废选择性催化复原脱硝催化剂中金属钨和钒的萃取分离及回收

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

废选择性催化复原脱硝催化剂中金属铛和

的萃取分离及回收

燃煤烟气排放的氮氧化物(NOX)是形成酸沉降、光化学烟雾和雾霾等大气污染的主要原因之一。目前选择性催化复原(SCR)脱硝技术被认为是控制NOx排放最为有效的技术,该技术在催化剂的作用下,利用NH3为复原剂将烟气中的NOx复原成N2,V205-W03∕Ti02是普遍商业化应用的脱硝催化剂。V2O5-WO3∕TiO2催化剂的最正确活性温度范围为300^400℃,脱硝反应器往往直接布置在锅炉省煤器和空气预热器之间的高温、高尘段,催化剂容易因粉尘堵塞及K、Na、As等物质的作用而失活,使用寿命一般只有

3~5年。据估算,20**年开始我国废弃的SCR脱硝催化剂量可达3.8×104t∕a,这一数据还有可能继续增加。

废SCR脱硝催化剂属危险固体废物,相关处理处置技术在我国尚处于研发阶段。废SCR脱硝催化剂中含有的鸨(W)、钿(V)和钛(Ti)均为重要的工业原料,在自然界分布较少且价格昂贵,具有很高的回收利用价值。从废SCR脱硝催化剂中回收W、V和Ti,一方面可降低脱硝成本,实现资源的循环利用;另一方面又能防止对环境的污染,经济和环境效益显著,具有广阔的工业应用前景。

目前,我国有关废SCR脱硝催化剂中金属回收的研究很少。尽管如此,近年来国内外学者开展了一些从炼油加氢脱硫催化剂、加氢裂化催化剂和加氢脱氮催化剂等工业催化剂中回收专目(Mo)、V的研究,采用的方法主要有化学沉淀法、溶剂萃取法、离子交换法和活性炭吸附法等。

其中,溶剂萃取法因具有流程简单、分离效率高、选择性好、操作简单和成本低等优点,吸引了众多研究者的关注。Olazabal等

采用酸浸法,将加氢脱硫催化剂中的V溶解进入液相,再以Alamine336为萃取剂对酸浸液中的V开展分离与回收,结果说明,当酸浸液pH<1.0时V的萃取率最高。

然而,Lee等研究指出,当酸浸液的PH值为8~9时,Alamine336萃取分离V的效果较好。Saily等研究Cyanex301萃取分离Mo-Ni催化剂酸浸液中的Mo,结果说明,Cyanex301在较宽的PH值范围内可实现Mo的萃取分离(萃取效率高于90%);另外,溶液中共存Mo、V、Ni和Mg等离子时,Cyanex301对Mo具有较高的选择性。

Chen等研究三烷基胺萃取回收炼油厂脱硫催化剂中的MO和V,结果说明,Mo和V的萃取率分别可达91.3%和90.l%o Iazabal等研究利用阳离子萃取剂LiX26从炼油厂脱硫催化剂碱性浸出液中萃取回收V。Park等和MiShra]研究利用Lix84-1萃取回收废催化剂酸浸液中的金属。其他萃取剂如Lix63,Alamine304等也被研究用来萃取回收废催化剂酸浸液中的有价金属。

迄今为止,有关萃取法回收废催化剂中金属的研究主要集中在炼油加氢脱硫催化剂、加氢裂化催化剂和加氢脱氮催化剂等工业催化剂。萃取剂对金属离子的选择性是影响催化剂中金属回收的关键因素之一。

目前,有关废SCR脱硝催化剂W和V回收的相关研究鲜有报道,且SCR脱硝催化剂的成分特点与炼油厂催化剂存在较大区别,现有的萃取工艺并不一定适用。本工作在前期研究废SCR脱硝催化剂中W和V酸性浸出的根底上,进一步开展酸浸液中W和V的萃取分离实验研究,拟为废SCR脱硝催化剂中金属W和V的分离回收提供理论和技术参考。

1实验

1.1W和V的酸性浸出

采用的废催化剂主要组分(质量分数)为:V205:1.5%,W03:3.07%,Ti02:80.2%,Si02:5.83%,A1203:1.74%,CaO:1.24%o利用压缩空气吹扫SCR脱硝催化剂表面的飞灰后,再将催化剂研磨至粒径为200目(粒径为840Unl)左右的颗粒,并将研磨后的催化剂和碳酸钠按质量比1:1.2开展混合焙烧,将W和V转化为酸溶性物质,同时去除一些有机物。

最后将混合焙烧物置于稀硫酸溶液中,将其中的W和V物质溶解进入液相。前期研究说明,当碳酸钠和催化剂的质量比为1.2,焙烧温度为800℃,焙烧时间为3h,硫酸浓度为2%,液固比为8:1,浸出温度为80℃,浸出时间为4h的条件下,废SCR脱硝催化剂中W和V的浸出率可分别高达99.08%和98.49%,为后续W和V的萃取回收提供了良好的条件。

1.2萃取分离

将三正辛胺(T0A,3N,简写为R3N)和异癸醇按一定比例参加到航空煤油(储程为160.5~189.5。C)中,制得萃取剂,其中TOA 的体积分数为12%,异葵醇的体积分数为10%o利用稀硫酸将上节中酸浸液的pH值调为L(T3.5后,将其与萃取剂一同参加到分液漏斗中,摇晃分液漏斗确保有机相和水相混合均匀。然后将分液漏斗静置,使有机相和水相分层,W和V从水相萃取进入有机相。采用分光光度法测量萃取前后水相中W、V的浓度,进而计算得到WV 的萃取效率ηO

2结果与讨论

2.1W和V的萃取

2.1.1萃取液组成的影响

萃取液是萃取剂与酸浸液的混合溶液,有机相(萃取剂)与液相(酸浸液)(0/A)体积比对萃取效率的影响如图1所不O 从图1可以看出,当萃取液组成0/A体积比从0.025增加到0.10时,V的萃取效率从84.43%增加到93.72%o此后,继续增加萃取液的O/A体积比至0.500的过程中,V的萃取率呈下降趋势。其原因可能是,当萃取液组成O/A值高于0.100时,会使负载有机相中W和V的浓度降低,溶液中杂质离子的萃取反应加剧,从而抑制了V的富集和分离。W的萃取率随萃取液组成0/A的变化趋势与V类似,当萃取液组成0/A为0.10^0.50的范围内,W的萃取率可达96%以上。综合考虑,实验确定最正确相比萃取液组成0/A为0.10,此时W和V的萃取率可分别到达98.00%,97.32%o

图1萃取液组成0/A对鸨(W)和锐(V)萃取率的影响

2.1.2萃取时间的影响

萃取是萃取剂与酸浸液混合的过程,因此萃取时间t对萃取率有着一定的影响。图2为W和V萃取效率n随t的变化规律。

从图2可以看出,W和V的萃取率随着萃取时间的延长呈先上升后稳定不变的趋势。当萃取时间为5min时,W和V的萃取效率分别为94.18%和87.86%;当萃取时间增加到15min时,W和V 的萃取效率分别到达98.85%和93.43%o此后,继续延长萃取反应时间,W和V的萃取效率几乎保持不变,说明此时对酸浸液的萃取过程到达了平衡状态。

在酸浸液萃取初期,随着萃取时间的不断延长,被萃取进入有机相中的W和V越来越多,继续对酸浸液开展萃取时,酸浸液中的杂质离子被萃取的可能性越来越大,在一定程度上抑制了W和

相关文档
最新文档