卫星通信系统的分类
卫星通信系统的组成
卫星通信系统的组成
相较于短波/超波无线通信系统,卫星通信系统的组成要复杂的多。
要实现卫星通信,首先要发射人造地球卫星,还需要保证卫星正常运行的地面测控设备,其次必须有发射与接收信号的各种通信地球站。
一个卫星通信系统的组成是由空间分系统、通信地球站、跟踪遥测及指令分系统和监控管理分系统等四部分组成。
跟踪遥测及指令分系统:它的任务是对卫星进行跟踪测量,控制其准确进入静止轨道的指定位置,待卫星正常运行后,要定期对卫星进行轨道修正和位置保持。
监控管理分系统:它的任务是对定点的卫星在业务开通前、后进行通信性能的监测和控制,例如对卫星转发器功率、卫星天线增益以及地球站发射的功率、射频频率和带宽等基本通信参数进行监控,以保证正常通信。
空间分系统:通信卫星内的主体是通信装置,它的任务是保障部分星体上的遥测指令、控制系统和能源装置等。
地球站:它们是微波无线电收、发信台,用户通过它们接入卫星线路,进行通信。
雅驰实业研发的卫星通信天线,属于卫星通信系统组成中的通信地球站,在恶劣的情况下依然可以实现通信,传输现场实况。
简述卫星通信系统的组成及其特点
简述卫星通信系统的组成及其特点一、卫星通信系统的组成卫星通信系统是由地球上的用户终端、地面站、卫星和控制中心等多个组成部分组成的。
1. 用户终端:用户终端是卫星通信系统中的最终用户设备,可以是个人电脑、手机、电视等,用于接收和发送通信信号。
2. 地面站:地面站是连接用户终端和卫星的中间节点,负责将用户终端发送的信号转换成卫星可以传输的信号,并将从卫星接收到的信号转发给用户终端。
地面站一般由天线、发射接收设备、信号处理设备和控制系统等组成。
3. 卫星:卫星是卫星通信系统中的核心部分,它位于地球同步轨道或其他轨道上,可以接收地面站发送的信号,并将信号转发给其他地面站。
卫星具有较大的覆盖范围和较高的传输能力,可以实现全球通信覆盖。
4. 控制中心:控制中心是卫星通信系统的管理和控制核心,负责卫星的轨道控制、通信链路管理、资源分配和故障监测等工作。
控制中心通过与地面站和卫星的通信,对卫星通信系统进行实时监控和管理。
二、卫星通信系统的特点卫星通信系统相对于其他通信系统具有以下几个特点:1. 广域覆盖:卫星通信系统可以实现全球范围的通信覆盖,不受地理条件的限制。
无论是在陆地、海洋还是空中,只要能够接收到卫星的信号,就可以实现通信。
2. 高速传输:卫星通信系统的传输速度较快,可以满足大容量数据的传输需求。
由于卫星处于高空轨道上,信号传输的距离相对较短,因此传输延迟较小。
3. 通信稳定:卫星通信系统可以实现稳定的通信连接,不受地面基础设施的限制。
即使在灾害或战争等极端情况下,卫星通信系统仍能保持通信畅通。
4. 弹性扩展:卫星通信系统具有较好的扩展性,可以根据通信需求灵活调整卫星的数量和覆盖范围。
当用户数量增加或通信需求变化时,可以通过增加卫星数量或调整卫星位置来满足需求。
5. 多业务支持:卫星通信系统可以支持多种业务,包括电话通信、数据传输、广播电视、互联网接入等。
不同的业务可以通过卫星通信系统进行集成传输,提高资源利用效率。
卫星系统分类
通信卫星的运行轨道有两种。一种是低或中高轨道。在这种轨道上运行的卫星相对于地面是运动的。它能够用于通信的时间短,卫星天线覆盖的区域也小,并且地面天线还必须随时跟踪卫星。另一种轨道是高达三万六千公里的同步定点轨道,即在赤道平面内的圆形轨道,卫星的运行周期与地球自转一圈的时间相同,在地面上看这种卫星好似静止不动,称为同步定点卫星。它的特点是覆盖照射面大,三颗卫星就可以覆盖地球的几乎全部面积,可以进行二十四小时的全天候通信。
特点:
1、话费可随时充EricssonAceSR190卫星电话是08年以前世界上体积最小、最轻的电话;
2、通话费$0.25美金/分钟(打进),$0.35美元/分钟(打出);
3、无需入网费,月租费,占额费;
4、话费可随时充值。
应用领域:远离城市之乡村、森林、山区、沙漠、戈壁、矿场、油井、海洋、地质、旅游、勘探、铁路、水利、电力、气象、科学考察。
(2)中轨道卫星通信系统(MEO):距地面2000—20000Km,传输时延要大于低轨道卫星,但覆盖范围也更大,典型系统是国际海事卫星系统。中轨道卫星通信系统可以说是同步卫星系统和低轨道卫星系统的折衷,中轨道卫星系统兼有这两种方案的优点,同时又在一定程度上克服了这两种方案的不足之处。中轨道卫星的链路损耗和传播时延都比较小,仍然可采用简单的小型卫星。如果中轨道和低轨道卫星系统均采用星际链路,当用户进行远距离通信时,中轨道系统信息通过卫星星际链路子网的时延将比低轨道系统低。而且由于其轨道比低轨道卫星系统高许多,每颗卫星所能覆盖的范围比低轨道系统大得多,当轨道高度为l0000Km时,每颗卫星可以覆盖地球表面的23.5%,因而只要几颗卫星就可以覆盖全球。若有十几颗卫星就可以提供对全球大部分地区的双重覆盖,这样可以利用分集接收来提高系统的可靠性,同时系统投资要低于低轨道系统。因此,从一定意义上说,中轨道系统可能是建立全球或区域性卫星移动通信系统较为优越的方案。当然,如果需要为地面终端提供宽带业务,中轨道系统将存在一定困难,而利用低轨道卫星系统作为高速的多媒体卫星通信系统的性能要优于中轨道卫星系统。
卫星移动通信的分类
卫星移动通信的分类第一点:卫星移动通信的概述卫星移动通信是一种利用卫星作为中继站来实现移动通信的技术。
它主要由卫星、地球站、移动终端和传输链路等组成。
卫星移动通信系统可以提供全球覆盖,尤其适合海洋、沙漠、极地等偏远地区的通信需求。
卫星移动通信系统可以分为两类:卫星电话系统和卫星宽带系统。
卫星电话系统主要提供语音通信服务,而卫星宽带系统则提供数据、语音和视频等多种通信服务。
卫星移动通信的优点在于其覆盖范围广泛,可以实现全球范围内的通信。
此外,卫星移动通信系统具有较强的抗干扰能力和较高的通信质量。
然而,卫星移动通信也存在一些缺点,如传输延迟较大、信号传输衰减较大等。
第二点:卫星移动通信的分类卫星移动通信可以根据卫星类型、频段、传输方式等多种方式进行分类。
按照卫星类型,卫星移动通信系统可以分为地球同步轨道卫星系统(GEO)和低地球轨道卫星系统(LEO)。
地球同步轨道卫星系统具有较高的覆盖范围和通信质量,但建设成本较高。
低地球轨道卫星系统建设成本较低,但覆盖范围较小,通信质量相对较差。
按照频段,卫星移动通信系统可以分为L频段、C频段、X频段、Ku频段和Ka频段等。
不同频段的通信能力、传输速率和抗干扰能力等方面存在差异。
按照传输方式,卫星移动通信系统可以分为单向传输和双向传输两种。
单向传输系统只能实现从一个地球站向多个移动终端的通信,而双向传输系统则可以实现双向通信。
此外,卫星移动通信系统还可以根据应用领域进行分类,如民用、军事、航空航天等。
不同应用领域的卫星移动通信系统在技术要求、通信质量、安全性能等方面存在差异。
总之,卫星移动通信系统具有多种分类方式,不同类型的系统在覆盖范围、通信质量、建设成本等方面有所差异。
根据实际需求和应用场景选择合适的卫星移动通信系统具有重要意义。
第三点:卫星移动通信的关键技术卫星移动通信系统的实现涉及到多种关键技术,其中包括卫星通信技术、多址技术、信号处理技术等。
卫星通信技术是卫星移动通信系统的核心技术,主要包括卫星传输链路的设计与优化、信号调制与解调、信号编码与解码等。
卫星通信系统概述-文档资料
15
1.4 卫星通信的特点
卫星移动通信和地面移动通信的关系: 卫星移动通信系统能扩大地面移动通信的地理
和业务覆盖范围,除提供常规的移动通信业务 外,还可向空中、海面和复杂地理结构的地面 区域的各类移动用户提供服务。 从应用来讲,地面移动通信网主要集中在高业 务量的应用环境,而卫星移动通信系统最适合 于低业务量地区、航海、航空及地面网欠发达 地区的应用环境,并且在地面网络过载或发生 故障时作为其迂回网络。
换言之,卫星通信是在地球站上,包
括地面、水面和大气层中的无线电通信站 之间,利用人造卫星作为中继站进行的通 信。
卫星通信是个人通信网的组成部分,
是地面通信网的补充。
2
1.1 卫星轨道
假设地球是质量均匀分布的圆球体,忽略 太阳、月球和其它行星的引力作用,卫星运动 服从开普勒(Kepler)三大定律。
(8)现有卫星通信系统为适应新技术发展和系统对容量的 更大要求形成了新的演变方案,如Iridium系统将其运行 的卫星数目从66颗增加至96颗。
(9)天地网络不断融合。卫星通信与有线电视、宽带互联 网、移动互联网等融合。
(10)新技术广泛应用。如星上交换与处理、多波速天线等。
24
附录:通信卫星的分类
300~3000吉赫(GHz)
10
1.3 卫星通信的工根作据IE频EE段521-2002标准,L
<<<<1223>>>>频段综LSCX工。合作具上频 频 频 频:体述段段段段地要::::说求1468,,.///6247目应/1GGG前将.HHH5zzz大卫雷Z也波电导频卫采K句K通3是时和为的电是段范即展7率频比EGi0aa多星.g达使段波航带星用话常HI7用又高1无视M指。围英的代波R受段较KBz5m数的主等用是波系,地,说用KPH作是频线领aeC据频而则语”表段甚特国。大XG~波较e波卫z工要波。这指段统在面且,于电航(电域1波I~H、率在为中着也高高际,KE用用用。段d大段星作3应段个频。等卫站一z该卫u台空波。HE段现无在某7的被Km频频有多0,于于于的,波(通频EF~用,0范率可。星应直的波星1及和,特通,在线8些“称((关采1)上MMMM8V频加段5信段~:是1围在被电用被正段通电航常高常频~广路场e作2HUH法用SSS1不.行率上卫2系选x1中频SSS1的用2视中广上直信FHz视海用频的率泛由合37律赋t-同频,,,~的G)范K星e2F统G在0G继率是频于广,泛方接。2台 的于 主下为使n、中0H)保 形/u的率GGG频HH围2单是微0d、4GD指率播该使(高波z广沟移要行3EEE0用无,zK是z护波2是~为e段。为AH转0选的波OOO)卫标频。和频用于段8d-G播通动用频,的线X0指,束aBz,7卫卫卫。XG”2发K择无频~H星的b波准带各段。K接.,频通于、率,7波蓝鼠9波H覆13电u星星星o多z器波~线在段~通无2段,0类首收波波z同道信短卫为表v段牙标长4盖离8~0测测测数的e功段电以或信0线的X小先.天段10段。和途星7示中、)等4范,G控控控一,波8M.率。波下特、频2型被线,的G广通“G的H围卫H。。。5段换段一波频高H率Hz效频~播信扩zX星。zz般,,
卫星通信系统
2. 多址技术
可分为频分多址(FDMA)、时分多址(TDMA)、码分多址 (CDMA)和空分多址(SDMA)。
(3)卫星转发器。卫星转发器常分为透明转发器和处理转发 器两种。
①透明转发器。透明转发器也称非再生转发器,包括单变频 转发器和双变频转发器两种。
单变频转发器是目前使用最多的一种转发器,如图4-7(a) 所示。双变频转发器的结构如图4-7(b)所示。
②处理转发器。处理转发器是指除了具有转发功能之外,还 具有处理功能的转发器,其结构如图4-7(c)所示。
4.2 多址及随机多址访问方式
①固定预分配(FPA)方式。固定预分配是指按事先规定半永 久性地分配给每个地球站固定数量的信道,这样各地球站只能各 自在特定的信道上完成与其他地球站的通信,其他地球站不得占 用该信道。如图4-10(a)所示。
②按时预分配(TPA)方式。事先知道了各地球站间业务随时 间的变化规律,那么在一天内可按约定对信道做几次固定的调整, 这种方式就是按时预分配(TPA)方式。
4.5~5 3.5
4.5~5.5
0.6~2.4 1.2~11
0.6~32
最小(G/T)值/( dB/K)
35.0(原40.7) 37.0(原39)
31.7
29.0 34.0 27.0 29.0
22.7 2 500 22.7
5.5 16
5.5~16
业务
电话、数据、TV、IDR、IBS 电话、数据、TV、IDR、IBS 电话、数据、TV、IDR、IBS
卫星通信
卫星通信:指利用人造地球卫星作为中继站转发无线电波,在两个或者多个地球站之间进行的通信。
卫星通信特点:1)通信距离远,且费用与通信距离无关;2)覆盖面积大,可进行多址通信;3)通信频带宽,传输容量大;4)机动灵活;5)通信链路稳定可靠,传输质量高。
卫星通信系统的组成:通信卫星、通信地球站分系统、跟踪遥测及指令分系统,以及监控管理分系统四部分组成。
卫星通信系统的分类:1)按照卫星制式,分为随机、相位和静止3类卫星通信系统;2)按通信覆盖区的范围,分为国际、国内和区域3类卫星通信系统;3)按用户性质,分为公用、专用和军用3类卫星通信系统;4)按业务分为固定业务、移动业务、广播业务、科学实验及其它业务卫星通信系统;5)按多址方式,分为频分多址、时分多址、码分多址、空分多址和混合多址5类卫星通信系统;6)按基带信号体制,分为数字式和模拟式两类卫星通行系统;7)按所用频段,分为特高频、超高频、极高频和激光4类卫星通信系统。
地球站的分类:(1)按安装方法及设备规模,地球站可分为固定站、移动站(船载站、车载站、机载站等)和可搬动站(在短时间内可拆卸转移)。
(2)按天线反射面口径大小,地球站可分为20m、15m、10m、7m、5m、3m和1m等类型。
(3)按传输信号的特征,地球站可分为模拟站和数字站。
(4)按用途,地球站可分为民用、军用、广播、航空、航海、气象以及实验等地球站。
(5)按业务性质,地球站可分为遥控、遥测跟踪站,通信参数测量站和通信业务站。
地球站的组成:一般包括天馈设备、发射机、接收机、信道终端设备、天线跟踪设备以及电源设备。
天馈设备的主要作用是将发射机送来的射频信号经天线向卫星方向辐射,同时它又接收卫星转发的信号送往接收机。
发射机主要由上变频器和功率放大器组成,其主要作用是将已调制的中频信号,经上变频器变换为射频信号,并放大到一定的电平,经馈线送至天线向卫星发射。
对于上变频器这一频率变换设备,主要有一次变频和二次变频两种方式。
卫星通信的基本概念和分类
卫星通信的基本概念和分类一、卫星通信的定义卫星通信是指利用人造卫星作为中继站来转发无线电波,在两个或多个地面站之间所进行的通信。
卫星通信系统由卫星转发器和地球站组成,其中卫星转发器负责接收来自地球站的信号,并将其放大、变频后再转发回地球站,从而实现远距离通信。
二、卫星通信的分类1.按卫星轨道位置:可分为静止卫星通信和中低轨道卫星通信。
静止卫星通信利用位于地球赤道上空的卫星,实现全球覆盖和通信。
中低轨道卫星通信则利用位于地球中低轨道的卫星,实现区域覆盖和通信。
2.按通信频段:可分为L频段(1-2GHz)、S频段(2-4GHz)、C频段(4-8GHz)、Ku频段(10-15GHz)和Ka频段(20-30GHz)等。
不同频段的无线电波具有不同的传播特性和抗干扰能力。
3.按卫星通信系统的结构:可分为单星型、双星型和多星型。
单星型系统只有一个卫星转发器,实现简单的点对点通信。
双星型系统有两个卫星转发器,可实现具有一定覆盖范围的区域通信。
多星型系统则由多个卫星转发器组成,可实现全球覆盖和通信。
三、卫星通信的优点1.覆盖范围广:卫星通信不受地理条件的限制,可实现全球覆盖和通信。
2.通信容量大:卫星通信系统可以利用多个频段和多颗卫星,实现高速数据传输和大容量通信。
3.可靠性高:卫星通信系统具有较高的可靠性和稳定性,适用于各种重要场合和应急通信。
4.灵活性好:卫星通信系统具有较好的灵活性和适应性,可根据不同需求进行定制和优化。
四、卫星通信的应用案例1.含例1:国际卫星通信。
国际卫星通信是利用卫星转发器实现跨国或跨洲的语音、数据和视频传输。
例如,通过国际卫星电话进行远程医疗、灾害救援等紧急通信。
2.含例2:区域卫星通信。
区域卫星通信是利用中低轨道卫星实现一定区域内的通信和信息传输。
例如,通过移动卫星车或便携式卫星电话为野外作业提供实时通信支持。
3.含例3:国内卫星通信。
国内卫星通信是利用静止卫星或中低轨道卫星实现国内范围内的通信和信息传输。
卫星通信的概念
卫星通信的概念卫星通信是一种通过人造卫星进行信息传输的通信技术。
它利用卫星在地球轨道上的位置,通过广播信号传输数据和语音通信,实现全球范围内的通信连接。
卫星通信的概念源于20世纪中叶,随着技术的发展,现如今已成为现代通信领域中不可或缺的重要组成部分。
本文将从卫星通信的原理、分类、应用和未来发展四个方面进行探讨。
一、卫星通信的原理卫星通信的原理基于地球上的通信设备与卫星之间的无线连接。
首先,发射地面设备向卫星发射电磁波,进而将信号传输到卫星。
接下来,卫星接收到信号后,利用内部的转发系统将信号转发至指定的地点或设备。
最后,接收地面设备接收到卫星发来的信号,并进行解码和处理,以实现通信的目的。
这一过程要依靠精密的通信设备、频谱管理和卫星轨道控制系统的配合运作。
二、卫星通信的分类卫星通信可以根据卫星的传输距离和通信范围进行分类。
按照传输距离可以分为近地卫星通信和远地卫星通信。
近地卫星通信主要指运行在低地球轨道(LEO)或中地球轨道(MEO)上的卫星,传输距离较短,延迟较低,适用于需要高速数据传输和实时通信的应用场景。
远地卫星通信则是指运行在地球同步轨道(GEO)上的卫星,传输距离较远,提供全球范围内的通信覆盖,适用于广播、电视、互联网接入等广泛的通信需求。
按照通信范围可以分为点对点通信和广播通信两种。
三、卫星通信的应用卫星通信广泛应用于各个领域,包括但不限于:1. 电视和广播传输:卫星通信通过卫星信号的广播,向全球范围内的用户提供电视和广播节目;2. 互联网接入:卫星通信可通过接入卫星提供互联网服务,解决地理位置偏远地区无法接入传统有线网络的难题;3. 军事通信:卫星通信在军事领域起到至关重要的作用,能够实现军事指挥、情报交流和战场通信等任务;4. 紧急救援:卫星通信能够在灾害和紧急情况下提供及时的通信支持,协助救援行动;5. 航空和航海通信:卫星通信可以提供航空和航海领域中的通信服务,确保通信质量和安全性;6. 科学研究:卫星通信可用于空间探索和科研实验室,用于研究和收集地球、宇宙和环境等相关数据。
通信电子中的卫星通信系统
通信电子中的卫星通信系统在今天的社会中,通信电子已经成为我们生活中不可或缺的一部分。
随着技术的不断发展,我们的通信方式也在不断地更新和升级,而其中最为关键和重要的便是卫星通信系统。
卫星通信系统是一种通过卫星进行传输,实现地球上不同地方之间的通信的系统。
这种通信技术相比传统的有线通信和移动通信直接将信号传输到天空中,再经过宇宙空间的传输达到目的地的方法更加高效和可靠,同时也为人们在极端或者边远的区域进行通信提供了可能。
卫星通信系统的构成主要由三部分组成:地面站,卫星和用户终端设备。
其中的地面站是整个系统的中枢部分,它主要负责与卫星之间的通信。
而卫星则是整个系统的关键,作为信号的中转站,它将信号接收、转换、再传输。
最终用户终端设备则是实现信息接收和发送的具体工具。
卫星通信系统可以分为低轨道、中轨道和地球同步三种不同类型。
其中低轨道卫星通常包括LEO、MEO和GEO三类,它们的轨道位置和高度都不同,因此具有不同的功率、传输速率和传输范围。
在这三种类型中,LEO卫星通常以较低的高度空间绕行,可以覆盖较小的区域,而MEO则是以中等高度空间绕行,可以覆盖较广泛的区域。
而GEO卫星最主要的特点是能够覆盖地球上的整个区域,并能够提供更高速的传输速率和更强的信号穿透力。
卫星通信系统在实际应用中有非常广泛的领域,其中其中最常见的包括军事通信、民用通信、天气预报、资源勘探和海洋监测等领域。
在军事领域中,卫星通信系统可以提供更加安全可靠的通信环境,以确保信息的保密和机密。
而在民用通信领域,卫星通信系统可以为航空、海运、旅游和广播电视等行业提供更加多样化和灵活的通信方式。
卫星通信系统的发展历程也非常漫长和曲折。
自20世纪60年代卫星通信技术被首次应用以来,卫星通信系统在技术和品质方面都得到了巨大的提升。
尤其是在数字通信技术得到普及以后,卫星通信系统也得到了更广泛的应用和推广。
未来,随着技术不断的进步和改进,我们相信卫星通信系统将持续地实现高速、高可靠的通信需求,为人们创造更加美好的通讯生活。
卫星通信相关系统和业务介绍
卫星通信相关系统和业务介绍卫星通信技术是一种基于卫星运行轨道的无线通信系统,通过卫星与地面通信站点之间的互相连接,实现信息的传输和通信服务。
本文将介绍卫星通信的相关系统和业务,以便读者对该技术有更全面的了解。
一、卫星通信系统概述卫星通信系统主要由三个组成部分构成:卫星、地面站和用户终端。
卫星作为通信载体,负责接收、放大和转发信号;地面站用于与卫星进行通信的控制和管理;用户终端则是通信的使用者,包括移动终端、固定终端等。
卫星通信系统根据通信链路的不同,可分为地球-卫星通信和卫星-卫星通信两种模式。
地球-卫星通信是指地面站与卫星之间的通信,而卫星-卫星通信则是指卫星之间的通信。
这两种模式在实际应用中有不同的应用场景和技术要求。
二、卫星通信系统分类根据卫星的轨道类型,卫星通信系统可分为地球同步卫星通信系统和非地球同步卫星通信系统两种类型。
1. 地球同步卫星通信系统地球同步卫星通信系统(Geostationary Earth Orbit,GEO)是最常见的卫星通信系统之一。
该系统的卫星通信卫星在赤道上空的约3.6万公里的轨道上运行,速度与地球自转周期一致,形成一个固定的位置,从而能够覆盖一个固定的地面区域。
常见的GEO卫星通信系统包括国际通信卫星(Intelsat)和亚太通信卫星(APSTAR)等。
2. 非地球同步卫星通信系统非地球同步卫星通信系统(Non-Geostationary Orbit,NGSO)是指卫星通信卫星在距离地球较近的轨道上运行,包括低轨卫星、中轨卫星和高轨卫星等。
NGSO卫星通信系统的特点是延迟低、覆盖面广,适用于提供全球性的通信服务。
著名的非地球同步卫星通信系统有众星通信(Iridium)和全球星(Globalstar)等。
三、卫星通信业务介绍卫星通信技术的应用已经渗透到了生活的各个领域。
以下将介绍卫星通信在军事、航天、海洋、航空和广播电视等方面的应用。
1. 军事通信卫星通信在军事领域中扮演着重要的角色。
卫星通信的基本概念和分类
卫星通信是利用人造卫星作为中继站,实现地面、空中或海上通信的技术。
它通过在轨道上的卫星传输信号,从而扩展了通信网络的覆盖范围。
以下是卫星通信的基本概念和分类:基本概念:1. 卫星:人造卫星是一颗人造的天体,被放置在地球轨道上,用于传输通信信号。
卫星可以是地球同步卫星、低轨卫星、中轨卫星等。
2. 发射器和接收器:地面、空中或海上的终端设备,通过发射器发送信号到卫星,或通过接收器接收从卫星传回的信号。
3. 传输链路:从发射器到卫星再到接收器的信号传输链路,包括上行链路(发射器到卫星)和下行链路(卫星到接收器)。
4. 轨道:卫星通信中的卫星可以采用不同的轨道,包括地球同步轨道、低轨道、中轨道等。
5. 波束:卫星通信中,信号从卫星发射出去时形成的覆盖区域,称为波束。
卫星可以拥有多个波束,每个波束覆盖不同的地区。
分类:1. 地球同步卫星通信:-地球同步卫星位于地球赤道平面上,它的轨道周期与地球自转周期相同。
因此,它能够在相对固定的位置上覆盖一个特定的地理区域,如通信卫星,广播卫星等。
2. 低轨卫星通信:-低轨卫星通信系统中,卫星距离地球较近,轨道高度一般在几百至一千公里范围。
由于距离近,延迟较低,适用于高速数据传输。
3. 中轨卫星通信:-中轨卫星通信系统中,卫星位于地球同步卫星和低轨卫星之间,通常轨道高度在1000至2000公里范围。
中轨卫星通信具有较低的延迟,较高的可用性。
4. 广播卫星通信:-广播卫星用于广播和电视信号的传输。
这种卫星一般位于地球同步轨道,可以覆盖广泛的地理区域,使得信号能够被大量用户接收。
5. 移动卫星通信:-移动卫星通信是指通过卫星为移动用户提供通信服务,如移动电话、飞机上的通信系统等。
这类卫星通信系统需要实时跟踪用户位置。
卫星通信系统的选择取决于具体的应用需求,包括通信覆盖范围、传输速率、延迟等因素。
卫星通信系统
卫星通信系统
⼀、什么是卫星通信系统?
卫星通信系统是利⽤卫星作为中继站转发或者反射⽆线电波以此实现俩个或者多个地球站(移动远程终端站)之间通信的⽅式
⼆、卫星系统的拓扑分类:星型拓扑、⽹状拓扑、环形拓扑
三、卫星移动通信系统的分类
1、 3按照应⽤分类:海事卫星移动系统(MMSS)、航空卫星移动系统(AMSS)、陆地卫星移动系统(LMSS)
2、按照轨道分类:低轨道卫星LEO 中⾼轨道卫星MEO、椭圆轨道卫星(⾼轨道卫星HEO),静⽌卫星
3、按频率分类:L波段卫星、Ka波段卫星
4、按照服务区域划分:全球、区域、国内卫星
5、按照业务划分:公共卫星、专⽤卫星
6、按照⽤途分类:综合业务通信卫星、军事卫星、海事卫星、电视直播卫星等
四、卫星⽹络的特点:
1、覆盖⾯积⼴、通信距离远、
2、便于实现多址技术
3、通信频带宽、数据传输容量⼤
4、⽹络便捷、灵活
5、通信线路稳定、传输质量⾼
6、成本与通信距离⽆关
五、卫星⽹络的劣势:
1、⾼可靠性和寿命时间问题需要提⾼
2、发射控制技术复杂、希望⽹络技术进⾏优化
3、传输延时较⼤、有回声⼲扰问题有待提⾼
4、存在星灼和⽇凌现象
除此之外,静⽌卫星通信系统在地球的⾼纬度的通信效果不好,俩级地区存在通信盲区,地⾯微波系统与卫星通信系统存在同频⼲扰六、卫星⽹络的应⽤
应⽤于地⾯通信系统不易覆盖的领域、导航定位的发展、利⽤卫星进⾏预警、防御、适当减轻⾃然灾害等应⽤。
卫星通讯知识点总结大全
卫星通讯知识点总结大全一、卫星通讯的概念卫星通信是指通过卫星作为中继器,实现不同地区之间的通信传输,包括声音、数据和图像等信息的交换。
卫星通信系统包括地面站、卫星和用户终端设备,通过这些设备完成信息的发送和接收。
二、卫星通讯的原理1. 发射和接收卫星通信系统的工作原理主要包括发射和接收两个过程。
发射端将要传输的信息通过天线发射到卫星上,卫星再将信号转发到接收端,接收端通过天线接收到信号。
2. 中继卫星是作为信息传输的中继器,接收到的信号再通过卫星转发到另一个地方的接收端,从而实现远距离的通信传输。
3. 多路复用卫星通信系统通过多路复用技术将多个信号合并成一个信号进行传输,接收端再通过解复用技术将信号还原为原来的多个信号。
三、卫星通讯的分类1. 通信卫星通信卫星是专门用于通信传输的卫星,根据轨道的不同可以分为地球同步轨道卫星和非地球同步轨道卫星。
2. 导航卫星导航卫星主要用于定位和导航,目前比较知名的导航卫星系统包括美国的GPS系统、俄罗斯的GLONASS系统和中国的北斗系统。
3. 气象卫星气象卫星用于气象观测和预报,通过卫星传输气象图像和数据,帮助人们了解天气变化并进行应对。
四、卫星通讯的优势1. 覆盖范围广卫星通信可以覆盖地面上很广泛的范围,尤其是在偏远地区或海洋中,常规通信方式难以覆盖的地区。
2. 传输距离远卫星通信可以实现远距离的通信传输,无需铺设大量的通信线路,节省了成本。
3. 抗干扰能力强卫星通信系统的天线设备对外部干扰的抗干扰能力较强,通信质量相对稳定。
4. 运营成本低一些卫星通信系统可以实现空间资源共享,降低了运营成本,对于那些需要低成本的应用场景比较适合。
五、卫星通讯的技术要点1. 大功率射频通信卫星通信系统中的射频通信是其核心技术,需要大功率的发射设备和高灵敏度的接收设备,以保证通信质量。
2. 天线设计卫星通讯系统中的天线设计对于信号的传输和接收至关重要,需要考虑到方向性、增益、波束宽度等参数。
卫星通信基础知识
新疆长途传输局
卫星通信的主要技术简介
调幅:即幅度调制。这种调制方式使载波(被调制的波)的幅度随 着信息信号幅度的变化而变化,从而达到传送信息的目的。
调频:即频率调制。它使载波(被调制的波)的频率随着信息信号 频率的变化而变化。
为π/2的一种调制方式。 MSK调制方式:最小相移键控方式。
新疆长途传输局
卫星通信的主要技术简介
差错控制及扰码 差错控制技术:自动要求重发(ARQ)、前向纠错(FEC)。 前向纠错技术分为两类: 分组码:BCH码 卷积码:分为代数译码和概率译码 概率译码:维特比译码和序列译码 维特比译码:计算速度快,设备简单
优点:建立通信线路较为方便。 缺点:存在交调干扰。(交叉调制干扰) 交调干扰:放大器件在同时放大多个不同频率的载波信号时,由
于输入、输出的非线性和调幅/调相转换的非线性,都会在 输出信号中产生多种组合频率成分,当这些组合频率与信号 频率重合或部分重合时,就会产生干扰噪声,即交调干扰。
新疆长途传输局
卫星通信的主要技术简介
新疆长途传输局
卫星通信的频率再用
波束分割频率再用。利用卫星上不同波束方向的天线,实 现频率再用,比如采用所谓半球波束,分别服务于东、西 两个覆盖区,或采用所谓区域波束,分别服务于不同区域。
极化分割频率再用。利用两个相互正交的极化波在同一频 率、同一时间传送两组独立的信号,相互之间没有干扰。 不同覆盖区域内的两个正交极化波的利用,可实现双重频 率再用。
码分多路复用(CDM):利用各路信号码型结构的正交性而实 现的多路复用。
空分多路复用(SDM):在传输空间上实现多路复用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卫星通信系统的分类
卫星通信系统是一种通过卫星进行通信的通信系统,可以在全球范围内传递信息和数据。
根据不同的应用领域,卫星通信系统可以分为不同的分类。
本文将针对卫星通信系统的分类进行阐述。
一、按照卫星轨道分类
1. 地球同步轨道卫星通信系统(GEO)
GEO卫星通信系统是采用地球同步轨道的卫星进行通信。
该系统的优点是网络稳定,因其卫星与地球运转的速度相同,可以保证卫星始终处于同一地点上方,所以信号传输稳定可靠。
该系统适用于广播、电视、电话、互联网等通讯领域。
2. 低地球轨道卫星通信系统(LEO)
LEO卫星通信系统是采用近地轨道的卫星进行通信。
该系统的优点是延迟小,速度快,可实现高速互联网传输,因此在卫星手机、通讯、导航等方面有广泛的应用。
3. 中地球轨道卫星通信系统(MEO)
MEO卫星通信系统是介于GEO和LEO之间的一种卫星通信系统。
该系统的优点是覆盖范围较广,信号传输比LEO 卫星通信系统更稳定,且比GEO卫星通信系统延迟更小。
该系统适用于在远洋航行、应急救援、资源勘探等领域的通讯需求。
二、按照使用范围分类
1. 军用卫星通信系统
军用卫星通信系统是为满足军队通信需求而开发的卫星通信系统。
主要适用于指挥、控制、情报、侦查等方面的军事通信需求,包括卫星预警系统和卫星导航系统等。
2. 商用卫星通信系统
商用卫星通信系统主要指用于商业性质的卫星通信系统,如通讯、电视、互联网等。
它们可以为航空、海洋、铁路、电信、能源、环境保护等领域提供支持和服务。
三、按照卫星用途分类
1. 通讯卫星通信系统
通讯卫星通信系统是最常见的卫星通信系统之一。
通讯卫星可以提供从语音、数据传输、移动通信、宽带互联网等多种通信服务,并且可以实现跨越国界的通信。
2. 气象卫星通信系统
气象卫星通信系统用于在气象领域进行气象信息采集并提供实时气象预报。
气象卫星通信系统包括对地气象观测、大气组成监测、天气预报以及卫星遥感在内的多种技术。
3. 导航卫星通信系统
导航卫星通信系统是通过卫星实现全球定位和导航服务的系统。
该系统主要由多个卫星构成,能够向地面接收器提供准确的时间和位置信息。
4. 灾害监测与救援卫星通信系统
灾害监测与救援卫星通信系统可以向灾害区域提供实时的监测和救援支持。
该系统通常包括卫星遥感、卫星通信和卫星定位等技术,能够为灾害救援提供重要支持。
总之,卫星通信系统是现代通讯领域不可或缺的一部分。
根据不同的应用,卫星通信系统可以分为不同的分类。
随着技术的不断进步和发展,卫星通信系统将会在我们的生活中扮演着越来越重要的角色。