高考数学压轴专题昆明备战高考《不等式选讲》知识点总复习附解析

合集下载

高考数学压轴专题新备战高考《不等式选讲》知识点总复习附答案解析

高考数学压轴专题新备战高考《不等式选讲》知识点总复习附答案解析

数学高考《不等式选讲》试题含答案一、141.已知集合||1|2,}M x x x R =〈-∈„,集合5|1,1P x x R x ⎧⎫=≥∈⎨⎬+⎩⎭,则M P ⋃等于( )。

A .{|13}x x -<≤B .{|14}x x -<≤C .{}|4x x ≤D .{|14}x x -≤≤( ) 【答案】D 【解析】 【分析】根据绝对值不等式及分式不等式,化简集合M,P ,根据并集运算求解即可. 【详解】Q |1|2x -„,∴ 13x -≤≤,即[1,3]M =-,511x ≥+Q, 14x ∴-<≤,即(1,4]P =-,[1,4]M P ∴=-U ,故选:D 【点睛】本题主要考查了集合的并集运算,分式不等式,绝对值不等式,属于中档题.2.已知()23f x x x =+,若1x a -≤,则下列不等式一定成立的是( )A .()()33f x f a a -≤+B .()()5f x f a a -≤+C .()()24f x f a a -≤+D .()()()231f x f a a -≤+【答案】C 【解析】 【分析】先表示出()()f x f a -,利用绝对值三角不等式a b a b ±≤+即可求解. 【详解】由()23f x x x =+,得()()()(3)f x f a x a x a -=-++,因为1x a -≤,所以()(3)323x a x a x a x a a -++≤++=-++,由绝对值三角不等式得232324x a a x a a a -++≤-++≤+,故()()24f x f a a -≤+一定成立.故选:C. 【点睛】本题主要考查绝对值三角不等式的灵活应用,在求最值时要注意等号成立的条件,考查逻辑推理能力,属基础题.3.若集合{}2540A x x x =-+<,{}1B x x a =-<,则“()2,3a ∈”是“B A ⊆”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又不必要条件【答案】A 【解析】 【分析】解出集合A 、B ,由B A ⊆得出关于a 的不等式组,求出实数a 的取值范围,由此可判断出“()2,3a ∈”是“B A ⊆”的充分非必要条件. 【详解】解不等式2540x x -+<,解得14x <<,{}14A x x ∴=<<. 解不等式1x a -<,即11x a -<-<,解得11a x a -<<+,{}11B x a x a ∴=-<<+.B A ⊆Q ,则有1114a a -≥⎧⎨+≤⎩,解得23a ≤≤.因此,“()2,3a ∈”是“B A ⊆”的充分非必要条件. 故选:A 【点睛】本题考查充分非必要条件的判断,一般将问题转化为集合的包含关系来判断,考查逻辑推理能力,属于中等题.4.2018年9月24日,英国数学家.M F 阿帝亚爵在“海德堡论坛”展示了他“证明”黎曼猜想的过程,引起数学界震动,黎曼猜想来源于一些特殊数列求和,记222111123S n =+++++L L ,则( ) A .413S << B .4332S << C .322S << D .2S >【答案】C 【解析】 【分析】由题意,可知21111111(2,)1(1)(1)1n n N n n n n n n n n n+-=<<=-≥∈++--,利用放缩法和极限,即可得到答案.【详解】由题意,可知21111111(2,)1(1)(1)1n n N n n n n n n n n n+-=<<=-≥∈++--, 所以2221111111113111()()()232334121n S n n n n =+++++>+-+-++-=-++L L L 22211111111111(1)()()2232231n S n n n nL L =++++<+-+-++-=--, 当n →+∞且n N +∈时,101n →+,且10n →,所以322S <<,故选C. 【点睛】本题主要考查了数列思想的应用问题,其中解答中,认真审题,利用21n进行合理放缩,再利用极限求解是解答本题的关键,着重考查了分析问题和解答问题的能力,以及放缩思想的应用,属于中档试题.5.已知a ,b 均为正数,且20ab a b --=,则22214a b a b-+-的最小值为( )A .6B .7C .8D .9 【答案】B 【解析】 【分析】a ,b 均为正数,且ab ﹣a ﹣2b =0,可得21a b+=1,根据柯西不等式求出代数式的最小值即可. 【详解】∵a ,b 均为正数,且ab ﹣a ﹣2b =0, ∴21a b+=1. 则22214a b a b-+- 24a =+b 2﹣1, 又因为2a +b =(21a b +)(2a +b )22b a a b=++2≥2+2=4,当且仅当a =4,b =2时取等号.∴(24a +b 2)(1+1)≥(2a +b )2≥16,当且仅当a =4,b =2时取等号.∴24a +b 2≥8, ∴224a a-+b 2214a b -=+b 2﹣1≥7.故选:B . 【点睛】本题考查“乘1法”、基本不等式的性质、柯西不等式,考查了推理能力与计算能力,属于中档题.6.已知,,x y z ∈R ,若234x y z -+=,则222(5)(1)(3)x y z ++-++的最小值为( ) A .37200B .2007C .36D .40【答案】B 【解析】 【分析】根据柯西不等式得到不等式关系,进而求解. 【详解】根据柯西不等式得到()()()()()()2222221(2)352135313x y z x y z ⎡⎤+-+≥++-+++--++⎡⎤⎣⎦⎣⎦()()()()2222511423164030x y z x y z ⎡⎤++-++≥-++=⎣⎦进而得到最小值是:2007故答案为B. 【点睛】这个题目考查了柯西不等式的应用,比较基础.7.已知各项均为正数的数列{}n a 的前n 项和为n S ,且()2*21221n n a a S n n N +==++∈,,若对任意的*n N ∈,1211120nn a n a n a λ++⋯+-≥+++恒成立,则实数λ的取值范围为( ) A .(]2∞-,B .(]1∞-, C .14∞⎛⎤- ⎥⎝⎦,D .12,∞⎛⎤- ⎥⎝⎦【答案】C 【解析】 【分析】2212,21n n a a S n +==++ ()*n N ∈,可得2n ≥时,()221121210n n n n n n a a S S a a +--=-+=+>,.可得11n n a a +=+时,212224a a +==,解得1a .利用等差数列的通项公式可得n a .通过放缩即可得出实数λ的取值范围. 【详解】2212,21n n a a S n +==++Q ()*n N ∈,2n ∴≥时,()22112121n n n n n a a S S a +--=-+=+, 化为:222121(1)n n n n a a a a +=++=+,0n a >.11n n a a +∴=+,即11n n a a +-=,1n =时,212224a a +==,解得11a =.∴数列{}n a 为等差数列,首项为1,公差为1.11n a n n ∴=+-=. 1211111112n n a n a n a n n n n∴++⋯+=++⋯+++++++. 记11112n b n n n n =++⋯++++,1111111211n b n n n n +=++⋯++++++++. ()()11111022*******n n b b n n n n n +-=+-=>+++++. 所以{}n b 为增数列,112n b b ≥=,即121111111122n n a n a n a n n n n ++⋯+=++⋯+≥++++++. Q 对任意的*n N ∈,1211120nn a n a n a λ++⋯+-≥+++恒成立, 122λ∴≤,解得14λ≤ ∴实数λ的取值范围为14∞⎛⎤- ⎥⎝⎦,.故选C . 【点睛】本题考查了数列递推关系、等差数列的通项公式、放缩法,考查了推理能力与计算能力,属于中档题.8.空间中两条不相交的直线与另外两条异面直线都相交,则这两条直线的位置关系是( ) A .平行或垂直 B .平行C .异面D .垂直【答案】C【解析】 【分析】利用反证法证明得解. 【详解】不妨设空间中不相交的两条直线为a b ,,另外两条异面直线为c d ,, 由于a b ,不相交,故a b ,平行或异面, 设a c ,确定的平面为α.不妨设a b ∥,①当b α⊂时,则a b ,与直线d 的交点都在α内,故d α⊂,而这与c d ,为异面直线矛盾;②当b α⊄时,由a b ∥可知b P α,又c α⊂,故b c ,没有公共点,与b c ,相交矛盾. 由①②知假设a b ∥错误,故a b ,为异面直线. 故选C. 【点睛】本题主要考查异面直线的判定和反证法,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.函数y =|x -3|-|x +1|的( ) A .最小值是0,最大值是4 B .最小值是-4,最大值是0 C .最小值是-4,最大值是4 D .没有最大值也没有最小值【答案】C 【解析】因为y =|x -3|-|x +1|4,322,134,1x x x x -≥⎧⎪=--<<⎨⎪≤-⎩,所以最小值是-4,最大值是4,选C.点睛:分段函数的最值由于分段函数在定义域不同的子区间上对应不同的解析式,因而求其最值的常用方法是先求出分段函数在每一个子区间上的最值,然后取各区间上最大值中的最大者作为分段函数的最大值,各区间上最小值中的最小者作为分段函数的最小值.10.不等式的解集是 ( )A .B .C .D .【答案】B 【解析】 【分析】利用绝对值三角不等式,得到,恒成立.【详解】恒成立.故答案选B 【点睛】本题考查了解绝对值不等式,利用绝对值三角不等式简化了运算.11.集合{}|12A x x =-<,1393x B x ⎧⎫=<<⎨⎬⎩⎭,则A B I 为( ) A .()1,2 B .()1,2-C .()1,3D .()1,3-【答案】B 【解析】 【分析】计算得到{}13A x x =-<<,{}12B x x =-<<,再计算A B I 得到答案. 【详解】18{}13x x =-<<,{}139123x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭, 故()1,2A B =-I . 故选:B . 【点睛】本题考查了集合的交集运算,意在考查学生的计算能力.12.“31a -<<”是“存在x ∈R ,使得|||1|2x a x -++<”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件【答案】C 【解析】 【分析】设:31p a -<<,1:,|||2x R x a x q ∃∈-++<,考虑命题“若p 则q ”及其逆命题的真假后可得两者之间的条件关系. 【详解】设:31p a -<<,||:|1|2q x a x -++<,当31a -<<时,|||1|1x a x a -++≥+总成立,而12a +<, 故|||1|2x a x -++<在R 上有解,故,|||1|2x R x a x ∃∈-++<, 所以“若p 则q ”为真命题.若,|||1|2x R x a x ∃∈-++<,则()min21x a x >-++,由绝对值不等式可知11x a x a -++≥+,当且仅当()()10x a x --≤时等号成立,所以1x a x -++的最小值为1a +,故21a >-即31a -<<,所以“若q 则p ”为真命题.综上,“31a -<<”是“存在x ∈R ,使得|||1|2x a x -++<”的充要条件. 故选:C. 【点睛】充分性与必要性的判断,可以依据命题的真假来判断,若“若p 则q ”是真命题,“若q 则p ”是假命题,则p 是q 的充分不必要条件;若“若p 则q ”是真命题,“若q 则p ”是真命题,则p 是q 的充分必要条件;若“若p 则q ”是假命题,“若q 则p ”是真命题,则p 是q 的必要不充分条件;若“若p 则q ”是假命题,“若q 则p ”是假命题,则p 是q 的既不充分也不必要条件.13.已知全集U =R ,{|13}P x x x =+-<,{|213}Q x x =-<,则集合P ,Q 之间的关系为( )A .集合P 是集合Q 的真子集B .集合Q 是集合P 的真子集C .P Q =D .集合P 是集合Q 的补集的真子集【答案】C 【解析】 【分析】先化简得{|12}P x x =-<<.求出{||21|3}{|12}Q x x x x =-<=-<<,由此得到P Q =. 【详解】 |||1|3x x +-<Q ,∴当0x „时,|||1|1213x x x x x +-=-+-=-+<,解得1x >-.10x ∴-<„;当01x <„时,|||1|113x x x x +-=+-=<,成立;当1x >时,|||1|1213x x x x x +-=+-=-<,解得2x <.12x ∴<<. {|12}P x x ∴=-<<.{||21|3}{|12}Q x x x x =-<=-<<, P Q ∴=.故选:C . 【点睛】本题考查两个集合的关系的判断,考查集合与集合的包含关系等基础知识,考查运算求解能力,是基础题.14.对任意x ∈R ,不等式22|sin ||sin |x x a a +-≥恒成立,则实数a 的取值范围是( ) A .01a ≤≤ B .11a -≤≤C .12a -≤≤D .22a -≤≤【答案】B 【解析】【分析】解法一:(换元法)设sin t x =,则原不等式可化为22||||t t a a +-≥.求函数()||||||f t t t t a =++-的最小值,从而不等式2||a a ≥可得11a -≤≤.解法二:(特殊值法)代入2a =, 1a =-,排除错误选项即可. 【详解】解:解法一:(换元法)设sin t x =,则原不等式可化为22||||t t a a +-≥.令()||||||f t t t t a =++-,则min [()](0)||f t f a ==, 从而解不等式2||a a ≥可得11a -≤≤.故选B . 解法二:(特殊值法)当2a =时,因为2|sin ||sin 2|2sin 2|sin |2|sin |2x x x x x +-=-+≥+≥, 当且仅当sin 0x =时,等号成立. 此时2|sin ||sin 2|4x x +-≥不恒成立, 所以2a =不合题意,可以排除C 、D .当1a =-时,因为2|sin ||sin 1|1sin 2|sin |1|sin |1x x x x x ++=++≥+≥, 当且仅当sin 0x =时,等号成立. 此时2|sin ||sin 1|1x x ++≥恒成立, 所以1a =-符合题意,可以排除A. 故选:B 【点睛】本题考查绝对值不等式的参数问题,属于中档题,利用函数求最值的方法或者特殊值排除法都可以解题.15.函数()f x 的定义域为A ,若存在非零实数t ,使得对于任意()x C C A ∈⊆有,x t A +∈且()()f x t f x +≤,则称()f x 为C 上的t 度低调函数.已知定义域为[)0+∞,的函数()=3f x mx --,且()f x 为[)0+∞,上的6度低调函数,那么实数m 的取值范围是( )A .[]0,1B .[)1+∞,C .(],0-∞D .][(),01,-∞⋃+∞ 【答案】D【解析】试题分析:由题意得, ()()6633f x f x mx m mx +≤⇒+-≥-对任意0x ≥都成立.当0m ≤时, 633633|m mx m mx -≤-⇒+-≥-恒成立;当0m >时,结合图象可知,要633mx m mx +-≥-对任意0x ≥都成立,只需0x =时633mx m mx +-≥-成立即可,即6331m m -≥-⇒≥.选D.考点:1、新定义函数;2、绝对值不等式.16.若,,a b c ∈R ,则下列结论中: (1)2211a a a a+≥+; (2)a b a c b c -≤-+-; (3)若a b >,则11a ba b>++;(4)若1a b +=,则2221a b a b +++的最小值为 其中正确结论的个数为( )A .1B .2C .3D .4【答案】B 【解析】 【分析】利用函数知识、换元法、绝对值不等式等知识,对选项进行一一推理证明,即可得答案. 【详解】对(1),2221111()()20a a a a a a a a +≥+⇔+-+-≥,∴12a a +≥或11a a+≤-, ∵12a a +≥或12a a+≤-,∴原不等式成立,故(1)正确;对(2),∵()()a b a c b c a c b c -=---≤-+-,故(2)正确; 对(3),令1,52a b =-=-,则51,114a b a b =-=++,显然11a b a b>++不成立,故(3)错误;对(4),∵1a b +=,∴222222(1)231111a b b b b a b b b b +-+++=+=+-+-,当1b >时,2301b b +<-,∴2221a b a b +++的最小值为4)错误. 故选:B. 【点睛】本题考查函数与不等式的知识,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意消元法、换元法的使用.17.已知下列命题:①,122x R x x ∀∈-++>;②函数21()lg3f x x x=+-的零点有2个;③2x >是2320x x -+>的充分不必要条件;④命题:32,10x x x ∀∈--≤R 的否定是:32,10x x x ∃∈-->R ,其中真命题有( )A .1个B .2个C .3个D .4个 【答案】D【解析】【分析】 由绝对值不等式,得()()12123x x x x -++≥--+=,故①正确;由图象可知lg y x =和23y x =-在()0,+?上有两个交点,故②正确;由2320x x -+>,得2x >或1x <,故③正确;全称命题的否定为特称命题,并将“≤”改为“>”,故④正确.【详解】 Q ()()12123x x x x -++≥--+=,∴ ,122x R x x ∀∈-++>,①正确;函数21()lg3f x x x =+-定义域为()0,+?, 由21()lg30f x x x =+-=, 得2lg 30x x -+-=即2lg 3x x =-,由图可知lg y x =的图象和23y x =-在()0,+?上有两个交点,所以方程2lg 3x x =-有两个解,即21()lg 3f x x x=+-有2个零点,②正确; 由2320x x -+>,解得2x >或1x <,所以2x >是2320x x -+>的充分不必要条件,③正确;命题:32,10x x x ∀∈--≤R 的否定是:32,10x x x ∃∈-->R ,④正确.故选:D【点睛】本题考查了绝对值不等式、函数的零点问题、充分条件与必要条件的判断以及全称命题的否定,考查了数形结合思想和转化思想,属于中档题.18.已知函数()1()02f x x a a a =-+≠.当12a <时,函数()()21g x f x x =+-有零点,则实数a 的取值范围是( ) A .1,02⎡⎫-⎪⎢⎣⎭B .10,2⎡⎤⎢⎥⎣⎦C .8,03⎡⎤-⎢⎥⎣⎦D .4,03⎡⎤-⎢⎥⎣⎦【答案】A【解析】【分析】 将函数的零点问题转化为方程的根问题,再构造函数1(2)g x x a x =+--求得函数的值域,可得关于a 的不等式,解不等式即可得到答案.【详解】 Q 函数()()21g x f x x =+-有零点,∴方程2112x ax a -=+--有根, 令1(2)g x x a x =+--,则31,,1()1,,2131,,2x a x a g x x a a x x a x ⎧⎪-+-≤⎪⎪=--+<≤⎨⎪⎪-->⎪⎩ ∴1()[,)2g x a ∈--+∞,∴11,221,2a a a ⎧-≥--⎪⎪⎨⎪<⎪⎩,解得:1,02a ⎡⎫∈-⎪⎢⎣⎭. 故选:A.【点睛】本题考查已知函数存在零点求参数的取值范围,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将函数的零点转化为方程的根.19.若关于x 的不等式x 2x 1a +-->的解集不是空集,则实数a 的取值范围是( )A .()3,∞B .()3,∞-C .(),3∞-D .(),3∞--【答案】C【解析】x 2x 1+--表示数轴上的x 对应点到2-和1对应点的距离之差,其最大值为3,故当3a >时,关于x 的不等式x 2x 1a +-->的解集不是空集,故实数a 的取值范围为(),3∞-,故选C.点睛:本题主要考查了绝对值不等式的解法,以及转化与化归思想,难度一般;常见的绝对值不等式的解法,法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.20.已知,,x y z R +∈,且1x y z ++=,则222x y z ++的最小值是( )A .1B .13C .12D .3 【答案】B【解析】【分析】利用柯西不等式得出()()()2222222111x y z x y z ++++≥++,于此可得出222x y z ++的最小值。

高考数学压轴专题最新备战高考《不等式选讲》知识点总复习有解析

高考数学压轴专题最新备战高考《不等式选讲》知识点总复习有解析

【最新】数学《不等式选讲》专题解析一、141.已知集合{|||2}A x x =≥,2{|30}B x x x =->,则A B =I ( ) A .∅B .{|3x x >或2}x ?C .{|3x x >或0}x <D .{|3x x >或0}x <【答案】B 【解析】 【分析】可以求出集合A ,B ,然后进行交集的运算即可. 【详解】∵A ={x |x ≤﹣2,或x ≥2},B ={x |x <0,或x >3}, ∴A ∩B ={x |x ≤﹣2,或x >3}. 故选:B . 【点睛】考查描述法的定义,绝对值不等式和一元二次不等式的解法,以及交集的运算.2.已知点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,点(,)M a b 为平面上一点,O 为坐标原点,则当OM 取最小值时,椭圆的离心率为( )A .3B .13C .2D .3【答案】D 【解析】 【分析】点(3,1)P 在椭圆22221(0)x y a b a b +=>>上,可得22911a b +=,(,)M a b 为平面上一点,||OM =a ,b 关系,代入即可.【详解】解:点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,可得22911a b +=,(,)M a b 为平面上一点,||OM =所以||4OM ==,当且仅当223a b =时,取等号, 222213b e a =-=,e =.故选D . 【点睛】考查椭圆的性质,柯西不等式的应用,求椭圆的离心率,中档题.3.关于x 不等式2x x a a -+-≥在R 上恒成立,则实数a 的最大值是 A .0 B .1C .-1D .2【答案】B 【解析】由于|x -2|+|x -a |≥|a -2|,∴等价于|a -2|≥a ,即a ≤1.故实数a 的最大值为1.4.设a >0,b >0,且ab -(a +b)≥1,则( )A .a ++1)B .a ++1C .a -1)2D .a +b >+1)【答案】A 【解析】 【分析】2a b +.所以a b≤14 (a +b)2,所以14(a +b)2-(a +b)≥ab -(a +b)≥1,再解不等式 (a +b) 2-4(a +b)-4≥0得解. 【详解】2a b +.所以ab≤14(a +b)2. 所以14(a +b)2-(a +b)≥ab -(a +b)≥1. 所以(a +b) 2-4(a +b)-4≥0.因为a >0,b >0,所以a +b≥2+ 故答案为:A 【点睛】本题主要考查基本不等式和不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.5.已知a +b +c =1,且a , b , c >0,则 222a b b c a c +++++ 的最小值为( ) A .1 B .3C .6D .9【答案】D 【解析】2221,a b c a b b c c a ++=∴+++++Q ()1112++a b c a b b c c a ⎛⎫=⋅++ ⎪+++⎝⎭()()()()21111119a b b c c a a b b c c a ⎛⎫⎡⎤=+++++⋅++≥++= ⎪⎣⎦+++⎝⎭,当且仅当13a b c ===时等号成立,故选D.【易错点晴】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).6.已知,,x y z ∈R ,若234x y z -+=,则222(5)(1)(3)x y z ++-++的最小值为( ) A .37200B .2007C .36D .40【答案】B 【解析】 【分析】根据柯西不等式得到不等式关系,进而求解. 【详解】根据柯西不等式得到()()()()()()2222221(2)352135313x y z x y z ⎡⎤+-+≥++-+++--++⎡⎤⎣⎦⎣⎦()()()()2222511423164030x y z x y z ⎡⎤++-++≥-++=⎣⎦进而得到最小值是:2007故答案为B. 【点睛】这个题目考查了柯西不等式的应用,比较基础.7.如果关于x 的不等式34x x a -+-<的解集不是空集,则参数a 的取值范围是( ) A .()1,+∞ B .[)1,+∞C .(),1-∞D .(],1-∞ 【答案】A【解析】 【分析】先求|x-3|+|x-4|的最小值是1,即得解. 【详解】由题得|x-3|+|x-4|<a 有解,由绝对值三角不等式得|x-3|+|x-4|≥|x -3-x+4|=1, 所以|x-3|+|x-4|的最小值为1, 所以1<a,即a >1. 故选:A 【点睛】本题主要考查绝对值三角不等式求最值,考查不等式的有解问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.若关于x 的不等式43x x a -++<有实数解,则实数a 的取值范围是( ) A .(7,)+∞ B .[)7,+∞C .(1,)+∞D .(1,7)【答案】A 【解析】 【分析】利用绝对值的意义可求得43x x -++的最小值为7,由此可得实数a 的取值范围,得到答案. 【详解】由题意43x x -++表示数轴上的x 对应点到4和3-对应点的距离之和,其最小值为7,再由关于x 的不等式43x x a -++<有实数解,可得7a >, 即实数x 的取值范围是(7,)+∞,故选A. 【点睛】本题主要考查了绝对值的意义,以及函数绝对值不等式的有解问题,其中根据绝对值的意义,求得43x x -++的最小值为7是解得关键,着重考查了推理与运算能力,属于中档试题.9.若关于x 的不等式23ax -<的解集为5133x x ⎧⎫-<<⎨⎬⎩⎭,则a =( ) A .2- B .2 C .3D .3-【答案】D 【解析】 【分析】由绝对值不等式的性质可知,()22329ax ax -⇔-<<,从而可得到()229ax -=的两个解为2151,33x x -==,即可求出a 的值. 【详解】由题意可知0a ≠,()22329ax ax -⇔-<<,即22450a x ax --<, 故一元二次方程22450a x ax --=的解为2151,33x x -==, 则1212224455,39a x x x x a a +==-=-=-,解得3a =-. 故答案为D. 【点睛】本题主要考查了绝对值不等式的解法,考查了学生的计算能力,属于基础题.10.设x ∈R ,则“31x <”是“1122x -<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】分别求解三次不等式和绝对值不等式确定x 的取值范围,然后考查充分性和必要性是否成立即可. 【详解】 由31x <可得1x <, 由1122x -<可得01x <<, 据此可知“31x <”是“1122x -<”的必要而不充分条件.故选B . 【点睛】本题主要考查不等式的解法,充分性与必要性的判定等知识,意在考查学生的转化能力和计算求解能力.11.已知函数()222,2log 1,2x x x f x x x ⎧-+≤=⎨->⎩,设12116n x x x ≤<<<≤L ,若()()()()()()12231n n f x f x f x f x f x f x M --+-++-≤L ,则M 的最小值为( )A .3B .4C .5D .6【答案】B 【解析】 【分析】作出函数的图象,由已知分段函数求得f (1)1=,f (2)0=,(16)3f =,等价于12231max [|()()||()()||()()|]n n M f x f x f x f x f x f x -∴≥-+-+⋯+-,再求出不等式右边的最大值即可得M 的最小值. 【详解】由222,2()log 1,2x x x f x x x ⎧-+=⎨->⎩„,得f (1)1=,f (2)0=,(16)3f =.12116n x x x <<⋯<Q 剟,12231|()()||()()||()()|n n M f x f x f x f x f x f x -∴-+-+⋯+-… 12231max[|()()||()()||()()|]n n M f x f x f x f x f x f x -∴≥-+-+⋯+-12231|()()||()()||()()||(1)(2)||(2)(16)=|10||30|4n n f x f x f x f x f x f x f f f f --+-+⋯+-≤-+--+-=∴4M ≥. 则M 的最小值为4. 故选:B . 【点睛】本题考查分段函数及其应用,考查三角绝对值不等式的应用,意在考查学生对这些知识的理解掌握水平.12.不等式21x x a <-+的解集是区间()3,3-的子集,则实数a 的取值范围是( )A .5a ≤B .554a -≤≤C .574a -≤≤D .7a ≤【答案】A 【解析】 【分析】原不等式等价于210x x a ---<,设()21f x x x a =---,则由题意得()()350370f a f a ⎧-=-≥⎪⎨=-≥⎪⎩,解之即可求得实数a 的取值范围. 【详解】不等式等价于210x x a ---<,设()21f x x x a =---,因为不等式21x x a <-+的解集是区间()3,3-的子集,所以()()350370f a f a ⎧-=-≥⎪⎨=-≥⎪⎩,解之得5a ≤.故选:A. 【点睛】本题主要考查绝对值不等式的解法、二次函数的性质,体现化归与等价转化思想,属中等难度题.13.不等式230x x -<的解集为( )A .{}03x x << B .{}3003x x x -<<<<或C .{}30x x -<<D .{}33x x -<<【答案】B 【解析】 【分析】将不等式表示为230x x -<,得出03x <<,再解该不等式可得出解集. 【详解】将原不等式表示为230x x -<,解得03x <<,解该不等式可得30x -<<或03x <<.因此,不等式230x x -<的解集为{}3003x x x -<<<<或,故选:B.【点睛】本题考查二次不等式的解法与绝对值不等式的解法,考查运算求解能力,属于中等题.14.若,,a b c ∈R ,则下列结论中: (1)2211a a a a+≥+;(2)a b a c b c -≤-+-; (3)若a b >,则11a b a b>++;(4)若1a b +=,则2221a b a b +++的最小值为 其中正确结论的个数为( )A .1B .2C .3D .4【答案】B 【解析】 【分析】利用函数知识、换元法、绝对值不等式等知识,对选项进行一一推理证明,即可得答案. 【详解】 对(1),2221111()()20a a a a a a a a +≥+⇔+-+-≥,∴12a a +≥或11a a+≤-, ∵12a a +≥或12a a+≤-,∴原不等式成立,故(1)正确;对(2),∵()()a b a c b c a c b c -=---≤-+-,故(2)正确; 对(3),令1,52a b =-=-,则51,114a b a b =-=++,显然11a b a b>++不成立,故(3)错误;对(4),∵1a b +=,∴222222(1)231111a b b b b a b b b b+-+++=+=+-+-,当1b >时,2301b b+<-,∴2221a b a b +++的最小值为4)错误. 故选:B. 【点睛】本题考查函数与不等式的知识,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意消元法、换元法的使用.15.设x,y,z 是互不相等的正数,则下列不等式中不恒成立的是( ) A .2211x x x x++≥B C .12x y x y-+≥- D .x y x z y z -≤-+-【答案】C 【解析】 【分析】 【详解】试题分析:x y x z z y x z z y x z y z -=-+-≤-+-=-+-,故D 恒成立; 由于函数()1f x x x=+,在(]0,1单调递减;在[)1,+∞单调递增, 当1x >时, ()()221,x x f x f x >>>即2211x x x x+>+,当01x <<,()()2201,x x f x f x <<即2211x x x x++≥正确,即A 正确;=<=,故B 恒成立,若1x y -=-,不等式12x y x y-+≥-不成立, 故C 不恒成立,故选C . 考点:1、基本不等式证明不等式;2、单调性证明不等式及放缩法证明不等式.16.若关于x 的不等式2x m n -<的解集为(,)αβ,则αβ-的值( ) A .与m 有关,且与n 有关 B .与m 有关,但与n 无关 C .与m 无关,且与n 无关 D .与m 无关,但与n 有关【答案】D 【解析】 【分析】根据题意先解出不等式2x m n -<的解集,再根据解集求出αβ-的值,即可判断其与,m n 之间的关系.【详解】2222m n m nx m n n x m n x -+-<⇒-<-<⇒<<Q ,22m n m nαβ∴-+==22m n m nn αβ-+-∴==-- 因此,αβ-的值与m 无关,但与n 有关.故选:D. 【点睛】本题主要考查绝对值不等式的解法,形式如(0)x m a a -<> 的绝对值不等式,可以转化为a x m a -<-< 的简单不等式进行求解.17.已知三个正实数a 、b 、c 满足1a b c ++=,给出以下几个结论:①22213a b c ++≤;②13ab bc ca ++≤;③2221b c a a b c++≥;≥.则正确的结论个数为( ) A .1 B .2C .3D .4【答案】B 【解析】 【分析】利用基本不等式及柯西不等式计算可得; 【详解】解:①:Q 222222222a b ab b c bc a c ac ⎧+⎪+⎨⎪+⎩………,222a b c ab bc ac ∴++++…2222222()2223()a b c a b c ab ac bc a b c ∴++=+++++++„.22213a b c ∴++…,故①不正确.②:由2222()2()3()a b c a b c ab bc ac ab bc ac ++=+++++++…,13ab bc ca ∴++„,故②正确.③:Q 222222b a b a c b c b a c c c⎧+⎪⎪⎪+⎨⎪⎪+⎪⎩………,∴2221b c aa b c a b c ++++=… ∴2221b c a a b c++…,故③正确. ④:由柯西不等式得2()(111)a b c ++++,∴≤.则④错误.故选:B . 【点睛】本题考查利用基本不等式即柯西不等式证明不等式,属于中档题.18.已知,,a b c R +∈ ,则()()()222222a abc b b ac c c ab -+-+- 的正负情况是( )A .大于零B .大于等于零C .小于零D .小于等于零【答案】B 【解析】【分析】设0a b c >厖,所以333a b c 厖,根据排序不等式即可得出答案.【详解】设0a b c >厖,所以333a b c 厖根据排序不等式得333333a a b b c c a b b c c a ⋅+⋅+⋅++…又ab ac bc 厖,222a b c 厖,所以333222a b b c c a a bc b ca c ab ++++….所以444222a b c a bc b ca c ab ++++…即()()()2222220a a bc b b ac c c ab -+-+-…. 故选:B【点睛】本题主要考查了排序不等式的应用,属于中档题.19.已知数列{}n a 的前n 项和2n S n =,数列{}n b 满足()1log 01n n a na b a a +=<<,n T 是数列{}n b 的前n 项和,若11log 2n a n M a +=,则n T 与n M 的大小关系是( ) A .n n T M ≥B .n n T M >C .n n T M <D .n n T M ≤ 【答案】C【解析】【分析】 先求出2462log ()13521n a n T n =⨯⨯⨯-L,log n a M =,再利用数学归纳法证明*1321)242n n N n -⨯⨯⋯⨯<∈即得解. 【详解】因为2n S n =,所以11=1,21(2)n n n a a S S n n -=-=-≥适合n=1,所以=21n a n -. 所以2log 21n an b n =-, 所以24622462log log log log log ()1352113521n a a a a a n n T n n =+++=⨯⨯⨯--L111log =log (21)log 22n a n a a M a n +=+=下面利用数学归纳法证明不等式*1321)242n n N n -⨯⨯⋯⨯∈ (1)当1n =时,左边12=,右边=<右边,不等式成立,(2)22414n n -<Q ,即2(21)(21)(2)n n n +-<.即212221n n n n -<+, ∴21222223k k k k ++<++, ∴2123k k +<+, 假设当n k =时,原式成立,即112123221k k k -⨯⨯⋯⨯<+, 那么当1n k =+时,即11212121212322(1)2(1)2123k k k k k k k k k -+++⨯⨯⋯⨯⨯<=<++++g , 即1n k =+时结论成立.根据(1)和(2)可知不等式对任意正整数n 都成立.所以24622113521n n n ⨯⨯⨯>+-L , 因为0<a <1,所以2462log ()log 2113521a a n n n ⨯⨯⨯<+-L, 所以n n T M <.故选:C【点睛】本题主要考查数列通项的求法,考查对数的运算和对数函数的性质,考查数学归纳法,意在考查学生对这些知识的理解掌握水平.20.若,则不等式的解集为 A . B . C . D .【答案】D【解析】【分析】由绝对值三角不等式的性质得出,由,得出,借助正弦函数图象可得出答案。

高考数学压轴专题最新备战高考《不等式选讲》知识点总复习含答案

高考数学压轴专题最新备战高考《不等式选讲》知识点总复习含答案

【最新】数学《不等式选讲》期末复习知识要点一、141.已知()f x 是定义在R 上的偶函数,且在区间(],0-∞上单调递增,若实数m 满足321(log (211))(log )2f m f -+>,则m 的取值范围是( )A .13(,)(,)22-∞-+∞U )B .3(,)2-∞ C .1(,)2-+∞ D .13(,)22-【答案】D 【解析】 【分析】不等式等价于()()()3log 2111f m f -+>,利用函数是偶函数和其单调性可知()3log 2111m -+<,转化为解对数和含绝对值的不等式.【详解】()f x Q 是偶函数,()()21log 112f f f ⎛⎫∴=-= ⎪⎝⎭,即不等式等价于()()()3log 2111f m f -+>()3log 2110m -+≥Q ,Q ()f x 是定义在R 上的偶函数,且在区间(],0-∞上单调递增,()f x ∴在[)0,+∞单调递减, ()3log 2111m ∴-+<,即2113m -+<,整理为:212m -< ,2212m ∴-<-<,解得:1322m -<<.故选:D 【点睛】本题考查利用函数的性质解不等式,主要考查转化与化归的思想和计算能力,属于中档题型,一般利用函数是偶函数,并且已知函数在区间上的单调性时,()()()()1212f x f x f x f x >⇒>,然后利用()0,∞+或[)0,+∞的单调性解不等式.2.不等式2124x x a a +--≥-的解集为R ,则实数a 的取值范围是( )A .(][),13,-∞+∞UB .()(),13,-∞⋃+∞C .[]1,3D .()1,3【答案】C 【解析】 【分析】令()12f x x x =+--,通过对x 的取值范围的讨论,去掉绝对值符号,可求得()min 3f x =,依题意,即可求得实数a 的取值范围.【详解】令()12f x x x =+--,当1x <-时,()()123f x x x =----+=-;当12x -≤≤时,()()[]12213,3f x x x x =+--+=-∈-; 当2x >时,()()123f x x x =+--=; ∴()min 3f x =-.∵不等式2124x x a a +--≥-的解集为R , ∴()2min 43a a f x -≤=-,即实数a 的取值范围是[]1,3.故选C. 【点睛】本题考查绝对值不等式的解法,考查函数恒成立问题,解题方法是转化为求函数最值,然后解不等式.3.关于x 不等式2x x a a -+-≥在R 上恒成立,则实数a 的最大值是 A .0 B .1C .-1D .2【答案】B 【解析】由于|x -2|+|x -a |≥|a -2|,∴等价于|a -2|≥a ,即a ≤1.故实数a 的最大值为1.4.325x -≥不等式的解集是( ) A .{|1}x x ≤- B .{|14}x x -≤≤C .{|14}x x x ≤-≥或D .{|4}x x ≥【答案】C【解析】 【分析】根据绝对值定义化简不等式,求得解集. 【详解】因为325x -≥,所以325x -≥或325x -≤-,即14x x ≤-≥或,选C. 【点睛】本题考查含绝对值不等式解法,考查基本求解能力.5.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是 ( ) A .|a+b|+|a-b|>2 B .|a+b|+|a-b|<2 C .|a+b|+|a-b|=2 D .不能比较大小【答案】B 【解析】选B.当(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2, 当(a+b)(a-b)<0时,|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2.6.已知a ,b 均为正数,且20ab a b --=,则22214a b a b-+-的最小值为( )A .6B .7C .8D .9 【答案】B 【解析】 【分析】a ,b 均为正数,且ab ﹣a ﹣2b =0,可得21a b+=1,根据柯西不等式求出代数式的最小值即可. 【详解】∵a ,b 均为正数,且ab ﹣a ﹣2b =0, ∴21a b+=1. 则22214a b a b-+- 24a =+b 2﹣1, 又因为2a +b =(21a b +)(2a +b )22b a a b=++2≥2+2=4,当且仅当a =4,b =2时取等号.∴(24a +b 2)(1+1)≥(2a +b )2≥16,当且仅当a =4,b =2时取等号.∴24a +b 2≥8, ∴224a a-+b 2214a b -=+b 2﹣1≥7.故选:B . 【点睛】本题考查“乘1法”、基本不等式的性质、柯西不等式,考查了推理能力与计算能力,属于中档题.7.设0x 为函数()sin f x x π=的零点,且满足001()112x f x ++<,则这样的零点有( ) A .18个 B .19个C .20个D .21个【答案】D 【解析】从题设可得00()x k x k k Z ππ=⇒=∈,又001()sin()sin()(1)222k f x x k ππππ+=+=+=-,故(1)11k k +-<,当k 取奇数时,12k <,则1,3,5,7,9,11k =±±±±±±,共12个数;当k 取偶数时,10k <,则0,2,4,6,8k =±±±±,共9个数,所以这样的零点的个数共有21个,应选答案D 。

高考数学压轴专题新备战高考《不等式选讲》全集汇编附答案解析

高考数学压轴专题新备战高考《不等式选讲》全集汇编附答案解析

数学《不等式选讲》高考复习知识点一、141.已知全集U =R ,{|13}P x x x =+-<,{|213}Q x x =-<,则集合P ,Q 之间的关系为( )A .集合P 是集合Q 的真子集B .集合Q 是集合P 的真子集C .P Q =D .集合P 是集合Q 的补集的真子集【答案】C 【解析】 【分析】先化简得{|12}P x x =-<<.求出{||21|3}{|12}Q x x x x =-<=-<<,由此得到P Q =. 【详解】 |||1|3x x +-<Q ,∴当0x „时,|||1|1213x x x x x +-=-+-=-+<,解得1x >-.10x ∴-<„;当01x <„时,|||1|113x x x x +-=+-=<,成立;当1x >时,|||1|1213x x x x x +-=+-=-<,解得2x <.12x ∴<<. {|12}P x x ∴=-<<.{||21|3}{|12}Q x x x x =-<=-<<, P Q ∴=.故选:C . 【点睛】本题考查两个集合的关系的判断,考查集合与集合的包含关系等基础知识,考查运算求解能力,是基础题.2.设2sin1sin 2sin 222n n na =++⋅⋅⋅+,对任意正整数m 、n (m >n )都成立的是( ). A .12n m ma a -< B .12n m ma a ->C .12n m na a -<D .12n m na a ->【答案】C 【解析】 【分析】先作差,再根据三角函数有界性放缩,进而根据等比数列求和确定选项. 【详解】212sin1sin 2sin sin(1)sin(2)sin 222222n m n n n n mn n n ma a a ++++=++⋅⋅⋅+∴-=++⋅⋅⋅+Q 12sin(1)sin(2)sin ||||222m n n n mn n ma a ++++∴-=++⋅⋅⋅+12sin(1)sin(2)sin ||||||222n n mn n m++++≤++⋅⋅⋅+ 11211(1)11111122122222212n m n n n m n m n +-++-≤++⋅⋅⋅+==-<- 故选:C 【点睛】本题考查三角函数有界性、等比数列求和以及放缩法,考查综合分析求解与论证能力,属中档题.3.2018年9月24日,英国数学家.M F 阿帝亚爵在“海德堡论坛”展示了他“证明”黎曼猜想的过程,引起数学界震动,黎曼猜想来源于一些特殊数列求和,记222111123S n =+++++L L ,则( ) A .413S << B .4332S << C .322S << D .2S >【答案】C 【解析】 【分析】由题意,可知21111111(2,)1(1)(1)1n n N n n n n n n n n n+-=<<=-≥∈++--,利用放缩法和极限,即可得到答案. 【详解】由题意,可知21111111(2,)1(1)(1)1n n N n n n n n n n n n+-=<<=-≥∈++--, 所以2221111111113111()()()232334121n S n n n n =+++++>+-+-++-=-++L L L 22211111111111(1)()()2232231n S n n n nL L =++++<+-+-++-=--, 当n →+∞且n N +∈时,101n →+,且10n →,所以322S <<,故选C. 【点睛】本题主要考查了数列思想的应用问题,其中解答中,认真审题,利用21n 进行合理放缩,再利用极限求解是解答本题的关键,着重考查了分析问题和解答问题的能力,以及放缩思想的应用,属于中档试题.4.已知集合{}|11A x x =-<,1|10B x x ⎧⎫=-≥⎨⎬⎩⎭,则A B =∩( ) A .{}|12x x ≤< B .{}|02x x << C .{}|01x x <≤ D .{}|01x x <<【答案】A 【解析】1111102x x x -<⇔-<-<⇔<<,()1011100{0x x x x x x -≥--≥⇒≥⇒≠,解得0,1x x <≥,故[)1,2A B ⋂=.点睛:本题主要考查绝对值不等式的解法,考查分式不等式的解法,考查集合交集等知识.解含有一个绝对值不等式,只需要按照口诀“大于在两边,小于在中间”来解即可.解分式不等式主要方法就是通过通分后,转化为整式不等式来求解,在转化的过程中要注意分母不为零这个特殊情况.5.在平面内,已知向量(1,0)a =v,(0,1)b =v,(1,1)c =v,若非负实数,,x y z 满足1x y z ++=,且23p xa yb zc =++v v v v,则( )A .p vB .p v的最大值为C .p vD .p v的最大值为【答案】A 【解析】 【分析】求出p v 的坐标,表示p v ,即:p v柯西不等式即可求得其最小值,问题得解. 【详解】因为()1,0a =v ,()0,1b =v ,()1,1c =v,所以23p xa yb zc =++v v v v=()3,23x z y z ++,又非负实数,,x y z 满足1x y z ++=,所以01z ≤≤,所以pv ==5≥==≥=,当且仅当()()31232,0x z y z z +⨯=+⨯=时,等号成立. 即:当且仅当41,,055x y z ===时,等号成立.所以p v, 故选A. 【点睛】本题主要考查了柯西不等式的应用,还考查了向量的模及坐标运算,考查构造能力,属于中档题.6.已知2(3)f x x x =+,若1x a -≤,则下列不等式一定成立的是( ) A .33()()f x f a a -≤+ B .24()()f x f a a -≤+ C .()()5f x f a a -≤+ D .2|()()2|(1)f x f a a -≤+【答案】B 【解析】 【分析】先令a=0,排除A ,C,D,再利用绝对值三角不等式证明选项B 成立 【详解】令a=0,则1x ≤,即-1≤x≤1,()()()()()0?f x f a f x f f x -=-=≤4,此时A,C,D 不成立,下面证明选项B 成立()()22 33f x f a x x a a -=+--=()() 3x a x a -++≤()()3x a x a -++≤()3x a ++=23x a a -++≤23x a a -++≤24a +故选:B . 【点睛】本题考查了绝对值三角不等式的应用,特值法,结合二次函数最值分析问题,准确推理计算是关键,是基础题.7.设0x 为函数()sin f x x π=的零点,且满足001()112x f x ++<,则这样的零点有( ) A .18个 B .19个C .20个D .21个【答案】D 【解析】从题设可得00()x k x k k Z ππ=⇒=∈,又001()sin()sin()(1)222k f x x k ππππ+=+=+=-,故(1)11k k +-<,当k 取奇数时,12k <,则1,3,5,7,9,11k =±±±±±±,共12个数;当k 取偶数时,10k <,则0,2,4,6,8k =±±±±,共9个数,所以这样的零点的个数共有21个,应选答案D 。

高考数学压轴专题新备战高考《不等式选讲》知识点总复习附解析

高考数学压轴专题新备战高考《不等式选讲》知识点总复习附解析

高中数学《不等式选讲》期末考知识点一、141.已知不等式1x m -<成立的一个充分非必要条件是1132x ≤≤,则实数m 的取值范围是( ) A .14,23⎡⎤-⎢⎥⎣⎦B .14,23⎛⎫-⎪⎝⎭C .1,2⎛⎫-∞-⎪⎝⎭D .4,3⎡⎫+∞⎪⎢⎣⎭【答案】B 【解析】 【分析】先求得不等式1x m -<解集,结合题意,列出不等式组113112m m ⎧-<⎪⎪⎨⎪+>⎪⎩,即可求解.【详解】由题意,不等式1x m -<,解得11m x m -<<+, 因为不等式1x m -<成立的一个充分非必要条件是1132x ≤≤, 则113112m m ⎧-<⎪⎪⎨⎪+>⎪⎩,解得1423m -<<,即实数m 的取值范围是14,23⎛⎫- ⎪⎝⎭.故选B . 【点睛】本题主要考查了绝对值不等式的求解,以及利用充分不必要条件求解参数问题,其中解答中正确求解不等式的解集,集合充分不必要条件,列出不等式组是解答的关键,着重考查了推理与运算能力,属于基础题.2.函数y =|x -3|-|x +1|的( ) A .最小值是0,最大值是4 B .最小值是-4,最大值是0 C .最小值是-4,最大值是4 D .没有最大值也没有最小值【答案】C 【解析】因为y =|x -3|-|x +1|4,322,134,1x x x x -≥⎧⎪=--<<⎨⎪≤-⎩,所以最小值是-4,最大值是4,选C.点睛:分段函数的最值由于分段函数在定义域不同的子区间上对应不同的解析式,因而求其最值的常用方法是先求出分段函数在每一个子区间上的最值,然后取各区间上最大值中的最大者作为分段函数的最大值,各区间上最小值中的最小者作为分段函数的最小值.3.已知函数()1f x x x a =++-,若()2f x ≥恒成立,则a 的取值范围是( ) A .(][),22,-∞-+∞U B .(][),31,-∞-+∞U C .(][),13,-∞-+∞U D .(][),04,-∞+∞U【答案】B 【解析】 【分析】利用绝对值三角不等式确定()f x 的最小值;把()2f x ≥恒成立的问题,转化为其等价条件去确定a 的范围。

高考数学压轴专题新备战高考《不等式》知识点总复习含解析

高考数学压轴专题新备战高考《不等式》知识点总复习含解析

《不等式》知识点汇总(1)一、选择题1.设x ,y 满足102024x x y x y -≥⎧⎪-≤⎨⎪+≤⎩,向量()2,1a x =r ,()1,b m y =-r ,则满足a b ⊥r r 的实数m的最小值为( ) A .125B .125-C .32D .32-【答案】B 【解析】 【分析】先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可. 【详解】解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r,由a b ⊥r r得20x m y +-=,∴当直线经过点C 时,m 有最小值,由242x y x y +=⎧⎨=⎩,得8545x y ⎧=⎪⎪⎨⎪=⎪⎩,∴84,55C ⎛⎫ ⎪⎝⎭,∴416122555m y x =-=-=-, 故选:B.【点睛】本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.2.在下列函数中,最小值是2的函数是( ) A .()1f x x x=+B .1cos 0cos 2y x x x π⎛⎫=+<< ⎪⎝⎭C .()2f x =D .()42xxf x e e =+- 【答案】D 【解析】 【分析】根据均值不等式和双勾函数依次计算每个选项的最小值得到答案. 【详解】 A. ()1f x x x=+,()122f -=-<,A 错误; B. 1cos 0cos 2y x x x π⎛⎫=+<< ⎪⎝⎭,故()cos 0,1x ∈,2y >,B 错误; C. ()2f x ==,故()f x ≥,C 错误; D. ()4222xx f x e e =+-≥=,当4xx e e=,即ln 2x =时等号成立,D 正确. 故选:D . 【点睛】本题考查了均值不等式,双勾函数求最值,意在考查学生的计算能力和应用能力.3.已知,x y 满足约束条件23023400x y x y y -+≥⎧⎪-+≤⎨⎪≥⎩,若目标函数2z mx ny =+-的最大值为1(其中0,0m n >>),则112m n+的最小值为( ) A .3 B .1C .2D .32【答案】D 【解析】 【分析】画出可行域,根据目标函数z 的最大值求得,m n 的关系式23m n +=,再利用基本不等式求得112m n +的最小值. 【详解】画出可行域如下图所示,由于0,0m n >>,所以基准直线0mx ny +=的斜率为负数,故目标函数在点()1,2A 处取得最大值,即221m n +-=,所以23m n +=.()11111151519322323232322n m m n m n m n m n ⎛⎛⎫⎛⎫+=⨯+⨯+=⨯++≥⨯+=⨯= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当,1n mm n m n ===时等号成立,所以112m n +的最小值为32. 故选:D【点睛】本小题主要考查根据目标函数的最值求参数,考查基本不等式求最值,考查数形结合的数学思想方法,属于中档题.4.已知关于x 的不等式()()222240m x m x -+-+>得解集为R ,则实数m 的取值范围是( ) A .()2,6B .()(),26,-∞+∞UC .(](),26,-∞⋃+∞D .[)2,6【答案】D 【解析】 【分析】分20m -=和20m -≠两种情况讨论,结合题意得出关于m 的不等式组,即可解得实数m 的取值范围.【详解】当20m -=时,即当2m =时,则有40>,该不等式恒成立,合乎题意;当20m -≠时,则()()220421620m m m ->⎧⎪⎨∆=---<⎪⎩,解得26m <<. 综上所述,实数m 的取值范围是[)2,6. 故选:D. 【点睛】本题考查利用变系数的二次不等式恒成立求参数,要注意对首项系数是否为零进行分类讨论,考查运算求解能力,属于中等题.5.若实数,,a b c ,满足222a b a b ++=,2222a b c a b c ++++=,,则c 的最大值是( ) A .43B .2log 3C .25D .24log 3【答案】D 【解析】 【分析】利用基本不等式求出2a b+的最小值后可得221a ba b ++-的最大值,从而可得2c 的最大值,故可得c 的最大值. 【详解】因为222a b a b ++=,故222a b a b ++=≥= 整理得到24a b +≥,当且仅当1a b ==时等号成立. 又因为2222abca b c++++=,故2114211212133a b ca b a b +++==+≤+=--,当且仅当1a b ==时等号成立,故max 24log 3c =. 故选:D. 【点睛】本题考查基本不等式的应用以及指数不等式的解,应用基本不等式求最值时,需遵循“一正二定三相等”,如果多变量等式中有和式和积式的关系,则可利用基本不等式构造关于和式或积式的不等式,通过解不等式来求最值,求最值时要关注取等条件的验证.6.若,x y 满足4,20,24,x y x y x y +≤⎧⎪-≥⎨⎪+≥⎩则4y x -的最大值为( )A .72-B .52-C .32-D .1-【答案】D 【解析】 【分析】画出平面区域,结合目标函数的几何意义,求解即可. 【详解】该不等式组表示的平面区域,如下图所示4y x-表示该平面区域中的点(),x y 与(0,4)A 确定直线的斜率 由斜率的性质得出,当区域内的点为线段AB 上任意一点时,取得最大值.不妨取84(,)33B 时,4y x -取最大值443183-=- 故选:D 【点睛】本题主要考查了求分式型目标函数的最值,属于中档题.7.对于函数()f x ,若12,x x 满足()()()1212f x f x f x x +=+,则称12,x x 为函数()f x 的一对“线性对称点”.若实数a 与b 和+a b 与c 为函数()3xf x =的两对“线性对称点”,则c的最大值为( ) A .3log 4 B .3log 41+C .43D .3log 41-【答案】D 【解析】 【分析】根据已知有333b c a b c a ++++=,可得13131ca b+=+-,只需求出3a b +的最小值,根据333a b a b +=+,利用基本不等式,得到3a b +的最小值,即可得出结论.【详解】依题意知,a 与b 为函数()3xf x =的“线性对称点”,所以33323323a b a b a b a b ++=+=≥⋅ 故34a b +≥(当且仅当a b =时取等号).又+a b 与c 为函数()3xf x =的“线性对称点,所以333b c a b c a ++++=,所以3143131313a b ca b a b +++==+≤--,从而c 的最大值为3log 41-. 故选:D. 【点睛】本题以新定义为背景,考查指数函数的运算和图像性质、基本不等式,理解新定义含义,正确求出c 的表达式是解题的关键,属于中档题.8.若实数x ,y 满足40,30,0,x y x y y --≤⎧⎪-≥⎨⎪≥⎩,则2x y y +=的最大值为( )A .512B .8C .256D .64【答案】C 【解析】 【分析】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可,根据图像平移得到答案. 【详解】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可, 观察图像可知,当直线x y m +=过点()6,2A 时m 取到最大值8, 故2x yy +=的最大值为256.故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.9.若33log (2)1log a b ab +=+42a b +的最小值为( )A .6B .83C .163D .173【答案】C 【解析】【分析】由33log (2)1loga b ab +=+,得213b a+=,且0,0a b >>,又由12142(42)3a b a b b a ⎛⎫+=++ ⎪⎝⎭,展开之后利用基本不等式,即可得到本题答案.【详解】因为33log (2)1loga b ab +=+,即()()3333log 2log 3log log 3a b ab ab +=+=,所以,23a b ab +=,等式两边同时除以ab 得213b a+=,且0,0a b >>, 所以12118211642(42)()(8)(8216)3333a b a b a b b a b a +=++=++≥+=, 当且仅当82a b b a=,即2b a =时取等号,所以42a b +的最小值为163.故选:C. 【点睛】本题主要考查利用基本不等式求最值,其中涉及对数的运算,考查计算能力,属于中等题.10.抛物线的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足23AFB π∠=,设线段AB 的中点M 在l 上的投影为N ,则MN AB 的最大值是( )A .34 B .33C .32D 3【答案】B 【解析】 【分析】 【详解】试题分析:设,A B 在直线l 上的投影分别是11,A B ,则1AF AA =,1BF BB =,又M 是AB 中点,所以111()2MN AA BB =+,则1112MN AA BB AB AB +=⋅2AF BF AB +=,在ABF ∆中222AB AF BF =+22cos3AF BF π-22AF BF AF BF =++2()AF BF AF BF =+-2()AF BF ≥+2()2AF BF +-23()4AF BF =+,所以22()43AF BF AB+≤,即23AF BF AB +≤,所以3MN AB ≤,故选B .考点:抛物线的性质.【名师点晴】在直线与抛物线的位置关系问题中,涉及到抛物线上的点到焦点的距离,焦点弦长,抛物线上的点到准线(或与准线平行的直线)的距离时,常常考虑用抛物线的定义进行问题的转化.象本题弦AB 的中点M 到准线的距离首先等于,A B 两点到准线距离之和的一半,然后转化为,A B 两点到焦点F 的距离,从而与弦长AB 之间可通过余弦定理建立关系.11.已知函数()2814f x x x =++,()()2log 4g x x =,若[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立,则a 的最大值为( )A .-4B .-3C .-2D .-1【答案】C 【解析】 【分析】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立得:()f x 的值域为()g x 的值域的子集,从而28142a a ++≤,故可求a 的最大值为2-.【详解】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立, 得:()f x 的值域为()g x 的值域的子集,由()()2log 4g x x =(]20,1x ∈()2g x ⇒≤ ,所以(](),2g x ∈-∞ 当43a --≤≤ 时,()21f x-#-,此时()f x 的值域为()g x 的值域的子集成立.当3a >-时,()22814f x a a -≤≤++,须满足()f x 的值域为()g x 的值域的子集,即28142a a ++≤,得62a -≤≤- 所以a 的最大值为2-. 故选:C. 【点睛】本题主要考查恒成立和存在性问题,注意把两类问题转化为函数值域的包含关系,此问题属于中档题目.12.若变量x ,y 满足2,{239,0,x y x y x +≤-≤≥则x 2+y 2的最大值是A .4B .9C .10D .12【答案】C 【解析】试题分析:画出可行域如图所示,点A (3,-1)到原点距离最大,所以22max ()10x y +=,选C.【考点】简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间的距离等,考查考生的绘图、用图能力,以及应用数学知识解决实际问题的能力.13.若实数x ,y ,对任意实数m ,满足()()222122211x y m x y m x y m ⎧-≤-⎪⎪+≥+⎨⎪-+-≤⎪⎩,则由不等式组确定的可行域的面积是( ) A .14π B .12πC .πD .32π 【答案】A 【解析】 【分析】画出约束条件的可行域,然后求解可行域的面积. 【详解】实数x ,y ,对任意实数m ,满足2221222(1)()1x y m x y m x y m --⎧⎪++⎨⎪-+-⎩„…„的可行域如图:可行域是扇形,14个圆,面积为:211144ππ⨯⨯=.故选:A .【点睛】本题考查线性规划的应用,考查数形结合以及计算能力,意在考查学生对这些知识的理解掌握水平.14.过抛物线24x y =的焦点F 作倾斜角为锐角的直线l ,与抛物线相交于A ,B 两点,M 为线段AB 的中点,O 为坐标原点,则直线OM 的斜率的取值范围是( )A .22⎫+∞⎪⎪⎣⎭B .[)1,+∞ C .)2,⎡+∞⎣D .[)2,+∞【答案】C 【解析】 【分析】假设直线l 方程,代入抛物线方程,利用韦达定理和直线方程求得M 点坐标,利用两点连线斜率公式和基本不等式可求得结果. 【详解】由抛物线方程知:()0,1F ,设直线l 的方程为()10y kx k =+>,代入抛物线方程得:2440x kx --=, 设点()11,A x y ,()22,B x y ,()00,M x y ,则124x x k +=,M Q 为线段AB 的中点,12022x x x k +∴==, M Q 在直线l 上,200121y kx k ∴=+=+,200211122222OMy k k k k x k k k +∴===+≥⋅=22k =时取等号), 即直线OM 斜率的取值范围为)2,⎡+∞⎣. 故选:C . 【点睛】本题考查直线与抛物线综合应用问题,涉及到利用基本不等式求解最值的问题;关键是能够结合韦达定理,利用一个变量表示出所求的斜率,进而利用基本不等式求得最值.15.已知点()2,1A ,O 是坐标原点,点(), P x y 的坐标满足:202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,设z OP OA =⋅u u u r u u u r ,则z 的最大值是( )A .2B .3C .4D .5【答案】C【解析】【分析】画出约束条件的可行域,转化目标函数的解析式,利用目标函数的最大值,判断最优解,代入约束条件求解即可.【详解】 解:由不等式组202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩可知它的可行域如下图:Q ()2,1A ,(), P x y∴2z OP OA x y =⋅=+u u u r u u u r ,可图知当目标函数图象经过点()1,2B 时,z 取最大值,即24z x y =+=.故选:C.【点睛】本题考查线性规划的应用,考查转化思想以及数形结合思想的应用,属于中档题.16.若、a b 均为实数,则“()0->ab a b ”是“0a b >>”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【分析】通过列举,和推理证明可以推出充要性.【详解】若()0ab a b ->中,取12a b --=,=,则推不出0a b >>; 若0a b >>,则0a b ->,则可得出()0ab a b ->;故“()0ab a b ->”是“0a b >>”的必要不充分条件,故选:B.【点睛】本题考查充分必要不条件的定义以及不等式的性质,可通过代入特殊值解决.17.已知2(0,0)x y xy x y +=>>,则2x y +的最小值为( )A .10B .9C .8D .7 【答案】B【解析】【分析】 由已知等式得到211x y +=,利用()2122x y x y x y ⎛⎫+=++ ⎪⎝⎭可配凑出符合基本不等式的形式,利用基本不等式求得最小值.【详解】由2x y xy +=得:211x y+= ()212222559x y x y x y x y y x ⎛⎫∴+=++=++≥+= ⎪⎝⎭(当且仅当22x y y x =,即x y =时取等号)2x y ∴+的最小值为9故选:B【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够灵活对等于1的式子进行应用,配凑成符合基本不等式的形式.18.已知等差数列{}n a 的公差0d ≠,且1313,,a a a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则263n n S a ++的最小值为( ) A .4B .3 C.2 D .2【答案】D【分析】由题意得2(12)112d d +=+,求出公差d 的值,得到数列{}n a 的通项公式,前n 项和,从而可得263n n S a ++,换元,利用基本不等式,即可求出函数的最小值. 【详解】 解:11a =Q ,1a 、3a 、13a 成等比数列,2(12)112d d ∴+=+.得2d =或0d =(舍去),21n a n ∴=-,2(121)2n n n S n +-∴==, ∴()()22211426263322112n n n n S n n a n n n ++++++===+-+++. 令1t n =+,则2642223n n S t a t +=+-≥=+ 当且仅当2t =,即1n =时,∴263n n S a ++的最小值为2. 故选:D .【点睛】 本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.19.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n +的最小值为( ) A .92B .9C .6D .3 【答案】D【解析】【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】 把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=,又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=. Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225*********n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立. 12m n∴+的最小值为3. 故选:D .【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.20.已知直线22+=mx ny ()0,0m n >>过圆()()22125x y -+-=的圆心,则11m n +的最小值为( )A .1B .2C .3D .4【答案】D【解析】【分析】圆心坐标为(1,2),代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值.【详解】圆22(1)(2)5x y -+-=的圆心为(1,2),由题意可得222m n +=,即1m n +=,m ,0n >, 则1111()()24n m m n m n m n m n +=++=++…,当且仅当n m m n =且1m n +=即12m n ==时取等号,故选:D .【点睛】 本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题.。

高考数学压轴专题(易错题)备战高考《不等式选讲》知识点总复习含答案解析

高考数学压轴专题(易错题)备战高考《不等式选讲》知识点总复习含答案解析

【高中数学】高考数学《不等式选讲》解析一、141.设x ∈R ,则“31x <”是“1122x -<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】分别求解三次不等式和绝对值不等式确定x 的取值范围,然后考查充分性和必要性是否成立即可. 【详解】 由31x <可得1x <, 由1122x -<可得01x <<, 据此可知“31x <”是“1122x -<”的必要而不充分条件. 故选B . 【点睛】本题主要考查不等式的解法,充分性与必要性的判定等知识,意在考查学生的转化能力和计算求解能力.2.函数y =|x -3|-|x +1|的( ) A .最小值是0,最大值是4 B .最小值是-4,最大值是0 C .最小值是-4,最大值是4 D .没有最大值也没有最小值【答案】C 【解析】因为y =|x -3|-|x +1|4,322,134,1x x x x -≥⎧⎪=--<<⎨⎪≤-⎩,所以最小值是-4,最大值是4,选C.点睛:分段函数的最值由于分段函数在定义域不同的子区间上对应不同的解析式,因而求其最值的常用方法是先求出分段函数在每一个子区间上的最值,然后取各区间上最大值中的最大者作为分段函数的最大值,各区间上最小值中的最小者作为分段函数的最小值.3.已知()23f x x x =+,若1x a -≤,则下列不等式一定成立的是( )A .()()33f x f a a -≤+B .()()5f x f a a -≤+C .()()24f x f a a -≤+D .()()()231f x f a a -≤+【答案】C 【解析】 【分析】先表示出()()f x f a -,利用绝对值三角不等式a b a b ±≤+即可求解. 【详解】由()23f x x x =+,得()()()(3)f x f a x a x a -=-++,因为1x a -≤,所以()(3)323x a x a x a x a a -++≤++=-++,由绝对值三角不等式得232324x a a x a a a -++≤-++≤+,故()()24f x f a a -≤+一定成立.故选:C. 【点睛】本题主要考查绝对值三角不等式的灵活应用,在求最值时要注意等号成立的条件,考查逻辑推理能力,属基础题.4.设2sin1sin 2sin 222n n na =++⋅⋅⋅+,对任意正整数m 、n (m >n )都成立的是( ). A .12n m m a a -< B .12n m m a a ->C .12n m n a a -<D .12n m n a a ->【答案】C 【解析】 【分析】先作差,再根据三角函数有界性放缩,进而根据等比数列求和确定选项. 【详解】212sin1sin 2sin sin(1)sin(2)sin 222222n m n n n n mn n n ma a a ++++=++⋅⋅⋅+∴-=++⋅⋅⋅+Q 12sin(1)sin(2)sin ||||222m n n n mn n ma a ++++∴-=++⋅⋅⋅+ 12sin(1)sin(2)sin ||||||222n n mn n m ++++≤++⋅⋅⋅+ 11211(1)11111122122222212n m n n n m n m n +-++-≤++⋅⋅⋅+==-<- 故选:C 【点睛】本题考查三角函数有界性、等比数列求和以及放缩法,考查综合分析求解与论证能力,属中档题.5.325x -≥不等式的解集是( ) A .{|1}x x ≤- B .{|14}x x -≤≤C .{|14}x x x ≤-≥或D .{|4}x x ≥【答案】C 【解析】 【分析】根据绝对值定义化简不等式,求得解集. 【详解】因为325x -≥,所以325x -≥或325x -≤-,即14x x ≤-≥或,选C. 【点睛】本题考查含绝对值不等式解法,考查基本求解能力.6.2018年9月24日,英国数学家.M F 阿帝亚爵在“海德堡论坛”展示了他“证明”黎曼猜想的过程,引起数学界震动,黎曼猜想来源于一些特殊数列求和,记222111123S n =+++++L L ,则( ) A .413S << B .4332S << C .322S << D .2S >【答案】C 【解析】 【分析】由题意,可知21111111(2,)1(1)(1)1n n N n n n n n n n n n+-=<<=-≥∈++--,利用放缩法和极限,即可得到答案. 【详解】由题意,可知21111111(2,)1(1)(1)1n n N n n n n n n n n n+-=<<=-≥∈++--, 所以2221111111113111()()()232334121n S n n n n =+++++>+-+-++-=-++L L L 22211111111111(1)()()2232231n S n n n nL L =++++<+-+-++-=--, 当n →+∞且n N +∈时,101n →+,且10n →,所以322S <<,故选C. 【点睛】本题主要考查了数列思想的应用问题,其中解答中,认真审题,利用21n 进行合理放缩,再利用极限求解是解答本题的关键,着重考查了分析问题和解答问题的能力,以及放缩思想的应用,属于中档试题.7.设n *∈N) A>BC=D .不能确定【答案】B 【解析】 【分析】把两个代数式进行分子有理化,比较分母的大小可以比较出大小关系. 【详解】22-===.22-===.*n N∈ 42,31n n n n +>++>+>>><<成立,因此本题选B . 【点睛】对于二次根式的加減运算,分母有理化是常见的运算要求,但是有时分子有理化会起到意想不到的作用,尤其是在比较二个二次根式减法算式之间的大小关系时,经常会用到分子有理化这个方法.当然不等式的性质也是很重要的.8.已知,,x y z ∈R ,若234x y z -+=,则222(5)(1)(3)x y z ++-++的最小值为( ) A .37200B .2007C .36D .40【答案】B 【解析】 【分析】根据柯西不等式得到不等式关系,进而求解.根据柯西不等式得到()()()()()()2222221(2)352135313x y z x y z ⎡⎤+-+≥++-+++--++⎡⎤⎣⎦⎣⎦()()()()2222511423164030x y z x y z ⎡⎤++-++≥-++=⎣⎦进而得到最小值是:2007故答案为B. 【点睛】这个题目考查了柯西不等式的应用,比较基础.9.若关于x 的不等式23ax -<的解集为5133x x ⎧⎫-<<⎨⎬⎩⎭,则a =( ) A .2- B .2 C .3D .3-【答案】D 【解析】 【分析】由绝对值不等式的性质可知,()22329ax ax -⇔-<<,从而可得到()229ax -=的两个解为2151,33x x -==,即可求出a 的值. 【详解】由题意可知0a ≠,()22329ax ax -⇔-<<,即22450a x ax --<, 故一元二次方程22450a x ax --=的解为2151,33x x -==, 则1212224455,39a x x x x a a +==-=-=-,解得3a =-. 故答案为D. 【点睛】本题主要考查了绝对值不等式的解法,考查了学生的计算能力,属于基础题.10.若,则不等式的解集为 A .B .C .D .【答案】D 【解析】 【分析】由绝对值三角不等式的性质得出,由,得出,借助正弦函数图象可得出答案。

高考数学压轴专题专题备战高考《不等式选讲》全集汇编及答案解析

高考数学压轴专题专题备战高考《不等式选讲》全集汇编及答案解析

新数学《不等式选讲》高考知识点一、141.对任意x ∈R ,不等式22|sin ||sin |x x a a +-≥恒成立,则实数a 的取值范围是( ) A .01a ≤≤ B .11a -≤≤ C .12a -≤≤ D .22a -≤≤【答案】B 【解析】 【分析】解法一:(换元法)设sin t x =,则原不等式可化为22||||t t a a +-≥.求函数()||||||f t t t t a =++-的最小值,从而不等式2||a a ≥可得11a -≤≤.解法二:(特殊值法)代入2a =, 1a =-,排除错误选项即可. 【详解】解:解法一:(换元法)设sin t x =,则原不等式可化为22||||t t a a +-≥.令()||||||f t t t t a =++-,则min [()](0)||f t f a ==, 从而解不等式2||a a ≥可得11a -≤≤.故选B . 解法二:(特殊值法)当2a =时,因为2|sin ||sin 2|2sin 2|sin |2|sin |2x x x x x +-=-+≥+≥, 当且仅当sin 0x =时,等号成立. 此时2|sin ||sin 2|4x x +-≥不恒成立, 所以2a =不合题意,可以排除C 、D .当1a =-时,因为2|sin ||sin 1|1sin 2|sin |1|sin |1x x x x x ++=++≥+≥, 当且仅当sin 0x =时,等号成立. 此时2|sin ||sin 1|1x x ++≥恒成立, 所以1a =-符合题意,可以排除A. 故选:B 【点睛】本题考查绝对值不等式的参数问题,属于中档题,利用函数求最值的方法或者特殊值排除法都可以解题.2.关于x 不等式2x x a a -+-≥在R 上恒成立,则实数a 的最大值是 A .0 B .1C .-1D .2【答案】B 【解析】由于|x -2|+|x -a |≥|a -2|,∴等价于|a -2|≥a ,即a ≤1.故实数a 的最大值为1.3.2018年9月24日,英国数学家.M F 阿帝亚爵在“海德堡论坛”展示了他“证明”黎曼猜想的过程,引起数学界震动,黎曼猜想来源于一些特殊数列求和,记222111123S n =+++++L L ,则( ) A .413S << B .4332S << C .322S << D .2S >【答案】C 【解析】 【分析】由题意,可知21111111(2,)1(1)(1)1n n N n n n n n n n n n+-=<<=-≥∈++--,利用放缩法和极限,即可得到答案. 【详解】 由题意,可知21111111(2,)1(1)(1)1n n N n n n n n n n n n+-=<<=-≥∈++--, 所以2221111111113111()()()232334121n S n n n n =+++++>+-+-++-=-++L L L 22211111111111(1)()()2232231n S n n n nL L =++++<+-+-++-=--, 当n →+∞且n N +∈时,101n →+,且10n →,所以322S <<,故选C. 【点睛】本题主要考查了数列思想的应用问题,其中解答中,认真审题,利用21n 进行合理放缩,再利用极限求解是解答本题的关键,着重考查了分析问题和解答问题的能力,以及放缩思想的应用,属于中档试题.4.2018年9月24日,英国数学家M.F 阿帝亚爵在“海德堡论坛”展示了他“证明”黎曼猜想的过程,引起数学界震动,黎曼猜想来源于一些特殊数列求和.记无穷数列21n ⎧⎫⎨⎬⎩⎭的各项的和222111123S nL L =+++++,那么下列结论正确的是( )A .413S << B .5443S << C .322S << D .2S >【答案】C 【解析】 【分析】由2n ≥时,()2111111n n n n n<=---,由裂项相消求和以及不等式的性质可得2S <,排除D ,再由前3项的和排除A ,B ,从而可得到结论. 【详解】由2n ≥时,()2111111n n n n n<=---, 可得222111111111...11...232231n S n n n =++++<+-+-++--12n=-, n →+∞时,2S →,可得2S <,排除D ,由22111341123363++=+>,可排除,A B ,故选C. 【点睛】本题主要考查裂项相消法求数列的和,以及放缩法和排除法的应用,属于中档题. 用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法. 若结果为定值,则可采用此法. 特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性.5.如果关于x 的不等式34x x a -+-<的解集不是空集,则参数a 的取值范围是( ) A .()1,+∞ B .[)1,+∞C .(),1-∞D .(],1-∞ 【答案】A 【解析】 【分析】先求|x-3|+|x-4|的最小值是1,即得解. 【详解】由题得|x-3|+|x-4|<a 有解,由绝对值三角不等式得|x-3|+|x-4|≥|x -3-x+4|=1, 所以|x-3|+|x-4|的最小值为1, 所以1<a,即a >1. 故选:A 【点睛】本题主要考查绝对值三角不等式求最值,考查不等式的有解问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.若关于x 的不等式43x x a -++<有实数解,则实数a 的取值范围是( ) A .(7,)+∞ B .[)7,+∞C .(1,)+∞D .(1,7)【答案】A 【解析】 【分析】利用绝对值的意义可求得43x x -++的最小值为7,由此可得实数a 的取值范围,得到答案. 【详解】由题意43x x -++表示数轴上的x 对应点到4和3-对应点的距离之和,其最小值为7,再由关于x 的不等式43x x a -++<有实数解,可得7a >, 即实数x 的取值范围是(7,)+∞,故选A. 【点睛】本题主要考查了绝对值的意义,以及函数绝对值不等式的有解问题,其中根据绝对值的意义,求得43x x -++的最小值为7是解得关键,着重考查了推理与运算能力,属于中档试题.7.已知,,x y z R +∈,且1x y z ++=,则222x y z ++的最小值是( ) A .1 B .13C .12D .3【答案】B 【解析】 【分析】利用柯西不等式得出()()()2222222111x y z x y z ++++≥++,于此可得出222x y z ++的最小值。

高考数学压轴专题最新备战高考《不等式选讲》知识点总复习附答案

高考数学压轴专题最新备战高考《不等式选讲》知识点总复习附答案

【最新】数学《不等式选讲》复习资料一、141.不等式21x x a <-+的解集是区间()3,3-的子集,则实数a 的取值范围是( )A .5a ≤B .554a -≤≤C .574a -≤≤D .7a ≤【答案】A 【解析】 【分析】原不等式等价于210x x a ---<,设()21f x x x a =---,则由题意得()()350370f a f a ⎧-=-≥⎪⎨=-≥⎪⎩,解之即可求得实数a 的取值范围. 【详解】不等式等价于210x x a ---<,设()21f x x x a =---,因为不等式21x x a <-+的解集是区间()3,3-的子集,所以()()350370f a f a ⎧-=-≥⎪⎨=-≥⎪⎩,解之得5a ≤.故选:A. 【点睛】本题主要考查绝对值不等式的解法、二次函数的性质,体现化归与等价转化思想,属中等难度题.2.不等式2124x x a a +--≥-的解集为R ,则实数a 的取值范围是( ) A .(][),13,-∞+∞U B .()(),13,-∞⋃+∞ C .[]1,3 D .()1,3【答案】C 【解析】 【分析】令()12f x x x =+--,通过对x 的取值范围的讨论,去掉绝对值符号,可求得()min 3f x =,依题意,即可求得实数a 的取值范围.【详解】令()12f x x x =+--,当1x <-时,()()123f x x x =----+=-;当12x -≤≤时,()()[]12213,3f x x x x =+--+=-∈-; 当2x >时,()()123f x x x =+--=; ∴()min 3f x =-.∵不等式2124x x a a +--≥-的解集为R , ∴()2min 43a a f x -≤=-,即实数a 的取值范围是[]1,3.故选C. 【点睛】本题考查绝对值不等式的解法,考查函数恒成立问题,解题方法是转化为求函数最值,然后解不等式.3.若函数()(0)1af x ax a x =+>-在(1,)+∞上的最小值为15,函数()1=+++g x x a x ,则函数()g x 的最小值为( ).A .2B .6C .4D .1【答案】C 【解析】 【分析】当1x >,0a >时,由基本不等式可得()3≥f x a ,又()f x 最小值为15,可得出5a =,再由绝对值三角不等式()()()g =5151=4+++≥+-+x x x x x ,即可得出结果. 【详解】当1x >,0a >时,()()111=+=+-+--a a f x ax a x a x x≥a 3=a ,当且仅当2x =时等号成立,由题可得315a =,即5a =,所以()1=+++g x x a x ()()=5151=4+++≥+-+x x x x ,当且仅当()()510++≤x x 即51x -≤≤-时等号成立,所以函数()g x 的最小值为4.故选:C 【点睛】本题主要考查基本不等式:)0,0a b ab +?>,当且仅当a b =时等号成立,绝对值的三角不等式: +≥-a b a b ,当且仅当0ab ≤时等号成立.4.设2sin1sin 2sin 222n n na =++⋅⋅⋅+,对任意正整数m 、n (m >n )都成立的是( ). A .12n m ma a -< B .12n m ma a ->C .12n m na a -<D .12n m na a ->【答案】C 【解析】 【分析】先作差,再根据三角函数有界性放缩,进而根据等比数列求和确定选项.【详解】212sin1sin 2sin sin(1)sin(2)sin 222222n m n n n n m n n n ma a a ++++=++⋅⋅⋅+∴-=++⋅⋅⋅+Q 12sin(1)sin(2)sin ||||222m n n n mn n ma a ++++∴-=++⋅⋅⋅+ 12sin(1)sin(2)sin ||||||222n n mn n m ++++≤++⋅⋅⋅+ 11211(1)11111122122222212n m n n n m n m n +-++-≤++⋅⋅⋅+==-<- 故选:C 【点睛】本题考查三角函数有界性、等比数列求和以及放缩法,考查综合分析求解与论证能力,属中档题.5.设a >0,b >0,且ab -(a +b)≥1,则( ) A .a ++1) B .a ++1 C .a -1)2 D .a +b >+1)【答案】A 【解析】 【分析】2a b +.所以ab≤14 (a +b)2,所以14(a +b)2-(a +b)≥ab -(a +b)≥1,再解不等式 (a +b) 2-4(a +b)-4≥0得解. 【详解】2a b +.所以ab≤14(a +b)2. 所以14(a +b)2-(a +b)≥ab -(a +b)≥1. 所以(a +b) 2-4(a +b)-4≥0.因为a >0,b >0,所以a +b≥2+故答案为:A 【点睛】本题主要考查基本不等式和不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.6.2018年9月24日, 英国数学家M.F 阿蒂亚爵在“海德堡论坛”展示了他“证明”黎曼猜想的过程,引起数学界震动. 黎曼猜想来源于一些特殊数列求和, 记2221111.........,23S n 则()=+++++A .413S << B .4332S << C .322S << D .2S > 【答案】C 【解析】 【分析】由题意利用不等式放缩后裂项确定S 的范围即可. 【详解】由题意可知:222111123S n =+++++L L()111123341n n >+++++⨯⨯+L L 111111123341n n ⎛⎫⎛⎫⎛⎫=+-+-++-+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭L L 13122>+=,且222111123S n =+++++L L()111112231n n <+++++⨯⨯-⨯L L 11111112231n n L L ⎛⎫⎛⎫⎛⎫=+-+-++-+ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭122n L =-+<,综上可得:322S <<. 本题选择C 选项. 【点睛】本题的核心是考查裂项求和的方法,使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.7.设n *∈N )A >BC =D .不能确定【答案】B 【解析】 【分析】把两个代数式进行分子有理化,比较分母的大小可以比较出大小关系. 【详解】22-===.22-===.*n N∈42,31n n n n+>++>+>>><<成立,因此本题选B.【点睛】对于二次根式的加減运算,分母有理化是常见的运算要求,但是有时分子有理化会起到意想不到的作用,尤其是在比较二个二次根式减法算式之间的大小关系时,经常会用到分子有理化这个方法.当然不等式的性质也是很重要的.8.已知各项均为正数的数列{}n a的前n项和为n S,且()2*21221n na a S n n N+==++∈,,若对任意的*n N∈,1211120nn a n a n aλ++⋯+-≥+++恒成立,则实数λ的取值范围为()A.(]2∞-,B.(]1∞-,C.14∞⎛⎤- ⎥⎝⎦,D.12,∞⎛⎤-⎥⎝⎦【答案】C【解析】【分析】2212,21n na a S n+==++()*n N∈,可得2n≥时,()221121210n n n n n na a S S a a+--=-+=+>,.可得11n na a+=+时,212224a a+==,解得1a.利用等差数列的通项公式可得na.通过放缩即可得出实数λ的取值范围.【详解】2212,21n na a S n+==++Q()*n N∈,2n∴≥时,()22112121n n n n na a S S a+--=-+=+,化为:222121(1)n n n na a a a+=++=+,0na>.11n na a+∴=+,即11n na a+-=,1n =时,212224a a +==,解得11a =.∴数列{}n a 为等差数列,首项为1,公差为1.11n a n n ∴=+-=. 1211111112n n a n a n a n n n n∴++⋯+=++⋯+++++++. 记11112n b n n n n =++⋯++++,1111111211n b n n n n +=++⋯++++++++. ()()11111022*******n n b b n n n n n +-=+-=>+++++. 所以{}n b 为增数列,112n b b ≥=,即121111111122n n a n a n a n n n n ++⋯+=++⋯+≥++++++. Q 对任意的*n N ∈,1211120nn a n a n a λ++⋯+-≥+++恒成立, 122λ∴≤,解得14λ≤ ∴实数λ的取值范围为14∞⎛⎤- ⎥⎝⎦,.故选C . 【点睛】本题考查了数列递推关系、等差数列的通项公式、放缩法,考查了推理能力与计算能力,属于中档题.9.已知函数()f x 是定义在[1,2]a a -上的偶函数,且当0x >时,()f x 单调递增,则关于x 的不等式(1)()f x f a ->的解集为 ( ) A .45[,)33B .2112(,][,)3333--⋃ C .12[,)33⋃45(,]33D .随a 的值而变化【答案】C 【解析】试题分析:∵函数()f x 是定义在[1,2]a a -上的偶函数,∴1-a=2a ,∴a=13,故函数()f x 的定义的定义域为22[,]33-,又当203x <≤时,()f x 单调递增,∴11113(1)()(1)(){23313x f x f f x f x ->->⇔->⇔-≤,解得1233x ≤<或4533x <≤,所以不等式(1)()f x f a ->的解集为12[,)33⋃45(,]33,故选C考点:本题考查了抽象函数的运用点评:此类问题往往利用偶函数的性质()()f x f x =避免了讨论,要注意灵活运用10.设x ∈R ,则“31x <”是“1122x -<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】分别求解三次不等式和绝对值不等式确定x 的取值范围,然后考查充分性和必要性是否成立即可. 【详解】 由31x <可得1x <, 由1122x -<可得01x <<, 据此可知“31x <”是“1122x -<”的必要而不充分条件. 故选B . 【点睛】本题主要考查不等式的解法,充分性与必要性的判定等知识,意在考查学生的转化能力和计算求解能力.11.已知x+3y+5z=6,则x 2+y 2+z 2的最小值为( ) A .65B .6 35C .36 35D .6【答案】C 【解析】 【分析】由题意结合柯西不等式的结论求解x 2+y 2+z 2的最小值即可. 【详解】 由柯西不等式,得:x 2+y 2+z 2=(12+32+52)(x 2+y 2+z 22221)135++≥(1×x+3×y+5×z )2135⨯=26136.3535⨯= 当且仅当x 6186,,35357y z ===时等号成立. 即x 2+y 2+z 2的最小值为3635. 本题选择C 选项. 【点睛】根据题目特征,想到利用向量方法或利用柯西不等式想法比较自然.利用柯西不等式代数形式及其向量形式解题的方法是一致的.选择哪种方法进行解题,可能会因解题者的知识解构、思维特征及对问题与方法的熟悉程度做出选择.12.设0x >,则()2142f x x x =--的最大值为( )A .42-B .4C .不存在D .52【答案】D 【解析】 【分析】化简得到()214222x xf x x ⎛⎫=-++ ⎪⎝⎭,再利用均值不等式计算得到答案. 【详解】()2211544422222x x f x x x x ⎛⎫=--=-++≤-= ⎪⎝⎭当21222x x x ==即1x =时等号成立 故选:D 【点睛】本题考查了利用均值不等式求函数最值,意在考查学生对于均值不等式的灵活运用.13.“31a -<<”是“存在x ∈R ,使得|||1|2x a x -++<”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件【答案】C 【解析】 【分析】设:31p a -<<,1:,|||2x R x a x q ∃∈-++<,考虑命题“若p 则q ”及其逆命题的真假后可得两者之间的条件关系. 【详解】设:31p a -<<,||:|1|2q x a x -++<,当31a -<<时,|||1|1x a x a -++≥+总成立,而12a +<, 故|||1|2x a x -++<在R 上有解,故,|||1|2x R x a x ∃∈-++<, 所以“若p 则q ”为真命题.若,|||1|2x R x a x ∃∈-++<,则()min21x a x >-++,由绝对值不等式可知11x a x a -++≥+,当且仅当()()10x a x --≤时等号成立, 所以1x a x -++的最小值为1a +,故21a >-即31a -<<,所以“若q 则p ”为真命题.综上,“31a -<<”是“存在x ∈R ,使得|||1|2x a x -++<”的充要条件. 故选:C. 【点睛】充分性与必要性的判断,可以依据命题的真假来判断,若“若p 则q ”是真命题,“若q 则p ”是假命题,则p 是q 的充分不必要条件;若“若p 则q ”是真命题,“若q 则p ”是真命题,则p 是q 的充分必要条件;若“若p 则q ”是假命题,“若q 则p ”是真命题,则p 是q 的必要不充分条件;若“若p 则q ”是假命题,“若q 则p ”是假命题,则p 是q 的既不充分也不必要条件.14.函数()f x 的定义域为A ,若存在非零实数t ,使得对于任意()x C C A ∈⊆有,x t A +∈且()()f x t f x +≤,则称()f x 为C 上的t 度低调函数.已知定义域为[)0+∞,的函数()=3f x mx --,且()f x 为[)0+∞,上的6度低调函数,那么实数m 的取值范围是( )A .[]0,1B .[)1+∞,C .(],0-∞D .][(),01,-∞⋃+∞ 【答案】D【解析】试题分析:由题意得, ()()6633f x f x mx m mx +≤⇒+-≥-对任意0x ≥都成立.当0m ≤时, 633633|m mx m mx -≤-⇒+-≥-恒成立;当0m >时,结合图象可知,要633mx m mx +-≥-对任意0x ≥都成立,只需0x =时633mx m mx +-≥-成立即可,即6331m m -≥-⇒≥.选D.考点:1、新定义函数;2、绝对值不等式.15.不等式230x x -<的解集为( )A .{}03x x << B .{}3003x x x -<<<<或C .{}30x x -<<D .{}33x x -<<【答案】B 【解析】 【分析】将不等式表示为230x x -<,得出03x <<,再解该不等式可得出解集. 【详解】将原不等式表示为230x x -<,解得03x <<,解该不等式可得30x -<<或03x <<.因此,不等式230x x -<的解集为{}3003x x x -<<<<或,故选:B.【点睛】本题考查二次不等式的解法与绝对值不等式的解法,考查运算求解能力,属于中等题.16.若,,a b c ∈R ,则下列结论中: (1)2211a a a a+≥+; (2)a b a c b c -≤-+-; (3)若a b >,则11a ba b>++;(4)若1a b +=,则2221a b a b +++的最小值为 其中正确结论的个数为( )A .1B .2C .3D .4【答案】B 【解析】 【分析】利用函数知识、换元法、绝对值不等式等知识,对选项进行一一推理证明,即可得答案. 【详解】 对(1),2221111()()20a a a a a a a a +≥+⇔+-+-≥,∴12a a +≥或11a a+≤-, ∵12a a +≥或12a a+≤-,∴原不等式成立,故(1)正确;对(2),∵()()a b a c b c a c b c -=---≤-+-,故(2)正确; 对(3),令1,52a b =-=-,则51,114a b a b =-=++,显然11a b a b>++不成立,故(3)错误;对(4),∵1a b +=,∴222222(1)231111a b b b b a b b b b+-+++=+=+-+-,当1b >时,2301b b +<-,∴2221a b a b +++的最小值为4)错误. 故选:B.【点睛】本题考查函数与不等式的知识,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意消元法、换元法的使用.17.设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是( ) A .a b a c b c -≤-+-B .2212a a +≥C .12a b a b -+≥- D 【答案】C【解析】【分析】A.用a b a b a b -≤±≤+来判断.B.用基本不等式来判断.C.用特殊值当1,2a b ==时来判断.D.==,再比较.【详解】A. 因为-=-+-≤-+-a b a c c b a c b c 恒成立,故正确.B.因为 2212+≥=a a ,当且仅当221a a =即1a =±时取等号,故正确.C.当1,2a b ==时,1110-+=-=-a b a b ,原不等式不成立,故错误.D.==>≤确.故选:C【点睛】 本题主要考查了不等式的比较及其应用,还考查了转化化归的思想,属于中档题.18.定义在R 上的偶函数()y f x =在[)0,+∞上递减,且()10f =,则满足12log 0f x ⎛⎫< ⎪⎝⎭的x 的取值范围是( ) A .()10,2,2⎛⎫+∞ ⎪⎝⎭U B .()1,11,22⎛⎫ ⎪⎝⎭U C .()1,2,2⎛⎫-∞+∞ ⎪⎝⎭U D .()1,12,2⎛⎫⋃+∞ ⎪⎝⎭【答案】A【解析】【分析】利用函数()f x 的奇偶性和单调性化简不等式12log 0f x ⎛⎫< ⎪⎝⎭,得到12log 1x >,解绝对值不等式和对数不等式,求得x 的取值范围.【详解】偶函数()y f x =在[)0,+∞上递减,且()10f =, 所以()y f x =在(),0-∞上递增,且()10f -=,且距离对称轴越远,函数值越小, 由12log 0f x ⎛⎫< ⎪⎝⎭可得12log 1x >, 所以12log 1x >或12log 1x <-, 解可得,102x <<或2x >. 故选:A.【点睛】 本小题主要考查利用函数的奇偶性的单调性解抽象函数不等式,考查绝对值不等式、对数不等式的解法,属于中档题.19.曲线312ln 3y x x =+上任意一点处的切线斜率的最小值为( ) A .3B .2C .32D .1 【答案】A【解析】【分析】根据题意,求导后结合基本不等式,即可求出切线斜率3k ≥,即可得出答案.【详解】解:由于312ln 3y x x =+,根据导数的几何意义得: ()()222321111330k f x x x x x x x x x x '==+=++≥⋅⋅=>, 即切线斜率3k ≥,当且仅当1x =等号成立,所以312ln 3y x x =+上任意一点处的切线斜率的最小值为3. 故选:A.【点睛】 本题考查导数的几何意义的应用以及运用基本不等式求最值,考查计算能力.20.若,则不等式的解集为 A . B . C . D .【答案】D【解析】【分析】由绝对值三角不等式的性质得出,由,得出,借助正弦函数图象可得出答案。

高考数学压轴专题最新备战高考《不等式》知识点总复习附解析

高考数学压轴专题最新备战高考《不等式》知识点总复习附解析

【高中数学】数学《不等式》期末复习知识要点一、选择题1.对于函数()f x ,若12,x x 满足()()()1212f x f x f x x +=+,则称12,x x 为函数()f x 的一对“线性对称点”.若实数a 与b 和+a b 与c 为函数()3x f x =的两对“线性对称点”,则c 的最大值为( ) A .3log 4 B .3log 41+C .43D .3log 41-【答案】D 【解析】 【分析】根据已知有333b c a b c a ++++=,可得13131ca b+=+-,只需求出3a b +的最小值,根据333a b a b +=+,利用基本不等式,得到3a b +的最小值,即可得出结论.【详解】依题意知,a 与b 为函数()3xf x =的“线性对称点”,所以333a b a b +=+=≥ 故34a b +≥(当且仅当a b =时取等号).又+a b 与c 为函数()3xf x =的“线性对称点,所以333b c a b c a ++++=,所以3143131313a b ca b a b +++==+≤--,从而c 的最大值为3log 41-. 故选:D. 【点睛】本题以新定义为背景,考查指数函数的运算和图像性质、基本不等式,理解新定义含义,正确求出c 的表达式是解题的关键,属于中档题.2.某企业生产甲、乙两种产品需用到A,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用总量如下表所示.若生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )A .12万元B .16万元C .17万元D .18万元【答案】D 【解析】 【分析】根据条件列可行域与目标函数,结合图象确定最大值取法,即得结果. 【详解】设每天甲、乙产品的产量分别为x 吨、y 吨由已知可得3212,28,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩目标函数34z x y =+,作出约束条件表示的可行域如图中阴影部分所示,可得目标函数在点P 处取得最大值,由28,3212,x y x y +=⎧⎨+=⎩得()2,3P ,则max 324318z =⨯+⨯=(万元).选D.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.3.若,x y 满足约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则122yx⎛⎫⋅ ⎪⎝⎭的最小值为( )A .116B .18C .1D .2【答案】A 【解析】 【分析】画出约束条件所表示的可行域,结合指数幂的运算和图象确定出目标函数的最优解,代入即可求解.【详解】由题意,画出约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,其中可得(3,1)A -,(5,1)B ,(3,3)C ,因为1222yx x y -⎛⎫⋅= ⎪⎝⎭,令z x y =-,当直线y x z =-经过A 时,z 取得最小值, 所以z 的最小值为min 314z =--=-,则1222yx x y -⎛⎫⋅= ⎪⎝⎭的最小值为41216-=. 故选:A .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.4.已知,x y 满足约束条件23023400x y x y y -+≥⎧⎪-+≤⎨⎪≥⎩,若目标函数2z mx ny =+-的最大值为1(其中0,0m n >>),则112m n+的最小值为( ) A .3 B .1C .2D .32【答案】D 【解析】 【分析】画出可行域,根据目标函数z 的最大值求得,m n 的关系式23m n +=,再利用基本不等式求得112m n +的最小值. 【详解】画出可行域如下图所示,由于0,0m n >>,所以基准直线0mx ny +=的斜率为负数,故目标函数在点()1,2A 处取得最大值,即221m n +-=,所以23m n +=.()111111515193222323232322n m n m m n m n m n m n m n ⎛⎫⎛⎫⎛⎫+=⨯+⨯+=⨯++≥⨯+⋅=⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当,1n m m n m n ===时等号成立,所以112m n +的最小值为32. 故选:D【点睛】本小题主要考查根据目标函数的最值求参数,考查基本不等式求最值,考查数形结合的数学思想方法,属于中档题.5.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足15150a S +=,则实数d 的取值范围是( )A .[3,3];B .(,3]-∞C .3,)+∞D .(,3]3,)-∞-⋃+∞【答案】D 【解析】 【分析】由等差数列的前n 项和公式转化条件得11322a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】Q 数列{}n a 为等差数列,∴1515455102a d d S a ⨯=+=+,∴()151********a S a a d +++==, 由10a ≠可得11322a d a =--,当10a >时,1111332222a a d a a ⎛⎫=--=-+≤-= ⎪⎝⎭1a 时等号成立; 当10a <时,11322a d a =--≥=1a =立;∴实数d的取值范围为(,)-∞⋃+∞.故选:D. 【点睛】本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题.6.已知关于x 的不等式()()222240m x m x -+-+>得解集为R ,则实数m 的取值范围是( ) A .()2,6B .()(),26,-∞+∞UC .(](),26,-∞⋃+∞D .[)2,6【答案】D 【解析】 【分析】分20m -=和20m -≠两种情况讨论,结合题意得出关于m 的不等式组,即可解得实数m 的取值范围.【详解】当20m -=时,即当2m =时,则有40>,该不等式恒成立,合乎题意;当20m -≠时,则()()220421620m m m ->⎧⎪⎨∆=---<⎪⎩,解得26m <<. 综上所述,实数m 的取值范围是[)2,6. 故选:D. 【点睛】本题考查利用变系数的二次不等式恒成立求参数,要注意对首项系数是否为零进行分类讨论,考查运算求解能力,属于中等题.7.已知实数x ,y满足不等式||x y +≥,则22x y +最小值为( )A .2B .4C.D .8【答案】B 【解析】【分析】先去掉绝对值,画出不等式所表示的范围,再根据22x y +表示圆心在原点的圆求解其最小圆的半径的平方,即可求解. 【详解】 由题意,可得当0y ≥时,22x y +≥; (2)当0y <时,22x y -≥,如图所示,画出的图形,可得不等式表示的就是阴影部分的图形, 又由22xy +最小值即为原点到直线的垂线段的长度的平方,又由2222211d -==+,所以24d =,即22xy +最小值为4.故选:B .【点睛】本题主要考查了线性规划的知识,以及点到直线的距离公式的应用,着重考查了数形结合思想,以及计算能力.8.在ABC V 中,,,a b c 分别为A ∠,B Ð,C ∠所对的边,函数22323()13a c ac f x x bx x +-=+++的导函数为()f x ',当函数[]()ln ()g x f x '=的定义域为R 时,B Ð的取值范围为( )A .,63ππ⎡⎤⎢⎥⎣⎦B .,6ππ⎡⎫⎪⎢⎣⎭C .2,63ππ⎡⎤⎢⎥⎣⎦D .0,6π⎛⎫⎪⎝⎭【答案】D 【解析】 【分析】首先求出函数的导数,依题意即222()3203a c f x x bx +-'=++>恒成立,所以()222(2)40b a c ∆=-+-<,再结合余弦定理即可求出B 的取值范围;【详解】解:因为2232()13a c f x x bx x +-=+++,所以2()32f x x bx '=++()g x 的定义域为R,则有()222(2)40b a c ∆=-+-<,即222a c b +->,结合余弦定理,222cos 22a cb B ac +-=>,故0,6B π⎛⎫∈ ⎪⎝⎭,故选:D. 【点睛】本题考查导数的计算,对数函数的定义域以及不等式恒成立问题,属于中档题.9.若,x y 满足约束条件360,60,1,x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩则z x y =-的最小值为( )A .4B .0C .2-D .4-【答案】D 【解析】 【分析】画出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入即可求解. 【详解】由题意,画出约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,目标函数z x y =-,可化为直线y x z =-当直线y x z =-经过A 时,z 取得最小值,又由3601x y y -+=⎧⎨=⎩,解得(3,1)A -,所以目标函数的最小值为min 314z =--=-. 故选:D .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.10.若,,则( )A .B .C .D .【答案】C【解析】 【分析】 【详解】试题分析:用特殊值法,令,,得,选项A 错误,,选项B 错误,,选项D 错误,因为选项C 正确,故选C . 【考点】指数函数与对数函数的性质 【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.11.函数log (3)1a y x =-+(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny +-=上,其中·0m n >,则41m n+的最小值为() A .16 B .24C .50D .25【答案】D【解析】 【分析】由题A (4,1),点A 在直线上得4m+n =1,用1的变换构造出可以用基本不等式求最值的形式求最值. 【详解】令x ﹣3=1,解得x =4,y =1,则函数y =log a (x ﹣3)+1(a >0且a≠1)的图象恒过定点A (4,1), ∴4m+n =1, ∴41m n +=(41m n +)(4m+n )=16+14n 4m m n++=17+8=25,当且仅当m =n 15=时取等号,故则41m n +的最小值为25, 故选D . 【点睛】本题考查均值不等式,在应用过程中,学生常忽视“等号成立条件”,特别是对“一正、二定、三相等”这一原则应有很好的掌握.12.以A 为顶点的三棱锥A BCD -,其侧棱两两互相垂直,且该三棱锥外接球的表面积为8π,则以A 为顶点,以面BCD 为下底面的三棱锥的侧面积之和的最大值为( ) A .2 B .4C .6D .7【答案】B 【解析】 【分析】根据题意补全几何图形为长方体,设AB x =,AC y =,AD z =,球半径为R ,即可由外接球的表面积求得对角线长,结合侧面积公式即可由不等式求得面积的最大值. 【详解】将以A 为顶点的三棱锥A BCD -,其侧棱两两互相垂直的三棱锥补形成为一个长方体,如下图所示:长方体的体对角线即为三棱锥A BCD -外接球的直径, 设AB x =,AC y =,AD z =,球半径为R , 因为三棱锥外接球的表面积为8π, 则284R π=π, 解得2R =,所以体对角线为2,所以2228x y z ++=,111222S yz xy xz =++侧面积 由于()()()()222222240x y zS x y y x x z ++-=-+-+-≥,所以416S ≤,故4S ≤,即三棱锥的侧面积之和的最大值为4, 故选:B. 【点睛】本题考查了空间几何体的综合应用,三棱锥的外接球性质及应用,属于中档题.13.已知函数24,0()(2)1,0x x f x xx x ⎧+>⎪=⎨⎪+-≤⎩,若方程()20f x m -=恰有三个不同的实数根,则实数m 的取值范围是( )A .(2,)+∞B .(4,)+∞C .(2,4)D .(3,4)【答案】A 【解析】 【分析】画出函数()f x 的图象,再根据基本不等式求解4y x x=+的最小值,数形结合求解即可. 【详解】画出函数()f x 的图象,如图所示.当0x >时,4()4f x x x=+….设()2g x m =,则方程()20f x m -=恰有三个不同的实数根,即()f x 和()2g x m =的图象有三个交点.由图象可知,24m >,即2m >,故实数m 的取值范围是(2,)+∞.故选:A【点睛】本题考查分段函数的性质和图象以及函数的零点,考查数形结合以及化归转化思想.14.已知函数()2222,2{log ,2x x x f x x x -+≤=> ,若0R x ∃∈,使得()2054f x m m ≤- 成立,则实数m 的取值范围为 ( ) A .11,4⎡⎤-⎢⎥⎣⎦ B .1,14⎡⎤⎢⎥⎣⎦ C .12,4⎡⎤-⎢⎥⎣⎦ D .1,13⎡⎤⎢⎥⎣⎦【答案】B【解析】由函数的解析式可得函数的最小值为:()11f =,则要考查的不等式转化为:2154m m ≤-,解得:114m ≤≤,即实数m 的取值范围为 1,14⎡⎤⎢⎥⎣⎦. 本题选择B 选项. 点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.15.若均不为1的实数a 、b 满足0a b >>,且1ab >,则( )A .log 3log 3a b >B .336a b +>C .133ab a b ++>D .b a a b >【答案】B【解析】【分析】举反例说明A,C,D 不成立,根据基本不等式证明B 成立.【详解】当9,3a b ==时log 3log 3a b <; 当2,1a b ==时133ab a b ++=; 当4,2a b ==时b a a b =;因为0a b >>,1ab >,所以23323323236a b a b a b ab ++>=>>,综上选B.【点睛】本题考查比较大小,考查基本分析论证能力,属基本题.16.已知2(0,0)x y xy x y +=>>,则2x y +的最小值为( )A .10B .9C .8D .7【答案】B【解析】【分析】 由已知等式得到211x y +=,利用()2122x y x y x y ⎛⎫+=++ ⎪⎝⎭可配凑出符合基本不等式的形式,利用基本不等式求得最小值.【详解】由2x y xy +=得:211x y+= ()212222225529x y x y x y x y x y y x y x ⎛⎫∴+=++=++≥+⋅= ⎪⎝⎭(当且仅当22x y y x =,即x y =时取等号)2x y ∴+的最小值为9故选:B【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够灵活对等于1的式子进行应用,配凑成符合基本不等式的形式.17.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( )A .①③B .②④C .①②③D .②③④ 【答案】B【解析】【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x y x y +=联立解得222x y ==可判断①③;由图可判断④.【详解】()2223222216162x y x yx y ⎛⎫++=≤ ⎪⎝⎭, 解得224x y +≤(当且仅当222x y ==时取等号),则②正确;将224x y +=和()3222216x yx y +=联立,解得222x y ==, 即圆224x y +=与曲线C相切于点,(,(,, 则①和③都错误;由0xy <,得④正确.故选:B.【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.18.实数,x y 满足020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2x y -的最大值为( )A .1B .2C .3D .4【答案】C【解析】【分析】画出可行域和目标函数,根据平移得到答案.【详解】如图所示,画出可行域和目标函数, 2z x y =-,则2y x z =-,z 表示直线与y 轴截距的相反数,根据平移知:当3,3x y ==时,2z x y =-有最大值为3.故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.19.已知函数()lg f x x =,0a b >>,()()f a f b =,则22a b a b+-的最小值等于( ). A 5B .3C .23 D .22【答案】D【解析】 试题分析:因为函数()lg f x x =,0a b >>,()()f a f b =所以lg lg a b =- 所以1a b=,即1ab =,0a b >> 22a b a b+-22()2()22()a b ab a b a b a b a b a b -+-+===-+---2()22a b a b ≥-⨯=- 当且仅当2a b a b-=-,即2a b -=时等号成立 所以22a b a b+-的最下值为2故答案选D考点:基本不等式.20.已知集合{}0lg 2lg3P x x =<<,212Q xx ⎧⎫=>⎨⎬-⎩⎭,则P Q I 为( ) A .()0,2B .()1,9C .()1,4D .()1,2 【答案】D【解析】【分析】集合,P Q 是数集,集合P 是对数不等式解的集合,集合Q 是分式不等式解的集合,分别求出解集,再交集运算求出公共部分.【详解】 解:{}19P x x =<<,{}02Q x x =<<; ()1,2P Q ∴⋂=.故选:D.【点睛】本题考查对数函数的单调性及运算性质,及分式不等式的解法和集合交集运算,交集运算口诀:“越交越少,公共部分”.简单对数不等式问题的求解策略:(1)解决简单的对数不等式,应先利用对数的运算性质化为同底数的对数值,再利用对数函数的单调性转化为一般不等式求解.(2)对数函数的单调性和底数的值有关,在研究对数函数的单调性时,要按01a <<和1a > 进行分类讨论.分式不等式求解:先将分式化为整式;注意分式的分母不为0.。

高考数学压轴专题新备战高考《不等式》知识点总复习有答案解析

高考数学压轴专题新备战高考《不等式》知识点总复习有答案解析

【高中数学】数学《不等式》复习知识要点一、选择题1.对于函数()f x ,若12,x x 满足()()()1212f x f x f x x +=+,则称12,x x 为函数()f x 的一对“线性对称点”.若实数a 与b 和+a b 与c 为函数()3x f x =的两对“线性对称点”,则c 的最大值为( ) A .3log 4 B .3log 41+C .43D .3log 41-【答案】D 【解析】 【分析】根据已知有333b c a b c a ++++=,可得13131ca b+=+-,只需求出3a b +的最小值,根据333a b a b +=+,利用基本不等式,得到3a b +的最小值,即可得出结论.【详解】依题意知,a 与b 为函数()3xf x =的“线性对称点”,所以33323323a b a b a b a b ++=+=≥⋅, 故34a b +≥(当且仅当a b =时取等号).又+a b 与c 为函数()3xf x =的“线性对称点,所以333b c a b c a ++++=,所以3143131313a b ca b a b +++==+≤--,从而c 的最大值为3log 41-. 故选:D. 【点睛】本题以新定义为背景,考查指数函数的运算和图像性质、基本不等式,理解新定义含义,正确求出c 的表达式是解题的关键,属于中档题.2.在平面直角坐标系中,不等式组20{200x y x y y +-≤-+≥≥,表示的平面区域的面积是( )A .42B .4C .22D .2【答案】B 【解析】试题分析:不等式组表示的平面区域如图所示的三角形ABC 及其内部.可得,A (2,0),B (0,2),C (-2,0),显然三角形ABC 的面积为.故选B .考点:求不等式组表示的平面区域的面积.3.若实数,x y 满足不等式组2,36,0,x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩则3x y +的最小值等于( )A .4B .5C .6D .7【答案】A 【解析】 【分析】首先画出可行域,利用目标函数的几何意义求z 的最小值. 【详解】解:作出实数x ,y 满足不等式组2360x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩表示的平面区域(如图示:阴影部分)由200x y x y +-=⎧⎨-=⎩得(1,1)A ,由3z x y =+得3y x z =-+,平移3y x =-, 易知过点A 时直线在y 上截距最小,所以3114min z =⨯+=. 故选:A .【点睛】本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题.4.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .2 B .52C .3D .32【答案】A 【解析】()220{,440a f x acb b ac >≥∴∴≥∆=-≤Q 恒成立,,且0,0c a >> 又()()()2,00,1f x ax b f b f a b c =+∴'='=>++,()()221241111120b f a c ac f b +∴=+≥≥=+=' 当且仅当()()120f a c f ='时,不等式取等号,故的最小值为5.若,x y 满足约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则122y x ⎛⎫⋅ ⎪⎝⎭的最小值为( )A .116B .18C .1D .2【答案】A 【解析】画出约束条件所表示的可行域,结合指数幂的运算和图象确定出目标函数的最优解,代入即可求解. 【详解】由题意,画出约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,其中可得(3,1)A -,(5,1)B ,(3,3)C ,因为1222yxx y -⎛⎫⋅= ⎪⎝⎭,令z x y =-,当直线y x z =-经过A 时,z 取得最小值, 所以z 的最小值为min 314z =--=-,则1222yx x y -⎛⎫⋅= ⎪⎝⎭的最小值为41216-=. 故选:A .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.6.给出下列五个命题,其中正确命题的个数为( )①命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++<”;②若正整数m 和n 满足m n ≤()2n m n m -; ③在ABC ∆中 ,A B >是sin sin A B >的充要条件;④一条光线经过点()1,3P ,射在直线:10l x y ++=上,反射后穿过点()1,1Q ,则入射光线所在直线的方程为5340x y -+=;⑤已知32()f x x mx nx k =+++的三个零点分别为一椭圆、一双曲线、一抛物线的离心率,则m n k ++为定值. A .2 B .3C .4D .5【答案】C 【解析】①根据特称命题的否定的知识来判断;②根据基本不等式的知识来判断;③根据充要条件的知识来判断;④求得入射光线来判断;⑤利用抛物线的离心率判断. 【详解】①,命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++≥”,故①错误.②,由于正整数m 和n 满足m n ≤,0n m -≥,由基本不等式得()22m n m nm n m +--≤=,当m n m =-即2n m =时等号成立,故②正确. ③,在ABC ∆中,由正弦定理得sin sin A B a b A B >⇔>⇔>,即sin sin A B A B >⇔>,所以A B >是sin sin A B >的充要条件,故③正确.④,设()1,1Q 关于直线10x y ++=的对称点为(),A a b ,则线段AQ 中点为11,22a b ++⎛⎫ ⎪⎝⎭,则1110221121112AQ a b b k a ++⎧++=⎪⎪⎪+⎨-⎪==+⎪-⎪⎩,解得2a b ==-,所以()2,2A --.所以入射光线为直线AP ,即312321y x --=----,化简得5340x y -+=.故④正确. ⑤,由于抛物线的离心率是1,所以(1)0f =,即10m n k +++=,所以1m n k ++=-为定值,所以⑤正确. 故选:C 【点睛】本小题主要考查特称命题的否定,考查基本不等式,考查充要条件,考查直线方程,考查椭圆、双曲线、抛物线的离心率,属于中档题.7.设实数满足条件则的最大值为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案. 【详解】如图所示:画出可行域和目标函数,,即,表示直线在轴的截距加上1,根据图像知,当时,且时,有最大值为.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.8.已知α,β均为锐角,且满足()sin 2cos sin αβαβ-=,则αβ-的最大值为( )A .12πB .6π C .4π D .3π 【答案】B 【解析】 【分析】利用两角差的正弦公式,将已知等式化简得到tan 3tan αβ=,由α,β均为锐角,则,22ππαβ⎛⎫-∈- ⎪⎝⎭,要求出αβ-的最大值,只需求出tan()αβ-的最大值,利用两角差的正切公式,将tan()αβ-表示为tan β的关系式,结合基本不等式,即可求解. 【详解】 由()sin 2cos sin αβαβ-=整理得()sin 2cos sin αβαβ-=,即sin cos cos sin 2cos sin αβαβαβ-=,化简得sin cos 3cos sin αβαβ=,则tan 3tan αβ=, 所以()2tan tan 2tan 2tan 11tan tan 13tan 3tan tan αββαβαββββ--===+++,又因为β为锐角,所以tan 0β>,根据基本不等式2313233tan tan ββ≤=+,当且仅当3tan 3β=时等号成立, 因为,22ππαβ⎛⎫-∈-⎪⎝⎭,且函数tan y x =在区间,22ππ⎛⎫- ⎪⎝⎭上单调递增,则αβ-的最大值为6π. 故选:B . 【点睛】本题考查两角差最值,转化为求三角函数最值是解题的关键,注意应用三角恒等变换、基本不等式求最值,考查计算求解能力,属于中档题.9.若直线过点,则的最小值等于( )A .5B .C .6D .【答案】C 【解析】∵直线过点,∴,∴,∵,∴,,,当且仅当时,等号成立,故选C.点睛:本题主要考查了基本不等式.基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.10.若,x y满足4,20,24,x yx yx y+≤⎧⎪-≥⎨⎪+≥⎩则4yx-的最大值为()A.72-B.52-C.32-D.1-【答案】D【解析】【分析】画出平面区域,结合目标函数的几何意义,求解即可.【详解】该不等式组表示的平面区域,如下图所示4yx-表示该平面区域中的点(),x y与(0,4)A确定直线的斜率由斜率的性质得出,当区域内的点为线段AB上任意一点时,取得最大值.不妨取84(,)33B时,4yx-取最大值443183-=-故选:D【点睛】本题主要考查了求分式型目标函数的最值,属于中档题.11.已知,a b都是正实数,则222a ba b a b+++的最大值是()A.223-B.322-C.221D.43【答案】A【解析】【分析】设2,2m a b n a b=+=+,将222a ba b a b+++,转化为2222233a b n ma b a b m n+=--++,利用基本不等式求解.【详解】设2,2m a b n a b =+=+, 所以22,33m n n ma b --==,所以2222222333a b n m a b a b m n +=--≤-=-++, 当且仅当233n mm n=时取等号. 所以222a b a b a b +++的最大值是2-. 故选:A 【点睛】本题主要考查基本不等式的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.12.已知107700,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,表示的平面区域为D ,若“(,),2x y x y a ∃+>”为假命题,则实数a 的取值范围是( ) A .[5,)+∞ B .[2,)+∞C .[1,)+∞D .[0,)+∞【答案】A 【解析】 【分析】作出不等式组表示的可行域,结合目标函数的几何意义可得目标函数最大值,再根据特称命题和全称命题的真假关系得出“(,),2x y x y a ∀+≤”为真命题,由恒等式的思想可得实数a 的取值范围.【详解】绘制不等式组表示的可行域如图中阴影部分(含边界)所示,令2Z x y =+得2y x Z =-+,结合目标函数的几何意义可得目标函数在点A 处取得最大值, 联立直线方程10770x y x y -+=⎧⎨--=⎩得点47,33A ⎛⎫⎪⎝⎭,所以2Z x y =+的最大值为5,因为“(,),2x y R x y a ∃∈+>”为假命题,所以“(,),2x y x y a ∀+≤”为真命题,所以实数a 的取值范围是5a ≤, 故选:A.【点睛】本题考查线性规划问题的最值,以及特称命题与全称命题的关系和不等式的恒成立思想,属于中档题.13.已知实数x ,y 满足20x y >>,且11122x y x y+=-+,则x y +的最小值为( ).A .335+ B .4235+ C .2435+ D .3435+ 【答案】B 【解析】 【分析】令22x y m x y n-=⎧⎨+=⎩,用,m n 表示出x y +,根据题意知111m n +=,利用1的代换后根据基本不等式即可得x y +的最小值. 【详解】20,20,20x y x y x y >>∴->+>Q ,令22x y m x y n -=⎧⎨+=⎩,解得2525m n x n my +⎧=⎪⎪⎨-⎪=⎪⎩,则0,0m n >>,111m n +=,223111555m n n m n m x y m n +-+⎛⎫⎛⎫∴+=+⨯=⨯+ ⎪⎪⎝⎭⎝⎭131313(42)55n m n mm n m n⎛⎫=⨯+++≥⨯+⋅ ⎪⎝⎭ 4235+=当且仅当3n mm n=,即3m n =,即23(2)x y x y -=+ 即97333x y +-==. 故选:B . 【点睛】本题主要考查的是利用基本不等式求最值的问题,换元后根据1的代换是解题的关键,考查学生的计算能力,是中档题.14.设x ,y 满足102024x x y x y -≥⎧⎪-≤⎨⎪+≤⎩,向量()2,1a x =r ,()1,b m y =-r ,则满足a b ⊥r r 的实数m的最小值为( ) A .125B .125-C .32D .32-【答案】B 【解析】 【分析】先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可. 【详解】解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r,由a b ⊥r r得20x m y +-=,∴当直线经过点C 时,m 有最小值,由242x y x y +=⎧⎨=⎩,得8545x y ⎧=⎪⎪⎨⎪=⎪⎩,∴84,55C ⎛⎫ ⎪⎝⎭,∴416122555m y x =-=-=-, 故选:B.【点睛】本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.15.已知函数()2222,2{log ,2x x x f x x x -+≤=> ,若0R x ∃∈,使得()2054f x m m ≤- 成立,则实数m 的取值范围为 ( ) A .11,4⎡⎤-⎢⎥⎣⎦B .1,14⎡⎤⎢⎥⎣⎦C .12,4⎡⎤-⎢⎥⎣⎦D .1,13⎡⎤⎢⎥⎣⎦【答案】B 【解析】由函数的解析式可得函数的最小值为:()11f =,则要考查的不等式转化为:2154m m ≤-,解得:114m ≤≤,即实数m 的取值范围为 1,14⎡⎤⎢⎥⎣⎦. 本题选择B 选项.点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.16.定义在R 上的函数()f x 对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,且函数(1)=-y f x 的图象关于(1,0)成中心对称,若s 满足不等式()()222323f s s f s s -+--+„,则s 的取值范围是( )A .13,2⎡⎫--⎪⎢⎣⎭B .[3,2]--C .[2,3)-D .[3,2]-【答案】D 【解析】 【分析】由已知可分析出()f x 在R 上为减函数且()y f x =关于原点对称,所以不等式等价于()()222323f s s f s s -+-+-„,结合单调性可得222323s s s s -+≥-+-,从而可求出s 的取值范围. 【详解】解:因为对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,所以()f x 在R 上为减函数;又(1)=-y f x 的图象关于(1,0)成中心对称,所以()y f x =关于原点对称, 则()()()222232323f s s f s s f s s -+--+=-+-„,所以222323s s s s -+≥-+-,整理得260s s +-≤,解得32s -≤≤. 故选:D.本题考查了函数的单调性,考查了函数的对称性,考查了一元二次不等式的求解.本题的关键是由已知得到函数的单调性和对称性,从而将不等式化简.17.已知点()2,1A ,O 是坐标原点,点(), P x y 的坐标满足:202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,设z OP OA =⋅u u u r u u u r,则z 的最大值是( )A .2B .3C .4D .5【答案】C 【解析】 【分析】画出约束条件的可行域,转化目标函数的解析式,利用目标函数的最大值,判断最优解,代入约束条件求解即可. 【详解】解:由不等式组202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩可知它的可行域如下图:Q ()2,1A ,(), P x y∴2z OP OA x y =⋅=+u u u r u u u r,可图知当目标函数图象经过点()1,2B 时,z 取最大值,即24z x y =+=.故选:C. 【点睛】本题考查线性规划的应用,考查转化思想以及数形结合思想的应用,属于中档题.18.在ABC ∆中,22223sin a b c ab C ++=,则ABC ∆的形状是 ( ) A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形【解析】 【分析】由余弦定理可知2222cos a b c ab C +-=,与已知条件相加,得到cos 3C π⎛⎫-⎪⎝⎭的表达式,利用基本不等式得到范围,结合其本身范围,得到cos 13C π⎛⎫-= ⎪⎝⎭,从而得到C 的大小,判断出ABC ∆的形状,得到答案. 【详解】由余弦定理可知2222cos a b c ab C +-=,222sin a b c C ++=两式相加,得到()22cos 2cos 3a b ab C C ab C π⎛⎫+=+=-⎪⎝⎭所以222cos 1322a b ab C ab ab π+⎛⎫-== ⎪⎝⎭≥,当且仅当a b =时,等号成立, 而[]cos 1,13C π⎛⎫-∈- ⎪⎝⎭所以cos 13C π⎛⎫-= ⎪⎝⎭, 因为()0,C π∈,所以2,333C πππ⎛⎫-∈- ⎪⎝⎭所以03C π-=,即3C π=,又a b =,所以ABC ∆是等边三角形, 故选D 项. 【点睛】本题考查余弦定理解三角形,基本不等式,余弦型函数的性质,判断三角形的形状,属于中档题.19.已知M 、N 是不等式组1,1,10,6x y x y x y ≥⎧⎪≥⎪⎨-+≥⎪⎪+≤⎩所表示的平面区域内的两个不同的点,则||MN 的最大值是( )AB.2C.D .172【答案】A【分析】先作可行域,再根据图象确定MN的最大值取法,并求结果.【详解】作可行域,为图中四边形ABCD及其内部,由图象得A(1,1),B(2,1),C(3.5,2.5),D(1,5)四点共圆,BD 为直径,所以MN的最大值为BD=21417+=,选A.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.20.已知变量,x y满足240240x yx yx+-≥⎧⎪+-≤⎨⎪≥⎩,则24x y--的最小值为()A85B.8C165D.163【答案】D【解析】【分析】222424512x yx y----=+222412x y--+表示点(,)x y到直线240x y--=的距离,作出可行域,数形结合即可得到答案.【详解】因为222424512x yx y----=+,所以24x y--可看作为可行域内的动点到直线240x y --=的距离的5倍,如图所示,点44(,)33A 到直线240x y --=的距离d 最小,此时224424333512d -⨯-==+ 所以24x y --1653d =. 故选:D. 【点睛】本题考查目标函数的含绝对值的线性规划问题,考查学生数形结合与转化与化归的思想,是一道中档题.。

高考数学压轴专题(易错题)备战高考《不等式选讲》知识点总复习含解析

高考数学压轴专题(易错题)备战高考《不等式选讲》知识点总复习含解析

【最新】数学复习题《不等式选讲》专题解析一、141.不等式的解集是 ( )A .B .C .D .【答案】B 【解析】 【分析】利用绝对值三角不等式,得到,恒成立.【详解】恒成立.故答案选B 【点睛】本题考查了解绝对值不等式,利用绝对值三角不等式简化了运算.2.不等式|1||2|x x a +--<无实数解,则a 的取值范围是( ) A .(,3)-∞ B .(3,)-+∞ C .(,3]-∞- D .(,3)-∞-【答案】C 【解析】 【分析】利用绝对值不等式的性质||||||a b a b -≤-,因此得出||||a b -的范围, 再根据无实数解得出a 的范围。

【详解】解:由绝对值不等式的性质可得,||1||2|||(1)(2)|3x x x x +--++-=„,即|1||2|3x x +---…. 因为|1||2|x x a +--<无实数解 所以3a ≤-, 故选C 。

【点睛】本题考查了绝对值不等式的性质,利用绝对值不等式的性质解出变量的范围是解决问题的关键。

3.已知函数()f x 是定义在[1,2]a a -上的偶函数,且当0x >时,()f x 单调递增,则关于x 的不等式(1)()f x f a ->的解集为 ( )A .45[,)33B .2112(,][,)3333--⋃ C .12[,)33⋃45(,]33D .随a 的值而变化【答案】C 【解析】试题分析:∵函数()f x 是定义在[1,2]a a -上的偶函数,∴1-a=2a ,∴a=13,故函数()f x 的定义的定义域为22[,]33-,又当203x <≤时,()f x 单调递增,∴11113(1)()(1)(){23313x f x f f x f x ->->⇔->⇔-≤,解得1233x ≤<或4533x <≤,所以不等式(1)()f x f a ->的解集为12[,)33⋃45(,]33,故选C考点:本题考查了抽象函数的运用点评:此类问题往往利用偶函数的性质()()f x f x =避免了讨论,要注意灵活运用4.函数y =|x -3|-|x +1|的( ) A .最小值是0,最大值是4 B .最小值是-4,最大值是0 C .最小值是-4,最大值是4 D .没有最大值也没有最小值【答案】C 【解析】因为y =|x -3|-|x +1|4,322,134,1x x x x -≥⎧⎪=--<<⎨⎪≤-⎩,所以最小值是-4,最大值是4,选C.点睛:分段函数的最值由于分段函数在定义域不同的子区间上对应不同的解析式,因而求其最值的常用方法是先求出分段函数在每一个子区间上的最值,然后取各区间上最大值中的最大者作为分段函数的最大值,各区间上最小值中的最小者作为分段函数的最小值.5.设a >0,b >0,且ab -(a +b)≥1,则( ) A .a ++1) B .a ++1 C .a -1)2 D .a +b >+1)【答案】A 【解析】 【分析】因为ab ≤2a b +.所以ab≤14 (a +b)2,所以14(a +b)2-(a +b)≥ab -(a +b)≥1,再解不等式 (a +b) 2-4(a +b)-4≥0得解. 【详解】因为ab ≤2a b +.所以ab≤14(a +b)2. 所以14(a +b)2-(a +b)≥ab -(a +b)≥1. 所以(a +b) 2-4(a +b)-4≥0.因为a >0,b >0,所以a +b≥2+22. 故答案为:A 【点睛】本题主要考查基本不等式和不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.6.已知不等式()222cos 54sin 0m m θθ+-+≥恒成立,则实数m 的取值范围是( ) A .04m ≤≤ B .14m ≤≤C .4m ≥或0m ≤D .m 1≥或0m ≤【答案】C 【解析】试题分析:原不等式可转化为, 令,所以所以在上恒成立所以,,解得4m ≥或0m ≤.考点:不等式的恒成立问题.7.在平面内,已知向量(1,0)a =v ,(0,1)b =v ,(1,1)c =v,若非负实数,,x y z 满足1x y z ++=,且23p xa yb zc =++v v v v,则( )A .p v25B .p v的最大值为3C .p v 5 D .p v的最大值为33【答案】A 【解析】 【分析】求出p v 的坐标,表示p v ,即:p v()()22323x z y z +++柯西不等式即可求得其最小值,问题得解.【详解】因为()1,0a =v ,()0,1b =v ,()1,1c =v,所以23p xa yb zc =++v v v v=()3,23x z y z ++,又非负实数,,x y z 满足1x y z ++=,所以01z ≤≤,所以p v ==5≥==≥=, 当且仅当()()31232,0x z y z z +⨯=+⨯=时,等号成立. 即:当且仅当41,,055x y z ===时,等号成立.所以p v, 故选A. 【点睛】本题主要考查了柯西不等式的应用,还考查了向量的模及坐标运算,考查构造能力,属于中档题.8.设集合{}|22,A x x x R =-≤∈,{}2|,12B y y x x ==--≤≤,则()R C A B I 等于 A .R B .{}|,0x x R x ∈≠ C .{}0D .∅【答案】B 【解析】解:[0,2]A =,[4,0]B =-,所以(){}0R R C A B C ⋂=,故选B 。

高考数学压轴专题最新备战高考《不等式选讲》知识点总复习有答案解析

高考数学压轴专题最新备战高考《不等式选讲》知识点总复习有答案解析

数学《不等式选讲》知识点练习一、141.对任意x ∈R ,不等式22|sin ||sin |x x a a +-≥恒成立,则实数a 的取值范围是( ) A .01a ≤≤ B .11a -≤≤ C .12a -≤≤ D .22a -≤≤【答案】B 【解析】 【分析】解法一:(换元法)设sin t x =,则原不等式可化为22||||t t a a +-≥.求函数()||||||f t t t t a =++-的最小值,从而不等式2||a a ≥可得11a -≤≤.解法二:(特殊值法)代入2a =, 1a =-,排除错误选项即可. 【详解】解:解法一:(换元法)设sin t x =,则原不等式可化为22||||t t a a +-≥.令()||||||f t t t t a =++-,则min [()](0)||f t f a ==, 从而解不等式2||a a ≥可得11a -≤≤.故选B . 解法二:(特殊值法)当2a =时,因为2|sin ||sin 2|2sin 2|sin |2|sin |2x x x x x +-=-+≥+≥, 当且仅当sin 0x =时,等号成立. 此时2|sin ||sin 2|4x x +-≥不恒成立, 所以2a =不合题意,可以排除C 、D .当1a =-时,因为2|sin ||sin 1|1sin 2|sin |1|sin |1x x x x x ++=++≥+≥, 当且仅当sin 0x =时,等号成立. 此时2|sin ||sin 1|1x x ++≥恒成立, 所以1a =-符合题意,可以排除A. 故选:B 【点睛】本题考查绝对值不等式的参数问题,属于中档题,利用函数求最值的方法或者特殊值排除法都可以解题.2.猜测使2n a n >对任意正整数n 恒成立的最小正整数a 的值为( ) A .2 B .3C .4D .5【答案】B 【解析】 【分析】由题意结合选项利用特殊值排除选项A ,然后利用数学归纳法证明选项B 正确即可. 【详解】注意到当2,4a n ==时,2n a n >不成立,则2a =不合题意, 当3a =时,不等式即23n n >, 当1n =时,不等式即31>, 当2n =时,不等式即94>,下面用数学归纳法证明该式对于*,3n N n ∈≥成立, 当3n =时,不等式即279>,明显成立, 假设()*3,n k k k N=≥∈时不等式成立,即23kk >,则当1n k =+时,123333k k k +=⋅>, 而()()222*31221k k k k k N-+=--∈,结合二次函数的性质可知,当2k >时,22221222210k k -->⨯-⨯->,故当*3,k k N ≥∈时,()()2222310,31k k k k -+>>+.综上可得,23n n >对任意的n 均成立. 则最小正整数a 的值为3. 故选:B . 【点睛】本题主要考查数学归纳法的应用,排除法处理选择题的技巧等知识,意在考查学生的转化能力和计算求解能力.3.已知命题p :不等式11x m ->-的解集为R ,命题q :()(52)x f x m =--是减函数,若p ∨q 为真命题,p ∧q 为假命题,则实数m 的取值范围是( ) A .1≤m≤2 B .1≤m<2C .1<m≤2D .1<m<2【答案】B 【解析】 【分析】若p ∨q 为真命题,p ∧q 为假命题,可知p 真q 假或p 假q 真,化简p,q 为真时,对应m 的取值范围,然后按p 真q 假或p 假q 真求解即可. 【详解】若p 为真时,10m -<,即1m < ,若q 为真时,521m ->,即2m <,若p ∨q 为真命题,p ∧q 为假命题,可知p 真q 假或p 假q 真,当p 真q 假时,12m m <⎧⎨≥⎩ ,无解,若p 假q 真时,12m m ≥⎧⎨<⎩,即 12m ≤<,故选B.【点睛】本题主要考查了含且、或命题的真假,及含绝对值不等式恒成立,指数型函数的增减性,属于中档题.4.若关于x 的不等式43x x a -++<有实数解,则实数a 的取值范围是( ) A .(7,)+∞ B .[)7,+∞C .(1,)+∞D .(1,7)【答案】A 【解析】 【分析】利用绝对值的意义可求得43x x -++的最小值为7,由此可得实数a 的取值范围,得到答案. 【详解】由题意43x x -++表示数轴上的x 对应点到4和3-对应点的距离之和,其最小值为7,再由关于x 的不等式43x x a -++<有实数解,可得7a >, 即实数x 的取值范围是(7,)+∞,故选A. 【点睛】本题主要考查了绝对值的意义,以及函数绝对值不等式的有解问题,其中根据绝对值的意义,求得43x x -++的最小值为7是解得关键,着重考查了推理与运算能力,属于中档试题.5.设0x 为函数()sin f x x π=的零点,且满足001()112x f x ++<,则这样的零点有( ) A .18个 B .19个C .20个D .21个【答案】D 【解析】从题设可得00()x k x k k Z ππ=⇒=∈,又001()sin()sin()(1)222k f x x k ππππ+=+=+=-,故(1)11k k +-<,当k 取奇数时,12k <,则1,3,5,7,9,11k =±±±±±±,共12个数;当k 取偶数时,10k <,则0,2,4,6,8k =±±±±,共9个数,所以这样的零点的个数共有21个,应选答案D 。

高考数学压轴专题新备战高考《不等式选讲》图文解析

高考数学压轴专题新备战高考《不等式选讲》图文解析

【高中数学】单元《不等式选讲》知识点归纳一、141.已知函数()f x 是R 上的增函数,它的图像经过点()0,2A -,()3,2B,则不等式()2f x ≥的解集为( )A .[]0,3B .(),3-∞C .[)3,+∞D .(][),03,-∞⋃+∞【答案】D 【解析】 【分析】首先不等式等价于()2f x ≥或()2f x ≤-,然后再根据函数的单调性解不等式. 【详解】不等式()()22f x f x ≥⇒≥或()2f x ≤-Q 函数()f x 是R 上的增函数,它的图像经过点()0,2A -,()3,2B ,()23f x x ∴≥⇒≥,()20f x x ≤-⇒≤∴不等式的解集是(][),03,-∞⋃+∞.故选:D 【点睛】本题考查根据函数的单调性解不等式,意在考查含绝对值不等的解法,考查基本计算能力,属于基础题型.2.已知()23f x x x =+,若1x a -≤,则下列不等式一定成立的是( )A .()()33f x f a a -≤+B .()()5f x f a a -≤+C .()()24f x f a a -≤+D .()()()231f x f a a -≤+【答案】C 【解析】 【分析】先表示出()()f x f a -,利用绝对值三角不等式a b a b ±≤+即可求解. 【详解】由()23f x x x =+,得()()()(3)f x f a x a x a -=-++,因为1x a -≤,所以()(3)323x a x a x a x a a -++≤++=-++,由绝对值三角不等式得232324x a a x a a a -++≤-++≤+,故()()24f x f a a -≤+一定成立.故选:C. 【点睛】本题主要考查绝对值三角不等式的灵活应用,在求最值时要注意等号成立的条件,考查逻辑推理能力,属基础题.3.若集合{}2540A x x x =-+<,{}1B x x a =-<,则“()2,3a ∈”是“B A ⊆”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又不必要条件【答案】A 【解析】 【分析】解出集合A 、B ,由B A ⊆得出关于a 的不等式组,求出实数a 的取值范围,由此可判断出“()2,3a ∈”是“B A ⊆”的充分非必要条件. 【详解】解不等式2540x x -+<,解得14x <<,{}14A x x ∴=<<. 解不等式1x a -<,即11x a -<-<,解得11a x a -<<+,{}11B x a x a ∴=-<<+.B A ⊆Q ,则有1114a a -≥⎧⎨+≤⎩,解得23a ≤≤.因此,“()2,3a ∈”是“B A ⊆”的充分非必要条件. 故选:A 【点睛】本题考查充分非必要条件的判断,一般将问题转化为集合的包含关系来判断,考查逻辑推理能力,属于中等题.4.已知f (x )=|x +2|+|x -4|的最小值为n ,则二项式1nx x ⎛⎫- ⎪⎝⎭展开式中x 2项的系数为( ) A .11 B .20 C .15 D .16 【答案】C 【解析】 【分析】由题意利用绝对值三角不等式求得n=6,在二项展开式的通项公式中,令x 的幂指数等于0,求出r 的值,即可求得展开式中x 2项的系数. 【详解】∵f (x )=|x+2|+|x ﹣4|≥|(x+2)﹣(x ﹣4)|=6,故函数的最小值为6, 再根据函数的最小值为n ,∴n=6.则二项式(x ﹣1x )n =(x ﹣1x)6 展开式中的通项公式为 T r+1=6r C •(﹣1)r •x 6﹣2r , 令6﹣2r=2,求得r=2,∴展开式中x 2项的系为26C =15, 故选:C . 【点睛】本题主要考查绝对值三角不等式的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数,属于中档题.5.设n *∈N) A>BC=D .不能确定【答案】B 【解析】 【分析】把两个代数式进行分子有理化,比较分母的大小可以比较出大小关系. 【详解】22-===.22-===.*n N∈ 42,31n n n n +>++>+>>><<成立,因此本题选B . 【点睛】对于二次根式的加減运算,分母有理化是常见的运算要求,但是有时分子有理化会起到意想不到的作用,尤其是在比较二个二次根式减法算式之间的大小关系时,经常会用到分子有理化这个方法.当然不等式的性质也是很重要的.6.设0x 为函数()sin f x x π=的零点,且满足001()112x f x ++<,则这样的零点有( ) A .18个B .19个C .20个D .21个【解析】从题设可得00()x k x k k Z ππ=⇒=∈,又001()sin()sin()(1)222k f x x k ππππ+=+=+=-,故(1)11k k +-<,当k 取奇数时,12k <,则1,3,5,7,9,11k =±±±±±±,共12个数;当k 取偶数时,10k <,则0,2,4,6,8k =±±±±,共9个数,所以这样的零点的个数共有21个,应选答案D 。

高考数学压轴专题新备战高考《不等式选讲》知识点总复习含解析

高考数学压轴专题新备战高考《不等式选讲》知识点总复习含解析

数学《不等式选讲》期末复习知识要点一、141.设全集U =R ,已知23{|0}2x A x x +=>-,{||1|2}B x x =-<,则()U A B =I ð( ) A .3(,1)2-- B .(12]-, C .(23], D .[2)3,【答案】B 【解析】 【分析】解分式不等式求得集合A ,由此求得U A ð,解绝对值不等式求得集合B ,由此求得()U A B I ð.【详解】由A 中不等式变形得:()()2320x x +->, 解得:32x <-或2x >,即3,(2,)2A ⎛⎫=-∞-+∞ ⎪⎝⎭U ,∴U3A ,22⎡⎤=-⎢⎥⎣⎦ð, 由B 中不等式变形得:212x -<-<,解得:13x -<<,即1()3B =-,, ∴()(]12U A B =-I ,ð, 故选:B . 【点睛】本小题主要考查集合交集交集、补集的概念和运算,考查分式不等式、绝对值不等式的解法,属于基础题.2.若关于x 的不等式23ax -<的解集为5133x x ⎧⎫-<<⎨⎬⎩⎭,则a =( ) A .2- B .2 C .3D .3-【答案】D 【解析】 【分析】由绝对值不等式的性质可知,()22329ax ax -⇔-<<,从而可得到()229ax -=的两个解为2151,33x x -==,即可求出a 的值. 【详解】由题意可知0a ≠,()22329ax ax -⇔-<<,即22450a x ax --<,故一元二次方程22450a x ax --=的解为2151,33x x -==, 则1212224455,39a x x x x a a +==-=-=-,解得3a =-. 故答案为D. 【点睛】本题主要考查了绝对值不等式的解法,考查了学生的计算能力,属于基础题.3.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是 ( ) A .|a+b|+|a-b|>2 B .|a+b|+|a-b|<2 C .|a+b|+|a-b|=2 D .不能比较大小【答案】B 【解析】选B.当(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2, 当(a+b)(a-b)<0时,|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2.4.2018年9月24日, 英国数学家M.F 阿蒂亚爵在“海德堡论坛”展示了他“证明”黎曼猜想的过程,引起数学界震动. 黎曼猜想来源于一些特殊数列求和, 记2221111.........,23S n 则()=+++++A .413S << B .4332S << C .322S << D .2S > 【答案】C 【解析】 【分析】由题意利用不等式放缩后裂项确定S 的范围即可. 【详解】由题意可知:222111123S n=+++++L L ()111123341n n >+++++⨯⨯+L L 111111123341n n ⎛⎫⎛⎫⎛⎫=+-+-++-+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭L L 13122>+=, 且222111123S n=+++++L L ()111112231n n <+++++⨯⨯-⨯L L11111112231n n L L ⎛⎫⎛⎫⎛⎫=+-+-++-+ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭122n L =-+<,综上可得:322S <<. 本题选择C 选项. 【点睛】本题的核心是考查裂项求和的方法,使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.5.已知,,x y z ∈R ,若234x y z -+=,则222(5)(1)(3)x y z ++-++的最小值为( ) A .37200B .2007C .36D .40【答案】B 【解析】 【分析】根据柯西不等式得到不等式关系,进而求解. 【详解】根据柯西不等式得到()()()()()()2222221(2)352135313x y z x y z ⎡⎤+-+≥++-+++--++⎡⎤⎣⎦⎣⎦()()()()2222511423164030x y z x y z ⎡⎤++-++≥-++=⎣⎦进而得到最小值是:2007故答案为B. 【点睛】这个题目考查了柯西不等式的应用,比较基础.6.已知各项均为正数的数列{}n a 的前n 项和为n S ,且()2*21221n n a a S n n N +==++∈,,若对任意的*n N ∈,1211120nn a n a n a λ++⋯+-≥+++恒成立,则实数λ的取值范围为( ) A .(]2∞-,B .(]1∞-, C .14∞⎛⎤- ⎥⎝⎦,D .12,∞⎛⎤- ⎥⎝⎦【答案】C 【解析】 【分析】2212,21n n a a S n +==++ ()*n N ∈,可得2n ≥时,()221121210n n n n n n a a S S a a +--=-+=+>,.可得11n n a a +=+时,212224a a +==,解得1a .利用等差数列的通项公式可得n a .通过放缩即可得出实数λ的取值范围. 【详解】2212,21n n a a S n +==++Q ()*n N ∈,2n ∴≥时,()22112121n n n n n a a S S a +--=-+=+, 化为:222121(1)n n n n a a a a +=++=+,0n a >.11n n a a +∴=+,即11n n a a +-=,1n =时,212224a a +==,解得11a =.∴数列{}n a 为等差数列,首项为1,公差为1.11n a n n ∴=+-=. 1211111112n n a n a n a n n n n∴++⋯+=++⋯+++++++. 记11112n b n n n n =++⋯++++,1111111211n b n n n n +=++⋯++++++++. ()()11111022*******n n b b n n n n n +-=+-=>+++++. 所以{}n b 为增数列,112n b b ≥=,即121111111122n n a n a n a n n n n ++⋯+=++⋯+≥++++++. Q 对任意的*n N ∈,1211120nn a n a n a λ++⋯+-≥+++恒成立, 122λ∴≤,解得14λ≤ ∴实数λ的取值范围为14∞⎛⎤- ⎥⎝⎦,.故选C . 【点睛】本题考查了数列递推关系、等差数列的通项公式、放缩法,考查了推理能力与计算能力,属于中档题.7.若存在x ,∈R ,使2x a 23x 1-+-≤成立,则实数a 的取值范围是( )A .[]75--,B .()57,C .[]57,D .][()57∞∞-⋃+,, 【答案】C 【解析】 【分析】先利用绝对值三角不等式求223x a x -+-的最小值,即得实数a 的取值范围. 【详解】由题得223=262|6|x a x x a x a -+--+-≥-, 所以|6|1,161,57a a a -≤∴-≤-≤∴≤≤. 故选C 【点睛】本题主要考查绝对值三角不等式和绝对值不等式的能成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.设x ∈R ,则“2x <”是4<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】D 【解析】 【分析】首先求解绝对值不等式和根式不等式,然后分别考查充分性和必要性是否成立即可. 【详解】由2x <可得22x -<<4<可得016x ≤<,22x -<<是016x ≤<的既不充分也不必要条件,“2x <”是4<”的既不充分也不必要条件. 本题选择D 选项. 【点睛】本题主要考查绝对值不等式的解法,充分条件和必要条件的判定等知识,意在考查学生的转化能力和计算求解能力.9.不等式|1||2|x x a +--<无实数解,则a 的取值范围是( ) A .(,3)-∞ B .(3,)-+∞ C .(,3]-∞- D .(,3)-∞-【答案】C 【解析】 【分析】利用绝对值不等式的性质||||||a b a b -≤-,因此得出||||a b -的范围, 再根据无实数解得出a 的范围。

高考数学压轴专题最新备战高考《不等式选讲》知识点总复习附解析

高考数学压轴专题最新备战高考《不等式选讲》知识点总复习附解析

【最新】单元《不等式选讲》专题解析一、141.已知()()31f x x x R =+∈,若()4f x a -<的充分条件是()1,0x b a b -<>,则a 、b 之间的关系是( )A .3b a ≤B .3a b ≤C .3a b >D .3b a >【答案】B 【解析】 【分析】解出不等式()4f x a -<和1x b -<,根据题中充分条件关系得出两解集之间的包含关系,然后得出不等式组,即可得出a 、b 之间的关系. 【详解】()31f x x =+Q ,且0a >,0b >,解不等式()4f x a -<,即33x a -<,解得1133a a x -<<+, 解不等式1xb -<,得11b x b -<<+.由于()4f x a -<的充分条件是1x b -<,则()1,11,133a a b b ⎛⎫-+⊆-+ ⎪⎝⎭, 113113a b ab ⎧-≥-⎪⎪∴⎨⎪+≤+⎪⎩,可得3a b ≤.故选:B. 【点睛】本题考查绝对值不等式的求解,同时也考查了利用充分条件关系求参数之间的关系,一般转化为集合的包含关系来处理,考查化归与转化思想的应用,属于中等题.2.已知()23f x x x =+,若1x a -≤,则下列不等式一定成立的是( )A .()()33f x f a a -≤+B .()()5f x f a a -≤+C .()()24f x f a a -≤+D .()()()231f x f a a -≤+【答案】C 【解析】 【分析】先表示出()()f x f a -,利用绝对值三角不等式a b a b ±≤+即可求解. 【详解】由()23f x x x =+,得()()()(3)f x f a x a x a -=-++,因为1x a -≤,所以()(3)323x a x a x a x a a -++≤++=-++,由绝对值三角不等式得232324x a a x a a a -++≤-++≤+,故()()24f x f a a -≤+一定成立.故选:C. 【点睛】本题主要考查绝对值三角不等式的灵活应用,在求最值时要注意等号成立的条件,考查逻辑推理能力,属基础题.3.已知f (x )=|x +2|+|x -4|的最小值为n ,则二项式1nx x ⎛⎫- ⎪⎝⎭展开式中x 2项的系数为( ) A .11 B .20 C .15 D .16 【答案】C 【解析】 【分析】由题意利用绝对值三角不等式求得n=6,在二项展开式的通项公式中,令x 的幂指数等于0,求出r 的值,即可求得展开式中x 2项的系数. 【详解】∵f (x )=|x+2|+|x ﹣4|≥|(x+2)﹣(x ﹣4)|=6,故函数的最小值为6, 再根据函数的最小值为n ,∴n=6. 则二项式(x ﹣1x )n =(x ﹣1x)6 展开式中的通项公式为 T r+1=6r C •(﹣1)r •x 6﹣2r , 令6﹣2r=2,求得r=2,∴展开式中x 2项的系为26C =15, 故选:C . 【点睛】本题主要考查绝对值三角不等式的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数,属于中档题.4.325x -≥不等式的解集是( ) A .{|1}x x ≤- B .{|14}x x -≤≤C .{|14}x x x ≤-≥或D .{|4}x x ≥【答案】C 【解析】 【分析】根据绝对值定义化简不等式,求得解集. 【详解】因为325x -≥,所以325x -≥或325x -≤-,即14x x ≤-≥或,选C.【点睛】本题考查含绝对值不等式解法,考查基本求解能力.5.若关于x 的不等式2|1|30ax x a -++≥的解集为R ,则实数a 的取值范围为 A .1[,+)6∞ B .1[,+)3∞ C .1[,+)2∞ D .1[,+)12∞ 【答案】C 【解析】 【分析】先将不等式2130ax x a -++≥变形为213x a x +≥+,由不等式2130ax x a -++≥的解集是(),-∞+∞,可得213x a x +≥+恒成立,因此只需求出213x x ++的最大值即可.【详解】解:不等式2130ax x a -++≥的解集是(),-∞+∞,即x R ∀∈,2130ax x a -++≥恒成立, ∴221133x x a x x ++≥=++, 令()213x g x x +=+, 当1x =-时,()0g x =;当1x ≠-时,()21143121x g x x x x +==+++-+, 若10x +>,则()41221x x ++-≥=+, 当且仅当411x x +=+,即x 1=时上式“=”成立; 若x 10+<,则()()()441212611x x x x ⎡⎤++-=--++-≤-=-⎢⎥+-+⎢⎥⎣⎦, 当且仅当()()411x x -+=-+,即3x =-时上式“=”成立.()()][()412,62,1x x ∴++-∈-∞-⋃+∞+. ()10,2g x ⎛⎤∴∈ ⎥⎝⎦.12a ∴≥. 则实数a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 故选C . 【点睛】本题主要考查不等式恒成立的问题,由不等式恒成立求参数的范围,通常用分离参数的方法,将不等式转化为参数与一个函数比较大小的形式,只需求出函数的最大值或最小值即可,属于常考题型.6.2018年9月24日,英国数学家M.F 阿帝亚爵在“海德堡论坛”展示了他“证明”黎曼猜想的过程,引起数学界震动,黎曼猜想来源于一些特殊数列求和.记无穷数列21n ⎧⎫⎨⎬⎩⎭的各项的和222111123S n L L =+++++,那么下列结论正确的是( ) A .413S << B .5443S << C .322S << D .2S >【答案】C 【解析】 【分析】由2n ≥时,()2111111n n n n n<=---,由裂项相消求和以及不等式的性质可得2S <,排除D ,再由前3项的和排除A ,B ,从而可得到结论. 【详解】由2n ≥时,()2111111n n n n n<=---, 可得222111111111...11...232231n S n n n =++++<+-+-++--12n=-, n →+∞时,2S →,可得2S <,排除D ,由22111341123363++=+>,可排除,A B ,故选C. 【点睛】本题主要考查裂项相消法求数列的和,以及放缩法和排除法的应用,属于中档题. 用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法. 若结果为定值,则可采用此法. 特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性.7.在平面内,已知向量(1,0)a =v ,(0,1)b =v ,(1,1)c =v,若非负实数,,x y z 满足1x y z ++=,且23p xa yb zc =++v v v v,则( )A .p v的最小值为25B .p v的最大值为23 C .p v 的最小值为5 D .p v的最大值为33【答案】A 【解析】 【分析】求出p v 的坐标,表示p v ,即:p v =()()22323x z y z +++,构造柯西不等式模型,利用柯西不等式即可求得其最小值,问题得解.【详解】因为()1,0a =v ,()0,1b =v ,()1,1c =v,所以23p xa yb zc =++v v v v=()3,23x z y z ++,又非负实数,,x y z 满足1x y z ++=,所以01z ≤≤,所以p v =()()()()()222222223232132321x z y z x z y z ⎡⎤+++⨯+⎣⎦+++=+ ()()()()222322312292742555555x z y z x y z z ⎡⎤+⨯++⨯+++⎣⎦≥==≥=, 当且仅当()()31232,0x z y z z +⨯=+⨯=时,等号成立. 即:当且仅当41,,055x y z ===时,等号成立. 所以p v的最小值为25, 故选A. 【点睛】本题主要考查了柯西不等式的应用,还考查了向量的模及坐标运算,考查构造能力,属于中档题.8.如果关于x 的不等式34x x a -+-<的解集不是空集,则参数a 的取值范围是( ) A .()1,+∞B .[)1,+∞C .(),1-∞D .(],1-∞【答案】A 【解析】 【分析】先求|x-3|+|x-4|的最小值是1,即得解. 【详解】由题得|x-3|+|x-4|<a 有解,由绝对值三角不等式得|x-3|+|x-4|≥|x -3-x+4|=1, 所以|x-3|+|x-4|的最小值为1, 所以1<a,即a >1. 故选:A 【点睛】本题主要考查绝对值三角不等式求最值,考查不等式的有解问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.已知1a >,且函数()2224f x x x a x x a =-++-+.若对任意的()1,x a ∈不等式()()1f x a x ≥-恒成立,则实数a 的取值范围为( )A .[]4,25B .(]1,25C .(]1,16D .[]4,16【答案】C 【解析】 【分析】由题目得已知函数和要求解的不等式中都含有待求的参数,且已知函数中含有两个绝对值符号,直接求解难度很大,因此考虑用排除法,代值验证可得解. 【详解】当25a =时,()22252425f x x x x x =-++-+且22250,4250x x x x -+≥-+≥ 所以()23975f x x x =-+,此时()()1f x a x ≥-化为()24f x x ≥,即2397524x x x -+≥,所以212250x x -+≥在()1,25x ∈不是恒成立的.故A 、B 不对;当3a =时,()223243f x x x x x =-++-+,当()1,3x ∈时,2230,430x x x x -+>-+<,所以()()222324373f x x x x x x x =-+--+=-+-,此时()()1f x a x ≥-化成()27331x x x -+-≥-,即2530x x -+-≥满足()1,3x ∈恒成立,所以当3a =时成立,故D 不对,C 正确; 故选C. 【点睛】本题考查了含绝对值不等式恒成立的问题,考查了小题小做的技巧方法,属于中档题.10.已知不等式1x m -<成立的一个充分非必要条件是1132x ≤≤,则实数m 的取值范围是( ) A .14,23⎡⎤-⎢⎥⎣⎦ B .14,23⎛⎫-⎪⎝⎭ C .1,2⎛⎫-∞-⎪⎝⎭D .4,3⎡⎫+∞⎪⎢⎣⎭【答案】B 【解析】 【分析】先求得不等式1x m -<解集,结合题意,列出不等式组113112m m ⎧-<⎪⎪⎨⎪+>⎪⎩,即可求解.【详解】由题意,不等式1x m -<,解得11m x m -<<+, 因为不等式1x m -<成立的一个充分非必要条件是1132x ≤≤, 则113112m m ⎧-<⎪⎪⎨⎪+>⎪⎩,解得1423m -<<,即实数m 的取值范围是14,23⎛⎫- ⎪⎝⎭.故选B . 【点睛】本题主要考查了绝对值不等式的求解,以及利用充分不必要条件求解参数问题,其中解答中正确求解不等式的解集,集合充分不必要条件,列出不等式组是解答的关键,着重考查了推理与运算能力,属于基础题.11.已知函数()222,2log 1,2x x x f x x x ⎧-+≤=⎨->⎩,设12116n x x x ≤<<<≤L ,若()()()()()()12231n n f x f x f x f x f x f x M --+-++-≤L ,则M 的最小值为( )A .3B .4C .5D .6【答案】B 【解析】 【分析】作出函数的图象,由已知分段函数求得f (1)1=,f (2)0=,(16)3f =,等价于12231max [|()()||()()||()()|]n n M f x f x f x f x f x f x -∴≥-+-+⋯+-,再求出不等式右边的最大值即可得M 的最小值. 【详解】由222,2()log 1,2x x x f x x x ⎧-+=⎨->⎩„,得f (1)1=,f (2)0=,(16)3f =.12116n x x x <<⋯<Q 剟,12231|()()||()()||()()|n n M f x f x f x f x f x f x -∴-+-+⋯+-… 12231max[|()()||()()||()()|]n n M f x f x f x f x f x f x -∴≥-+-+⋯+-12231|()()||()()||()()||(1)(2)||(2)(16)=|10||30|4n n f x f x f x f x f x f x f f f f --+-+⋯+-≤-+--+-=∴4M ≥. 则M 的最小值为4. 故选:B . 【点睛】本题考查分段函数及其应用,考查三角绝对值不等式的应用,意在考查学生对这些知识的理解掌握水平.12.设0x >,则()2142f x x x =--的最大值为( ) A .242-B .42C .不存在D .52【答案】D【解析】 【分析】化简得到()214222x xf x x ⎛⎫=-++ ⎪⎝⎭,再利用均值不等式计算得到答案.【详解】()2211544422222x x f x x x x ⎛⎫=--=-++≤-= ⎪⎝⎭当21222x x x ==即1x =时等号成立 故选:D 【点睛】本题考查了利用均值不等式求函数最值,意在考查学生对于均值不等式的灵活运用.13.不等式230x x -<的解集为( )A .{}03x x << B .{}3003x x x -<<<<或C .{}30x x -<<D .{}33x x -<<【答案】B 【解析】 【分析】将不等式表示为230x x -<,得出03x <<,再解该不等式可得出解集. 【详解】将原不等式表示为230x x -<,解得03x <<,解该不等式可得30x -<<或03x <<.因此,不等式230x x -<的解集为{}3003x x x -<<<<或,故选:B.【点睛】本题考查二次不等式的解法与绝对值不等式的解法,考查运算求解能力,属于中等题.14.已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=u u u r u u u r,O 为坐标原点,则OB 的最大值是( )A 1- BC 1 D【答案】C 【解析】 【分析】设(),B x y ,利用两点间的距离公式可得221x y ax cy +=++,再利用柯西不等式进行放. 【详解】设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy -+=⇒+=++11≤+=+取等号条件:ay cx =;令OB d ==,则212d d ≤+,得1d ≤.故选:C. 【点睛】本题考查两点间的距离公式,勾股定理、柯西不等式的应用,考查转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意不等式放缩时等号成立的条件.15.若,,a b c ∈R ,则下列结论中: (1)2211a a a a+≥+; (2)a b a c b c -≤-+-; (3)若a b >,则11a ba b>++;(4)若1a b +=,则2221a b a b +++的最小值为 其中正确结论的个数为( )A .1B .2C .3D .4【答案】B 【解析】 【分析】利用函数知识、换元法、绝对值不等式等知识,对选项进行一一推理证明,即可得答案. 【详解】 对(1),2221111()()20a a a a a a a a +≥+⇔+-+-≥,∴12a a +≥或11a a+≤-, ∵12a a +≥或12a a+≤-,∴原不等式成立,故(1)正确;对(2),∵()()a b a c b c a c b c -=---≤-+-,故(2)正确; 对(3),令1,52a b =-=-,则51,114a b a b =-=++,显然11a b a b>++不成立,故(3)错误;对(4),∵1a b +=,∴222222(1)231111a b b b b a b b b b+-+++=+=+-+-,当1b >时,2301b b +<-,∴2221a b a b +++的最小值为4)错误. 故选:B.【点睛】本题考查函数与不等式的知识,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意消元法、换元法的使用.16.不等式||x x x <的解集是( )A .{|01}x x <<B .{|11}x x -<<C .{|01x x <<或1}x <-D .{|10x x -<<或1}x > 【答案】C【解析】【分析】原不等式即()||10x x -<,等价转化为①010x x >⎧⎨-<⎩,或 ②010x x <⎧⎨->⎩.分别求得①、②的解集,再取并集,即得所求.【详解】解:不等||x x x <,即()||10x x -<, ∴①010x x >⎧⎨-<⎩或 ②010x x <⎧⎨->⎩. 解①可得01x <<,解②可得1x <-.把①②的解集取并集,即得原不等式的解集为{|01x x <<或1}x <-,故选:C .【点睛】本题主要考查绝对值不等式的解法,体现了分类讨论和等价转化的数学思想,属于中档题.17.使不等式(1||)(1)0x x -+>成立的充分而不必要的条件是( )A .{|11}x x x <->或B .{|11}x x -<<C .{|11}x x x >-≠且D .{|11}x x x <≠-且【答案】B【解析】【分析】解不等式()()1||10x x -+>,求得集合A,使不等式成立的充分而不必要的条件为B,则B A Ü,即可对比选项得解.【详解】不等式()()1||10x x -+> 则()()1010x x ⎧->⎪⎨+>⎪⎩ 或()()1010x x ⎧-<⎪⎨+<⎪⎩ 解不等式组可得11x -<<或1x <-则不等式()()1||10x x -+>的解集为{11A x x =-<<或}1x <-使得不等式(1||)(1)0x x -+>成立的充分而不必要的条件为B,则B A Ü对比选项可知B 符合要求故答案为:B【点睛】本题考查了绝对值不等式的解法,充分不必要条件的应用,属于中档题.18.不等式33log log x x x x +<+的解集( )A .(),-∞+∞B .()0,1C .()1,+∞D .()0,∞+ 【答案】B【解析】【分析】依题意知,0x >,32log 0x x <,原不等式等价于3log 0x <,解不等式即可.【详解】根据对数的意义可知,0x >, 因为33log log x x x x +<+,两边同时平方可得,332log 2log x x x x <,即32log 0x x <,因为0x >,所以原不等式等价于3log 0x <,所以原不等式的解集为}{01x x <<,故选:B【点睛】本题考查绝对值不等式的解法;熟练掌握对数函数的定义域和单调性是求解本题的关键;属于中档题.19.已知数列{}n a 的前n 项和2n S n =,数列{}n b 满足()1log 01n n a na b a a +=<<,n T 是数列{}n b 的前n 项和,若11log 2n a n M a +=,则n T 与n M 的大小关系是( ) A .n n T M ≥B .n n T M >C .n n T M <D .n n T M ≤ 【答案】C【解析】【分析】 先求出2462log ()13521n a n T n =⨯⨯⨯-L,log n a M =,再利用数学归纳法证明*1321)242n n N n -⨯⨯⋯⨯<∈即得解. 【详解】因为2n S n =,所以11=1,21(2)n n n a a S S n n -=-=-≥适合n=1,所以=21n a n -. 所以2log 21n an b n =-, 所以24622462log log log log log ()1352113521n a a a a a n n T n n =+++=⨯⨯⨯--L111log =log (21)log 22n a n a a M a n +=+=下面利用数学归纳法证明不等式*1321)242n n N n -⨯⨯⋯⨯∈ (1)当1n =时,左边12=,右边=<右边,不等式成立, (2)22414n n -<Q ,即2(21)(21)(2)n n n +-<.即212221n n n n -<+,∴<,∴< 假设当n k =时,原式成立,即1121232k k -⨯⨯⋯⨯<, 那么当1n k =+时,即112121212322(1)2(1)k k k k k k -++⨯⨯⋯⨯⨯<=<++g , 即1n k =+时结论成立.根据(1)和(2)可知不等式对任意正整数n都成立.所以246213521n n ⨯⨯⨯>-L因为0<a <1,所以2462log ()log 13521a a n n ⨯⨯⨯<-L所以n n T M <.故选:C【点睛】 本题主要考查数列通项的求法,考查对数的运算和对数函数的性质,考查数学归纳法,意在考查学生对这些知识的理解掌握水平.20.已知命题P:2log (1)1x -<;命题q:21x -<,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】【分析】先化简命题p 和q,再利用充要条件的定义判断得解.【详解】由题得命题p:1<x <3,命题q:1<x <3.所以命题p 是命题q 的充要条件.故选C【点睛】本题主要考查对数不等式和绝对值不等式的解法,考查充要条件的判断,意在考查学生对这些知识的理解掌握水平和分析推理能力.。

高考数学压轴专题新备战高考《不等式》知识点总复习有解析

高考数学压轴专题新备战高考《不等式》知识点总复习有解析

【高中数学】单元《不等式》知识点归纳一、选择题1.定义在R 上的函数()f x 对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,且函数(1)=-y f x 的图象关于(1,0)成中心对称,若s 满足不等式()()222323f s s f s s -+--+„,则s 的取值范围是( )A .13,2⎡⎫--⎪⎢⎣⎭B .[3,2]--C .[2,3)-D .[3,2]-【答案】D 【解析】 【分析】由已知可分析出()f x 在R 上为减函数且()y f x =关于原点对称,所以不等式等价于()()222323f s s f s s -+-+-„,结合单调性可得222323s s s s -+≥-+-,从而可求出s 的取值范围. 【详解】解:因为对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,所以()f x 在R 上为减函数;又(1)=-y f x 的图象关于(1,0)成中心对称,所以()y f x =关于原点对称, 则()()()222232323f s s f s s f s s -+--+=-+-„,所以222323s s s s -+≥-+-,整理得260s s +-≤,解得32s -≤≤. 故选:D. 【点睛】本题考查了函数的单调性,考查了函数的对称性,考查了一元二次不等式的求解.本题的关键是由已知得到函数的单调性和对称性,从而将不等式化简.2.若实数,x y 满足不等式组2,36,0,x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩则3x y +的最小值等于( )A .4B .5C .6D .7【答案】A 【解析】 【分析】首先画出可行域,利用目标函数的几何意义求z 的最小值. 【详解】解:作出实数x ,y 满足不等式组2360x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩表示的平面区域(如图示:阴影部分)由20x y x y +-=⎧⎨-=⎩得(1,1)A ,由3z x y =+得3y x z =-+,平移3y x =-, 易知过点A 时直线在y 上截距最小, 所以3114min z =⨯+=. 故选:A .【点睛】本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题.3.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .2 B .52C .3D .32【答案】A 【解析】()220{,440a f x acb b ac >≥∴∴≥∆=-≤Q 恒成立,,且0,0c a >> 又()()()2,00,1f x ax b f b f a b c =+∴'='=>++,()()221241111120b f a c ac f b b +∴=+≥+≥=+='当且仅当()()120f a c f ='时,不等式取等号,故的最小值为4.关于x 的不等式0ax b ->的解集是(1,)+∞,则关于x 的不等式()(3)0ax b x +->的解集是( ) A .(,1)(3,)-∞-+∞U B .(1,3)- C .(1,3) D .(,1)(3,)-∞+∞U【答案】A 【解析】 【分析】由0ax b ->的解集,可知0a >及1ba=,进而可求出方程()()30ax b x +-=的解,从而可求出()()30ax b x +->的解集. 【详解】由0ax b ->的解集为()1,+?,可知0a >且1ba=, 令()()30ax b x +-=,解得11x =-,23x =,因为0a >,所以()()30ax b x +->的解集为()(),13,-∞-+∞U , 故选:A. 【点睛】本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题.5.在ABC V 中,,,a b c 分别为A ∠,B Ð,C ∠所对的边,函数32()1f x x bx x =+++的导函数为()f x ',当函数[]()ln ()g x f x '=的定义域为R 时,B Ð的取值范围为( )A .,63ππ⎡⎤⎢⎥⎣⎦B .,6ππ⎡⎫⎪⎢⎣⎭C .2,63ππ⎡⎤⎢⎥⎣⎦D .0,6π⎛⎫⎪⎝⎭【答案】D 【解析】 【分析】首先求出函数的导数,依题意即222()3203a c f x x bx +-'=++>恒成立,所以()222(2)40b a c ∆=-+-<,再结合余弦定理即可求出B 的取值范围;【详解】解:因为22323()1a c acf x x bx x+-=+++,所以2223()32a c acf x x bx+-'=++,若()g x的定义域为R,则有()222(2)430b ac ac∆=-+-<,即2223a cb ac+->,结合余弦定理,2223cos2a c bBac+-=>,故0,6Bπ⎛⎫∈ ⎪⎝⎭,故选:D.【点睛】本题考查导数的计算,对数函数的定义域以及不等式恒成立问题,属于中档题.6.已知x、y满足约束条件122326x yx yx y+≥⎧⎪-≥-⎨⎪+≤⎩,若22z x y=+,则实数z的最小值为()A.22B.25C.12D.2【答案】C【解析】【分析】作出不等式组所表示的可行域,利用目标函数的几何意义求出22x y+的最小值,进而可得出实数z的最小值.【详解】作出不等式组122326x yx yx y+≥⎧⎪-≥-⎨⎪+≤⎩所表示的可行域如下图所示,22z x y =+表示原点到可行域内的点(),x y 的距离的平方,原点到直线10x y +-=的距离的平方最小,()222min2122x y⎛⎫+== ⎪ ⎪⎝⎭. 由于22z x y =+,所以,min 12z =. 因此,实数z 的最小值为12. 故选:C. 【点睛】本题考查线性规划中非线性目标函数最值的求解,考查数形结合思想的应用,属于中等题.7.若,x y 满足4,20,24,x y x y x y +≤⎧⎪-≥⎨⎪+≥⎩则4y x -的最大值为( )A .72-B .52-C .32-D .1-【答案】D 【解析】 【分析】画出平面区域,结合目标函数的几何意义,求解即可. 【详解】该不等式组表示的平面区域,如下图所示4y x-表示该平面区域中的点(),x y 与(0,4)A 确定直线的斜率 由斜率的性质得出,当区域内的点为线段AB 上任意一点时,取得最大值.不妨取84(,)33B 时,4y x -取最大值443183-=- 故选:D 【点睛】本题主要考查了求分式型目标函数的最值,属于中档题.8.已知0a >,0b >,且()122y a b x =+为幂函数,则ab 的最大值为( ) A .18B .14C .12D .34【答案】A 【解析】 【分析】根据()122y a b x =+为幂函数,得到21a b +=,再将ab 变形为ab 122a b =⋅利用基本不等式求解. 【详解】因为()122y a b x =+为幂函数, 所以21a b +=, 又因为0a >,0b >,所以ab 2112122228a b a b +⎛⎫=⋅≤= ⎪⎝⎭,当且仅当21a b +=,2a b =即11,24a b ==取等号. 所以ab 的最大值为 18. 故选:A 【点睛】本题主要考查幂函数的定义和基本不等式的应用,还考查运算求解的能力,属于中档题.9.已知不等式组y x y x x a ≤⎧⎪≥-⎨⎪≤⎩表示的平面区域的面积为9,若点, 则的最大值为( )A .3B .6C .9D .12【答案】C 【解析】 【分析】 【详解】分析:先画出满足约束条件对应的平面区域,利用平面区域的面积为9求出3a =,然后分析平面区域多边形的各个顶点,即求出边界线的交点坐标,代入目标函数求得最大值. 详解:作出不等式组对应的平面区域如图所示:则(,),(,)A a a B a a -,所以平面区域的面积1292S a a =⋅⋅=, 解得3a =,此时(3,3),(3,3)A B -,由图可得当2z x y =+过点(3,3)A 时,2z x y =+取得最大值9,故选C.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.10.已知ABC V 外接圆的半径2R =,且223sin 2AA =.则ABC V 周长的取值范围为( ) A .(23,4]B .(4,43]C .(43,423]+D .(423,63]+【答案】C 【解析】 【分析】 由223sin 2A A =及倍角公式可得23A π=,2sin 23a R A ==得2212b c bc =++,再利用基本不等式及三角形两边之和大于第三边求出b c +的取值范围即可得到答案. 【详解】 由题意,232cos 1123A A -=-,即3cos 13A A -=-,可化为33A π⎛⎫-= ⎪⎝⎭,即sin 3A π⎛⎫-= ⎪⎝⎭,因为0A π<<,所以33A ππ-=,即23A π=,2sin a R A ==ABC V 的内角A ,B ,C ,的对边分别为a ,b ,c ,由余弦定理得,2212b c bc =++,因为222b c bc +≥(当且仅当b c =时取“=”),所以22123b c bc bc =++≥,即4bc ≤,又因为22212()b c bc b c bc =++=+-,所以2()124bc b c =+-≤,故4b c +≤,则4a b c ++≤+b c a +>,所以2a b c a ++>=4a b c +++≤.故ABC V 周长的取值范围为4+.故选:C 【点睛】本题考查利用余弦定理求三角形周长的取值范围,涉及到辅助角公式、基本不等式求最值,考查学生的运算求解能力,是一道中档题.11.在三角形ABC 中,给出命题:p “2ab c >”,命题:q “3C π<”,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】由余弦定理将2c 化为222cos a b ab C +-,整理后利用基本不等式求得12cos 2C +>,求出C 范围,即可判断充分性,取4a =,7b =,6c =,则可判断必要性不成立,两者结合可得正确的选项. 【详解】充分性:由余弦定理,2222cos c a b ab C =+-, 所以2ab c >,即222cos ab a b ab C >+-,整理得,2212cos a b C ab++>,由基本不等式,222a b ab +≥=,当且仅当a b =时等号成立, 此时,12cos 2C +>,即1cos 2C >,解得3C π<, 充分性得证;必要性:取4a =,7b =,6c =,则164936291cos 247562C +-==>⨯⨯,故3C π<,但228ab c =<,故3C π<推不出2ab c >.故必要性不成立; 故p 是q 的充分不必要条件. 故选:A 【点睛】本题主要考查充分必要条件的判断、余弦定理的应用和基本不等式的应用,考查学生分析转化能力,属于中档题.12.若变量x ,y 满足2,{239,0,x y x y x +≤-≤≥则x 2+y 2的最大值是A .4B .9C .10D .12【答案】C 【解析】试题分析:画出可行域如图所示,点A (3,-1)到原点距离最大,所以22max ()10x y +=,选C.【考点】简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间的距离等,考查考生的绘图、用图能力,以及应用数学知识解决实际问题的能力.13.已知M 、N 是不等式组1,1,10,6x y x y x y ≥⎧⎪≥⎪⎨-+≥⎪⎪+≤⎩所表示的平面区域内的两个不同的点,则||MN 的最大值是( )A .17B .342C .32D .172【答案】A 【解析】 【分析】先作可行域,再根据图象确定MN 的最大值取法,并求结果. 【详解】作可行域,为图中四边形ABCD 及其内部,由图象得A(1,1),B(2,1),C(3.5,2.5),D(1,5)四点共圆,BD 为直径,所以MN 的最大值为BD=21417+=,选A.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.14.已知2(0,0)x y xy x y +=>>,则2x y +的最小值为( ) A .10 B .9C .8D .7【答案】B 【解析】 【分析】 由已知等式得到211x y +=,利用()2122x y x y x y ⎛⎫+=++ ⎪⎝⎭可配凑出符合基本不等式的形式,利用基本不等式求得最小值. 【详解】 由2x y xy +=得:211x y+=()212222225529x y x y x y x y x y y x y x ⎛⎫∴+=++=++≥+⋅= ⎪⎝⎭(当且仅当22x y y x =,即x y =时取等号)2x y ∴+的最小值为9故选:B【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够灵活对等于1的式子进行应用,配凑成符合基本不等式的形式.15.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( )A .①③B .②④C .①②③D .②③④ 【答案】B【解析】【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x y x y +=联立解得222x y ==可判断①③;由图可判断④.【详解】()2223222216162x y x yx y ⎛⎫++=≤ ⎪⎝⎭, 解得224x y +≤(当且仅当222x y ==时取等号),则②正确;将224x y +=和()3222216x y x y +=联立,解得222x y ==, 即圆224x y +=与曲线C 相切于点2,2,(2,2-,(2,2,, 则①和③都错误;由0xy <,得④正确.故选:B.【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.16.已知正数x ,y 满足144x y +=,则x y +的最小值是( ) A .9B .6C .94D .52 【答案】C【解析】【分析】先把x y +转化成114()4x y x y ⎛⎫+⋅+ ⎪⎝⎭,展开后利用均值不等式即可求解. 【详解】 Q 正数x ,y 满足144x y +=,1141419()1454444y x x y x y x y x y ⎛⎛⎫⎛⎫∴+=+⋅+=++++= ⎪ ⎪ ⎝⎭⎝⎭⎝…, 当且仅当4144y x x y x y⎧=⎪⎪⎨⎪+=⎪⎩,即34x =,32y =时,取等号. 故选:C【点睛】本题主要考查了基本不等式在最值问题中的应用,基本不等式一定要把握好“一正,二定,三相等”的原则,属于基础题.17.已知实数x y ,满足1030350x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则()22(4)2z x y =-+-的最小值为( ) AB .5C .3D .52【答案】D【解析】由题意作出其平面区域,22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方,求阴影内的点到点(4,2)P 的距离的平方最小值即可.【详解】解:由题意作出实数x ,y 满足1030350x y x y x y -+⎧⎪+-⎨⎪--⎩……„平面区域, 22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方,则22(4)(2)z x y =-+-的最小值为P 到350x y --=的距离的平方, 解得,2222523(1)d -⎛⎫+ ⎪= ⎝⎭=⎪; 所以min 52z =故选:D .【点睛】本题考查了简单线性规划,作图要细致认真,用到了表达式的几何意义的转化,属于中档题.18.设集合{}20,201x M xN x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( ) A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x << 【答案】B【解析】【分析】根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.由题意,集合{}20{01},20{|02}1x M x x x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭, 所以{}01M N x x ⋂=<<.故选:B .【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.19.若x 、y 满足约束条件4200x y x y y +≤⎧⎪-+≥⎨⎪≥⎩,目标函数z ax y =+取得最大值时的最优解仅为(1,3),则a 的取值范围为( )A .(1,1)-B .(0,1)C .(,1)(1,)-∞⋃+∞D .(1,0]-【答案】A【解析】【分析】结合不等式组,绘制可行域,判定目标函数可能的位置,计算参数范围,即可.【详解】结合不等式组,绘制可行域,得到:目标函数转化为y ax z =-+,当0a -≥时,则<1a -,此时a 的范围为(]1,0-当0a -<时,则1a ->-,此时a 的范围为()0,1,综上所述,a 的范围为()1,1-,故选A .【点睛】本道题考查了线性规划问题,根据最值计算参数,关键明白目标函数在坐标轴上可能的位置,难度偏难.20.设x ,y 满足102024x x y x y -≥⎧⎪-≤⎨⎪+≤⎩,向量()2,1a x =r ,()1,b m y =-r ,则满足a b ⊥r r 的实数m的最小值为( )A .125B .125-C .32D .32- 【答案】B【解析】【分析】先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可.【详解】 解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r ,由a b ⊥r r 得20x m y +-=,∴当直线经过点C 时,m 有最小值,由242x y x y +=⎧⎨=⎩,得8545x y ⎧=⎪⎪⎨⎪=⎪⎩,∴84,55C ⎛⎫ ⎪⎝⎭, ∴416122555m y x =-=-=-, 故选:B. 【点睛】本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.。

高考数学压轴专题昆明备战高考《不等式选讲》技巧及练习题附答案

高考数学压轴专题昆明备战高考《不等式选讲》技巧及练习题附答案

新《不等式选讲》专题一、141.“31a -<<”是“存在x ∈R ,使得|||1|2x a x -++<”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【答案】C 【解析】 【分析】设:31p a -<<,1:,|||2x R x a x q ∃∈-++<,考虑命题“若p 则q ”及其逆命题的真假后可得两者之间的条件关系. 【详解】设:31p a -<<,||:|1|2q x a x -++<,当31a -<<时,|||1|1x a x a -++≥+总成立,而12a +<, 故|||1|2x a x -++<在R 上有解,故,|||1|2x R x a x ∃∈-++<, 所以“若p 则q ”为真命题.若,|||1|2x R x a x ∃∈-++<,则()min21x a x >-++,由绝对值不等式可知11x a x a -++≥+,当且仅当()()10x a x --≤时等号成立, 所以1x a x -++的最小值为1a +,故21a >-即31a -<<,所以“若q 则p ”为真命题.综上,“31a -<<”是“存在x ∈R ,使得|||1|2x a x -++<”的充要条件. 故选:C. 【点睛】充分性与必要性的判断,可以依据命题的真假来判断,若“若p 则q ”是真命题,“若q 则p ”是假命题,则p 是q 的充分不必要条件;若“若p 则q ”是真命题,“若q 则p ”是真命题,则p 是q 的充分必要条件;若“若p 则q ”是假命题,“若q 则p ”是真命题,则p 是q 的必要不充分条件;若“若p 则q ”是假命题,“若q 则p ”是假命题,则p 是q 的既不充分也不必要条件.2.2018年9月24日,英国数学家.M F 阿帝亚爵在“海德堡论坛”展示了他“证明”黎曼猜想的过程,引起数学界震动,黎曼猜想来源于一些特殊数列求和,记222111123S n =+++++L L ,则( ) A .413S << B .4332S << C .322S << D .2S >【答案】C 【解析】由题意,可知21111111(2,)1(1)(1)1n n N n n n n n n n n n+-=<<=-≥∈++--,利用放缩法和极限,即可得到答案. 【详解】 由题意,可知21111111(2,)1(1)(1)1n n N n n n n n n n n n+-=<<=-≥∈++--, 所以2221111111113111()()()232334121n S n n n n =+++++>+-+-++-=-++L L L 22211111111111(1)()()2232231n S n n n nL L =++++<+-+-++-=--, 当n →+∞且n N +∈时,101n →+,且10n →,所以322S <<,故选C. 【点睛】本题主要考查了数列思想的应用问题,其中解答中,认真审题,利用21n进行合理放缩,再利用极限求解是解答本题的关键,着重考查了分析问题和解答问题的能力,以及放缩思想的应用,属于中档试题.3.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是 ( ) A .|a+b|+|a-b|>2 B .|a+b|+|a-b|<2 C .|a+b|+|a-b|=2 D .不能比较大小【答案】B 【解析】选B.当(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2, 当(a+b)(a-b)<0时,|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2.4.已知a ,b 均为正数,且20ab a b --=,则22214a b a b-+-的最小值为( )A .6B .7C .8D .9 【答案】B 【解析】 【分析】a ,b 均为正数,且ab ﹣a ﹣2b =0,可得21a b+=1,根据柯西不等式求出代数式的最小值即可.∵a ,b 均为正数,且ab ﹣a ﹣2b =0, ∴21a b+=1. 则22214a b a b-+- 24a =+b 2﹣1, 又因为2a +b =(21a b +)(2a +b )22b a a b=++2≥2+2=4,当且仅当a =4,b =2时取等号.∴(24a +b 2)(1+1)≥(2a +b )2≥16,当且仅当a =4,b =2时取等号.∴24a +b 2≥8, ∴224a a-+b 2214a b -=+b 2﹣1≥7.故选:B . 【点睛】本题考查“乘1法”、基本不等式的性质、柯西不等式,考查了推理能力与计算能力,属于中档题.5.若关于x 的不等式2|1|30ax x a -++≥的解集为R ,则实数a 的取值范围为 A .1[,+)6∞ B .1[,+)3∞ C .1[,+)2∞ D .1[,+)12∞ 【答案】C 【解析】 【分析】先将不等式2130ax x a -++≥变形为213x a x +≥+,由不等式2130ax x a -++≥的解集是(),-∞+∞,可得213x a x +≥+恒成立,因此只需求出213x x ++的最大值即可.【详解】解:不等式2130ax x a -++≥的解集是(),-∞+∞,即x R ∀∈,2130ax x a -++≥恒成立,∴221133x x a x x ++≥=++, 令()213x g x x +=+, 当1x =-时,()0g x =;当1x ≠-时,()21143121x g x x x x +==+++-+, 若10x +>,则()41221x x ++-≥=+, 当且仅当411x x +=+,即x 1=时上式“=”成立; 若x 10+<, 则()()()441212611x x x x ⎡⎤++-=--++-≤-=-⎢⎥+-+⎢⎥⎣⎦, 当且仅当()()411x x -+=-+,即3x =-时上式“=”成立.()()][()412,62,1x x ∴++-∈-∞-⋃+∞+. ()10,2g x ⎛⎤∴∈ ⎥⎝⎦.12a ∴≥. 则实数a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 故选C . 【点睛】本题主要考查不等式恒成立的问题,由不等式恒成立求参数的范围,通常用分离参数的方法,将不等式转化为参数与一个函数比较大小的形式,只需求出函数的最大值或最小值即可,属于常考题型.6.设x ∈R ,则“2x<”是4<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】D 【解析】 【分析】首先求解绝对值不等式和根式不等式,然后分别考查充分性和必要性是否成立即可. 【详解】由2x <可得22x -<<,由4x <可得016x ≤<,22x -<<是016x ≤<的既不充分也不必要条件,“2x <”是“4x <”的既不充分也不必要条件. 本题选择D 选项. 【点睛】本题主要考查绝对值不等式的解法,充分条件和必要条件的判定等知识,意在考查学生的转化能力和计算求解能力.7.若,则不等式的解集为 A .B .C .D .【答案】D 【解析】 【分析】由绝对值三角不等式的性质得出,由,得出,借助正弦函数图象可得出答案。

高考数学压轴专题新备战高考《不等式选讲》知识点总复习

高考数学压轴专题新备战高考《不等式选讲》知识点总复习

【最新】《不等式选讲》专题解析一、141.不等式的解集是 ( )A .B .C .D .【答案】B 【解析】 【分析】利用绝对值三角不等式,得到,恒成立.【详解】恒成立.故答案选B 【点睛】本题考查了解绝对值不等式,利用绝对值三角不等式简化了运算.2.若关于x 的不等式222213x t x t t t +-+++-<无解,则实数t 的取值范围是( ) A .1,15⎡⎤-⎢⎥⎣⎦B .(],0-∞C .(],1-∞D .(],5-∞ 【答案】C 【解析】 【分析】先得到当0t ≤时,满足题意,再当0t >时,根据绝对值三角不等式,得到22221x t x t t +-+++-的最小值,要使不等式无解,则最小值需大于等于3t ,从而得到关于t 的不等式,解得t 的范围 【详解】关于x 的不等式222213x t x t t t +-+++-<无解, 当0t ≤时,可得此时不等式无解, 当0t >时,()2222221221x t x t t x t x t t +-+++-+--++-≥21t =--,所以要使不等式无解,则213t t --≥, 平方整理后得20541t t ≤--, 解得115t ≤≤-, 所以01t <≤,综上可得t 的范围为(],1-∞, 故选:C. 【点睛】本题考查绝对值的三角不等式的应用,根据不等式的解集情况求参数的范围,属于中档题.3.不等式2124x x a a +--≥-的解集为R ,则实数a 的取值范围是( ) A .(][),13,-∞+∞U B .()(),13,-∞⋃+∞ C .[]1,3 D .()1,3【答案】C 【解析】 【分析】令()12f x x x =+--,通过对x 的取值范围的讨论,去掉绝对值符号,可求得()min 3f x =,依题意,即可求得实数a 的取值范围.【详解】令()12f x x x =+--,当1x <-时,()()123f x x x =----+=-;当12x -≤≤时,()()[]12213,3f x x x x =+--+=-∈-; 当2x >时,()()123f x x x =+--=; ∴()min 3f x =-.∵不等式2124x x a a +--≥-的解集为R , ∴()2min 43a a f x -≤=-,即实数a 的取值范围是[]1,3.故选C. 【点睛】本题考查绝对值不等式的解法,考查函数恒成立问题,解题方法是转化为求函数最值,然后解不等式.4.已知点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,点(,)M a b 为平面上一点,O 为坐标原点,则当OM 取最小值时,椭圆的离心率为( )A B .13C .2D 【答案】D 【解析】 【分析】点(3,1)P 在椭圆22221(0)x y a b a b +=>>上,可得22911a b +=,(,)M a b 为平面上一点,||OM =a ,b 关系,代入即可.【详解】解:点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,可得22911a b +=,(,)M a b 为平面上一点,||OM =所以||4OM ==,当且仅当223a b =时,取等号, 222213b e a =-=,e =. 故选D . 【点睛】考查椭圆的性质,柯西不等式的应用,求椭圆的离心率,中档题.5.2018年9月24日,英国数学家.M F 阿帝亚爵在“海德堡论坛”展示了他“证明”黎曼猜想的过程,引起数学界震动,黎曼猜想来源于一些特殊数列求和,记222111123S n =+++++L L ,则( ) A .413S << B .4332S << C .322S << D .2S >【答案】C 【解析】 【分析】由题意,可知21111111(2,)1(1)(1)1n n N n n n n n n n n n+-=<<=-≥∈++--,利用放缩法和极限,即可得到答案. 【详解】 由题意,可知21111111(2,)1(1)(1)1n n N n n n n n n n n n+-=<<=-≥∈++--, 所以2221111111113111()()()232334121n S n n n n =+++++>+-+-++-=-++L L L 22211111111111(1)()()2232231n S n n n nL L =++++<+-+-++-=--, 当n →+∞且n N +∈时,101n →+,且10n →,所以322S <<,故选C. 【点睛】本题主要考查了数列思想的应用问题,其中解答中,认真审题,利用21n 进行合理放缩,再利用极限求解是解答本题的关键,着重考查了分析问题和解答问题的能力,以及放缩思想的应用,属于中档试题.6.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是 ( ) A .|a+b|+|a-b|>2 B .|a+b|+|a-b|<2 C .|a+b|+|a-b|=2 D .不能比较大小【答案】B 【解析】选B.当(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2, 当(a+b)(a-b)<0时,|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2.7.设n *∈N) A>BC=D .不能确定【答案】B 【解析】 【分析】把两个代数式进行分子有理化,比较分母的大小可以比较出大小关系. 【详解】22-===.22-===.*n N∈ 42,31n n n n +>++>+>>><<成立,因此本题选B . 【点睛】对于二次根式的加減运算,分母有理化是常见的运算要求,但是有时分子有理化会起到意想不到的作用,尤其是在比较二个二次根式减法算式之间的大小关系时,经常会用到分子有理化这个方法.当然不等式的性质也是很重要的.8.已知各项均为正数的数列{}n a 的前n 项和为n S ,且()2*21221n n a a S n n N +==++∈,,若对任意的*n N ∈,1211120nn a n a n a λ++⋯+-≥+++恒成立,则实数λ的取值范围为( ) A .(]2∞-,B .(]1∞-, C .14∞⎛⎤- ⎥⎝⎦,D .12,∞⎛⎤- ⎥⎝⎦【答案】C 【解析】 【分析】2212,21n n a a S n +==++ ()*n N ∈,可得2n ≥时,()221121210n n n n n n a a S S a a +--=-+=+>,.可得11n n a a +=+时,212224a a +==,解得1a .利用等差数列的通项公式可得n a .通过放缩即可得出实数λ的取值范围. 【详解】2212,21n n a a S n +==++Q ()*n N ∈,2n ∴≥时,()22112121n n n n n a a S S a +--=-+=+, 化为:222121(1)n n n n a a a a +=++=+,0n a >.11n n a a +∴=+,即11n n a a +-=,1n =时,212224a a +==,解得11a =.∴数列{}n a 为等差数列,首项为1,公差为1.11n a n n ∴=+-=. 1211111112n n a n a n a n n n n∴++⋯+=++⋯+++++++. 记11112n b n n n n =++⋯++++,1111111211n b n n n n +=++⋯++++++++. ()()11111022*******n n b b n n n n n +-=+-=>+++++. 所以{}n b 为增数列,112n b b ≥=,即121111111122n n a n a n a n n n n ++⋯+=++⋯+≥++++++. Q 对任意的*n N ∈,1211120nn a n a n a λ++⋯+-≥+++恒成立, 122λ∴≤,解得14λ≤ ∴实数λ的取值范围为14∞⎛⎤- ⎥⎝⎦,.故选C . 【点睛】本题考查了数列递推关系、等差数列的通项公式、放缩法,考查了推理能力与计算能力,属于中档题.9.已知()f x 是定义域为R 的偶函数,当0x „时,2()4f x x x =+,则(2)5f x +>的解集为( )A .(,5)(5,)-∞-+∞UB .(,5)(3,)-∞-+∞UC .(,7)(3,)-∞-+∞UD .(,7)(2,)-∞-+∞U【答案】C 【解析】 【分析】根据偶函数以及当0x „时,2()4f x x x =+,可得0x ≥时的表达式,由此求得(2)(|2|)f x f x +=+,再代入可解得.【详解】∵()f x 是定义域为R 的偶函数,∴当0x ≥时,0x -≤,所以22()()()4()4f x f x x x x x =-=-+-=-. 由()25f x +>以及()f x 为偶函数,得(|2|)5f x +>,∴2|2|4|2|5x x +-+>,所以(|2|5)(|2|1)0x x +-++>, 因为|2|10x ++>, 所以|2|5x +>,所以25x +>或25x +<-, 解得7<-x 或 3.x > 故选C 【点睛】本题考查了利用函数的奇偶性求函数解析式,绝对值不等式的解法,属于中档题.10.设,x y ∈R ,且0xy ≠,则222241x y y x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为( )A .9-B .9C .10D .0【答案】B 【解析】 【分析】利用柯西不等式得出最小值. 【详解】 (x 224y +)(y 221x+)≥(x 12y x y ⋅+⋅)2=9.当且仅当xy 2xy=即xy= 时取等号. 故选:B . 【点睛】本题考查了柯西不等式的应用,熟记不等式准确计算是关键,属于基础题.11.已知x+3y+5z=6,则x 2+y 2+z 2的最小值为( ) A .65B .6 35C .36 35D .6【答案】C 【解析】 【分析】由题意结合柯西不等式的结论求解x 2+y 2+z 2的最小值即可. 【详解】 由柯西不等式,得:x 2+y 2+z 2=(12+32+52)(x 2+y 2+z 22221)135++≥(1×x+3×y+5×z )2135⨯=26136.3535⨯= 当且仅当x 6186,,35357y z ===时等号成立. 即x 2+y 2+z 2的最小值为3635. 本题选择C 选项. 【点睛】根据题目特征,想到利用向量方法或利用柯西不等式想法比较自然.利用柯西不等式代数形式及其向量形式解题的方法是一致的.选择哪种方法进行解题,可能会因解题者的知识解构、思维特征及对问题与方法的熟悉程度做出选择.12.已知集合{|||2}A x x =≥,2{|30}B x x x =->,则A B =I ( ) A .∅B .{|3x x >或2}x ?C .{|3x x >或0}x <D .{|3x x >或0}x <【答案】B 【解析】 【分析】可以求出集合A ,B ,然后进行交集的运算即可. 【详解】∵A ={x |x ≤﹣2,或x ≥2},B ={x |x <0,或x >3}, ∴A ∩B ={x |x ≤﹣2,或x >3}. 故选:B . 【点睛】考查描述法的定义,绝对值不等式和一元二次不等式的解法,以及交集的运算.13.不等式21x x a <-+的解集是区间()3,3-的子集,则实数a 的取值范围是( )A .5a ≤B .554a -≤≤C .574a -≤≤D .7a ≤【答案】A 【解析】 【分析】原不等式等价于210x x a ---<,设()21f x x x a =---,则由题意得()()350370f a f a ⎧-=-≥⎪⎨=-≥⎪⎩,解之即可求得实数a 的取值范围. 【详解】不等式等价于210x x a ---<,设()21f x x x a =---,因为不等式21x x a <-+的解集是区间()3,3-的子集,所以()()350370f a f a ⎧-=-≥⎪⎨=-≥⎪⎩,解之得5a ≤.故选:A. 【点睛】本题主要考查绝对值不等式的解法、二次函数的性质,体现化归与等价转化思想,属中等难度题.14.设0x >,则()2142f x x x=--的最大值为( )A .42-B .4C .不存在D .52【答案】D【解析】 【分析】化简得到()214222x xf x x ⎛⎫=-++ ⎪⎝⎭,再利用均值不等式计算得到答案.【详解】()2211544422222x x f x x x x ⎛⎫=--=-++≤-= ⎪⎝⎭当21222x x x ==即1x =时等号成立 故选:D 【点睛】本题考查了利用均值不等式求函数最值,意在考查学生对于均值不等式的灵活运用.15.函数()f x 的定义域为A ,若存在非零实数t ,使得对于任意()x C C A ∈⊆有,x t A +∈且()()f x t f x +≤,则称()f x 为C 上的t 度低调函数.已知定义域为[)0+∞,的函数()=3f x mx --,且()f x 为[)0+∞,上的6度低调函数,那么实数m 的取值范围是( )A .[]0,1B .[)1+∞,C .(],0-∞D .][(),01,-∞⋃+∞ 【答案】D【解析】试题分析:由题意得, ()()6633f x f x mx m mx +≤⇒+-≥-对任意0x ≥都成立.当0m ≤时, 633633|m mx m mx -≤-⇒+-≥-恒成立;当0m >时,结合图象可知,要633mx m mx +-≥-对任意0x ≥都成立,只需0x =时633mx m mx +-≥-成立即可,即6331m m -≥-⇒≥.选D.考点:1、新定义函数;2、绝对值不等式.16.已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=u u u r u u u r,O 为坐标原点,则OB 的最大值是( )A 1- BC 1 D【答案】C 【解析】 【分析】设(),B x y ,利用两点间的距离公式可得221x y ax cy +=++,再利用柯西不等式进行放. 【详解】设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy -+=⇒+=++11≤+=+取等号条件:ay cx =;令OB d ==,则212dd ≤+,得1d ≤.故选:C. 【点睛】本题考查两点间的距离公式,勾股定理、柯西不等式的应用,考查转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意不等式放缩时等号成立的条件.17.已知三个正实数a 、b 、c 满足1a b c ++=,给出以下几个结论:①22213a b c ++≤;②13ab bc ca ++≤;③2221b c a a b c++≥;≥.则正确的结论个数为( ) A .1 B .2C .3D .4【答案】B 【解析】 【分析】利用基本不等式及柯西不等式计算可得; 【详解】解:①:Q 222222222a b ab b c bc a c ac ⎧+⎪+⎨⎪+⎩………,222a b c ab bc ac ∴++++…2222222()2223()a b c a b c ab ac bc a b c ∴++=+++++++„.22213a b c ∴++…,故①不正确.②:由2222()2()3()a b c a b c ab bc ac ab bc ac ++=+++++++…,13ab bc ca ∴++„,故②正确.③:Q 222222b a b a c b c b a c c c ⎧+⎪⎪⎪+⎨⎪⎪+⎪⎩………,∴2221b c aa b c a b c ++++=…∴2221b c a a b c++…,故③正确. ④:由柯西不等式得2()(111)a b c ++++,∴≤.则④错误.故选:B .【点睛】本题考查利用基本不等式即柯西不等式证明不等式,属于中档题.18.函数()f x cosx = ,则()f x 的最大值是( )ABC .1D .2 【答案】A【解析】【分析】将()f x 化为()f x cosx =,利用柯西不等式即可得出答案. 【详解】因为()f x cosx =所以()f x cosx=„=当且仅当3cosx =时取等号. 故选:A【点睛】 本题主要考查了求函数的最值,涉及了柯西不等式的应用,属于中档题.19.若函数()12f x x x a =+++的最小值3,则实数a 的值为( )A .5或8B .1-或5C .1-或4-D .4-或8 【答案】D【解析】 试题分析:由题意,①当12a ->-时,即2a >,3(1),2(){1,123(1),1a x a x a f x x a x x a x --+≤-=+--<≤-++>-,则当2a x =-时,min ()()1322a a f x f a a =-=-++-+=,解得8a =或4a =-(舍);②当12a -<-时,即2a <,3(1),1(){1,123(1),2x a x a f x x a x a x a x --+≤-=-+--<≤-++>-,则当2a x =-时,min ()()1322a a f x f a a =-=-++-+=,解得8a =(舍)或4a =-;③当12a -=-时,即2a =,()31f x x =+,此时min ()0f x =,不满足题意,所以8a =或4a =-,故选D.20.已知命题P:2log (1)1x -<;命题q:21x -<,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】【分析】先化简命题p 和q,再利用充要条件的定义判断得解.【详解】由题得命题p:1<x <3,命题q:1<x <3.所以命题p 是命题q 的充要条件.故选C【点睛】本题主要考查对数不等式和绝对值不等式的解法,考查充要条件的判断,意在考查学生对这些知识的理解掌握水平和分析推理能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学《不等式选讲》高考复习知识点一、141.已知集合||1|2,}M x x x R =〈-∈„,集合5|1,1P x x R x ⎧⎫=≥∈⎨⎬+⎩⎭,则M P ⋃等于( )。

A .{|13}x x -<≤B .{|14}x x -<≤C .{}|4x x ≤D .{|14}x x -≤≤( ) 【答案】D 【解析】 【分析】根据绝对值不等式及分式不等式,化简集合M,P ,根据并集运算求解即可. 【详解】Q |1|2x -„,∴ 13x -≤≤,即[1,3]M =-,511x ≥+Q, 14x ∴-<≤,即(1,4]P =-,[1,4]M P ∴=-U ,故选:D 【点睛】本题主要考查了集合的并集运算,分式不等式,绝对值不等式,属于中档题.2.关于x 不等式2x x a a -+-≥在R 上恒成立,则实数a 的最大值是 A .0 B .1C .-1D .2【答案】B 【解析】由于|x -2|+|x -a |≥|a -2|,∴等价于|a -2|≥a ,即a ≤1.故实数a 的最大值为1.3.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是 ( ) A .|a+b|+|a-b|>2 B .|a+b|+|a-b|<2 C .|a+b|+|a-b|=2D .不能比较大小【答案】B 【解析】选B.当(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2, 当(a+b)(a-b)<0时,|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2.4.设a >0,b >0,且ab -(a +b)≥1,则( ) A .a ++1) B .a ++1 C .a -1)2 D .a +b >+1)【答案】A 【解析】 【分析】2a b +.所以ab≤14 (a +b)2,所以14(a +b)2-(a +b)≥ab -(a +b)≥1,再解不等式 (a +b) 2-4(a +b)-4≥0得解. 【详解】2a b +.所以ab≤14(a +b)2. 所以14(a +b)2-(a +b)≥ab -(a +b)≥1. 所以(a +b) 2-4(a +b)-4≥0.因为a >0,b >0,所以a +b≥2+故答案为:A 【点睛】本题主要考查基本不等式和不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.5.设n *∈N) A>BC=D .不能确定【答案】B 【解析】 【分析】把两个代数式进行分子有理化,比较分母的大小可以比较出大小关系. 【详解】22-===.22-===.*n N∈42,31n n n n+>++>+>>><<成立,因此本题选B.【点睛】对于二次根式的加減运算,分母有理化是常见的运算要求,但是有时分子有理化会起到意想不到的作用,尤其是在比较二个二次根式减法算式之间的大小关系时,经常会用到分子有理化这个方法.当然不等式的性质也是很重要的.6.若关于x的不等式43x x a-++<有实数解,则实数a的取值范围是( ) A.(7,)+∞B.[)7,+∞C.(1,)+∞D.(1,7)【答案】A【解析】【分析】利用绝对值的意义可求得43x x-++的最小值为7,由此可得实数a的取值范围,得到答案.【详解】由题意43x x-++表示数轴上的x对应点到4和3-对应点的距离之和,其最小值为7,再由关于x的不等式43x x a-++<有实数解,可得7a>,即实数x的取值范围是(7,)+∞,故选A.【点睛】本题主要考查了绝对值的意义,以及函数绝对值不等式的有解问题,其中根据绝对值的意义,求得43x x-++的最小值为7是解得关键,着重考查了推理与运算能力,属于中档试题.7.已知命题P:2log(1)1x-<;命题q:21x-<,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】 【分析】先化简命题p 和q,再利用充要条件的定义判断得解. 【详解】由题得命题p:1<x <3,命题q:1<x <3. 所以命题p 是命题q 的充要条件. 故选C 【点睛】本题主要考查对数不等式和绝对值不等式的解法,考查充要条件的判断,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.空间中两条不相交的直线与另外两条异面直线都相交,则这两条直线的位置关系是( ) A .平行或垂直 B .平行C .异面D .垂直【答案】C 【解析】 【分析】利用反证法证明得解. 【详解】不妨设空间中不相交的两条直线为a b ,,另外两条异面直线为c d ,, 由于a b ,不相交,故a b ,平行或异面, 设a c ,确定的平面为α.不妨设a b ∥,①当b α⊂时,则a b ,与直线d 的交点都在α内,故d α⊂,而这与c d ,为异面直线矛盾;②当b α⊄时,由a b ∥可知b P α,又c α⊂,故b c ,没有公共点,与b c ,相交矛盾. 由①②知假设a b ∥错误,故a b ,为异面直线. 故选C. 【点睛】本题主要考查异面直线的判定和反证法,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.若关于x 的不等式23ax -<的解集为5133x x ⎧⎫-<<⎨⎬⎩⎭,则a =( )A .2-B .2C .3D .3-【答案】D 【解析】 【分析】由绝对值不等式的性质可知,()22329ax ax -⇔-<<,从而可得到()229ax -=的两个解为2151,33x x -==,即可求出a 的值. 【详解】由题意可知0a ≠,()22329ax ax -⇔-<<,即22450a x ax --<, 故一元二次方程22450a x ax --=的解为2151,33x x -==, 则1212224455,39a x x x x a a +==-=-=-,解得3a =-. 故答案为D. 【点睛】本题主要考查了绝对值不等式的解法,考查了学生的计算能力,属于基础题.10.已知集合{|||2}A x x =≥,2{|30}B x x x =->,则A B =I ( ) A .∅B .{|3x x >或2}x ?C .{|3x x >或0}x <D .{|3x x >或0}x <【答案】B 【解析】 【分析】可以求出集合A ,B ,然后进行交集的运算即可. 【详解】∵A ={x |x ≤﹣2,或x ≥2},B ={x |x <0,或x >3}, ∴A ∩B ={x |x ≤﹣2,或x >3}. 故选:B . 【点睛】考查描述法的定义,绝对值不等式和一元二次不等式的解法,以及交集的运算.11.若函数()12f x x x a =+++的最小值3,则实数a 的值为( ) A .5或8 B .1-或5C .1-或4-D .4-或8【答案】D 【解析】试题分析:由题意,①当12a->-时,即2a >,3(1),2(){1,123(1),1a x a x a f x x a x x a x --+≤-=+--<≤-++>-,则当2ax =-时,min ()()1322a a f x f a a =-=-++-+=,解得8a =或4a =-(舍);②当12a -<-时,即2a <,3(1),1(){1,123(1),2x a x af x x a x ax a x --+≤-=-+--<≤-++>-,则当2a x =-时,min ()()1322a a f x f a a =-=-++-+=,解得8a =(舍)或4a =-;③当12a-=-时,即2a =,()31f x x =+,此时min ()0f x =,不满足题意,所以8a =或4a =-,故选D.12.设全集U =R ,已知23{|0}2x A x x +=>-,{||1|2}B x x =-<,则()U A B =I ð( ) A .3(,1)2-- B .(12]-, C .(23], D .[2)3,【答案】B 【解析】 【分析】解分式不等式求得集合A ,由此求得U A ð,解绝对值不等式求得集合B ,由此求得()U A B I ð.【详解】由A 中不等式变形得:()()2320x x +->, 解得:32x <-或2x >,即3,(2,)2A ⎛⎫=-∞-+∞ ⎪⎝⎭U ,∴U 3A ,22⎡⎤=-⎢⎥⎣⎦ð,由B 中不等式变形得:212x -<-<,解得:13x -<<,即1()3B =-,, ∴()(]12U A B =-I ,ð, 故选:B . 【点睛】本小题主要考查集合交集交集、补集的概念和运算,考查分式不等式、绝对值不等式的解法,属于基础题.13.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A 【解析】 【分析】 【详解】因为:1213p x x x +>⇔><-或,p ⌝:31x -≤≤;22:5656023q x x x x x ->⇔-+<⇔<<,q ⌝:23x x ≤≥或, 因此从集合角度分析可知p ⌝是q ⌝的充分不必要条件,选A.14.已知全集U =R ,{|13}P x x x =+-<,{|213}Q x x =-<,则集合P ,Q 之间的关系为( )A .集合P 是集合Q 的真子集B .集合Q 是集合P 的真子集C .P Q =D .集合P 是集合Q 的补集的真子集【答案】C 【解析】 【分析】先化简得{|12}P x x =-<<.求出{||21|3}{|12}Q x x x x =-<=-<<,由此得到P Q =. 【详解】 |||1|3x x +-<Q ,∴当0x „时,|||1|1213x x x x x +-=-+-=-+<,解得1x >-.10x ∴-<„;当01x <„时,|||1|113x x x x +-=+-=<,成立;当1x >时,|||1|1213x x x x x +-=+-=-<,解得2x <.12x ∴<<. {|12}P x x ∴=-<<.{||21|3}{|12}Q x x x x =-<=-<<, P Q ∴=.故选:C . 【点睛】本题考查两个集合的关系的判断,考查集合与集合的包含关系等基础知识,考查运算求解能力,是基础题.15.不等式230x x -<的解集为( )A .{}03x x << B .{}3003x x x -<<<<或C .{}30x x -<<D .{}33x x -<<【答案】B【解析】 【分析】将不等式表示为230x x -<,得出03x <<,再解该不等式可得出解集. 【详解】将原不等式表示为230x x -<,解得03x <<,解该不等式可得30x -<<或03x <<.因此,不等式230x x -<的解集为{}3003x x x -<<<<或,故选:B.【点睛】本题考查二次不等式的解法与绝对值不等式的解法,考查运算求解能力,属于中等题.16.设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是( ) A .a b a c b c -≤-+- B .2212a a+≥C .12a b a b-+≥- D 【答案】C 【解析】 【分析】A.用a b a b a b -≤±≤+来判断.B.用基本不等式来判断.C.用特殊值当1,2a b ==时来判断.D.==,再比较. 【详解】A. 因为-=-+-≤-+-a b a c c b a c b c 恒成立,故正确.B.因为 2212+≥=a a ,当且仅当221a a =即1a =±时取等号,故正确. C.当1,2a b ==时,1110-+=-=-a b a b,原不等式不成立,故错误.D.==>≤确. 故选:C 【点睛】本题主要考查了不等式的比较及其应用,还考查了转化化归的思想,属于中档题.17.函数()f x cosx = ,则()f x 的最大值是( )A BC .1D .2【答案】A 【解析】 【分析】将()f x 化为()f x cosx =,利用柯西不等式即可得出答案.【详解】因为()f x cosx =所以()f x cosx =…=当且仅当cosx =. 故选:A 【点睛】本题主要考查了求函数的最值,涉及了柯西不等式的应用,属于中档题.18.已知()12?f x x x =-++,若关于x 的不等式()22f x a a >-对于任意的x ∈R 恒成立,则实数a 的取值范围是( ) A .(-1,3) B .(1,1) C .(1,3) D .(-3,1)【答案】A 【解析】 【分析】首先求得()f x 的最小值,然后将原问题转化为求解二次不等式的问题即可. 【详解】因为()()12123x x x x -++≥--+=,所以函数()f x 的最小值为3. 要使不等式()22f x a a >-对于任意的x ∈R 恒成立,只需223a a -<,即()()130a a +-<,解得13a -<<. 故a 的取值范围为(1,3)-. 本题选择A 选项. 【点睛】对于恒成立问题,常用到以下两个结论: (1)a ≥f (x )恒成立⇔a ≥f (x )max ; (2)a ≤f (x )恒成立⇔a ≤f (x )min .19.若关于x 的不等式x 2x 1a +-->的解集不是空集,则实数a 的取值范围是( ) A .()3,∞ B .()3,∞-C .(),3∞-D .(),3∞--【答案】C 【解析】x 2x 1+--表示数轴上的x 对应点到2-和1对应点的距离之差,其最大值为3,故当3a >时,关于x 的不等式x 2x 1a +-->的解集不是空集,故实数a 的取值范围为(),3∞-,故选C.点睛:本题主要考查了绝对值不等式的解法,以及转化与化归思想,难度一般;常见的绝对值不等式的解法,法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.20.不等式的解集是 ( )A .B .C .D .【答案】B 【解析】 【分析】利用绝对值三角不等式,得到,恒成立.【详解】恒成立.故答案选B 【点睛】本题考查了解绝对值不等式,利用绝对值三角不等式简化了运算.。

相关文档
最新文档