干法刻蚀技术

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蚀刻技术

最早的蚀刻技术是利用特定的溶液与薄膜间所进行的化学反应来去除薄膜

未被光阻覆盖的部分,而达到蚀刻的目的,这种蚀刻方式也就是所谓的湿式蚀刻。因为湿式蚀刻是利用化学反应来进行薄膜的去除,而化学反应本身不具方向性,因此湿式蚀刻过程为等向性,一般而言此方式不足以定义3微米以下的线宽,但对于3微米以上的线宽定义湿式蚀刻仍然为一可选择采用的技术。

湿式蚀刻之所以在微电子制作过程中被广泛的采用乃由于其具有低成本、高可靠性、高产能及优越的蚀刻选择比等优点。但相对于干式蚀刻,除了无法定义较细的线宽外,湿式蚀刻仍有以下的缺点:1) 需花费较高成本的反应溶液及去离子水;2) 化学药品处理时人员所遭遇的安全问题;3) 光阻附着性问题;4) 气泡形成及化学蚀刻液无法完全与晶圆表面接触所造成的不完全及不均匀的蚀刻;

5) 废气及潜在的爆炸性。

湿式蚀刻过程可分为三个步骤:1) 化学蚀刻液扩散至待蚀刻材料之表面;

2) 蚀刻液与待蚀刻材料发生化学反应; 3) 反应后之产物从蚀刻材料之表面扩散至溶液中,并随溶液排出(3)。三个步骤中进行最慢者为速率控制步骤,也就是说该步骤的反应速率即为整个反应之速率。

大部份的蚀刻过程包含了一个或多个化学反应步骤,各种形态的反应都有可能发生,但常遇到的反应是将待蚀刻层表面先予以氧化,再将此氧化层溶解,并随溶液排出,如此反复进行以达到蚀刻的效果。如蚀刻硅、铝时即是利用此种化学反应方式。

湿式蚀刻的速率通常可藉由改变溶液浓度及温度予以控制。溶液浓度可改变反应物质到达及离开待蚀刻物表面的速率,一般而言,当溶液浓度增加时,蚀刻速率将会提高。而提高溶液温度可加速化学反应速率,进而加速蚀刻速率。

除了溶液的选用外,选择适用的屏蔽物质亦是十分重要的,它必须与待蚀刻材料表面有很好的附着性、并能承受蚀刻溶液的侵蚀且稳定而不变质。而光阻通常是一个很好的屏蔽材料,且由于其图案转印步骤简单,因此常被使用。但使用光阻作为屏蔽材料时也会发生边缘剥离或龟裂的情形。边缘剥离乃由于蚀刻溶液的侵蚀,造成光阻与基材间的黏着性变差所致。解决的方法则可使用黏着促进剂来增加光阻与基材间的黏着性,如Hexamethyl-disilazane (HMDS)。龟裂则是因为光阻与基材间的应力差异太大,减缓龟裂的方法可利用较具弹性的屏蔽材质来吸收两者间的应力差。

蚀刻化学反应过程中所产生的气泡常会造成蚀刻的不均匀性,气泡留滞于基材上阻止了蚀刻溶液与待蚀刻物表面的接触,将使得蚀刻速率变慢或停滞,直到气泡离开基材表面。因此在这种情况下会在溶液中加入一些催化剂增进蚀刻溶液与待蚀刻物表面的接触,并在蚀刻过程中予于搅动以加速气泡的脱离。

以下将介绍半导体制程中常见几种物质的湿式蚀刻:硅、二氧化硅、氮化硅及铝。

5-2-1 硅的湿式蚀刻

在半导体制程中,单晶硅与复晶硅的蚀刻通常利用硝酸与氢氟酸的混合液来进行。此反应是利用硝酸将硅表面氧化成二氧化硅,再利用氢氟酸将形成的二氧化硅溶解去除,反应式如下:

Si + HNO3 + 6HF à H2SiF6 + HNO2 + H2 + H2O

上述的反应中可添加醋酸作为缓冲剂(Buffer Agent),以抑制硝酸的解离。而蚀刻速率的调整可藉由改变硝酸与氢氟酸的比例,并配合醋酸添加与水的稀释

加以控制。

在某些应用中,常利用蚀刻溶液对于不同硅晶面的不同蚀刻速率加以进行(4)。例如使用氢氧化钾与异丙醇的混合溶液进行硅的蚀刻。这种溶液对硅的(100)面的蚀刻速率远较(111)面快了许多,因此在(100)平面方向的晶圆上,蚀刻后的轮廓将形成V型的沟渠,如图5-2所示。而此种蚀刻方式常见于微机械组件的制作上。

2 二氧化硅的湿式蚀刻

在微电子组件制作应用中,二氧化硅的湿式蚀刻通常采用氢氟酸溶液加以进行(5)。而二氧化硅可与室温的氢氟酸溶液进行反应,但却不会蚀刻硅基材及复晶硅。反应式如下:

SiO2 + 6HF=H2 + SiF6 + 2H2O

由于氢氟酸对二氧化硅的蚀刻速率相当高,在制程上很难控制,因此在实际应用上都是使用稀释后的氢氟酸溶液,或是添加氟化铵作为缓冲剂的混合液,来进行二氧化硅的蚀刻。氟化铵的加入可避免氟化物离子的消耗,以保持稳定的蚀刻速率。而无添加缓冲剂氢氟酸蚀刻溶液常造成光阻的剥离。典型的缓冲氧化硅蚀刻液(BOE : Buffer Oxide Etcher)(体积比6:1之氟化铵(40%)与氢氟酸(49%))对于高温成长氧化层的蚀刻速率约为1000Å/min。

在半导体制程中,二氧化硅的形成方式可分为热氧化及化学气相沉积等方式;而所采用的二氧化硅除了纯二氧化硅外,尚有含有杂质的二氧化硅如BPSG 等。然而由于这些以不同方式成长或不同成份的二氧化硅,其组成或是结构并不完全相同,因此氢氟酸溶液对于这些二氧化硅的蚀刻速率也会不同。但一般而言,高温热成长的氧化层较以化学气相沉积方式之氧化层蚀刻速率为慢,因其组成结构较为致密。

5-2-3氮化硅的湿式蚀刻

氮化硅可利用加热至180°C的磷酸溶液(85%)来进行蚀刻(5)。其蚀刻速率与氮化硅的成长方式有关,以电浆辅助化学气相沉积方式形成之氮化硅,由于组成结构(SixNyHz相较于Si3N4) 较以高温低压化学气相沉积方式形成之氮化硅

为松散,因此蚀刻速率较快许多。

但在高温热磷酸溶液中光阻易剥落,因此在作氮化硅图案蚀刻时,通常利用二氧化硅作为屏蔽。一般来说,氮化硅的湿式蚀刻大多应用于整面氮化硅的剥除。对于有图案的氮化硅蚀刻,最好还是采用干式蚀刻为宜。

5-2-4铝的湿式蚀刻

铝或铝合金的湿式蚀刻主要是利用加热的磷酸、硝酸、醋酸及水的混合溶液加以进行(1)。典型的比例为80%的磷酸、5%的硝酸、5%的醋酸及10%的水。而一般加热的温度约在35°C-45°C左右,温度越高蚀刻速率越快,一般而言蚀刻速率约为1000-3000 Å /min,而溶液的组成比例、不同的温度及蚀刻过程中搅拌与否都会影响到蚀刻的速率。

蚀刻反应的机制是藉由硝酸将铝氧化成为氧化铝,接着再利用磷酸将氧化铝予以溶解去除,如此反复进行以达蚀刻的效果。

在湿式蚀刻铝的同时会有氢气泡的产生,这些气泡会附着在铝的表面,而局部地抑制蚀刻的进行,造成蚀刻的不均匀性,可在蚀刻过程中予于搅动或添加催化剂降低接口张力以避免这种问题发生

电浆蚀刻简介

自1970年代以来组件制造首先开始采用电浆蚀刻技术,对于电浆化学新的

相关文档
最新文档