灰色预测模型介绍

合集下载

灰色预测模型公式

灰色预测模型公式

灰色预测模型公式灰色预测模型是一种基于历史数据和现有数据的预测方法,它可以用来预测未来某个事件或指标的发展趋势。

灰色预测模型的核心思想是利用系统自身的信息和规律,通过建立灰色微分方程来进行预测。

灰色预测模型的公式可以表示为:$$\hat{X}_{0}^{(k)} = (X_{0}^{(1)} + X_{0}^{(2)} + ... + X_{0}^{(k)}) / k$$$$\hat{X}_{i}^{(k)} = (X_{0}^{(1)} + X_{0}^{(2)} + ... + X_{0}^{(k)}) / k$$$$\hat{X}_{i+1}^{(1)} = aX_{i}^{(1)} + b$$$$\hat{X}_{i+1}^{(k+1)} = aX_{i}^{(k+1)} + b$$其中,$X_{0}^{(k)}$表示观测数据的累加生成序列,$\hat{X}_{i}^{(k)}$表示预测值,$a$和$b$为待确定的系数。

灰色预测模型的核心思想是将数据分为两个部分:系统的发展规律部分和随机波动部分。

系统的发展规律部分可以通过灰色微分方程进行建模和预测,而随机波动部分则通过随机项来表示。

灰色预测模型的建模步骤如下:1. 数据预处理:对原始数据进行平滑处理,消除随机波动的影响,得到累加生成序列。

2. 确定发展规律:根据累加生成序列,建立灰色微分方程,估计系统的发展规律。

3. 模型参数估计:通过最小二乘法估计模型的参数,确定$a$和$b$的值。

4. 模型检验和优化:对模型进行检验和优化,确保预测结果的准确性和可靠性。

5. 模型预测:利用建立好的灰色预测模型,对未来的数据进行预测。

灰色预测模型在实际应用中具有广泛的应用价值。

它可以用来预测各种经济指标、环境数据、自然灾害等,为决策提供科学依据。

同时,灰色预测模型还可以用于评估和分析系统的可持续发展能力,帮助企业和机构合理规划和管理资源。

灰色预测模型是一种基于历史数据和现有数据的预测方法,它通过利用系统自身的信息和规律,建立灰色微分方程来进行预测。

灰色预测模型讲义

灰色预测模型讲义
将上述例子中的 x(0),x(1) 分别做成图7.1、图7.2.
可见图7.1上的曲线有明显的摆动,图7.2呈现逐渐 递增的形式,说明原始数据的起伏已显著弱化.可以 设想用一条指数曲线乃至一条直线来逼近累加生成 数列 x (1) .
7.2 灰色系统的模型
图7.1
图7.2
为了把累加数据列还原为原始数列,需进行后减运算
灰色预测模型讲义
灰色预测模型(Gray Forecast Model)是通过 少量的、不完全的信息,建立数学模型并做出 预测的一种预测方法.当我们应用运筹学的思想 方法解决实际问题,制定发展战略和政策、进 行重大问题的决策时,都必须对未来进行科学 的预测. 预测是根据客观事物的过去和现在的 发展规律,借助于科学的方法对其未来的发展 趋势和状况进行描述和分析,并形成科学的假 设和判断.
2. 灰色系统的特点
(1)用灰色数学处理不确定量,使之量化. (2)充分利用已知信息寻求系统的运动规律. (3)灰色系统理论能处理贫信息系统.
7.1灰色系统的定义和特点
常用的灰色预测有五种:
(1)数列预测,即用观察到的反映预测对象特征的时间序列来 构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征 量的时间。
6 3+8+10+7 34.
于是得到一个新数据序列
x(1) {6, 9, 17, 27, 34}
7.2 灰色系统的模型
归纳上面的式子可写为
i
x(( 1) i) { x(0) ( j) i 1, 2 , N} j 1
称此式所表示的数据列为原始数据列的一次累加生 成,简称为一次累加生成.显然有 x(1) (1) x(0) (1).
• 灰色系统理论是研究解决灰色系统分析、建模、 预测、决策和控制的理论.灰色预测是对灰色 系统所做的预测.目前常用的一些预测方法 (如回归分析等),需要较大的样本.若样本 较小,常造成较大误差,使预测目标失效.灰 色预测模型所需建模信息少,运算方便,建模 精度高,在各种预测领域都有着广泛的应用, 是处理小样本预测问题的有效工具.

数学建模之灰色预测模型

数学建模之灰色预测模型

数学建模之灰色预测模型一、灰色预测模型简介(P372)特点:模型使用的不是原始数据列,而是生成的数据列。

优点:不需要很多数据,一般只用4个数据就能解决历史数据少,序列的完整性和可靠性低的问题。

缺点:只适用于中短期的预测和指数增长的预测。

1、GM(1,1)预测模型GM(1,1)表示模型为一阶微分方程,且只含有一个变量的灰色模型。

1.1模型的应用 ①销售额预测②交通事故次数的预测③某地区火灾发生次数的预测④灾变与异常值预测,如对旱灾,洪灾,地震等自然灾害的时间与程度进行预报。

(百度文库)⑤基于GM(1,1)模型的广州市人口预测与分析(下载的文档) ⑥网络舆情危机预警(下载的文档) 1.2步骤①级比检验与判断由原始数据列(0)(0)(0)(0)((1),(2),,())x x x x n =计算得序列的级比为(0)(0)(1)(),2,3,,.()x k k k n x k λ-==若序列的级比()k λ∈ 2212(,)n n e e-++Θ=,则可用(0)x 作令人满意的GM(1,1)建模。

光滑比为(0)1(0)1()()()k i x k p k xi -==∑若序列满足[](1)1,2,3,,1;()()0,,3,4,,;0.5.p k k n p k p k k n ϕϕ+<=-∈=<则序列为准光滑序列。

否则,选取常数c 对序列(0)x 做如下平移变换(0)(0)()(),1,2,,,y k x k c k n =+=序列(0)y 的级比0(0)(1)(),2,3,,.()y y k k k n y k λ-=∈Θ=②对原始数据(0)x 作一次累加得 (1)(1)(1)(1)(0)(0)(0)(0)(0)((1),(2),,())(11+(2),,(1)()).x x x x n x x x x x n ==++(),()建立模型:(1)(1),dx ax b dt+= (1)③构造数据矩阵B 及数据向量Y(1)(1)(1)(2)1(3)1,()z z B z n ⎡⎤- ⎢⎥- ⎢⎥=⎢⎥ ⎢⎥⎢⎥- 1⎣⎦(0)(0)(0)(2)3()x x Y x n ⎡⎤⎢⎥⎢⎥=⎢⎥ ⎢⎥⎢⎥⎣⎦() 其中:(1)(1)(1()0.5()0.5(1),2,3,,.z k x k x k k n =+-=)④由1ˆˆ()ˆT T auB B B Y b -⎡⎤==⎢⎥⎣⎦求得估计值ˆa= ˆb = ⑤由微分方程(1)得生成序列预测值为ˆ(1)(0)ˆˆˆ(1)(1)k 0,1,,1,,ˆˆak b b xk x e n a a -⎛⎫+=-+=- ⎪ ⎪⎝⎭,则模型还原值为(0)(1)(1)ˆˆˆ(1)(1),1,2,,1,.x k x k x k n +=+-=-⑥精度检验和预测残差(0)(0)ˆ()()(),1,2,,,k x k xk k n ε=-=3、波形预测波形预测, 是对一段时间内行为特征数据波形的预测。

灰色预测模型

灰色预测模型

灰色系统模型(Grey Model,GM)一:解决的关键问题 (所谓灰色系统是指部分信息已知而部分信息未知的系统,灰色系统所要考察和研究的是对信息不完备的系统,通过已知信息来研究和预测未知领域从而达到了解整个系统的目的)灰色系统模型作为一种预测方法广泛应用于工程控制,经济管理,社会系统等众多领域。

二:GM(1,1)模型(一):对原始序列累加处理一次累加生产序列②(即1-AGO序列),表示为其中,一次累加序列(1)X 的第k 项由原序列的前k 项和产生,即: 由(1)X 的相邻项平均得到(1)X 的紧邻均值生成序列(1)z ,表示为:根据上述序列,有灰色系统模型GM(1,1)的基本形式:(二)构造GM(1,1)模型方程组的矩阵形式,并求解参数 GM(1,1)模型的微分方程基本形式:(三)求的时间响应序列,累减得到原序列的预测值(四)模型检验残差的均值、方差分别为:21S C S 称为均方差比值,对于给定的00C ,当0C C 时,称模型为均方差比合格模型;1(()0.6745)p p k S 称为小误差概率,对于给定的00P ,当0P P 时,称模型为小误差概率合格模型。

一般均方差比值C 越小越好(因为C 小说明S 小,1S 大,即残差方差小,原始数据方差大,说明残差比较集中,摆动幅度小,原始数据比较分散,摆动幅度大,所以模拟效果好,要求2S 与1S 相比尽可能小),以及小误差概率p 越大越好,给定000,,,C p 的一组取值,就确定了检验模型模拟精度的一个等级,常用的精度等级见表1。

软件DPS 的分析结果也提供了C 、p 的检验结果。

(五)残差修正模型(六)建立新陈代谢GM(1,1)进行动态预测在实际建模过程中,原始数据序列的数据不一定全部用来建模。

我们在原始数据序列中取出一部分数据,就可以建立一个模型。

一般说来,取不同的数据,建立的模型也不一样,即使都建立同类的GM(1,1)模型,选择不同的数据,参数a,b的值也不一样。

灰色预测模型的研究及应用

灰色预测模型的研究及应用

灰色预测模型的研究及应用
灰色预测模型是一种用于预测问题的数学模型,广泛应用于各个领域。

它在1982年由中国科学家GM灰所提出,因此得名为“灰色预测模型”。

灰色预测模型基于灰色系统理论,它假设事物的发展具有一定的规律性和趋势性,但也存在不确定性的因素。

它通过对已知数据的分析和处理,来预测未来的发展趋势。

灰色预测模型的核心思想是将已知数据序列分解为两个部分:灰色部分和白色部分。

灰色部分是由数据的数量级和函数形式决定的,因此可以用来预测未来的趋势。

白色部分则是由不确定的随机因素引起的,往往被视为噪声,不具备预测能力。

灰色预测模型有多种形式,其中最常用的是GM(1,1)模型。

该模型通过建立一阶线性微分方程来描述数据的变化趋势,然后利用指数累减生成灰色模型。

基于灰色模型,可以进一步进行累加、累减、累乘等操作,来实现更复杂的预测。

灰色预测模型在各个领域都有广泛的应用。

其中最典型的应用是经济预测领域,包括国民经济、金融市场等。

此外,它还可以应用于工业生产、环境保护、农业发展、医疗卫生等方面的预测。

灰色预测模型的优点是简单易懂、计算量小、适用范围广。

它可以对数据的趋势进行较为准确的预测,尤其适用于数据量较小或者不完整的情况下。

缺点是对数据的要求较高,数据的采
样点要均匀分布,并且在建立模型时需要进行一些参数的选择,可能存在主观性和不确定性。

总之,灰色预测模型是一种有效的预测方法,具有广泛的应用前景。

在实际应用中,需要对具体问题进行合理的建模和参数选择,以提高预测的准确性。

灰色预测模型原理

灰色预测模型原理

灰色预测模型原理灰色预测模型(Grey Prediction Model)是一种基于灰色系统理论和数学建模方法的预测模型。

灰色系统理论是我国学者黄金云教授于1982年提出的一种系统理论,它是研究非确定性和不完备信息系统的一种新方法,可用于研究多变量、小样本和非线性系统。

灰色预测模型主要基于灰色数学建模方法,通过对已知的部分序列数据进行建模和预测,来推测未知的序列数据趋势。

它适用于研究数据量小、信息不完备、非线性关系复杂的系统。

下面将简要介绍灰色预测模型的原理、模型建立过程以及一些应用案例。

1. 灰色预测模型的原理灰色预测模型的核心思想是通过对已知数据进行灰色关联度的度量,从而建立出合适的数学模型,进行未来数据的预测。

其基本原理可以概括为以下五个步骤:(1)建立灰色微分方程:根据原始数据的特点,确定合适的灰色微分方程,通常使用一阶或高阶灰色微分方程。

(2)求解灰色微分方程:根据所选择的灰色微分方程,求解其参数,得到模型的特征参数。

(3)模型检验:检验所建立的灰色预测模型的拟合程度和误差是否符合要求。

(4)进行灰色关联度分析:根据已知数据的变化规律,计算各个因素的灰色关联度,确定相关因素的重要性。

(5)进行预测:利用建立好的灰色预测模型,对未来的数据进行预测和分析,得出预测值。

2. 模型建立过程灰色预测模型的建立过程中,通常包括以下几个步骤:(1)数据的建立与处理:对原始数据进行筛选、预处理和归一化处理,以满足模型的要求。

(2)建立灰色微分方程:从已知数据中提取主要特征,并根据数据的特点选择合适的灰色微分方程。

(3)求解灰色微分方程:根据所选的灰色微分方程,通过累加生成序列、求解参数等方法,得到模型的特征参数。

(4)模型的检验:根据已知数据的拟合程度和误差范围,评估所建立的灰色预测模型的准确性和可靠性。

(5)模型的应用与预测:利用已建立的模型进行未来数据的预测和分析,得出预测结果。

3. 应用案例灰色预测模型在实际应用中具有广泛的应用范围,以下是一些常见的应用案例:(1)经济领域:用于对经济指标、市场需求、价格变动等进行预测,为经济决策提供参考。

关于“灰色预测模型”讲解

关于“灰色预测模型”讲解

7.8205 11.184
1
14.7185
1
1
1 1
y = [x (0)(2), x (0)(3), x (0)(4), x (0)(5)]T
= [3.278, 3.337, 3.390, 3.679]T
谢谢观赏!
有不足之处,请老师和同 学指正。若有疑问之处 ,请课后交流!
由于
涉及到累加列
(1) 的两个时刻的值,因此,
(1)
t
取前后两个时刻的平均代替更为合理,即将 x(i) (i) 替换为
1 [x(i) (i) x(i) (i 1)], (i 2,3,..., N ). 2
将(7.5)写为矩阵表达式

xxx(((000))M)(((N23)))xxx(((000))M)(((N12231212 [[[))x)xx(((111)))
概率统计、模糊数学和灰色系统理论是三种最常用的不确定性 系统研究方法。其研究对象都具有某种不确定性。
模糊数学着重研究“认知不确定”问题,其研究对象具有“内 涵明确,外延不明确”的特点问题,主要是凭经验借助于隶 属函数进行处理。例:年轻人
概率统计研究的是“随机不确定”现象,着重于考察“随机不 确定”现象的历史统计规律,考察具有多种可能发生的结果 之“随机不确定”现象中每一种结果发生的可能性大小。其 出发点是大样本,并要求对象服从某种典型分布。
灰色系统理论的研究内容 灰哲学、灰哲学、灰生成、灰分析、灰建模、灰预 测、灰决策、灰控制、灰评估、灰数学等。
灰色系统理论的应用领域 农业科学、经济管理、环境科学、医药卫生、矿业 工程、教育科学、水利水电、图像信息、生命科 学、控制科学等。
灰色系统的模型
通过下面的数据分析、处理过程,我们将了解 到,有了一个时间数据序列后,如何建立一个基 于模型的灰色预测。 1. 数据的预处理 首先我们从一个简单例子来考察问题. 【例】 设原始数据序列

数学建模——灰色预测模型

数学建模——灰色预测模型

数学建模——灰色预测模型灰色预测模型(Grey Forecasting Model)是一种用于预测不确定性数据的数学模型。

它适用于那些缺乏充分历史数据、不具备明显的规律性趋势或周期性的情况。

灰色预测模型基于灰色系统理论,通过分析数据的变化趋势和规律,来进行预测。

该模型在处理少量数据、缺乏趋势规律的情况下,具有一定的优势。

灰色预测模型的基本思想:灰色预测模型基于“白化(Whitening)”和“黑化(Blackening)”的思想,将不确定性数据分为“白色”和“黑色”两部分。

其中,“白色”代表已知数据,具有规律性和趋势,可以进行预测;而“黑色”代表未知数据,缺乏规律,需要进行预测。

通过建立数学模型,将“白色”和“黑色”数据进行融合,得出预测结果。

灰色预测模型的基本步骤:1.建立灰色数列:将原始数据分成“白色”和“黑色”两部分,构建灰色数列。

2.建立灰色微分方程:对“白色”数列进行微分,得到一阶或高阶微分方程。

3.求解微分方程:求解微分方程,得到预测模型的参数。

4.进行预测:利用已知的模型参数,对“黑色”数据进行预测,得出未来的趋势。

示例:用灰色预测模型预测销售量假设你是一家新开设的小型餐厅的经营者,你希望预测未来三个月的月销售量。

然而,你的餐厅刚刚开业不久,历史销售数据有限,且不具备明显的趋势。

这种情况下,你可以考虑使用灰色预测模型来预测销售量。

步骤:1.建立灰色数列:将已知的销售数据分为“白色”(已知数据)和“黑色”(未知数据)两部分。

2.建立灰色微分方程:对“白色”销售数据进行一阶微分,得到灰色微分方程。

3.求解微分方程:根据灰色微分方程的形式,求解微分方程,得到模型的参数。

4.进行预测:利用求解得到的模型参数,对“黑色”销售数据进行预测,得到未来三个月的销售量趋势。

这个例子中,灰色预测模型可以帮助你基于有限的历史销售数据,预测未来的销售趋势。

虽然该模型的精确度可能不如其他更复杂的方法,但在缺乏充足数据时,它可以提供一种有用的预测工具。

灰色预测模型介绍.

灰色预测模型介绍.

数学模型与数学实验数课程报告题目:灰色预测模型介绍专业:班级:姓名:学号:二0一一年六月1. 模型功能介绍预测模型为一元线性回归模型,计算公式为Y=a+b。

一元非线性回归模型:Y=a+blx+b2x2+…+bmxm。

式中:y为预测值;x为自变量的取值;a,b1,b2……bm为回归系数。

当自变量x与因变量y之间的关系是直线上升或下降时,可采用一元线性预测模型进行预测。

当自变量x和因变量y之间呈曲线上升或下降时,可采用一元非线性预测模型中的y=a+b1x+b2x2+…+bmxm这个预测模型。

当自变量x和因变量y之间关系呈上升一下降一再上升一再下降这种重复关系时,可采用一元线性预测模型中的Y=a+bx这个模型来预测。

其中我要在这里介绍灰色预测模型。

灰色预测是就灰色系统所做的预测,灰色系统(Grey System)理论[]1是我国著名学者邓聚龙教授20世纪80年代初创立的一种兼备软硬科学特性的新理论[95]96]。

所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰色系统。

一般地说,社会系统、经济系统、生态系统都是灰色系统。

例如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。

灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。

尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。

灰色系统的基本原理公理1:差异信息原理。

“差异”是信息,凡信息必有差异。

公理2:解的非唯一性原理。

信息不完全,不明确地解是非唯一的。

公理3:最少信息原理。

灰色系统理论的特点是充分开发利用已有的“最少信息”。

时序预测中的灰色模型介绍(十)

时序预测中的灰色模型介绍(十)

时序预测中的灰色模型介绍时序预测是一种应用广泛的数据分析方法,它可以帮助我们预测未来一段时间内的数据趋势。

而在时序预测中,灰色模型是一种常用的模型之一。

本文将介绍灰色模型的基本原理、应用范围和优缺点。

一、灰色模型的基本原理灰色系统理论最早由中国科学家陈裕昌教授提出,它是一种用于处理少量数据和缺乏信息的系统分析方法。

灰色模型的基本原理是通过对数据进行灰色关联分析、灰色预测等处理,来实现对未来时序数据的预测。

灰色模型的关键在于建立数据的灰色关联度,通过对数据进行加权处理,将不规则的数据变为规则的规整数据,进而实现对未来数据的预测。

这种方法不仅可以用于单变量时序数据的预测,还可以用于多变量时序数据的预测,具有一定的灵活性和适用范围。

二、灰色模型的应用范围灰色模型在实际应用中具有广泛的应用范围,主要包括以下几个方面:1. 经济领域:灰色模型可以用于对经济指标的预测,如国内生产总值、消费指数、失业率等。

通过对这些指标的预测,可以帮助政府和企业制定发展战略和政策。

2. 工业领域:灰色模型可以用于对工业生产数据的预测,如原材料价格、产量、需求量等。

这对于企业的生产计划和库存管理具有重要意义。

3. 环境领域:灰色模型可以用于对环境数据的预测,如空气质量、水质数据等。

通过对这些数据的预测,可以帮助政府和环保部门采取相应的措施来改善环境。

4. 医疗领域:灰色模型可以用于对医疗数据的预测,如疾病发病率、病人数量、医疗资源需求等。

这对于医院和卫生部门的资源配置和医疗服务规划具有重要意义。

三、灰色模型的优缺点灰色模型作为一种时序预测方法,具有以下优点:1. 适用范围广:灰色模型可以处理各种类型的时序数据,包括线性和非线性数据,适用范围广泛。

2. 数据要求低:灰色模型对数据的要求相对较低,对于缺乏信息或者数据量较少的情况也可以进行预测。

3. 预测精度高:灰色模型在一定范围内可以取得较高的预测精度,对于短期和中期的预测效果较好。

关于“灰色预测模型”讲解

关于“灰色预测模型”讲解
与集成学习融合
集成学习可以通过组合多个基模型的预测结果来提高整体 预测性能。可以将灰色预测模型作为基模型之一,与其他 预测方法一起构建集成学习模型。
与模糊逻辑融合
模糊逻辑能够处理不确定性和模糊性问题,可以与灰色预 测模型相结合,提高模型在处理不确定信息时的预测性能 。
THANKS
感谢观看
灰色差分方程
灰色预测模型的核心是建立灰色差分方程,通过对原始数据序列进行累加或累减 生成,构造出具有指数规律的数据序列,进而建立相应的微分方程进行求解。
适用范围及优势
适用范围
小样本建模
适应性强
预测精度高
灰色预测模型适用于数据量较 少、信息不完全、具有不确定 性和动态性的系统。它可以在 数据序列较短、波动较大、趋 势不明显的情况下,进行有效 的预测和分析。
04
灰色预测模型检验与评 估
残差检验法
01
02
03
残差计算
通过比较实际值与预测值 之间的差异,计算残差序 列。
残差分析
对残差序列进行统计分析 ,包括计算均值、方差等 指标,以评估模型的预测 精度。
残差图
绘制实际值与预测值的散 点图,以及残差序列的折 线图,直观展示模型的拟 合效果。
后验差检验法
金融市场分析
灰色预测模型可以用于分析金融市场的波动性和 趋势,帮助投资者做出更明智的投资决策。
3
物价水平预测
利用灰色预测模型可以对物价水平进行短期和长 期预测,为政府制定物价调控政策提供依据。
社会领域应用案例
人口数量预测
通过收集历史人口数据,利用灰色预测模型可以对未来人 口数量进行预测,为政府制定人口政策提供参考。
关于“灰色预测模型 ”讲解

灰色预测模型的优化及其应用

灰色预测模型的优化及其应用

偏残差灰色预测模型的优化
1 2 3
偏残差灰色预测模型的基本原理
通过对原始数据序列的偏残差进行修正,提高灰 色预测模型的精度。
优化方法一
考虑非等间距序列:在偏残差灰色预测模型中考 虑非等间距序列的影响,可以更准确地反映原始 数据的变化规律。
优化方法二
引入非线性函数:在偏残差灰色预测模型中引入 非线性函数,可以更准确地描述原始数据序列的 变化规律。
05
结论
研究成果总结
灰色预测模型在处理具有不完整、不确定信息的问题上具有优势,能够克服数据量 小、信息不完全等限制。
通过引入优化方法,灰色预测模型在预测精度、稳定性和泛化性能等方面都得到了 显著提升。
灰色预测模型在多个领域具有广泛的应用价值,如经济、环境、医学等,为相关领 域的科学研究提供了新的思路和方法。
灰色神经网络预测模型的优化
01
灰色神经网络预测模型的基本原理
利用神经网络的自学习能力,对灰色预测模型进行优化。
02
优化方法一
选择合适的网络结构:根据历史数据选择合适的网络结构,可以提高灰
色神经网络预测模型的泛化能力。
03
优化方法二
采用集成学习算法:将多个灰色神经网络模型的预测结果进行集成,可
以提高预测精度。
灰色预测模型与其他模型的组合研究
01
02
03
集成学习
将灰色预测模型与其他预 测模型进行集成,通过集 结多个模型的优点,提高 预测精度。
混合模型
将灰色预测模型与其他模 型进行混合,以充分利用 各种模型的优势,提高预 测性能。
多模型融合
将多个灰色预测模型进行 融合,通过综合多个模型 的预测结果,提高预测精 度。
基于大数据和人工智能的灰色预测模型研究

灰色预测模型

灰色预测模型

灰色预测模型1.模型建立灰色系统是指部分信息已知,部分信息未知的系统。

灰色系统的理论实质是将无规律的原始数据进行累加生成数列,再重新建模。

由于生成的模型得到的数据通过累加生成的逆运算――累减生成得到还原模型,再有还原模型作为预测模型。

预测模型,是拟合参数模型,通过原始数据累加生成,得到规律性较强的序列,用函数曲线去拟合得到预测值。

灰色预测模型建立过程如下:1) 设原始数据序列()0X 有n 个观察值,()()()()()()(){}n X X X X 0000,...,2,1=,通过累加生成新序列 ()()()()()()(){}n X X X X 1111,...,2,1=,利用新生成的序列()1X 去拟和函数曲线。

2) 利用拟合出来的函数,求出新生序列()1X 的预测值序列(1)X 3) 利用(0)(1)(1)()()(1)X k X k X k =--累减还原:得到灰色预测值序列: ()()(){}00001,2,...,X X X X n m =+ (共n +m 个,m 个为未来的预测值)。

将序列()0X 分为0Y 和0Z ,其中0Y 反映()0X 的确定性增长趋势,0Z 反映()0X 的平稳周期变化趋势。

利用灰色GM (1,1)模型对()0X 序列的确定增长趋势进行预测 2 模型求解根据2006全国统计年鉴数据整理得到全国历年年度人口统计表如表1.根据上述数据,建立含有20个观察值原始数据序列()0X :()[]09625998705105851112704127627128453129988130756X =利用Matlab 软件对原是数列()0X 进行一次累加,得到新数列为()1X ,如表2:表2:新数列()1X 误差和误差率1、利用表2,拟合函数,如下:0.011624(1)92800439183784t x t e +=-2、精度检验值c =0.3067 (很好) P =0.9474 (好)3、得到未来20年的预测值:。

(完整版)灰色预测模型

(完整版)灰色预测模型

我们说X (1)是X (0)的AGO序列,并记为
当且仅当
X (1) AGO X (0)
X (1) x(1) 1, x(1) 2,L , x(1) n
k
并满足 x(1) (k) x(0) (m) (k 1, 2,L , n) m1
例1 摆动序列为:X (0) 1, 2, 1.5, 3
3、灰数及其运算
只知道大概范围而不知道其确切值的数称为灰 数,通常记为:“”。
例如: 1. 头发的多少才算是秃子。应该是个区间范
围。模糊 2.多少层的楼房算高楼,中高楼,低楼。 3.多么重才算胖子?。
灰数的种类:
a、仅有下界的灰数。 有下界无上界的灰数记为: ∈[a, ∞] b、仅有上界的灰数。 有上界无下界的灰数记为: ∈[-∞ ,b] c、区间灰数 既有上界又有下界的灰数: ∈ [a, b] d、连续灰数与离散灰数 在某一区间内取有限个值的灰数称为离散灰 数,取值连续地充满某一区间的灰数称为连续 灰数。
这表明
IAGO X (1) IAGO(பைடு நூலகம்AGO X (0) ) X (0)
3. 均值生成算子(MEAN)
定义 它是将AGO序列中前后相邻两数取平均数, 以获得生成序列。令X (1)为X (0)的AGO序列
X (1) x(1) 1, x(1) 2,L , x(1) n
称Z (1)为X (1) 的MEAN序列,并记为
定义 它是对AGO生成序列中相邻数据依次累 减,又称累减生成。令X (0)为原序列
X (0) x(0) 1, x(0) 2,L , x(0) n
称Y是 X (0)的IAGO序列,并记为
当且仅当
Y IAGO X (0)
Y y(1), y(2),L , y(n)

预测方法——灰色预测模型

预测方法——灰色预测模型

预测⽅法——灰⾊预测模型灰⾊预测模型主要特点是模型使⽤的不是原始数据序列,⽽是⽣成的数据序列,核⼼体系为灰⾊模型(GM),即对原始数据作做累加⽣成(累减⽣成,加权邻值⽣成)得到近似指数规律再进⾏建模。

优点:不需要很多数据;将⽆规律原始数据进⾏⽣成得到规律性较强的⽣成序列。

缺点:只适⽤于中短期预测,只适合指数增长的预测。

GM(1,1)预测模型GM(1,1)模型是⼀阶微分⽅程,且只含⼀个变量。

1. 模型预测⽅法2. 模型预测步骤1. 数据检验与处理为保证建模⽅法可⾏,需要对已知数据做必要的检验处理。

设原始数据列为x(0)=(x0(1),x0(2),….x0(n)),计算数列的级⽐λ(k)=x(0)(k−1)x(0)(k),k=2,3,...,n如果所有的级⽐都落在可容覆盖区间X=(e−2n+1,e2n+1)内,则数列可以建⽴GM(1,1)模型且可以进⾏灰⾊预测。

否则,对数据做适当的变换处理,如平移变换:y(0)(k)=x(0)(k)+c,k=1,2,...,n取c使得数据列的级⽐都落在可容覆盖内。

2. 建⽴模型根据1中⽅程的解,进⼀步推断出预测值ˆx(1)(k+1)=(x(0)(1)−ba)e−ak+ba,k=1,2,...,n−13. 检验预测值1. 残差检验ε(k)=x(0)(k)−ˆx(0)(k)x(0)(k),k=1,2,...,n如果对所有的|ε(k)|<0.1|ε(k)|<0.1,则认为到达较⾼的要求;否则,若对所有的|ε(k)|<0.2|ε(k)|<0.2,则认为达到⼀般要求。

2. 级⽐偏差值检验ρ(k)=1−1−0.5a1+0.5aλ(k)如果对所有的|ρ(k)|<0.1,则认为达到较⾼的要求;否则,若对于所有的|ρ(k)|<0.2,则认为达到⼀般要求。

4. 预测预报根据问题需要给出预测预报。

3. py实现import numpy as npimport pandas as pddata=[71.1,72.4,72.4,72.1,71.4,72.0,71.6] # 数据来源len=len(data) # 数据量# 数据检验lambdas=[]for i in range(1,len):lambdas.append(data[i-1]/data[i])X_Min=np.e**(-2/(len+1))X_Max=np.e**(2/(len+1))l_min,l_max=min(lambdas),max(lambdas)if l_min<X_Min or l_max> X_Max:print("该组数据为通过数据检验,不能建⽴GM模型!")else:print("改组数据通过检验")# 建⽴GM(1,1)模型data_1=[] # 累加数列z_1=[]data_1.append(data[0])for i in range(1,len):data_1.append(data[i]+data_1[i-1])z_1.append(-0.5*(data_1[i]+data_1[i-1]))B=np.array(z_1).reshape(len-1,1)one=np.ones(len-1)B=np.c_[B,one]Y=np.array(data[1:]).reshape(len-1,1)a,b=np.dot(np.dot(np.linalg.inv(np.dot(B.T,B)),B.T),Y)print('a='+str(a))print('b='+str(b))## 数据预测data_1_prd=[]data_1_prd.append(data[0])data_prd=[] # 预测datadata_prd.append(data[0])for i in range(1,len):data_1_prd.append((data[0]-b/a)*np.e**(-a*i)+b/a)data_prd.append(data_1_prd[i]-data_1_prd[i-1])# 模型检验## 残差检验e=[]for i in range(len):e.append((data[i]-data_prd[i])/data[i])e_max=max(e)if e_max<0.1:print("数据预测达到较⾼要求!")elif e_max<0.2:print("数据预测达到⼀般要求!")# 输出预测数据for i in range(len):print(data_prd[i])灰⾊Verhulst预测模型主要⽤于描述具有饱和状体的过程,即S型过程,常⽤于⼈⼝预测,⽣物⽣长,繁殖预测及产品经济寿命预测等。

时序预测中的灰色模型介绍(Ⅱ)

时序预测中的灰色模型介绍(Ⅱ)

时序预测中的灰色模型介绍时序预测是一种在实际生活和工作中非常常见的问题。

许多领域,如气象、经济、交通等都需要进行时序数据的预测,以便做出相应的决策。

其中,灰色模型是一种常用的预测方法,它能够对具有短时、小样本、非线性和不确定性的时序数据进行较为准确的预测。

1. 灰色模型的基本原理灰色模型是由中国科学家陈纳新教授于1982年提出的,它是一种基于少量数据,将不确定性和不完备性信息转化为可用信息的数学模型。

灰色系统理论是从不确定性的角度出发,描述了不确定性系统的非随机性特征。

灰色模型的基本原理是将时序数据进行建模,并通过建模得到的规律进行预测。

2. 灰色模型的应用范围灰色模型广泛应用于各种领域的时序数据预测中,如经济学、环境科学、医学、工程技术等。

在经济学领域,灰色模型被用于短期经济预测、股票市场预测等。

在环境科学领域,灰色模型被用于气象预测、气候变化预测等。

在医学领域,灰色模型被用于疾病传播预测、流行病学预测等。

在工程技术领域,灰色模型被用于负荷预测、能耗预测等。

3. 灰色模型的优势灰色模型在应对短时、小样本、不确定性等问题时,具有很大的优势。

首先,灰色模型能够较好地处理非线性问题,因为它不要求时序数据服从某种特定的分布。

其次,灰色模型对于不完备信息的处理能力较强,它能够通过建模得到的规律,对缺失信息进行补充,从而提高预测的准确性。

此外,灰色模型的计算简单,不需要过多的参数调整,因此适用于处理小样本数据。

4. 灰色模型的不足虽然灰色模型在处理短时、小样本、不确定性等问题上具有一定优势,但也存在一些不足之处。

首先,灰色模型对数据的要求较高,需要较为连续的时序数据,且对数据的质量要求较高。

其次,灰色模型在处理长期预测问题时,效果不如传统的时间序列分析方法。

另外,灰色模型的理论研究相对较少,其应用也相对较为局限。

5. 灰色模型的改进与发展为了克服灰色模型的不足,研究者们提出了许多改进和扩展的方法。

例如,改进了灰色模型的建模方法,提高了对不完备信息的处理能力;引入了混沌理论、粒子群算法等方法,提高了灰色模型的预测精度;将灰色模型与其他预测方法相结合,形成了集成预测模型等。

数学建模-灰色预测模型(讲解

数学建模-灰色预测模型(讲解
(2)灾变与异常值预测,即通过灰色模型预测异常值出现的时 刻,预测异常值什么时候出现在特定时区内。
(3)季节灾变与异常值预测,即通过灰色模型预测灾变值发生 在一年内某个特定的时区或季节的灾变预测。
(4)拓扑预测,将原始数据作曲线,在曲线上按定值寻找该定 值发生的所有时点,并以该定值为框架构成时点数列,然后建立模 型预测该定值所发生的时点。
一、灰色系统的定义和特点
1. 灰色系统的定义
灰色系统是黑箱概念的一种推广。我们把既含有已知信 息又含有未知信息的系统称为灰色系统.作为两个极端, 我们将称信息完全未确定的系统为黑色系统; 称信息完全确定的系统为白色系统. 区别白色系统与黑色系统的重要标志是系统各因素之间是 否具有确定的关系。
1灰色系统的定义和特点
1 灰色系统的定义和特点 2 灰色系统的模型 3 Sars 疫情 4 销售额预测 5 城市道路交通事故次数的灰色预测 6 城市火灾发生次数的灰色预测 7灾变与异常值预测
1 灰色系统的定义和特点
灰色系统的定义和特点
灰色系统理论是由华中理工大学邓聚龙教授于 1982年提出并加以发展的。二十几年来,引起了不 少国内外学者的关注,得到了长足的发展。目前, 在我国已经成为社会、经济、科学技术在等诸多领 域进行预测、决策、评估、规划控制、系统分析与 建模的重要方法之一。特别是它对时间序列短、统 计数据少、信息不完全系统的分析与建模,具有独 特的功效,因此得到了广泛的应用.在这里我们将简 要地介绍灰色建模与预测的方法.
灰色系统理论是研究解决灰色系统分析、建模、 预测、决策和控制的理论.灰色预测是对灰色系统 所做的预测.目前常用的一些预测方法(如回归分 析等),需要较大的样本.若样本较小,常造成较 大误差,使预测目标失效.灰色预测模型所需建模 信息少,运算方便,建模精度高,在各种预测领 域都有着广泛的应用,是处理小样本预测问题的 有效工具.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学模型与数学实验数课程报告题目:灰色预测模型介绍专业:班级:姓名:学号:二0一一年六月1. 模型功能介绍预测模型为一元线性回归模型,计算公式为Y=a+b。

一元非线性回归模型:Y=a+blx+b2x2+…+bmxm。

式中:y为预测值;x为自变量的取值;a,b1,b2……bm为回归系数。

当自变量x与因变量y之间的关系是直线上升或下降时,可采用一元线性预测模型进行预测。

当自变量x和因变量y之间呈曲线上升或下降时,可采用一元非线性预测模型中的y=a+b1x+b2x2+…+bmxm这个预测模型。

当自变量x和因变量y之间关系呈上升一下降一再上升一再下降这种重复关系时,可采用一元线性预测模型中的Y=a+bx这个模型来预测。

其中我要在这里介绍灰色预测模型。

灰色预测是就灰色系统所做的预测,灰色系统(Grey System)理论[]1是我国著名学者邓聚龙教授20世纪80年代初创立的一种兼备软硬科学特性的新理论[95]96]。

所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰色系统。

一般地说,社会系统、经济系统、生态系统都是灰色系统。

例如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。

灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。

尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。

灰色系统的基本原理公理1:差异信息原理。

“差异”是信息,凡信息必有差异。

公理2:解的非唯一性原理。

信息不完全,不明确地解是非唯一的。

公理3:最少信息原理。

灰色系统理论的特点是充分开发利用已有的“最少信息”。

公理4:认知根据原理。

信息是认知的根据。

公理5:新信息优先原理。

新信息对认知的作用大于老信息。

公理6:灰性不灭原理。

“信息不完全”是绝对的。

灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。

其用等时距观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

灰色预测模型实际上是一个微分方程, 称为GM模型。

GM(1,N)[]1表示1阶的,N个变量的微分方程型模型;则是1阶的,1个变量的微分方程型模型。

在实际进行预测时, 一般选用GM(1,1) 模型, 因为这种模型求解较易, 计算量小, 计算时间短, 精度较高。

现在下面简单介绍有关于灰色预测的相关知识点:为了弱化原始时间序列的随机性在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据处理后的时间序列即称为生成列。

灰色系统常用的数据处理方式有累加和累减两种。

关联度]1[1、关联系数GM(1,1)[]1模型的建立(1)、设时间序列有n个观察值,,通过累加生成新序列,则GM(1,1)模型相应的微分方程为:其中:α称为发展灰数;μ称为内生控制灰数。

(2)、设为待估参数向量,,可利用最小二乘法求解。

解得:求解微分方程,即可得预测模型:,(3)、模型检验灰色预测检验一般有残差检验、关联度检验和后验差检验。

GM (n ,h )]1[模型(1)、残差模型:若用原始经济时间序列建立的GM (1,1)模型检验不合格或精度不理想时,要对建立的GM (1,1)模型进行残差修正或提高模型的预测精度。

修正的方法是建立GM (1,1)的残差模型。

(2)、GM (n ,h )模型GM (n ,h )模型是微分方程模型,可用于对描述对象作长期、连续、动态的反映。

从原则上讲,某一灰色系统无论内部机制如何,只要能将该系统原始表征量表示为时间序列,并有, (N 表数自然数集),即可用GM 模型对系统进行描述。

2.常用模型[]22.1常用模型1——数列预测模型数列预测就是对某一指标的发展变化情况所作的预测,其预测的结果是该指标在未来各个时刻的具体数值。

譬如,在地理学研究中,人口数量预测、耕地面积预测、粮食产量预测、工农业总产值预测,等等,都是数列预测。

数列预测的基础,是基于累加生成数列的GM(1,1)模型。

设(0)(0)(0)(1),(2),,()x x x M 是所要预测的某项指标的原始数据。

一般而言,(0){()}1M t x t =是一个不平稳的随机数列,对于这样一个随机数列,如果数据趋势无规律可循,则无法用回归预测法对其进行预测。

如果对(0){()}1M t x t =作依次累加生成处理,即(1)(0)(1)(1)x x =x (1)(2)=x (0)(1)+x (0)(2)x (1)(3)=x (0)(1)+x (0)(2)+x (0)(3)(1)(0)1(1)(0)1()()()()k t Mt x k x t x M x t ====∑∑则得到一个新的数列(1){()}1M t x t =。

这个数列与原始数列(0){()}1M t x t =相比较,其随机性程度大大弱化,平稳程度大大增加。

对于这样的新数列,其变化趋势可以近似地用如下微分方程描述:在(1)式中,a 和u 可以通过如下最小二乘法拟合得到:在(2)式中,Y M 为列向量Y M =[x (0)(2),x (0)(3),…,x (0)(M)]T;B 为构造数据矩阵: (1)(1)(1)(1)(1)(1)1/2(1)(2)11/2(2)(3)11/2(1)()1x x x x x M x M ⎡⎤⎡⎤-+⎣⎦⎢⎥⎢⎥⎡⎤-+⎣⎦⎢⎥⎢⎥⎢⎥⎡⎤--+⎢⎥⎣⎦⎣⎦微分方程(1)式所对应的时间响应函数为:(3)式就是数列预测的基础公式,由(3)式对一次累加生成数列的预测值(1)()x t 可以求得原始数的还原值:'(0)(1)(1)()()(1)(4)x t x t x t =--在(4)式中,t=1,2,…,M,并规定(1)(0)0x =。

原始数据的还原值与其观测值之间的残差值ε(0)(t)和相对误差值q(t)如下:(0)(0)(0)(0)(0)()()()(5)()()100%()t x t x t t q t x t εε'⎧=-⎪⎨=⨯⎪⎩对于预测公式(3),我们所关心的问题是它的预测精度。

这一预测公式是否达到精度要求,可按下述方法进行精度检验。

首先计算:其次计算:方差比c=s 2/s 1 及小误差概率:(0)(0)1{|()|0.6745}P t s εε-<一般地,预测公式(3)的精度检验可由表10-2给出。

如果p 和c 都在允许范围之内,则可以计算预测值。

否则,需要通过对残差序列(0){()}2M t t ε=的分析对(3)式进行修正,灰色预测常用的修正方法有残差序列建模法和周斯分析法两种。

2.2常用模型2——灾变预测模型一般地,如果表征系统行为特征的指标超出了某个阈值(临界值),则称发生了灾害。

因此,所谓灾变是相对于所研究的问题的表征变量而言的。

是否发生灾变要依据有关的表征变量的数值大小而定。

譬如,旱灾和涝灾是相对于农作物生长过程中,作物需水与大气降水的差值大小而言的。

如果以降水量作为旱涝灾害标征指标,则只有当降水量小于(或大于)某一阈值时,才认为发生了旱(或涝)灾。

灾变预测就是指对灾变发生的年份的预测。

对于表征系统行为的指标数列:{x(0)(1),x(0)(2),…,x(0)(N)} (7)规定一个灾变阈值ξ,x(0)(i)中那些≤ξ(或≥ξ)的点被认为是具有异常值的点(灾变发生点),把它们按原来的编序挑选出来组成一个新的数据序列0(0)(0)'=≤(8){()}{()|()}x i x q x qξ则式(8)称之为下限(或上限)灾变数列。

作灾变映射p∶{i′}→{q} (9) 则灾变预测就是按灾变日期序列p={p(1′),p(2′),…,p(n′)} (10) 建立GM(1,1)预测模型所进行的灾变日期预测。

譬如,某地区连续17年的降水量数据如表10-4所示。

若规定降水量ξ≤320mm的年份为旱灾年份,试用灾变预测法预测下次旱灾发生的年份。

表1-1 某地区年降水量(单位:mm)(1)首先作灾变映射,建立GM(1,1)模型。

作映射p∶{i′}→{q}对灾变日期序列p={p(1′),p(2′),p(3′),p(4′),p(5′)}={3,8,10,14,17}建立GM(1,1)模型为了书写方便,不妨将p(i′)记为p(i)(i=1,2,3,4,5)将p中的数据作一次累加处理:p(1)(1)=p(1)=3p(1)(2)=p(1)+p(2)=11p(1)(3)=p(1)+p(2)+p(3)=21p(1)(4)=p(1)+p(2)+p(3)+p(4)=35p(1)(5)=p(1)+p(2)+p(3)+p(4)+p(5)=52p(1)(t)可用下述微分方程拟合:而系统辨识参数为(12)式中:因此(5)式就为:(13)式的时间响应为:p(1)(i+1)=27.677e-0.25361i-24.677 (14)(2)误差分析:灾变日期数列的预测计算值与实际值的相对误差计算如下:计算值实际值相对误差p(2)=7.999 p(2)=8 q(2)=0.125%p(3)=10.286 p(3)=10 q(3)=-2.86%p(4)=13.268 p(4)=14 q(4)=5.1%p(5)=17.099 p(5)=17 q(5)=-0.582%显然,最大相对误差为5.1%。

所以上述模型(14)式可用于预测。

(3)预测:将i=5,和i=6分别代入(14)式得:p (1)(5)=51.662,p (1)(6)=73.342因此:p(6)=p (1)(6)-p (1)(5)=21.68由于从n=17算起,21.68与17之差为4.68,所以从现在算起将在4年左右发生下一次旱灾。

2.3常用模型3——系统预测模型]3[灰色系统是指部分信息未知、部分信息已知的系统。

灰色系统理论所要考察的是对信息不完备的系统,通过已知信息来研究和预测未知领域从而达到了解整个系统的目的,研究的是信息不完全的对象,内涵不确定的概念,关系不明确的机制。

按其具体对象而言,可分为工程技术系统、农业系统、生态系统、社会系统等,除工程技术系统外其余系统称为本征性系统。

灰色系统理论就是研究本征性灰色系统的量化问题,即研究系统的建模、预测、分析、决策和控制。

用灰色系统模型进行预测的步骤如下。

相关文档
最新文档