准差除以样本量的平 方根。
样本方差的分布
01
样本方差是总体方差的估计量,其分布并不服从正 态分布,而是卡方分布。
02
样本方差的大小与样本量有关,样本量越大,方差 越小;样本量越小,方差越大。
03
样本方差的自由度等于样本量减去1。
二项分布在统计学中的应用
01
可靠性分析
在可靠性工程中,二项分布用于 描述产品在多次试验中失败的次 数。
遗传学
02
03
统计学
在遗传学中,二项分布用于描述 在n次独立重复的遗传试验中某 基因出现的次数。
在统计学中,二项分布用于描述 在n次独立重复的伯努利试验中 成功的次数。
二项分布的参数
n
试验次数,是一个非负整数 。
正态分布的性质
三大抽样分布的定义及应用
三大抽样分布的定义及应用三大抽样分布是指正态分布、t分布和卡方分布。
它们在统计学中具有重要的应用,并且广泛地被用于估计和推断总体参数。
正态分布是指具有钟形曲线的连续概率分布,其概率密度函数的形状由均值和标准差决定。
在实际应用中,正态分布广泛用于描述许多自然现象,例如人的智力分布、心脏跳动的间隔时间等等。
对于大样本量的情况下,根据中心极限定理,样本均值的分布可以近似服从正态分布。
因此,正态分布在统计推断中起到了至关重要的作用,例如用于构建置信区间、假设检验、回归分析等。
t分布是由英国统计学家威廉·戴韦提出的,是用来处理小样本量情况下的统计推断问题的一种概率分布。
t分布与正态分布相似,但是其概率密度函数的形状更加平坦,有更宽的尾部。
t分布的自由度是影响其形状的一个参数,自由度越小,尾部越厚重。
在小样本量的情况下,使用t分布进行统计推断可以更准确地估计总体参数。
例如,当样本量较小时,使用t分布来计算置信区间或进行假设检验,可以避免过度自信导致错误的推断结果。
卡方分布是由皮尔逊提出的,是应用在统计推断中的一种概率分布。
卡方分布常用于分析分类数据的相关性以及拟合度。
在这两个统计问题中,卡方分布提供了一个用于检验观察值与期望值之间的差异程度的方法。
卡方分布的自由度取决于数据的维度。
在统计推断中,卡方分布被广泛用于拟合度检验,例如用于检验样本的观察频数与理论频数是否有显著差异。
正态分布、t分布和卡方分布的应用在各个领域和学科中都非常广泛。
在医学研究中,这些分布被用于分析临床试验的数据,进行数据建模以及推断总体参数。
在市场研究中,这些分布被用于对市场数据进行概率分析和预测。
在财务管理中,这些分布被用于分析股价的波动性和风险评估。
在工程领域中,这些分布被用于分析产品的可靠性和质量控制。
总之,正态分布、t分布和卡方分布是统计学中的三大抽样分布,它们在统计推断中具有重要的应用价值。
通过使用这些分布进行数据分析和推断,我们可以准确地估计总体参数,进行假设检验,以及进行优化和决策制定等重要统计任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计学三大分布与正态分布的关系[1]张柏林 41060045 理实1002班摘要:本文首先将介绍2χ分布,t 分布,F 分布和正态分布的定义及基本性质,然后用理论说明2χ分布,t 分布,F 分布与正态分布的关系,并且利用数学软件MATLAB 来验证之.1.三大分布函数[2]1.12χ分布2()n χ分布是一种连续型随机变量的概率分布。
这个分布是由别奈梅(Benayme)、赫尔默特(Helmert)、皮尔逊分别于1858年、1876年、1900年所发现,它是由正态分布派生出来的,主要用于列联表检验。
定义:若随机变量12n ,,X X …X 相互独立,且都来自正态总体01N (,),则称统计量222212n =+X X χ++…X 为服从自由度为n 的2χ分布,记为22~()n χχ. 2χ分布的概率密度函数为122210(;),2()200n x n x e x n f x n x --⎧≥⎪⎪=Γ⎨⎪⎪<⎩其中伽玛函数1(),0t x x e t dt x +∞--Γ=>⎰,2χ分布的密度函数图形是一个只取非负值的偏态分布,如下图.卡方分布具有如下基本性质:性质1:22(()),(())2E n n D n n χχ==;性质2:若221122(),()X n X n χχ==,12,X X 相互独立,则21212~()X X n n χ++;性质3:2n χ→∞→时,(n )正态分布; 性质4:设)(~22n αχχ,对给定的实数),10(<<αα称满足条件:αχχαχα==>⎰+∞)(222)()}({n dx x f n P 的点)(2n αχ为)(2n χ分布的水平α的上侧分位数. 简称为上侧α分位数. 对不同的α与n , 分位数的值已经编制成表供查用.2()n χ分布的上α分位数 1.2t 分布t 分布也称为学生分布,是由英国统计学家戈赛特在1908年“student ”的笔名首次发表的,这个分布在数理统计中也占有重要的位置.定义:设2~0~X N χ(,1),Y (n ),,X Y 相互独立,,则称统计量/XT Y n=服从自由度为n 的t 分布,记为~()T t n .t 分布的密度函数为1221()2(;)(1),.()2n n x t x n t n n n π+-+Γ=+-∞<<+∞Γt 分布的密度函数图t 分布具有如下一些性质:性质1:()n f t 是偶函数,221,()()2t n n f t t eϕπ-→∞→=;性质2:设)(~n t T α,对给定的实数),10(<<αα称满足条件;ααα==>⎰+∞)()()}({n t dx x f n t T P 的点)(n t α为)(n t 分布的水平α的上侧分位数. 由密度函数)(x f 的对称性,可得).()(1n t n t αα-=-类似地,我们可以给出t 分布的双侧分位数,)()()}(|{|)()(2/2/2/αααα=+=>⎰⎰+∞-∞-n t n t dx x f dx x f n t T P 显然有.2)}({;2)}({2/2/αααα=-<=>n t T P n t T P 对不同的α与n ,t 分布的双侧分位数可从附表查得.t 分布的上α分位数1.3F 分布F 分布是随机变量的另一种重要的小样本分布,应用也相当广泛. 它可用来检验两个总体的方差是否相等,多个总体的均值是否相等. F 分布还是方差分析和正交设计的理论基础.定义:设22~(),~()X n Y m χχ,,X Y 相互独立,令则称统计量//X nF Y m=服从为第一自由度为n ,第二自由度为m 的F 分布.F 分布的密度函数图F 分布具有如下一些性质:性质1:若~(,),1/~(,)F F n m F F m n 则; 性质2:若)(~n t X ,则2~(1,)X F n ;性质3:设),(~m n F F α,对给定的实数),10(<<αα称满足条件;ααα==>⎰+∞),()()},({m n F dx x f m n F F P的点),(m n F α为),(m n F 分布的水平α的上侧分位数.F 分布的上α分位数F 分布的上侧分位数的可自附表查得.性质4:.),(1),(1m n F n m F αα-=此式常常用来求F 分布表中没有列出的某些上侧分位数.1.4正态分布正态分布是数理统计中的一种重要的理论分布,是许多统计方法的理论基础. 高斯(Gauss )在研究误差理论时首先用正态分布来刻画误差的分布,所以正态分布又称为高斯分布. 正态分布有两个参数,μ和σ,决定了正态分布的位置和形态. 为了应用方便,常将一般的正态变量X 通过u 变换转化成标准正态变量u ,以使原来各种形态的正态分布都转换为μ=0,σ=1的标准正态分布N (0,1). 正态分布的密度函数和分布函数若连续型随机变量X 具有概率密度()f x 为22()2(),,x f x x μσ--=-∞<<+∞其中,(0)μσσ>为常数,则称X 服从参数为μσ,的正态分布,记为2~()X N μσ,.正态分布的密度函数图特征1:正态曲线(normal curve)在横轴上方均数处最高;特征2:正态分布以均数为中心,左右对称;特征3:正态分布有两个参数,即均数μ和标准差σ. μ是位置参数,σ固定不变时,μ越大,曲线沿横轴越向右移动;反之,μ越小,则曲线沿横轴越向左移动. σ是形状参数,当μ固定不变时,σ越大,曲线越平阔;σ越小,曲线越尖峭. 通常用2(,)表示均数为μ,方差为2σ的正态分布. 用NμσN(0,1)表示标准正态分布.特征4:正态曲线下面积的分布有一定规律。
实际工作中,常需要了解正态曲线下横轴上某一区间的面积占总面积的百分数,以便估计该区间的例数占总例数的百分数(频数分布)或观察值落在该区间的概率. 正态曲线下一定区间的面积可以通过标准正态分布函数表求得。
对于正态或近似正态分布的资料,已知均数和标准差,就可对其频数分布作出概约估计.2. 三大分布与正态分布的密度函数比较[3]2.12χ分布收敛于正态分布设2~()X n χ,则对任意x,有2/2lim )xt n P x e dt --∞→∞≤=.证明:因为2()n χ分布的222111()()()()nnniii i i i E E x E x D x n χ=======∑∑∑22211()()()2n ni i i i D D x D x n χ=====∑∑所以由独立同分布中心极限定理得(0,1)Y N =→ 因为122/21~,0()22n x n X x e x n -->Γ且y =所以x n =+ 因为()()Y X f y dy f x dx =所以11()22/21()()()22n n Y n dx f y n e n dy--=Γ=111()222/21(1)()22n n n n n e n ---+令2n m =,利用Stirling公式:1m!,012m m m m m e e mθθ-=⋅⋅<< 则上式11())(1)m m m m e ---11())(1)m m m m e ---11())(1)m m m m e ---+(1)1)m m e --212y n -→∞−−−所以2χ分布的极限分布为正态分布.下面用MATLAB 来验证上面结论,首先定义2()n χ分布函数和相应的正态分布(,2)N n n ,再依次增大n ,比较两者关系:[4]从上面三个图形可以看出,n 越大,2()n χ分布密度函数与正态分布(,2)N n n 度函数越接近,这就和所证结论相符合.2.2t 分布收敛于标准正态分布若n X 服从自由度为n 的t 分布,2/2lim ()2xt n n P X x e dt π--∞→∞≤=(1)证法1:由于自由度为n 的t 分布的概率密度函数为1221()2p(;)(1),()2nnxx n xn n+-+Γ+-∞<<+∞=因此(1)式等价于2/2,xnx-→∞-∞<<+∞lim(2)先利用Stirling公式:1m!,012mm m mm e emθθ-=⋅⋅<<证明1()2()2nnn→∞+Γ=lim事实上,利用Γ函数的性质1132121 ().......()22222242222()......()2222n n n n k n kn n n n k n k+---+-+ΓΓ=---+-+Γ21(1)(3)......(21)()2222)(4)......(22)()2n kn n n kn kn n n k-+---+Γ=-+---+Γ当2n k=时11()(21)(23)......1()2()2nk kn+Γ--⋅Γ==21221221()12())kk kkeke----≈-⋅2121222222(21)(1)22(1)kkkkkkekkeππ------=-⋅-⋅2111(1))22k nk e-=+⋅→→∞-当21n k=+时亦可推出同样的结果。
另外,由特殊极限公式可得2221122()222lim(1)lim[(1)]nn x n x x n n n x x enn++•---→∞→∞+=+=综合上诉,即证明(2)式所以,t 分布的极限分布是正态分布.下面用MATLAB 来验证上面结论,首先定义()t n 分布函数和相应的正态分布(0,)2nN n -,再依次增大n ,比较两者关系:从上面三个图形可以看出,n 越大,()t n 分布密度函数与正态分布(0,)2nN n -度函数越接近,这就和所证结论相符合.2.3F 分布收敛于标准正态分布若//X m F Y n=服从为第一自由度为m ,第二自由度为n 的F 分布,则2/21lim ()2xt n n P X x e dt π--∞→∞≤=⎰. 证明:m /m 1P Y →∞−−→当时 所以/n L F X −−→因为222(/)1,(/)n E X n D X n n n=== 所以由中心极限定理,当→∞n 时1(0,1)2L F N n -−−→ 所以F 分布的极限分布是正态分布.下面用MATLAB 来验证上面结论,首先定义(,)F m n 分布函数和相应的正态分布222(2)(,)2(2)(4)n n m n N n m n n +----,再依次增大n ,比较两者关系:从上面三个图形可以看出,n 越大,(,)F m n 分布密度函数与正态分布222(2)(,)2(2)(4)n n m n N n m n n +----度函数越接近,这就和所证结论相符合.在实际应用中我们往往在取得总体的样本后,通常是借助样本的统计量对未知的总体分布进行推断,为此须进一步确定相应的统计量所服从的分布,正态分布、2()n χ分布、t 分布、F 分布是统计学最基本的四种分布,而2()n χ分布、t 分布和F 分布又都收敛于正态分布,可见正态分布在统计学中的地位. 实际上,证明2()n χ分布、t 分布和F 分布收敛于正态分布的方法很多,本质上都是应用了大数定理和中心极限定理.既然三大抽样分布都收敛于正态分布,则当样本容量很大时,就可以用正态分布来近似三大抽样分布. 本文主要还利用了计算机软件来验证数学上的理论证明,在现代数学学习中,我们是离不开计算机的,因此我们也应多学习一些软件的使用.参考文献:[1]XX 学士学位论文. 统计学三大分布与正态分布的差异. 扬州大学.2010[2]范玉妹,汪飞星,王萍,李娜. 概率论与数理统计. 机械工业出版社.2007[3] 宗序平,俊,伟. 统计学上三大分布推导方法.2009[4] 王福昌,曹慧荣. 2()n分布、t分布和F分布的近似计算. 2008[5]李贤平,沈崇圣,陈予毅.概率论与数理统计.复旦大学出版社.2005。