浙教版初中数学八年级上册专题50题(含答案)
浙教版八年级上册数学第1章 三角形的初步知识含答案
浙教版八年级上册数学第1章三角形的初步知识含答案一、单选题(共15题,共计45分)1、如图所示,矩形ABCD中,AE平分交BC于E,,则下面的结论:①是等边三角形;②;③;④,其中正确结论有()A.1个B.2个C.3个D.4个2、如图,CD是△ABC的角平分线,DE∥BC.若∠A=60°,∠B=80°,则∠CDE 的度数是( )A.20°B.30°C.35°D.40°3、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为()A.40°B.30°C.50°D.60°4、如图,点D,E分别在AB、AC上,BE,CD相交于点F,设S四边形EADF =S1, S△BDF =S2, S△BCF=S3, S△CEF=S4,则S1S3与S2S4的大小关系是( )A.不能确定B.S1S3<S2S4C.S1S3=S2S4D.S1S3>S2S45、如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A.54°B.60°C.66°D.76°6、小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带()去.A.第1块B.第2块C.第3块D.第4块7、如图,在中,,,若将沿CD折叠,使B 点落在AC 边上的E处,则的度数是A.30 0B.40 0C.50 0D.55 08、含30°角的直角三角板与直线l1、l2的位置关系如图所示,已知l1∥l2,∠ACD=∠A,则∠1=()A.70°B.60°C.40°D.30°9、如图,已知△ABC中,AD=BD,AC=4,H是高AD和BE的交点,则线段BH的长度为()A. B.4 C.2 D.510、如图是李老师在黑板上演示的尺规作图及其步骤,已知钝角,尺规作图及步骤如下:步骤一:以点为圆心,为半径画弧;步骤二:以点为圆心,为半径画弧,两弧交于点;步骤三:连接,交延长线于点.下面是四位同学对其做出的判断:小明说:;小华说:;小强说:;小方说:.则下列说法正确的是()A.只有小明说得对B.小华和小强说的都对C.小强和小方说的都不对D.小明和小方说的都对11、如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°,则∠AOB等于()A.50°B.75°C.100°D.120°12、如图,△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=8,DE=3,则△BCE的面积等于()A.11B.8C.12D.313、在△ABC中,∠A:∠B:∠C=1:2:6,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.无法判断14、如图,在△ABC中,∠A=α,点D,E,F分别在BC,AB,AC上,且∠1+∠2=120°,则∠EDF的度数为()A.120°+αB.120°-αC.240°-αD.α-60°15、如图,△ABC中,∠C=90°,∠BAC的角平分线交BC于点D,DE⊥AB于点E.若CD=2,AB=7,则△ABD的面积为()A.3.5B.7C.14D.28二、填空题(共10题,共计30分)16、如图,点O是△ABC的两条角平分线的交点,若∠BOC=110°,则∠A=________°.17、如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=5,则点P到AB的距离是________.18、如图,点O是△ABC的外心,∠A=50°,则∠OBC=________°.19、如图所示,已知△ABC≌△DFE,AB=4cm,BC=6cm,AC=5cm,CF=2cm,∠A=70°,∠B=65°,则∠D=________°,∠F=________°,DE=________,BE=________.20、如图,若△OAD≌△OBC,且∠O=75o,∠C=10o,则∠OAD=________°.21、如图,已知直线与x轴、y轴分别交于两点,点P是以为圆心,2为半径的圆上一动点,连接,,则的面积最大值是________.22、如图,将△ABC绕点C顺时针旋转,使得点B落在AB边上的点D处,此时点A的对应点E恰好落在BC边的延长线上,若∠B=50°,则∠A的度数为________.23、如图,已知△OAB≌△OCD,∠A=30°,∠AOB=105°,则∠D=________°.24、如图,点A,B,C在上,点D在内,则________.(填“>”,“=”或“<”)25、如图,AB∥CD,∠A=56°,∠C=27°,则∠E的度数为________.三、解答题(共5题,共计25分)26、已知:a、b、c是△ABC的三边长,化简.27、甲、乙、丙、丁、戊五个人在运动会上分获百米、二百米、跳高、跳远和铅球冠军,有四个人猜测比赛结果:A说:乙获铅球冠军,丁获跳高冠军.B说:甲获百米冠军,戊获跳远冠军.C说:丙获跳远冠军,丁获二百米冠军.D说:乙获跳高冠军,戊获铅球冠军.其中每个人都只说对一句,说错一句.求五人各获哪项冠军.28、已知:如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH,求∠KOH的度数.29、如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:BE=CD.30、如图所示,有两个长度相等的滑梯(即BC=EF)左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,求∠ABC+∠DFE的度数。
几何复习专题卷(含答案)初中数学浙教版八年级上册
几何复习专题卷题号一二三总分得分一、选择题(每题3分,共30分)1.[母题·教材P41目标与评定T1 2024·温州期末]用三根木棒首尾相接围成△ABC,其中AC=6 cm,BC=9 cm,则AB的长可能是( )A.2 cm B.3 cm C.14 cm D.15 cm2.[新考向知识情境化]如图,在平分角的仪器中,AB=AD,BC=DC,将点A放在一个角的顶点,AB和AD分别与这个角的两边重合,能说明AC就是这个角的平分线的数学依据是( )(第2题)A.SSS B.ASA C.SAS D.AAS3.如图,已知O是△ABC中∠ABC,∠ACB的平分线的交点,OD∥AB交BC于点D,OE∥AC交BC于点E.若BC=10 cm,则△ODE 的周长为( )(第3题)A.10 cm B.8 cmC.12 cm D.20 cm4.[2024·宁波奉化区期末]下列命题的逆命题是假命题的是( ) A.直角三角形的两个锐角互余B.两直线平行,内错角相等C.三条边对应相等的两个三角形是全等三角形D.同角的余角相等5.过直线l外一点P作直线l的垂线PQ,下列尺规作图错误的是( )A B C D 6.[2024·杭州西湖区期末]如图,阴影部分表示以直角三角形各边为直径的三个半圆所组成的两个新月形,已知S1+S2=9,且AC+BC=10,则AB的长为( )(第6题)A.6B.7C.8D.627.如图,AB=AD,AC=AE,∠DAB=∠CAE=50°,以下结论:①△ADC≌△ABE;②CD=BE;③∠DOB=50°;④CD平分∠ACB.其中正确的有( )(第7题)A.1个B.2个C.3个D.4个8.如图,在△ABC中,∠BAC=90°,点D在边BC上,AD=AB,则有( )(第8题)A.若AC=2AB,则∠C=30°B.若3AC=4AB,则7BD=18CDC.若∠B=2∠C,则AC=2ABD.若∠B=2∠C,则S△ABD=2S△ACD9.[2024·宁波奉化区期末]如图,在△ABC中,AB=23,∠B=60°,∠A=45°,D为BC上一点,点P,Q分别是点D关于AB,AC的对称点,则PQ的最小值是( )(第9题)A.6B.8C.32D.310.[2023·金华]如图,在Rt△ABC中,∠ACB=90°,以其三边为边在AB的同侧作三个正方形,点F在GH上,CG与EF交于点P,CM与BE交于点Q.若HF=FG,则S四边形PCQE的值是( )S正方形ABEF(第10题)A.14B.15C.312D.625二、填空题(每题4分,共24分)11.如图,在△ABC中,∠ACB=90°,D为AB的中点,AC=6,BC =8,则CD= .(第11题)12.如图,在△ABC的边AB上取点D,以D为圆心,DA长为半径画圆弧,交AC于点E;以E为圆心,ED长为半径画圆弧,交AB 于点F.若∠CEF=∠BFE,则∠A= °.(第12题)13.[2024·温州期末]如图,在等腰三角形ABC中,AD是底边BC 上的高线,CE⊥AB于点E,交AD于点F.若∠BAC=45°,AF =6,则BD的长为 .(第13题)14.如图,D为等边三角形ABC的AB边的中点,P是BC上的一个动点,连结DP,将△DBP沿DP翻折,得到△DEP,连结AE,若∠BAE=40°,则∠BDP的度数为 .(第14题)15.如图,在长方形ABCD中,AB=4,AD=3,长方形内有一个点P,连结AP,BP,CP,已知∠APB=90°,CP=CB,延长CP交AD于点E,则AE等于 .(第15题)16.[新考法分类讨论法]如图①是一副直角三角板,已知在△ABC和△DEF中,∠BAC=∠EDF=90°,∠B=45°,∠F=30°,点B,D,C,F在同一直线上,点A在DE上.如图②,△ABC固定不动,将△EDF绕点D逆时针旋转α(0°<α<135°),得到△E'DF',当直线E'F'与直线AC,BC所围成的三角形为等腰三角形时,α的大小为 .(第16题)三、解答题(共66分)17.(6分) [新视角·动手操作题2024·金华月考]如图,在正方形网格中,每个小正方形的边长都为1,△ABC的三个顶点均在格点上,请按要求完成下列问题(仅用无刻度的直尺作图,且保留必要的作图痕迹):(1)在AB上找一点D,使CD⊥AB;(2)在AC上找一点E,使BE平分∠ABC.18.(6分)如图,BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)求证:∠EBD=∠EDB;(2)当AB=AC时,请判断CD与ED的大小关系,并说明理由.19.(6分)“儿童散学归来早,忙趁东风放纸鸢”.又到了放风筝的最佳时节,某实践探究小组在放风筝时想测量风筝离地面的垂直高度,通过勘测,得到如下记录表:测量示意图的全部数据就可以计算出风筝离地面的垂直高度AD.请完成以下任务.(1)如图,在Rt△ABC中,∠ACB=90°,BC=15 m,AB=17 m,求线段AD的长.(2)如果小明想要风筝沿DA方向再上升12 m,BC长度不变,则他应该再放出多少米线?20.(8分) [新考法构造全等三角形法]如图,在四边形ABCD中,∠B=∠D=90°,点E,F分别在AB,AD上,且AE=AF,CE=CF.(1)求证:CB=CD;(2)若AE=CE=5,AB=AD=8,求线段EF的长.21.(8分)[2024·杭州西湖区期中]如图,在△ABC中,点D,E分别在边AB,AC上,连结CD,BE,BD=BC=BE.(1)若∠A=30°,∠ACB=70°,求∠BDC,∠ACD的度数;(2)设∠ACD=α,∠ABE=β,求α与β之间的数量关系,并说明理由.22.(10分)[2023·宁波七中期中]如图,在△ABC中,AB=AC=2,∠A=90°.D为BC边的中点,E,F分别在边AB,AC上,DE⊥DF.(1)求证:△DEF是等腰三角形;(2)求EF的最小值.23.(10分)[2024·衢州月考]如图①,在等腰三角形ABC中,AD是BC边上的中线,延长BC至点E,使AD=DE,连结AE.(1)求证:△ADE是等腰直角三角形;(2)如图②,过点B作AC的垂线交AE于点P,试判断△ABP的形状,并说明理由;(3)如图③,在(2)的条件下,AD=4,连结CP,若△CPE是直角三角形,求CE的长.24.(12分)如果两个顶角相等的等腰三角形具有公共的顶角顶点,并将它们的底角顶点分别对应连结起来得到两个全等三角形,那么我们把这样的图形称为“手拉手”图形.如图①,在“手拉手”图形中,AB=AC,AD=AE,∠BAC=∠DAE,连结BD,CE,则△ABD ≌△ACE.(1)请证明图①的结论成立;(2)如图②,△ABC和△ADE是等边三角形,连结BD,EC交于点O,求∠BOC的度数;(3)如图③,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠BCD的数量关系.答案一、1.C 2.A 3.A 4.D 5.C 6.C7.C 【点拨】∵∠DAB =∠CAE ,∴∠DAB +∠BAC =∠CAE +∠BAC .∴∠DAC =∠BAE .在△ADC 和△ABE 中,{AD =AB ,∠DAC =∠BAE ,AC =AE ,∴△ADC ≌△ABE (SAS ).∴CD =BE ,∠ADC =∠ABE .又∵∠AFD =∠BFO ,∴∠DOB =∠DAB =50°,故①②③正确.现有条件无法得到CD 平分∠ACB .8.B 【点拨】A .若AC =2AB ,则BC =AB 2+AC 2=5AB ,若∠C =30°,则易得BC =2AB ,故A 选项错误.B .若3AC =4AB ,则AC =43AB ,∴BC =AB 2+AC 2=53AB .作AE ⊥BC ,则S △ABC =12AB ·AC =12BC ·AE ,可得AE =AB ·AC BC =45AB .∵AD =AB ,∴BE =DE =AB 2-AE 2=35AB .∴BD =65AB .∴DC =BC -BD =715AB .∴7BD =18CD ,故B 选项正确.C .若∠B =2∠C ,∵∠BAC =90°,∴∠B +∠C =90°.∴∠C =30°,∠B =60°.∴易得BC =2AB .∴AC <2AB ,故C 选项错误.D .若∠B =2∠C ,由选项C 可得∠C =30°,∠B =60°.∵AD =AB ,∴△ABD 为等边三角形.∴∠ADB=60°.∴∠DAC=∠ADB-∠C=30°=∠C.∴AD=DC=BD,即AD为△ABC的中线.∴S△ABD=S△ACD,故D选项错误.9.C 【点拨】连结AD,AP,AQ.∵点P,Q分别是点D关于AB,AC的对称点,∴AD=AP,AD=AQ,∠PAD=2∠DAB,∠QAD=2∠DAC.∴AD=AP=AQ,∠PAQ=2(∠BAD+∠CAD)=2∠BAC=90°.∴△PAQ是等腰直角三角形.∴易知PQ=2AP=2AD.∵D为BC上一点,∴当AD⊥BC时,AD取得最小值,此时PQ取得最小值.当AD⊥BC时,∠ADB=90°.∵∠ABD=60°,∴∠BAD=180°-∠ABD-∠ADB=30°.AB=3.∴AD=AB2-BD2=3.∴易得BD=12∴PQ=2AD=32.∴PQ的最小值为32.10.B 【点拨】设AC=b,AB=c,BC=a,HF=FG=x,则a2+b2=c2.∵四边形ACGH,四边形BCMN,四边形ABEF都是正方形,∴AC=AH=HG=b,AB=AF,∠H=∠G=∠EBA=∠AFE=∠BCM=90°.∴b=2x.在Rt△AHF与Rt△ACB中,∵AH=AC,AF=AB,∴Rt△AHF≌Rt△ACB(HL).∴HF=BC=FG=a=x,∠HFA=∠ABC,S△AHF=S△ACB.∵∠HFA+∠GFP=180°-90°=90°=∠ABC+∠CBQ,∴∠GFP =∠CBQ.在△GFP与△CBQ中,∵∠G=∠BCQ=90°,FG=BC,∠GFP=∠CBQ,∴△GFP≌△CBQ(ASA).∴S△GFP=S△CBQ.∵S正方形ACGH=S△AHF+S△PFG+S四边形ACPF=b2,∴S正方形ACGH=S△ABC+S△BCQ+S四边形ACPF=b2.∴S四边形PCQE=S正方形ABEF-(S△ABC+S△BCQ+S四边形ACPF)=S正方形ABEF-S正方形ACGH=c2-b2=a2.在Rt△ABC中,由勾股定理得c2=b2+a2=(2x)2+x2=5x2.∴S四边形PCQE S正方形ABEF =a2c2=x25x2=15.二、11.5 12.3613.3 【点拨】在等腰三角形ABC中,AD是底边BC上的高线,∴AD⊥BC,BD=CD.∴∠ADC=90°.∵CE⊥AB,∴∠AEF=∠CEB=90°.又∵∠BAC=45°,∴∠ACE=45°=∠BAC.∴AE=CE.∵∠ADC=∠AEF=90°,∠AFE=∠CFD,∴∠BAD=∠BCE.∴△AEF≌△CEB(ASA).∴AF=BC=6.∴BD=3.14.40° 【点拨】∵D为等边三角形ABC的AB边的中点,∴AD=BD,将△DBP沿DP翻折,得到△DEP,∴BD=DE=AD,∠BDP=∠PDE.∴∠BAE=∠AED=40°.∴∠BDE=40°+40°=80°.∠BDE=40°.∴∠BDP=12 【点拨】延长AP交CD于点F.15.43∵∠APB=90°,∴∠FPB=90°,∠OAB+∠ABP=90°.∴∠CPF+∠CPB=90°.∵四边形ABCD是长方形,∴∠D=∠DAB=∠ABC=90°,CD=AB=4,BC=AD=3.∴∠EAP+∠BAP=∠ABP+∠BAP=∠ABP+∠CBP=90°.∴∠EAP=∠ABP.∵CP=CB=3,∴∠CPB=∠CBP.∴∠CPF=∠ABP=∠EAP.又∵∠EPA=∠CPF,∴∠EAP=∠APE.∴AE=PE.在Rt△CDE中,CD2+DE2=CE2,.∴42+(3-AE)2=(3+AE)2,解得AE=4316.7.5°或75°或97.5°或120°【点拨】设直线E'F'与直线AC,BC分别交于点P,Q,∵△CPQ为等腰三角形,∴∠PCQ为顶角或∠CPQ为顶角或∠CQP为顶角.①当∠PCQ为顶角时,∠CPQ=∠CQP,若∠PCQ为钝角,如图①,∵∠BAC=90°,∠B=45°,∴∠ACB=45°.∴∠CPQ+∠CQP=∠ACB=45°.∴∠CQP=22.5°.∵∠E'F'D=30°,∴∠F'DQ=∠E'F'D-∠CQP=30°-22.5°=7.5°,即α=7.5°.若∠PCQ为锐角,如图②,则∠CPQ=∠CQP=67.5°.∵∠E'DF'=90°,∠F'=30°,∴∠E'=60°.∴∠E'DQ=∠CQP-∠E'=67.5°-60°=7.5°.∴α=90°+7.5°=97.5°.②当∠CPQ为顶角时,∠CQP=∠PCQ=45°,如图③.∵∠DE'F'=∠CQP+∠QDE',∴∠QDE'=∠DE'F'-∠CQP=60°-45°=15°.∴α=90°-15°=75°.③当∠CQP为顶角时,∠CPQ=∠PCQ=45°,如图④,∴∠CQP=90°.∴∠QDF'=90°-∠DF'E'=60°.∴∠QDE'=∠E'DF'-∠QDF'=30°,∴α=90°+30°=120°.综上所述,α的大小为7.5°或75°或97.5°或120°.三、17.【解】(1)如图,点D即为所求.(2)如图,点E即为所求.18.(1)【证明】∵BD是△ABC的角平分线,∴∠CBD=∠EBD.∵DE∥BC,∴∠CBD=∠EDB.∴∠EBD=∠EDB.(2)【解】CD=ED,理由如下:∵AB=AC,∴∠C=∠ABC.∵DE∥BC,∴∠ADE=∠C,∠AED=∠ABC.∴∠ADE=∠AED.∴AD=AE.∴CD=BE.由(1)得∠EBD=∠EDB,∴BE=DE.∴CD=ED.19.【解】(1)由题易知CD=1.7 m.∵在△ABC中,∠ACB=90°,BC=15 m,AB=17 m,∴AC=AB2-BC2=172-152=8(m).∴AD=AC+CD=8+1.7=9.7(m).(2)∵风筝沿DA方向再上升12 m后,AC=8+12=20(m),∴此时风筝线的长为202+152=25(m).25-17=8(m).答:他应该再放出8 m线.20.(1)【证明】如图,连结AC.在△AEC与△AFC中,{AC=AC,CE=CF,AE=AF,∴△AEC≌△AFC(SSS).∴∠CAE=∠CAF.又∵∠B=∠D=90°,∴CB=CD.(2)【解】如图,过F作FG⊥AB,垂足为G.∵AE=CE=5,AB=8,∴EB=3,AF=5,∠ACE=∠CAE.由勾股定理得BC=4.由(1)知△AEC≌△AFC,∴∠ECA=∠FCA.∴∠FCA=∠CAE.∴AE∥CF.∴FG=BC=4.易知AG=3,∴EG=2.在Rt△EFG中,易知EF=20.21.【解】(1)∵∠A+∠ACB+∠ABC=180°,∠A=30°,∠ACB=70°,∴∠ABC=80°.=50°.在△BDC中,BD=BC,∴∠BDC=∠BCD=180°-80°2∴∠ACD=∠BDC-∠A=20°.(2)2α=β.理由:设∠BCD=x,则∠BDC=x,∴∠DBC=180°-2x.∵BE=BC,∴∠BEC=∠BCE=α+x.∴∠EBC=180°-2(α+x).∴∠DBC-∠EBC=180°-2x°-[180°-2(α+x)]=2α.又∵∠DBC-∠EBC=∠ABE=β,∴2α=β.22.(1)【证明】如图,连结AD.∵AB=AC,∠BAC=90°,∴∠B=45°.∵D 为BC 边的中点,∴AD ⊥BC ,∠BAD =∠CAD =12∠BAC =45°=∠B .∴AD =BD =12BC ,∠ADB =90°.∵DE ⊥DF ,∴∠EDF =90°.∴∠ADF =90°-∠ADE =∠BDE .在△ADF 和△BDE 中,{∠DAF =∠B ,AD =BD ,∠ADF =∠BDE ,∴△ADF ≌△BDE (ASA ).∴DF =DE .∴△DEF 是等腰三角形.(2)【解】∵AB =AC =2,∠BAC =90°,∴BC =AB 2+AC 2=22+22=8.∴AD =12BC =12×8=82.如图,取EF 的中点G ,连结AG ,DG .∵∠EAF =∠EDF =90°,∴AG =DG =12EF .∴EF =2AG =AG +DG .又∵AG +DG ≥AD ,∴EF ≥82.∴EF 的最小值为82.23.(1)【证明】∵AB =AC ,AD 是BC 边上的中线,∴AD ⊥BC .∴∠ADC =90°.又∵AD =DE ,∴△ADE 是等腰直角三角形.(2)【解】△ABP 是等腰三角形.理由如下:∵∠ADC =90°,∴∠CAD +∠DCA =90°.∵BP ⊥AC ,∴易得∠PBE +∠DCA =90°.∴∠CAD=∠PBE.∵AB=AC,AD是BC边上的中线,∴∠BAD=∠CAD.∴∠BAD=∠PBE.∵△ADE是等腰直角三角形∴∠DAE=∠E.∴∠BAD+∠DAE=∠PBE+∠E,即∠BAP=∠BPA.∴BA=BP.∴△ABP是等腰三角形.(3)【解】①如图①,若∠PCE=90°.在△ABD和△BPC中,{∠BDA=∠BCP=90°,∠BAD=∠PBC,AB=BP,∴△ABD≌△BPC(AAS)(证△ACD≌△BPC亦可).∴BC=AD=DE =4.∵AD是BC边上的中线,∴BD=CD.设CE=x,则CD=4-x,∴BD=4-x.∴BC=8-2x.∴8-2x=4,解得x=2,即CE=2.②如图②,若∠CPE=90°.作PF⊥CE于点F,同理可证△ABD≌△BPF,∴BF=AD=4.设EF=x,易知∠E=45°,∴易得CF=EF=x.∴CD=4-2x.∴BD=4-2x.∴BC=8-4x.∴BF=8-3x.∴8-3x =4,解得x =43.∴CE =2x =83.综上,CE 的长为2或83.24.(1)【证明】∵∠BAC =∠DAE ,∴∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE .在△ABD 和△ACE 中,{AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE (SAS ).(2)【解】由题意可知△ABD ≌△ACE .∴∠ADB =∠AEC .在等边三角形ADE 中,∠DAE =60°.记AD 与CE 的交点为G .∵∠AGE =∠DGO ,∴∠DOE =∠DAE =60°.∴∠BOC =∠DOE =60°.(3)【解】如图,延长DC 至点P ,使DP =DB .∵∠BDC =60°,∴△BDP 是等边三角形.∴BD =BP ,∠DBP =60°.∵∠ABC =60°=∠DBP ,∴∠ABD =∠CBP .∵AB =CB ,∴△ABD ≌△CBP (SAS ).∴∠BCP =∠A .又∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.21。
2022-2023年浙教版八年级数学上册《1-5三角形全等的判定》解答题专题训练(附答案)
2022-2023年浙教版八年级数学上册《1.5三角形全等的判定》解答题专题训练(附答案)1.已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC.2.如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC=AE.求证:BC=BE.3.如图,∠A=∠D=90°,AB=DE,BF=EC.求证:Rt△ABC≌Rt△DEF.4.如图所示,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC 上,且AE=CF.求证:Rt△ABE≌Rt△CBF.5.如图,AB=AC,∠BAC=90°,BD⊥AE于D,CE⊥AE于E,且BD>CE.求证:BD=EC+ED.6.如图,CD⊥AB于D点,BE⊥AC于E点,BE,CD交于O点,且AO平分∠BAC.求证:OB=OC.7.如图,已知AB=DC,AB∥CD,E、F是AC上两点,且AF=CE.求证:△ABE≌△CDF.8.如图,在Rt△ABC中,∠B=90°,CD∥AB,DE⊥AC于点E,且CE=AB.求证:△CED≌△ABC.9.已知:点A,D,C,B在同一条直线上,DF∥CE,DF=CE,AD=BC.求证:(1)CF=DE;(2)AF∥EB.10.如图,在等腰△ABC中,BA=BC,点F在AB边上,延长CF交AD于点E,BD=BE,∠ABC=∠DBE.(1)求证:AD=CE;(2)若∠ABC=30°,∠AFC=45°,求∠EAC的度数.11.如图,在四边形ABCD中,AB∥CD,连接BD,点E在BD上,连接CE,若∠1=∠2,AB=ED,求证:DB=CD.12.如图,在△ABC中,AB=AC,AD⊥BC于点D,E为AC边上一点,连接BE与AD交于点F,G为△ABC外一点,满足∠ACG=∠ABE,∠F AG=∠BAC,连接EG.(1)求证:△ABF≌△ACG;(2)求证:BE=CG+EG.13.已知:如图,在△ABC中,AB=CB,∠ABC=45°,高AD与高BE相交于点F,G为BF的中点.求证:(1)DG=DE;(2)∠DEG=∠DEC.14.已知:如图,在△ABC中,AD⊥BC于点D,E为AC上一点,且BF=AC,DF=DC.(1)求证:△BDF≌△ADC.(2)已知AC=5,DF=3,求AF的长.15.如图,在△ABC中,∠A=∠ACB,CD平分∠ACB,点E为CD延长线上一点,过点E 作EF∥AC交AB于点F,连接CF.(1)若CD=DE,求证:AD=DF;(2)若∠ABC=∠ECF=24°,求∠CFE的度数.16.如图,AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=25°,∠2=30°,求∠3的度数.17.如图,CB为∠ACE的平分线,F是线段CB上一点,CA=CF,∠B=∠E,延长EF与线段AC相交于点D.(1)求证:AB=FE;(2)若ED⊥AC,AB∥CE,求∠A的度数.18.如图,AB=AC,直线l经过点A,BM⊥l,CN⊥l,垂足分别为M、N,BM=AN.(1)求证:MN=BM+CN;(2)求证:∠BAC=90°.19.如图,在△ABC中,点D为AB边上一点,DE∥BC交AC于点E,点F为BC延长线上一点,BF=AD,∠ACF=∠ADF.(1)求证:AE=FD;(2)若∠FDB=80°,∠B=70°,求∠1的度数.20.已知:如图,BD、CE是△ABC的高,BD、CE交于点F,BD=CD,CE平分∠ACB.(1)如图1,试说明BE=CF.(2)如图2,若点M在边BC上(不与点B重合),MN⊥AB于点N,交BD于点G,请直接写出BN与MG的数量关系,并画出能够说明该结论成立的辅助线,不必书写过程.21.已知:如图,AD、BF相交于O点,OA=OD,AB∥DF,点E、C在BF上,BE=CF.(1)求证:△ABO≌△DFO;(2)判断线段AC、DE的关系,并说明理由.22.如图,在△ABC中,D是边AB上一点,E是边AC的中点,作CF∥AB交DE的延长线于点F.(1)证明:△ADE≌△CFE;(2)若AB=AC,CE=5,CF=7,求DB的长.参考答案1.证明:∵∠A=∠D=90°,AC=BD,BC=BC,∴Rt△BAC≌Rt△CDB(HL)∴∠ACB=∠DBC.∴∠OCB=∠OBC.∴OB=OC(等角对等边).2.证明:∵AD,AF分别是两个钝角△ABC和△ABE的高,且AD=AF,AC=AE,∴Rt△ADC≌Rt△AFE(HL).∴CD=EF.∵AD=AF,AB=AB,∴Rt△ABD≌Rt△ABF(HL).∴BD=BF.∴BD﹣CD=BF﹣EF.即BC=BE.3.证明:∵BF=EC,∴BF+FC=FC+EC,即BC=EF,∵∠A=∠D=90°,∴△ABC和△DEF都是直角三角形,在Rt△ABC和Rt△DEF中,∴Rt△ABC≌Rt△DEF(HL).4.证明:在Rt△ABE和Rt△CBF中,∵,∴Rt△ABE≌Rt△CBF(HL).5.证明:∵∠BAC=90°,CE⊥AE,BD⊥AE,∴∠ABD+∠BAD=90°,∠BAD+∠DAC=90°,∠ADB=∠AEC=90°.∴∠ABD=∠DAC.∵在△ABD和△CAE中,∴△ABD≌△CAE(AAS).∴BD=AE,EC=AD.∵AE=AD+DE,∴BD=EC+ED.6.证明:∵BE⊥AC,CD⊥AB,∴∠ADC=∠BDC=∠AEB=∠CEB=90°.∵AO平分∠BAC,∴∠1=∠2.在△AOD和△AOE中,,∴△AOD≌△AOE(AAS).∴OD=OE.在△BOD和△COE中,,∴△BOD≌△COE(ASA).∴OB=OC.7.证明:∵AB∥CD,∴∠A=∠DCF,∵AF=CE,∴AF﹣EF=CE﹣EF,即AE=CF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS).8.证明:∵DE⊥AC,∠B=90°,∴∠DEC=∠B=90°,∵CD∥AB,∴∠A=∠DCE,在△CED和△ABC中,,∴△CED≌△ABC(ASA).9.证明:(1)∵DF∥CE,∴∠FDC=∠ECD,在△FDC和△ECD中,,∴△FDC≌△ECD(SAS),∴CF=DE;(2)∵△FDC≌△ECD,∴∠FCD=∠EDC,∵AD=BC,∴AD+DC=BC+DC,∴AC=BD,在△F AC和△EBD中,,∴△F AC≌△EBD(SAS),∴∠A=∠B,∴AF∥EB.10.(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠ABE=∠DBE+∠ABE,∴∠ABD=∠CBE.在△ADB和△CEB中,,∴△ADB≌△CEB(SAS),∴AD=CE;(2)解:∵BA=BC,∠ABC=30°,∴∠BAC=∠BCA=(180°﹣30°)=75°,∵∠AFC=45°,∴∠BCE=∠AFC﹣∠ABC=45°﹣30°=15°,∵△ADB≌△CEB,∴∠BAD=∠BCE=15°,∴∠EAC=∠BAD+∠BAC=15°+75°=90°.11.证明:∵AB∥CD,∴∠ABD=∠EDC,在△ABD和△EDC中,,∴△ABD≌△EDC(AAS),∴DB=CD.12.(1)证明:∵∠BAC=∠F AG,∴∠BAC﹣∠CAD=∠F AG﹣∠CAD,∴∠BAD=∠CAG,在△ABF和△ACG中,,∴△ABF≌△ACG(ASA);(2)证明:∵△ABF≌△ACG,∴AF=AG,BF=CG,∵AB=AC,AD⊥BC,∴∠BAD=∠CAG,∵∠BAD=∠CAG,∴∠CAD=∠CAG,在△AEF和△AEG中,,∴△AEF≌△AEG(SAS).∴EF=EG,∴BE=BF+FE=CG+EG.13.证明:(1)AD⊥BD,∠BAD=45°,∴AD=BD,∵∠BFD=∠AFE,∠AFE+∠CAD=90°,∠CAD+∠ACD=90°,∴∠BFD=∠ACD,在△BDF和△ACD中,,∴△BDF≌△ACD(AAS),∴BF=AC,∵G为BF的中点.∴DG=BF,∵AB=CB,BE⊥AC,∴E为AC的中点.∴DE=AC,∴DG=DE;(2)由(1)知:∠DBG=∠DAE,BG=BF,AE=AC,BF=AC,∴BG=AE,在△BDG和△ADE中,,∴△BDG≌△ADE(SAS),∴∠BDG=∠ADE,∴∠DGB=∠DBG+∠BDG,∵∠DEC=∠DAE+∠ADE,∴∠DGB=∠DEC,∵DG=DE,∴∠DGE=∠DEG,∴∠DEG=∠DEC.14.(1)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△BDF和Rt△ADC中,,∴Rt△BDF≌Rt△ADC(HL).(2)解:∵Rt△BDF≌Rt△ADC,∴DC=DF.在Rt△ADC中,(AF+3)2+32=52,∴AF=1或AF=7(舍)∴AF=1.15.(1)证明:∵EF∥AC,∴∠A=∠EFD,∠ACD=∠E,在△ADC和△FDE中,,∴△ADC≌△FDE(AAS),∴AD=DF;(2)解:∵∠A=∠ACB,∠ABC=∠ECF=24°,∴∠A=∠ACB==78°,∴∠ACE=∠BCE=39°,∵EF∥AC,∴∠A=∠EFD=78°,∠ACD=∠E=39°,∵∠ECF=24°,∴∠CFE=180°﹣∠ECF﹣∠E=180°﹣24°﹣39°=117°.16.(1)证明:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE,∴∠ABD=∠2=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°.17.证明:(1)∵CB为∠ACE的角平分线,∴∠ACB=∠FCE,在△ABC与△FEC中,,∴△ABC≌△FEC(AAS),∴AB=FE;(2)∵AB∥CE,∴∠B=∠FCE,∴∠E=∠B=∠FCE=∠ACB,∵ED⊥AC,即∠CDE=90°,∴∠E+∠FCE+∠ACB=90°,即3∠ACB=90°,∴∠B=30°,∴∠A=180°﹣∠B﹣∠ACB=180°﹣30°﹣30°=120°.18.证明:(1)∵BM⊥直线l,CN⊥直线l,∴∠AMB=∠CNA=90°,在Rt△AMB和Rt△CNA中,,∴Rt△AMB≌Rt△CNA(HL),∴BM=AN,CN=AM,∴MN=AM+AN=BM+CN;(2)由(1)得:Rt△AMB≌Rt△CNA,∴∠BAM=∠ACN,∵∠CAN+∠ACN=90°,∴∠CAN+∠BAM=90°,∴∠BAC=180°﹣90°=90°.19.(1)证明:∵∠ACF=∠ADF,∴∠B+∠A=∠B+∠F,∴∠A=∠F,∵DE∥BC,∴∠ADE=∠B,在△ADE和△FBD中,,∴△ADE≌△FBD(ASA),∴AE=FD;(2)解:∵∠FDB=80°,∠B=70°,∴∠F=30°,∴∠ACF=∠ADF=∠B+∠F=100°,∴∠1=∠F+∠ACF=130°.20.解:(1)∵BD⊥AC,CE⊥AB,∴∠ADB=∠BDC=∠AEC=90°,∴∠A+∠ABD=90°,∠A+∠ACE=90°,∴∠ABD=∠ACE,在△ABD和△FCD中,,∴△ABD≌△FCD(ASA),∴AB=CF,∵CE平分∠ACB,∴∠ACE=∠BCE=22.5°,在△ACE和△BCE中,,∴△ACE≌△BCE(ASA),∴AE=BE,∴BE=AB=CF;(2)BN=MG,理由如下:如图,过点M作MH∥AC,交AB于H,交BD于P,∵BD=CD,BD⊥CD,∴∠DBC=∠DCB=45°,∵MH∥AC,∴∠PMB=∠DCB=∠PBM=45°,∠BPM=∠BDC=90°,∴BP=PM,∵∠BHP+∠HBP=90°,∠BHP+∠HMN=90°,∴∠HBP=∠HMN,在△BHP和△MGP中,,∴△BPH≌△MPG(ASA),∴GM=BH,∵MN⊥AB,CE⊥AB,∴MN∥CE,∴∠BMN=∠BCE=∠ACB=22.5°,∴∠BMN=∠HMN=22.5°,在△BMN和△HMN中,,∴△BMN≌△HMN(ASA)∴BN=NH,∴BN=BH=MG.21.(1)证明:∵AB∥DF,∴∠B=∠F,∠BAO=∠FDO,在△ABO和△DFO中,,∴△ABO≌△DFO(AAS);(2)解:AC=DE,AC∥DE,理由如下:∵△ABO≌△DFO,∴BO=FO,∵BE=CF,∴EO=CO,在△AOC和△DOE中,,∴△AOC≌△DOE(SAS),∴AC=DE,∠DAC=∠ADE,∴AC∥DE.22.(1)证明:∵E是边AC的中点,∴AE=CE.又∵CF∥AB,∴∠A=∠ACF,∠ADF=∠F,在△ADE与△CFE中,,∴△ADE≌△CFE(AAS).(2)解:∵△ADE≌△CFE,CF=7,∴CF=AD=7,∵AB=AC,E是边AC的中点,CE=5,∴AC=2CE=10.∴AB=10,∴DB=AB﹣AD=10﹣7=3.。
浙教版八年级数学上册试题 1.3 证明 (含答案)
1.3 证明一、单选题1.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于()A.50 o B.60 o C.75 o D.85 o2.三角形中∠B的平分线和外角的平分线的夹角是().A.60°B.90°C.45°D.135°3.小王、小陈、小张当中有一人做了一件好事,另两人也都知道是谁做了这件事.老师在了解情况时,他们三人分别说了下面几句话:小陈:“我没做这件事.”“小张也没做这件事.”小王:“我没做这件事.”“小陈也没做这件事.”小张:“我没做这件事.”“我也不知道谁做了这件事.”已知他们每人都说了一句假话,一句真话,做好事的人是()A.小王B.小陈C.小张D.不能确定4.下列问题你不能肯定的是()A.一支铅笔和一瓶矿泉水的体积大小问题 B.三角形与矩形的面积关系C.三角形的内角和D.n边形的外角和5.某超市(商场)失窃,大量的商品在夜间被罪犯用汽车运走.三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在甲、乙、丙三人之外;(2)丙作案时总得有甲作从犯;(3)乙不会开车.在此案中,能肯定的作案对象是()A.嫌疑犯乙B.嫌疑犯丙C.嫌疑犯甲D.嫌疑犯甲和丙6.如图,CE是ABC∆的外角ACD∠的平分线,若35∠=( ).∠=,则A∠=,60BACEA.95 B.85 C.75 D.7.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°8.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=A.60°B.120°C.150°D.180°9.如图,下列推理不正确的是( )A.∵AB∥CD,∴∠ABC+∠C=180°B.∵∠1=∠2,∴AD∥BCC.∵AD∥BC,∴∠3=∠4D.∵∠A+∠ADC=180°,∴AB∥CD10.下列推理中,错误的是( )A.因为AB⊥EF,EF⊥CD,所以AB⊥CDB.因为∠α=∠β,∠β=∠γ,所以∠α=∠γC.因为a∥b,b∥c,所以a∥cD.因为AB=CD,CD=EF,所以AB=EF11.下列推理正确的是( )A.∵∠1+∠2=90°,∠2+∠3=90°,∴∠1+∠3=90°B.∵∠1+∠3=90°,∠3+∠2=90°,∴∠1=∠2C.∵∠1与∠2是对顶角,又∠2=∠3,∴∠1与∠3是对顶角D.∵∠1与∠2是同位角,又∠2与∠3是同位角,∴∠1与∠3是同位角12.如果一个三角形的三个外角之比为2:3:4,则与之对应的三个内角度数之比为( )A.4:3:2 B.3:2:4 C.5:3:1 D.3:1:5二、填空题13.如图,直线a b∥,Rt△ABC的顶点B在直线a上,∠C=90°,∠β=55°,则∠α的度数为______.14.现有一个三位数密码锁,已知以下3个条件,可以推断正确的密码是__________.①只有一个号码正确且位置正确②只有两个号码正确且位置都不正确③三个号码都不正确15.如图,一个弯形管道ABCD的拐角∠ABC=120°,∠BCD=60°,这时说管道AB∥CD,是根据___________________________.16.如图,在△ABC中,∠C=90°,∠ABC的平分线与外角∠BAD的平分线的反向延长线交于点F,则∠F=____.17.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=_____.18.在△ABC中,AB≠AC,若用反证法证明∠B≠∠C,应先假设 _____19.为了从500只外形相同的鸡蛋中找到唯一的一只双黄蛋,检查员将这些鸡蛋按1﹣500的顺序排成一列,第一次先从中取出序号为单数的蛋,发现其中没有双黄蛋,他将剩下的蛋的原来位置上又按1﹣250编号(即原来的2号变为1号,原来的4号变成2号,…,原来的500号变成250号).又从中取出新序号为单数的蛋进行检查,任没有发现双黄蛋,…,如此下去,检查到最后的一个是双黄蛋,问这只双黄蛋最初的序号是_____.20.盒子里有甲、乙、丙三种粒子,若相同种类的两颗粒子发生碰撞,则变成一颗乙粒子;不同种类的两颗粒子发生碰撞,会变成第三种粒子,例如一颗甲粒子和一颗乙粒子发生碰撞则变成一颗丙粒子,现有甲粒子6颗,乙粒子4颗,丙粒子5颗,如果经过各种两两碰撞后,只剩下1颗粒子,给出下列结论:①最后一颗粒子可能是甲粒子;②最后一颗粒子一定不是乙粒子;③最后一颗粒子可能是丙粒子.其中正确结论的序号是:_______.21.完成下面的证明过程.已知:如图,∠1和∠D互余,∠C和∠D互余.求证:AB∥CD.证明:∵∠1和∠D互余(已知),∴∠1+∠D=90°(_____________).∵∠C和∠D互余(已知),∴∠C+∠D=90°(_____________),∴∠1=∠C(__________________),∴AB∥CD(________________________).22.如图,点 A,C,F,B 在同一直线上,CD 平分∠ECB,FG∥CD.若∠ECA 为α度,则∠GFB为________度(用关于α的代数式表示).23.如图,是一副三角板叠放的示意图,则∠α=______.24.如图,现给出下列条件:①1B ∠∠=,②25∠∠=,③34∠∠=,④1D ∠∠=,⑤B BCD 180∠∠+=︒.其中能够得到AB//CD 的条件是_______.(只填序号)三、解答题25.观察下列等式:第个等式为:2113323-=⨯第1个等式为:3223323-=⨯第2个等式为:4333323-=⨯第3个等式为:5443323-=⨯....根据上述等式含有的规律,解答下列问题:(1)第5个等式为:是(2)第n 个等式为:是 (用含n 的代数式表示),并证明26.已知△ABC 中,∠ACB=90°,CD 为AB 边上的高,BE 平分∠ABC ,分别交CD 、AC 于点F 、E ,求证:∠CFE=∠CEF .27.当光线经过镜面反射时,入射光线、反射光线与镜面所夹的角对应相等.例如:在图①、图②中都有12,34∠=∠∠=∠.设镜子AB 与BC 的夹角ABC α∠=.(1)如图①,若90α=︒,判断入射光线EF 与反射光线GH 的位置关系,并说明理由.(2)如图②,若90180a ︒<<︒,入射光线EF 与反射光线GH 的夹角FMH β∠=.探索α与β的数量关系,并说明理由.(3)如图③,若130α=︒,设镜子CD 与BC 的夹角BCD ∠为钝角,入射光线EF 与镜面AB 的夹角109()0x x ∠=︒<<︒.已知入射光线EF 从镜面AB 开始反射,经过(n n 为正整数,且3n ≤)次反射,当第n 次反射光线与入射光线EF 平行时,请直接写出BCD ∠的度数(可用含x 的代数式表示).答案一、单选题1.C 2.B 3.B 4.B 5.C 6.B7.D8.A 9.C10.A 11.B 12.C二、填空题13.35°14.52015.同旁内角互补,两直线平行16.45°17.540°18.∠B=∠C19.25620.①②③.21.互余的定义;互余的定义;同角的余角相等;内错角相等,两直线平行. 22.90°﹣2α 23.75°24.①②⑤三、解答题25.解:(1)观察等式可知:第5个等式为:6553323-=⨯;故答案为:6553323-=⨯;(2)第n 个等式为:13323n n n +-=⨯,证明:左边1333333(31)23n n n n n n +=-=⨯-=-=⨯=右边∴等式成立. 26.解:根据互余、角平分线及对顶角等相关知识即可得出答案.证明:如图,∵∠ACB =90°,∴∠1+∠3=90°,∵CD ⊥AB ,∴∠2+∠4=90°,又∵BE 平分∠ABC ,∴∠1=∠2,∴∠3=∠4,∵∠4=∠5,∴∠3=∠5,即∠CFE =∠CEF .27.解:()1,EF GH理由如下:在BEG 中,23180,α∠+∠+=︒90,α=︒2390,∴∠+∠=︒12180,34180,12,34FEG EGH ∠+∠+∠=︒∠+∠+∠=︒∠=∠∠=∠, 1234360FEG EGH ∴∠+∠+∠+∠+∠+∠=︒,180FEG EGH ∴∠+∠=,//EF GH ∴;()22180βα=-︒.理由如下:在BEG 中,23180α∠+∠+=23180,α∴∠+∠=︒-12,1MEB ∠=∠∠=∠2,MEB ∴∠=∠22,MEG ∴∠=∠34,4MGB ∠=∠∠=∠3,MGB ∴∠=∠23,MGE ∴∠=∠在MEG 中,180MEG MGE β∠+∠+=︒(0)18MEG MGE β∴=︒-∠+∠180(2223)=-∠+∠(802)123=∠+∠-1802(180)2180αα=︒︒=--- ;()390x ︒+或140︒如图,当夹角为钝角时,根据(2)中的结论,得 ∠FEG=2∠BCD-180°,根据平行线性质,得:∠FEG=∠PAH=2∠NAH=2x ,∴∠BCD=1802902x x ︒+=︒+;如图,当夹角为直角时,根据(1)中的结论,得∠EBC=50°,根据三角形外角性质,得:∴∠BCD=∠EBC+∠BEC=50°+90°=140°.∴∠BCD的度数为90x︒+或140°.。
浙教版八年级上数学重点复习题(答案)
八年级(上)数学期末重点复习1.(10分)浙江省移动公司开设有两种手机业务:①“全球通”:月租费为50元,市内通话费按0.4元/分计算; ②“神州行”:不缴月租费,市内通话费按0.6元/分计算. 选择全球通还是神州行合算?2.(12分)某小区按照分期付款的形式福利购房,政府给予一定的补贴。
小明家购得一套现价为120000元的房子,购房时首期(第一年)付款30000元。
从第二年起,以后每年付房款为5000元与上一年剩余欠款利息的和,设剩余欠款的年利率为0.4%。
(1)若第x (2 x )年小明家交付房款y 元,求年付款y (元)与x (年)的函数关系式; (23.(9分)某批发商欲将一批海产品由A 地运往B 地,•汽车货运公司和铁路货运公司均开办了海产品运输业务.已知运输路程为120千米,•汽车和火车的速度分别为60千米/时和100千米/时.两货物公司的收费项目和收费标准如下表所示:注:“元/吨·千米”表示每吨货物每千米的运费;“元/•吨小时”表示每吨货物每小时的冷藏费.(1)设该批发商待运的海产品有x (吨),•汽车货运公司和铁路货运公司所要收取的费用分别为y 1(元)和y 2(元),试求出y 1和y 2和与x 的函数关系式;(2)若该批发商待运的海产品不少于30吨,为节省运费,•他应该选择哪个货运公司承担运输业务?4.(12分)如图,直线OC 、BC 的函数关系式分别是y 1=x 和y 2=-2x+6,动点P (x ,0)在OB 上运动(0<x<3),过点P 作直线m 与x 轴垂直. (1)求点C 的坐标,并回答当x 取何值时y 1>y 2?(2)设△COB 中位于直线m 左侧部分的面积为s ,求出s 与x 之间函数关系式. (3)当x 为何值时,直线m 平分△COB 的面积?5.红太阳大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元)。
浙教版数学八年级上册 第一章 三角形的初步知识单元测试(含答案)
浙教版数学八上第一章一、单选题1.下列长度的三条线段,能组成三角形的是( )A.5,6,10B.5,6,11C.3,4,8D.6,6,132.在证明命题“若a2>1,则a>1”是假命题时,下列选项中所举反例不正确的是( )A.a=2B.a=―2C.a=―3D.a=―43.如图,在△ABC和△BAD中,AC=BD,BC=AD,在不添加任何辅助线的条件下,可判断△ABC≌△BAD,判断这两个三角形全等的依据是( )A.ASA B.AAS C.SSS D.SAS4.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为( )A.1cm B.2cm C.3cm D.4cm5.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列符合题意的是( )A.B.C.D.6.如图所示,已知AB∥CD,AD∥BC,AC与BD交于点O,AE⊥BD于E,CF⊥BD于E,图中全等三角形有( )A.3对B.5对C.6对D.7对7.如图,已知AE是ΔABC的角平分线,AD是BC边上的高.若∠ABC=34°,∠ACB=64°,则∠DAE的大小是( )A.5°B.13°C.15°D.20°8.如图,在△ABC中,∠BAC和∠ABC的平分线AE,BF相交于点O,AE交BC于E,BF交AC于F,过点O作OD⊥BC于D,下列四个结论:①∠AOB=90°+ 1∠C;②当∠C=60°时,AF+BE=AB;2③若OD=a,AB+BC+CA=2b,则S△ABC=ab.其中正确的是( )A.①②B.②③C.①②③D.①③9.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,∠CAB和∠ABC的平分线交于点O,OM⊥BC于点M,则OM的长为( )A.1B.2C.3D.410.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点MMN的长为半径画弧,两弧交于点P,连结AP并延长交BC于和N,再分别以M、N为圆心,大于12点D,则下列说法中正确的个数是①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1B.2C.3D.4二、填空题11.一个命题由“条件”和“结论”两部分组成,则命题“同角的余角相等”的条件是 .12.如图,∠BAD=∠CAE.BC=DE.若添加一个条件可得ΔABC≌ΔADE,则添加的条件及对应的理由是 .(写出所有满足条件的答案)13.如图,△ABC中,AB=15,BC=9,BD是AC边上的中线.若△ABD的周长为35,则△BCD的周长是 .14.如图,在△ABC中,AB=a,AC=b,BC边上的垂直平分线DE交BC、AB分别于点D、E,则△AEC的周长等于 。
浙教版2023-2024学年八年级上册数学期末总复习(含答案)
浙教版初中数学八年级上册数学期末总复习一、单选题1.篆体是我国汉字古代书体之一.下列篆体字“美”,“丽”,“北”,“京”中,不是轴对称图形的为( )A.B.C.D.2.如图,有一块三角形的玻璃,不小心掉在地上打成三块,现要到玻璃店重新划一块与原来形状、大小一样的玻璃,只需带到玻璃店( )A.①B.②C.③D.①、②、③其中任一块3.已知一点,则点关于轴的对称点是( )A.B.C.D.4.如图、等腰三角形中,,中线与角平分线交于点F,则的度数为( )A.B.C.D.5.直线与在同一平面直角坐标系内,其位置可能是( )A.B.C.D.6.如图,已知,以点B为圆心,适当长为半径作弧,分别交于D,P;作一条射线,以点F圆心,长为半径作弧l,交于点H;以H为圆心,长为半径作弧,交弧于点Q;作射线.这样可得,其依据是( )A.B.C.D.7.下列命题错误的是( )A.若,,则B.若,则C.若,则D.若,则8.早上9点,甲车从地出发去地,20分钟后,乙车从地出发去地.两车离开各自出发地的路程(千米)与时间(小时)的函数关系如图所示,下列描述中不正确的是( )A.两地相距240千米B.乙车平均速度是90千米/小时C.乙车在12:00到达地D.甲车与乙车在早上10点相遇9.如图,在中,平分交AC于点D,且,F在BC上,E为AF的中点,连接DE,若,,,则AB的长为( )A.B.C.D.910.如图,在中,,,点是边的中点,射线,是射线上的一个动点,将点绕着点顺时针旋转90°得到点,则线段长度的最小值为( )A.B.1.5C.2D.1二、填空题11.若二次根式有意义,则x的取值范围是 .12.若一个正比例函数的图象经过点,则这个正比例函数的表达式为 .13.命题:直角三角形两条直角边的平方和等于斜边的平方,其逆命题是 .14.如图,的三条中线AD,BE,CF交于点O,若的面积为20,那么阴影部分的面积之和为 .15.一副三角尺,按如图所示叠放在一起,则图中的度数为 .16.如图,有一张直角三角形的纸片,.现将三角形折叠,使得边与重合,折痕为.则长为 .三、解答题17.解不等式组18.已知:如图,点B,F,C,E在一条直线上,,,且.求证:.19.如图,在网格中,每个小正方形的边长为1,要求只用一把无刻度的直尺作图.(1)在图1中作一个以为腰的等腰三角形,其顶点都在格点上.(2)在图2中作所有以为一边的直角三角形,其顶点都在格点上.20.如图,在中,,,是的平分线,且,于点,交于点.(1)求证:是等腰三角形;(2)求线段的长.21.在平面直角坐标系中,一次函数的图象经过和.(1)求这个一次函数的表达式.(2)当时,对于x的每一个值,函数的值都小于的值,直接写出m的取值范围.22.如图,在中,,垂足为D,,延长至E.使得,连接AE.(1)求证:.(2)若,,①求的面积.②求的周长,23.小嘉骑自行车从家出发沿公路匀速前往新华书店,小嘉妈妈骑电瓶车从新华书店出发沿同一条路回家。
浙教版八年级数学上小专题及期末复习试卷含答案
小专题(一) 构造全等三角形的方法技巧类型1 连结线段构造全等三角形【例1】 如图,已知AB =AD ,BC =CD ,求证:∠B =∠ D.证明:连结AC , 在△ABC 和△ADC 中, ⎩⎪⎨⎪⎧AB =AD ,BC =DC ,AC =AC ,∴△ABC ≌△ADC(SSS ). ∴∠B =∠D.【方法归纳】 通过连结两点,构造出三角形,再证明两个三角形全等,然后利用全等三角形的性质说明角相等或边相等.1.如图,已知AB ∥CD ,AD ∥BC ,求证:∠A =∠ C.证明:连结BD , ∵AB ∥CD , ∴∠ABD =∠CDB. ∵AD ∥BC ,∴∠ADB =∠CBD. 又∵BD =DB ,∴△ABD ≌△CDB(ASA ).∴∠A =∠C.2.如图,在△ABC 中,AB =AC ,点M 为BC 中点,MD ⊥AB 于点D ,ME ⊥AC 于点E.求证:MD =ME.证明:连结AM. 在△ABM 和△ACM 中, ⎩⎪⎨⎪⎧AB =AC ,AM =AM ,BM =CM ,∴△ABM ≌△ACM(SSS ). ∴∠BAM =∠CAM. ∵MD ⊥AB ,ME ⊥AC , ∴MD =ME.类型2 利用“截长补短”构造全等三角形【例2】 如图,AD ∥BC ,点E 在线段AB 上,∠ADE =∠CDE ,∠DCE =∠ECB.求证:CD =AD +BC.证明:在CD 上截取DF =DA ,连结FE.在△ADE 和△FDE 中, ⎩⎪⎨⎪⎧AD =FD ,∠ADE =∠FDE ,DE =DE , ∴△ADE ≌△FDE. ∴∠A =∠DFE.又∵AD ∥BC ,∴∠A +∠B =180°. ∵∠DFE +∠EFC =180°. ∴∠B =∠EFC. 在△EFC 和△EBC 中, ⎩⎪⎨⎪⎧∠EFC =∠B ,∠ECF =∠ECB ,EC =EC , ∴△EFC ≌△EBC. ∴FC =BC.∴CD =DF +FC =AD +BC.【方法归纳】 遇到证明线段的和差倍分问题时,通常利用截长法或补短法,具体的作法是在某条线段上截取一条线段与特定线段相等,或者延长某条线段,使之与特定线段相等,再利用三角形全等的有关性质解决.3.如图,在△ABC 中,∠A =60°,BD ,CE 分别平分∠ABC 和∠ACB ,BD ,CE 交于点O,试判断BE,CD,BC的数量关系,并加以证明.解:BC=BE+CD.证明:在BC上截取BF=BE,连结OF.∵BD平分∠ABC,∴∠EBO=∠FBO.又∵BO=BO,∴△EBO≌△FBO.∴∠EOB=∠FOB.∵∠A=60°,BD,CE分别平分∠ABC和∠ACB,∴∠BOC=180°-∠OBC-∠OCB=180°-12∠ABC-12∠ACB=180°-12(180°-∠A)=120°.∴∠EOB=∠DOC=60°.∴∠BOF=60°,∠FOC=∠DOC=60°.∵CE平分∠DCB,∴∠DCO=∠FCO.又∵CO=CO,∴△DCO≌△FCO.∴CD=CF.∴BC=BF+CF=BE+CD.4.(德州中考)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.点E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.(1)小王同学探究此问题的方法是:延长FD 到点G ,使DG =BE ,连结AG .先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是EF =BE +DF ;(2)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =12∠BAD ,上述结论是否仍然成立,并说明理由.解:EF =BE +DF 仍然成立.证明:延长FD 到G ,使DG =BE ,连结AG , ∵∠B +∠ADC =180°,∠ADC +∠ADG =180°, ∴∠B =∠ADG .在△ABE 和△ADG 中,⎩⎪⎨⎪⎧BE =DG ,∠B =∠ADG ,AB =AD ,∴△ABE ≌△ADG(SAS ). ∴AE =AG ,∠BAE =∠DAG . ∵∠EAF =12∠BAD ,∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD -∠EAF =∠EAF. ∴∠EAF =∠GAF.在△AEF 和△AGF 中,⎩⎪⎨⎪⎧AE =AG ,∠EAF =∠GAF ,AF =AF ,∴△AEF ≌△AGF(SAS ).∴EF =FG .∵FG=DG+DF=BE+DF,∴EF=BE+DF.类型3利用“中线倍长”构造全等三角形【例3】如图,在△ABC中,AD是BC边上的中线,AC>AB,求证:AB+AC>2AD>AC -AB.证明:延长AD至E,使AD=DE,并连结CE,∵D是BC上的中点,∴CD=BD.又∵AD=DE,∠ADB=∠CDE,∴△ADB≌△EDC(SAS).∴AB=CE.∵AC+CE>2AD>AC-CE,∴AB+AC>2AD>AC-AB.【方法归纳】当题目中出现中线时,常常延长中线,使所延长部分与中线的长度相等,然后连结相应的端点,便可以得到全等三角形.5.已知:如图,AD,AE分别是△ABC和△ABD的中线,且BA=BD.求证:AE=12AC.证明:延长AE至F,使EF=AE,连结DF.∵AE 是△ABD 的中线, ∴BE =DE.又∵∠AEB =∠FED , ∴△ABE ≌△FDE. ∴∠B =∠BDF ,AB =DF. ∵BA =BD ,∴∠BAD =∠BDA ,BD =DF.∵∠ADF =∠BDA +∠BDF ,∠ADC =∠BAD +∠B , ∴∠ADF =∠ADC. ∵AD 是△ABC 的中线, ∴BD =CD. ∴DF =CD. 又∵AD =AD ,∴△ADF ≌△ADC(SAS ). ∴AC =AF =2AE ,即AE =12AC.6.如图,AB =AE ,AB ⊥AE ,AD =AC ,AD ⊥AC ,点M 为BC 的中点,求证:DE =2AM.证明:延长AM 至点N ,使MN =AM ,连结BN , ∵M 为BC 中点, ∴BM =CM.又∵AM=MN,∠AMC=∠NMB,∴△AMC≌△NMB(SAS).∴AC=BN,∠C=∠NBM.∴∠ABN=∠ABC+∠NBM=∠ABC+∠C=180°-∠BAC=∠EAD. ∵AD=AC,AC=BN,∴AD=BN.又∵AB=AE,∴△ABN≌△EAD(SAS).∴DE=NA.又∵AM=MN,∴DE=2AM.小专题(二)等腰三角形中的分类讨论类型1对顶角和底角的分类讨论对于等腰三角形,只要已知它的一个内角的度数,就能算出其他两个内角的度数,如果题中没有确定这个内角是顶角还是底角,就要分两种情况来讨论.在分类时要注意:三角形的内角和等于180°;等腰三角形中至少有两个角相等.1.等腰三角形中有一个角为52°,它的一条腰上的高与底边的夹角为多少度?解:①若已知的这个角为顶角,则底角的度数为(180°-52°)÷2=64°,故一腰上的高与底边的夹角为26°;②若已知的这个角为底角,则一腰上的高与底边的夹角为38°.故所求的一腰上的高与底边的夹角为26°或38°.类型2对腰长和底长的分类讨论在解答已知等腰三角形边长的问题时,当题目条件中没有明确说明哪条边是“腰”、哪条边是“底”时,往往要进行分类讨论.判定的依据是:三角形的任意两边之和大于第三边;两边之差小于第三边.2.(1)已知等腰三角形的一边长等于6 cm ,一边长等于7 cm ,求它的周长;(2)等腰三角形的一边长等于8 cm ,周长等于30 cm ,求其他两边的长. 解:(1)周长为19 cm 或20 cm .(2)其他两边的长为8 cm ,14 cm 或11 cm ,11 cm .3.若等腰三角形一腰上的中线分周长为9 cm 和12 cm 两部分,求这个等腰三角形的底和腰的长.解:如图,由于条件中中线分周长的两部分,并没有指明哪一部分是9 cm 、哪一部分是12 cm ,因此,应有两种情形.设这个等腰三角形的腰长为x cm ,底边长为y cm ,根据题意,得 ⎩⎪⎨⎪⎧x +12x =9,12x +y =12或⎩⎪⎨⎪⎧x +12x =12,12x +y =9.解得⎩⎪⎨⎪⎧x =6,y =9,或⎩⎪⎨⎪⎧x =8,y =5.故腰长是6 cm ,底边长是9 cm 或腰长是8 cm ,底边长是5 cm .类型3 几何图形之间的位置关系不明确的分类讨论4.已知C 、D 两点在线段AB 的中垂线上,且∠ACB =50°,∠ADB =80°,求∠CAD 的度数.解:①如图1,当C 、D 两点在线段AB 的同侧时, ∵C 、D 两点在线段AB 的垂直平分线上, ∴CA =CB.∴△CAB 是等腰三角形. 又∵CE ⊥AB ,∴CE 是∠ACB 的平分线.∴∠ACE =∠BCE. ∵∠ACB =50°,∴∠ACE =25°. 同理可得∠ADE =40°,∴∠CAD =∠ADE -∠ACE =40°-25°=15°;图1 图2②如图2,当C 、D 两点在线段AB 的两侧时,同①的方法可得∠ACE =25°,∠ADE =40°,∴∠CAD =180°-(∠ADE +∠ACE)=180°-(40°+25°)=180°-65°=115°.故∠CAD 的度数为15°或115°.类型4 运动过程中等腰三角形中的分类讨论5.(下城区校级期中)在Rt △ABC 中,∠C =90°,BC =8 cm ,AC =6 cm ,在射线BC 上一动点D ,从点B 出发,以2厘米每秒的速度匀速运动,若点D 运动t 秒时,以A 、D 、B 为顶点的三角形恰为等腰三角形,则所用时间t 为258或5或8秒.解析:①当AD =BD 时,在Rt △ACD 中,根据勾股定理,得 AD 2=AC 2+CD 2,即BD 2=(8-BD)2+62, 解得BD =254 cm . 则t =2542=258(秒); ②当AB =BD 时,在Rt △ABC 中,根据勾股定理,得 AB =AC 2+BC 2=62+82=10(cm ), 则t =102=5(秒);③当AD =AB 时,BD =2BC =16 cm , 则t =162=8(秒).综上所述,t 的值可以是:258,5,8.6.(杭州期中)如图,已知△ABC 中,∠B =90°,AB =8 cm ,BC =6 cm ,P 、Q 是△ABC边上的两个动点,其中点P 从点A 开始沿A →B 方向运动,且速度为每秒1 cm ,点Q 从点B 开始沿B →C 方向运动,且速度为每秒2 cm ,它们同时出发,设出发的时间为t 秒.(1)当t =2秒时,求PQ 的长;(2)求出发时间为几秒时,△PQB 是等腰三角形?(3)若Q 沿B →C →A 方向运动,则当点Q 在边CA 上运动时,求能使△BCQ 成为等腰三角形的运动时间.解:(1)BQ =2×2=4(cm ), BP =AB -AP =8-2×1=6(cm ), ∵∠B =90°,∴PQ =BQ 2+BP 2=42+62=213(cm ). (2)根据题意,得BQ =BP , 即2t =8-t , 解得t =83.∴出发时间为83秒时,△PQB 是等腰三角形. (3)分三种情况:①当CQ =BQ 时,如图1所示, 则∠C =∠CBQ , ∵∠ABC =90°,∴∠CBQ +∠ABQ =90°,∠A +∠C =90°. ∴∠A =∠ABQ.∴BQ =AQ. ∴CQ =AQ =5 cm . ∴BC +CQ =11 cm . ∴t =11÷2=5.5(秒).②当CQ =BC 时,如图2所示, 则BC +CQ =12 cm . ∴t =12÷2=6(秒).③当BC =BQ 时,如图3所示, 过B 点作BE ⊥AC 于点E , 则BE =AB·BC AC =6×810=4.8(cm ). ∴CE =BC 2-BE 2=3.6 cm . ∴CQ =2CE =7.2 cm . ∴BC +CQ =13.2 cm . ∴t =13.2÷2=6.6(秒).由上可知,当t 为5.5秒或6秒或6.6秒时,△BCQ 为等腰三角形.小专题(三) 利用勾股定理解决折叠与展开问题类型1 利用勾股定理解决平面图形的折叠问题1.如图所示,有一张直角三角形纸片,∠C =90°,AC =4 cm ,BC =3 cm ,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CE 的长为( A )A .1 cmB .1.5 cmC .2 cmD .3 cm第1题图 第2题图2.如图,长方形ABCD 的边AD 沿折痕AE 折叠,使点D 落在BC 上的F 处,已知AB =6,△ABF 的面积是24,则FC 等于( B )A .1B .2C .3D .43.如图,有一张直角三角形纸片,两直角边AC =5 cm ,BC =10 cm ,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CD 的长为( D )A .252 cmB .152 cmC .254 cm D .154 cm第3题图 第4题图4.(铜仁中考)如图,在长方形ABCD 中,BC =6,CD =3,将△BCD 沿对角线BD 翻折,点C 落在点C′处,BC ′交AD 于点E ,则线段DE 的长为( B )A .3B .154C .5D .1525.(上城区期末)在矩形纸片ABCD 中,AB =3,AD =5,如图所示,折叠纸片,使点A 落在BC 边上的A′处,折痕为PQ ,当点A′在BC 边上移动时,折痕的端点P 、Q 也随之移动,若限定点P 、Q 分别在线段AB 、AD 边上移动,则点A′在BC 边上可移动的最大距离为( B )A .1B .2C .3D .4解析:如图1,当点D 与点Q 重合时,根据翻折对称性可得 A′D =AD =5.在Rt △A ′CD 中,A ′D 2=A′C 2+CD 2, 即52=(5-A′B)2+32, 解得A′B =1.如图2,当点P 与点B 重合时,根据翻折对称性可得A′B =AB =3. ∵3-1=2,∴点A′在BC 边上可移动的最大距离为2. 故选B .6.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为7.第6题图 第7题图7.如图,在Rt △ABC 中,∠C =90°,BC =6 cm ,AC =8 cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C′点,那么△ADC′的面积是6_cm 2.8.如图,长方形ABCD 中,CD =6,BC =8,E 为CD 边上一点,将长方形沿直线BE 折叠,使点C 落在线段BD 上C′处,求DE 的长.解:∵在长方形ABCD 中,∠C =90°,DC =6,BC =8, ∴BD =62+82=10.由折叠可得BC ′=BC =8,EC ′=EC ,∠BC ′E =∠C =90°, ∴C ′D =2,∠DC ′E =90°. 设DE =x ,则C ′E =CE =6-x . 在Rt △C ′DE 中,x 2=(6-x )2+22, 解得x =103. ∴DE 的长为103.类型2 利用勾股定理解决立体图形的最短路径问题9.如图是一个封闭的正方体纸盒,E 是CD 中点,F 是CE 中点,一只蚂蚁从一个顶点A 爬到另一个顶点G ,那么这只蚂蚁爬行的最短路线是( C )A.A⇒B⇒C⇒GB.A⇒C⇒GC.A⇒E⇒GD.A⇒F⇒G10.如图,在一个长为2 m,宽为1 m的长方形草地上,放着一根长方体的木块,它的棱和场地宽AD平行且棱长大于AD,木块从正面看是边长为0.2 m的正方形,一只蚂蚁从点A处到达点C处需要走的最短路程是2.60m.(精确到0.01 m)第10题图第11题图11.(凉山中考)如图,圆柱形玻璃杯,高为18 cm,底面周长为24 cm,在杯内离杯底4 cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为20cm.12.一位同学要用彩带装饰一个长方体礼盒.长方体高6 cm,底面是边长为4 cm的正方形,从顶点A到顶点C′如何贴彩带用的彩带最短?最短长度是多少?解:把长方体的面DCC′D′沿棱CD展开至面ABCD上,如图.构成矩形ABC′D′,则A到C′的最短距离为AC′的长度,连结AC′交DC于O,易证△AOD≌△C′OC.∴OD=OC,即O为DC的中点.由勾股定理得AC′2=AD′2+D′C′2=82+62=100,∴AC′=10 cm.即从顶点A沿直线到DC中点O(或A′B′中点O′),再沿直线到顶点C′,贴的彩带最短,最短长度为10 cm.13.如图,一个长方体形状的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.(1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长.解:(1)如图,木柜的表面展开图是两个矩形ABC′1D1和ACC1A1.蚂蚁能够最快到达目的地的可能路径有如图所示的AC′1和AC1两种.(2)蚂蚁沿着木柜表面经线段A1B1到C′1,爬过的路径的长l1=42+(4+5)2=97;蚂蚁沿着木柜表面经线段BB1到C1,爬过的路径的长l2=(4+4)2+52=89. ∵l1>l2,∴最短路径的长是89.小专题(四) 全等三角形的基本模型类型1 平移型把△ABC 沿着某一条直线l 平行移动,所得到△DEF 与△ABC 称为平移型全等三角形.图1,图2是常见的平移型全等三角形.在证明平移型全等的试题中,常常要碰到移动方向的边加(减)公共边.如图1,若BE =CF ,则BE +EC =CF +CE ,即BC =EF.如图2,若BE =CF ,则BE -CE =CF -CE ,即BC =EF.1.如图,已知EF ∥MN ,EG ∥HN ,且FH =MG ,求证:△EFG ≌NMH.证明:∵EF ∥MN ,EG ∥HN , ∴∠F =∠M ,∠EGF =∠NHM. ∵FH =MG ,∴FH +HG =MG +HG , 即GF =HM.在△EFG 和△NMH 中, ⎩⎪⎨⎪⎧∠F =∠M ,GF =HM ,∠EGF =∠NHM , ∴△EFG ≌△NMH(ASA ).2.(金华六校10月联考)如图,A 、B 、C 、D 四点在同一直线上,请你从下面四项中选出三个选项作为条件,余下一个作为结论,构成一个真命题,并进行证明.①AB =CD ;②∠ACE =∠D ;③∠EAG =∠FBG ;④AE =BF. 你选择的条件是:①②③,结论是:④.(填写序号)证明:∵∠EAG =∠FBG , ∴∠EAD =∠FBD. ∵AB =CD ,∴AB +BC =BC +CD , 即AC =BD.在△ACE 和△BDF 中, ⎩⎪⎨⎪⎧∠ACE =∠D ,AC =BD ,∠EAD =∠FBD , ∴△ACE ≌△BDF(ASA). ∴AE =BF .类型2 翻折型将原图形沿着某一条直线折叠后,直线两边的部分能够完全重合,这两个三角形称之为翻折型全等三角形.此类图形中要注意其隐含条件,即公共边或公共角相等.3.(下城区校级期中)如图,已知Rt △ABC ≌Rt △ADE ,∠ABC =∠ADE =90°,BC 与DE 相交于点F ,连结CD 、EB.(1)不添加辅助线,找出图中其他的全等三角形;(2)求证:CF=EF.解:(1)图中其他的全等三角形为:△ACD≌△AEB,△DCF≌△BEF.(2)证明:∵Rt△ABC≌Rt△ADE,∴AC=AE,AD=AB,∠CAB=∠EAD.∴∠CAB-∠DAB=∠EAD-∠DAB,即∠CAD=∠EAB.∴△CAD≌△EAB.∴CD=EB,∠ADC=∠ABE.又∵∠ADE=∠ABC,∴∠CDF=∠EBF.又∵∠DFC=∠BFE,∴△CDF≌△EBF(AAS).∴CF=EF.类型3旋转型将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形.识别旋转型三角形时,如图1,涉及对顶角相等;如图2,涉及等角加(减)等角的条件.4.已知:如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:AD=AE.证明:∵AB⊥AC,AD⊥AE,∴∠BAC=∠DAE=90°.∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,∠BAD=∠CAE,AB=AC,∠ABD=∠ACE,∴△ABD≌△ACE.∴AD=AE.5.如图,△ABC,△CDE是等边三角形,B,C,E三点在同一直线上.(1)求证:AE=BD;(2)若BD和AC交于点M,AE和CD交于点N,求证:CM=CN;(3)连结MN,猜想MN与BE的位置关系,并加以证明.解:(1)证明:∵△ABC和△DCE均为等边三角形,∴AC=BC,CE=CD,∠ACB=∠DCE=60°.∴∠BCD=∠ACE=120°.在△ACE 和△BCD 中,⎩⎪⎨⎪⎧AC =BC ,∠ACE =∠BCD ,CE =CD ,∴△ACE ≌△BCD(SAS ). ∴AE =BD.(2)证明:∵△ACE ≌△BCD , ∴∠CBD =∠CAE.∵∠ACN =180°-∠ACB -∠DCE =60°, ∴∠BCM =∠ACN. 在△BCM 和△ACN 中, ⎩⎪⎨⎪⎧∠CBM =∠CAN ,CB =CA ,∠BCM =∠ACN , ∴△BCM ≌△ACN(ASA ). ∴CM =CN. (3)MN ∥BE.证明:∵CM =CN ,∠MCN =60°, ∴△MCN 为等边三角形. ∴∠CMN =60°. ∴∠CMN =∠ACB. ∴MN ∥BE.类型4 双垂型基本图形如图:此类图形通常告诉BD ⊥DE ,AB ⊥AC ,CE ⊥DE ,那么一定有∠B =∠CAE.6.如图,AD ⊥AB 于点A ,BE ⊥AB 于点B ,点C 在AB 上,且CD ⊥CE ,CD =CE.求证:AD =CB.证明:∵AD ⊥AB ,BE ⊥AB , ∴∠A =∠B =90°. ∴∠D +∠ACD =90°. ∵CD ⊥CE ,∴∠ACD +∠BCE =180°-90°=90°. ∴∠D =∠BCE .在△ACD 和△BEC 中,⎩⎪⎨⎪⎧∠A =∠B ,∠D =∠BCE ,CD =CE ,∴△ACD ≌△BEC (AAS). ∴AD =CB .7.如图,△ABC 为等腰直角三角形,∠ACB =90°,直线l 经过点A 且绕点A 在△ABC 所在平面内转动,作BD ⊥l ,CE ⊥l ,D 、E 为垂足.求证:DA +DB =2DE.证明:在l 上截取FA =DB ,连结CD 、CF.∵△ABC 为等腰直角三角形,∠ACB =90°,BD ⊥l ,∴AC =BC ,∠BDA =90°.∴∠CBD +∠CAD =360°-∠BDA -∠ACB =360°-90°-90°=180°. 又∵∠CAF +∠CAD =180°, ∴∠CBD =∠CAF. 在△CBD 和△CAF 中, ⎩⎪⎨⎪⎧CB =CA ,∠CBD =∠CAF ,BD =AF ,∴△CBD ≌△CAF(SAS ). ∴CD =CF. ∵CE ⊥l ,∴DE =EF =12DF =12(DA +FA)=12(DA +DB). ∴DA +DB =2DE.小专题(五) 一元一次不等式(组)的解法1.解下列不等式(组):(1)(金华金东区期末)5x +3<3(2+x); 解:去括号,得5x +3<6+3x. 移项,得5x -3x <6-3. 合并同类项,得2x <3. 系数化为1,得x <32.(2)(黄冈中考)x +12≥3(x -1)-4; 解:去分母,得x +1≥6(x -1)-8. 去括号,得x +1≥6x -6-8. 移项,得x -6x ≥-6-8-1. 合并同类项,得-5x ≥-15. 两边都除以-5,得x ≤3.(3)⎩⎪⎨⎪⎧x +1≥2,①3(x +1)>x +5;②解:由①,得x ≥1. 由②,得x>1.所以,不等式组的解集为x>1.(4)(莆田中考)⎩⎪⎨⎪⎧x -3(x -2)≥4,①1+2x 3>x -1;②解:由①,得x ≤1. 由②,得x <4.所以原不等式组的解集为x ≤1.(5)(金华金东区期末)⎩⎨⎧5x -2>3(x +1),①12x -1≤7-32x.②解:解不等式①,得x >52. 解不等式②,得x ≤4. 故不等式组的解集为52<x ≤4.2.(苏州中考)解不等式2x -1>3x -12,并把它的解集在数轴上表示出来.解:去分母,得4x -2>3x -1. 移项,得4x -3x >2-1. 合并同类项,得x >1.将不等式解集表示在数轴上如图:3.(萧山区校级月考)解不等式x3<1-x -36,并求出它的非负整数解.解:去分母,得2x<6-(x -3). 去括号,得2x<6-x +3. 移项,得x +2x<6+3. 合并同类项,得3x<9. 系数化为1,得x<3.所以,非负整数解为0,1,2.4.(杭州经济开发区期末)解不等式组⎩⎪⎨⎪⎧x -4≥3(x -2),①x +113-1>-x.②并把它的解在数轴上表示出来.解:解不等式①,得x ≤1. 解不等式②,得x >-2. ∴原不等式组的解为-2<x ≤1. 在数轴上表示为:5.(十堰中考)x 取哪些整数值时,不等式5x +2>3(x -1)与12x ≤2-32x 都成立?解:根据题意解不等式组⎩⎨⎧5x +2>3(x -1),①12x ≤2-32x.②解不等式①,得x >-52. 解不等式②,得x ≤1. 所以-52<x ≤1.故满足条件的整数有-2、-1、0、1.小专题(六) 一元一次不等式的实际应用1.建设“新丝绸之路经济带”和“21世纪海上丝绸之路”的战略构想,强调相关各国要打造互利共赢的“利益共同体”和共同发展繁荣的“命运共同体”.某国有企业在“一带一路”的战略合作中,向东南亚销售A 、B 两种外贸产品共6万吨.已知A 种外贸产品每吨800元,B 种外贸产品每吨400元.若A 、B 两种外贸产品销售额不低于3 200万元,则至少销售A 产品多少万吨?解:设销售A 产品x 万吨.根据题意,得 800x +400(6-x)≥3 200. 解得x ≥2.答:至少销售A 产品2万吨.2.(来宾中考)已知购买一个足球和一个篮球共需130元,购买2个足球和一个篮球共需180元.(1)求每个足球和每个篮球的售价;(2)如果某校计划购买这两种球共54个,总费用不超过4 000元,问最多可买多少个篮球?解:(1)设每个足球的售价为x 元,每个篮球的售价为y 元.根据题意,得⎩⎪⎨⎪⎧x +y =130,2x +y =180. 解得⎩⎪⎨⎪⎧x =50,y =80.答:每个足球和每个篮球的售价分别为50元、80元.(2)设可购买z 个篮球.根据题意,得 50(54-z)+80z ≤4 000.解得z ≤1303. ∵z 取整数, ∴z 最大可取43.答:最多可买43个篮球.3.2021年的5月20日是第17个中国学生营养日,我市某校社会实践小组在这天开展活动,调查快餐营养情况,他们从食品安全监督部门获取了一份快餐的信息(如图),若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,这份快餐最多含有多少克的蛋白质?信 息1.快餐成分:蛋白质、脂肪、碳水化合物和其他. 2.快餐总质量为400克.3.碳水化合物质量是蛋白质质量的4倍. 解:设这份快餐含有x 克的蛋白质.根据题意,得 x +4x ≤400×70%.解得x ≤56.答:这份快餐最多含有56克的蛋白质.4.(玉林中考)蔬菜经营户老王近两天经营的是青菜和西兰花.(1)昨天的青菜和西兰花的进价和售价如下表,老王用600元批发青菜和西兰花共200市斤,当天售完后老王一共能赚多少钱?青菜 西兰花 进价(元/市斤) 2.8 3.2 售价(元/市斤)44.5(2)今天因进价不变,老王仍用600元批发青菜和西兰花共200市斤,但在运输中青菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给青菜定售价?(精确到0.1元)解:(1) 设老王批发青菜x 市斤,西兰花y 市斤,根据题意,得⎩⎪⎨⎪⎧x +y =200,2.8x +3.2y =600.解得⎩⎪⎨⎪⎧x =100,y =100.(4-2.8)×100+(4.5-3.2)×100=250(元). 答:当天售完后老王一共能赚250元钱. (2)设青菜的售价定为a 元,根据题意,得 100×(1-10%)a +4.5×100-600≥250. 解得a ≥409≈4.44.答:青菜售价至少定为4.5元/市斤.小专题(七)一次函数的图象与性质类型1一次函数的图象与字母系数的关系1.在平面直角坐标系中,正比例函数y=kx(k<0)的图象可能是( C )2.(怀化中考)一次函数y=kx+b(k≠0)在平面直角坐标系中的图象如图所示,则k和b 的取值范围是( C )A.k>0,b>0 B.k<0,b<0C.k<0,b>0 D.k>0,b<0第2题图第3题图3.(江山期末)已知一次函数y=kx+b的图象如图所示,则下列语句中不正确的是( B ) A.函数值y随x的增大而增大B.当x>0时,y>0C.k+b=0D.kb<04.已知函数y=kx+b的图象如图,则y=2kx+b的图象可能是( C )5.已知一次函数y =(2k -1)x +b -1的图象经过第一、二、四象限,则k ,b 的取值范围为( B )A .k>12,b>1B .k<12,b>1C .k>12,b<1D .k<12,b<16.对于一次函数y =kx +b ,其中b 实际是该函数的图象与y 轴交点的纵坐标.在画图实践中我们发现当k>0,b>0时,其图象经过第一、二、三象限.请你随意画几个一次函数的图象继续探究:(1)当b>0时,图象与y 轴的交点在x 轴上方;当b<0时,图象与y 轴的交点在x 轴下方;(2)当k 、b 取何值时,图象经过第一、三、四象限?第一、二、四象限?第二、三、四象限?请写出你的探究结论和同伴交流.解:当k>0,b<0时,图象经过第一、三、四象限; 当k<0,b>0时,图象经过第一、二、四象限; 当k<0,b<0时,图象经过第二、三、四象限.7.一次函数y =mx +n 的图象如图所示.(1)试化简代数式:m 2-|m -n|;(2)若点(-2,a),(3,b)在函数图象上,比较a ,b 的大小.解:(1)由图象可知,m<0,n>0,所以m-n<0.所以m2-|m-n|=-m+m-n=-n.(2)因为一次函数y=mx+n的图象从左往右逐渐下降,所以y随x的增大而减小.又因为点(-2,a),(3,b)在函数图象上,且-2<3,所以a>b.类型2一次函数图象上点的坐标特征8.(遂宁中考)直线y=2x-4与y轴的交点坐标是( D )A.(4,0) B.(0,4)C.(-4,0) D.(0,-4)9.一次函数y=5x-2的图象经过点A(1,m),如果点B与点A关于y轴对称,那么点B所在的象限是( B )A.第一象限B.第二象限C.第三象限D.第四象限10.已知点(-2,y1),(-1,y2),(1,y3)都在直线y=-3x+2上,则y1,y2,y3的大小关系是( A )A.y1>y2>y3B.y1>y3>y2C.y2>y3>y1D.y3>y2>y111.(钦州中考)一次函数y =kx +b(k ≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第三象限.12.(株洲中考)已知直线y =2x +(3-a)与x 轴的交点在A(2,0),B(3,0)之间(包括A ,B 两点),则a 的取值范围是7≤a ≤9.类型3 一次函数表达式的确定13.(金华金东区期末)将直线y =2x 向右平移2个单位长度所得的直线的表达式是( C )A .y =2x +2B .y =2x -2C .y =2(x -2)D .y =2(x +2)14.如图,A 、B 两点在坐标平面上,已知A(-3,0),B(0,-4),那么直线AB 关于y 轴对称的直线表达式为( B )A .y =-43x -4 B .y =43x -4 C .y =43x +4 D .y =-43x +415.(江山期末)一次函数的图象经过M(3,2),N(-1,-6)两点.(1)求函数表达式;(2)请判定点A(1,-2)是否在该一次函数图象上,并说明理由. 解:(1)设y =kx +b(k ≠0),将点(3,2)(-1,-6)代入,得⎩⎪⎨⎪⎧2=3k +b ,-6=-k +b ,解得⎩⎪⎨⎪⎧k =2,b =-4.∴y =2x -4.(2)当x =1时,y =2×1-4=-2, ∴点A(1,-2)在一次函数图象上.16.(益阳中考)如图,直线l 上有一点P 1(2,1),将点P 1先向右平移1个单位长度,再向上平移2个单位长度得到像点P 2,点P 2恰好在直线l 上.(1)写出点P 2的坐标;(2)求直线l 所表示的一次函数的表达式;(3)若将点P 2先向右平移3个单位长度,再向上平移6个单位长度得到像点P 3.请判断点P 3是否在直线l 上,并说明理由.解:(1)P 2(3,3).(2)设直线l 所表示的一次函数的表达式为y =kx +b(k ≠0). 因为点P 1(2,1),P 2(3,3)在直线l 上,所以⎩⎪⎨⎪⎧2k +b =1,3k +b =3,解得⎩⎪⎨⎪⎧k =2,b =-3.所以直线l 所表示的一次函数的表达式为y =2x -3. (3)点P 3在直线l 上.由题意知点P 3的坐标为(6,9). 因为2×6-3=9, 所以点P 3在直线l 上.小专题(八)一次函数与方程、不等式的综合应用类型1一次函数与一元一次方程的综合应用1.方程2x+12=0的解是直线y=2x+12( C )A.与y轴交点的横坐标B.与y轴交点的纵坐标C.与x轴交点的横坐标D.与x轴交点的纵坐标2.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是( C )A B C D3.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为( A )A.x=-1 B.x=2 C.x=0 D.x=3第3题图第4题图4.如图,已知直线y=3x+b与y=ax-2的交点的横坐标为-2,则关于x的方程3x +b=ax-2的解为x=-2.5.已知方程3x+9=0的解是x=-3,则函数y=3x+9与x轴的交点坐标是(-3,0),与y轴的交点坐标是(0,9).类型2一次函数与二元一次方程组的综合应用6.如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧y =ax +b ,y =kx的解是( B )A .⎩⎪⎨⎪⎧x =-2y =-4 B .⎩⎪⎨⎪⎧x =-4y =-2C .⎩⎪⎨⎪⎧x =2y =-4D .⎩⎪⎨⎪⎧x =-4y =2第6题图 第7题图7.如图,两条直线l 1和l 2的交点坐标可以看作下列哪个方程组中的解( B )A .⎩⎪⎨⎪⎧y =2x +1y =x +2 B .⎩⎪⎨⎪⎧y =-x +3y =3x -5 C .⎩⎪⎨⎪⎧y =-2x +1y =x -1D .⎩⎪⎨⎪⎧y =-2x +1y =x +18.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x 人,进3个球的有y 人,若(x ,y)恰好是两条直线的交点坐标,则这两条直线的表达式是( C )进球数 0 1 2 3 4 5 人数15xy32A .y =x +9与y =23x +223 B .y =-x +9与y =23x +223C .y =-x +9与y =-23x +223 D .y =x +9与y =-23x +2239.利用一次函数的图象解二元一次方程组:⎩⎪⎨⎪⎧x +y =1,2x -y =5.解:根据图象可得出方程组⎩⎪⎨⎪⎧y =-x +1,y =2x -5的解是⎩⎪⎨⎪⎧x =2,y =-1.10.在平面直角坐标系中,直线l 1经过点(2,3)和点(-1,-3),直线l 2经过原点O ,且与直线l 1交于点P(-2,a).(1)求a 的值;(2)(-2,a)可看成怎样的二元一次方程组的解? (3)设直线l 1与y 轴交于点A ,试求出△APO 的面积. 解:(1)设直线l 1的表达式为y =kx +b , ∵直线l 1经过(2,3)和(-1,-3),∴⎩⎪⎨⎪⎧2k +b =3,-k +b =-3.解得⎩⎪⎨⎪⎧k =2,b =-1.∴直线l 1的表达式为y =2x -1.把P(-2,a)代入y =2x -1,得a =2×(-2)-1=-5.(2)设直线l 2的表达式为y =mx ,把P(-2,-5)代入,得-5=-2m ,解得m =52. ∴直线l 2的表达式为y =52x.∴(-2,-5)可以看作是二元一次方程组⎩⎨⎧y =2x -1,y =52x的解.(3)对于y =2x -1,令x =0,解得y =-1,则A 点坐标为(0,-1). ∴S △APO =12×2×1=1.11.(青岛中考)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l 1和l 2分别表示甲、乙两人跑步的路程y(m )与甲跑步的时间x(s )之间的函数关系,其中l 1的关系式为y 1=8x ,问甲追上乙用了多长时间?解:设l 2的关系式为y 2=kx +b(k ≠0),根据题意,可得方程组⎩⎪⎨⎪⎧10=b ,22=2k +b.解得⎩⎪⎨⎪⎧k =6,b =10. ∴y 2=6x +10.当y 1=y 2时,8x =6x +10,解得x =5. 答:甲追上乙用了5 s .类型3 一次函数与不等式的综合应用12.一次函数y =kx +b(k ≠0)的图象如图所示,当kx +b <0时,x 的取值范围是( D )A .x <0B .x >0C .x <2D .x >2第12题图第14题图13.对于函数y=-x+4,当x>-2时,y的取值范围是( D )A.y<4 B.y>4C.y>6 D.y<614.如图,函数y=2x-4与x轴、y轴分别交于点(2,0),(0,-4),当-4<y<0时,x的取值范围是( C )A.x<-1 B.-1<x<0C.0<x<2 D.-1<x<215.(杭州开发区期末)一次函数y=kx+b(k≠0)的图象如图所示,当y<0时,自变量x 的取值范围是( A )A.x<-2 B.x>-2C.x>2 D.x<2第15题图第16题图16.(绍兴五校联考期末)直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c的解集为x<1.17.已知函数y1=kx-2和y2=-3x+b相交于点A(2,-1).(1)求k、b的值,在同一坐标系中画出两个函数的图象;(2)利用图象求出:当x取何值时有:①y1<y2;②y1≥y2;(3)利用图象求出:当x取何值时有:①y1<0且y2<0;②y1>0且y2<0.解:(1)k =12,b =5.图象略. (2)①当x<2时,y 1<y 2. ②当x ≥2时,y 1≥y 2.(3)①当53<x<4时,y 1<0且y 2<0. ②当x>4时,y 1>0且y 2<0.小专题(九)分段函数1.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h和放水时间t之间的关系的是( A )第1题图第2题图2.如图是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费( A )A.0.4元B.0.45 元C.约0.47元D.0.5元3.如图是某工程队在一项修筑公路的工程中,修筑的公路长度y(米)与时间x(天)之间的关系函数(图象为折线).根据图象提供的信息,可知到第七天止,该工程队修筑的公路长度为( D )A.630米B.504米C.480米D.450米第3题图第4题图4.(绍兴五校联考期末)小波、小威从学校出发到青少年宫参加书法比赛,小波步行一段时间后,小威骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小波出发时间t(分)之间的函数关系如图所示.下列说法:①小威先到达青少年宫;②小威的速度是小波速度的2.5倍;③a=24;④b=480.其中正确的是( B ) A.①②③B.①②④C.①③④D.①②③④5.(江山期末)在全民健身环城越野赛中,甲、乙两选手的行程y(千米)随时间x(小时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法的序号是①②④.6.某市政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,纳入医疗保险的居民的大病住院医疗费用的报销比例标准如下表:医疗费用范围报销比例标准不超过8 000元不予报销超过8 000元且不超过50%。
浙教版初中数学八年级上册专题50题含答案
浙教版初中数学八年级上册专题50题含答案一、单选题1.在平面直角坐标系中,点A 坐标为(﹣3,2),AB ∥x 轴,且AB =5,则点B 的坐标为( )A .(﹣8,2)B .(﹣8,2)或(2,2)C .(﹣3,7)D .(﹣3,7)或(﹣3,﹣3) 2.如图,ABD ACE ≌△△,若3AE =,6AB =,则CD 的长度为( )A .9B .6C .3D .2 3.以下各组数分别是三条线段的长度,其中可以构成三角形的是( ) A .1,3,4 B .1,2,3 C .6,6,10 D .1,4,6 4.等腰三角形的一个内角为120°,则底角的度数为( )A .30°B .40°C .60°D .120° 5.如图,ABC DEC ≅,点B ,C ,D 在同一直线上若4CE =,7AC =,则BD 长为( )A .3B .8C .10D .11 6.下列条件中能判断△ABC 为直角三角形的是( )A .∥A +∥B = ∥CB .∥A = ∥B = ∥C C .∥A-∥B = 90°D .∥A = ∥B = 3∥C7.下列说法正确的是( )A .一个直角三角形一定不是等腰三角形B .一个钝角三角形一定不是等腰三角形C .一个等腰三角形一定不是锐角三角形D .一个等边三角形一定不是钝角三角形8.已知坐标平面内点M(a ,-b)在第三象限,那么点N(b ,-a)在( )A .第一象限B .第二象限C .第三象限D .第四象限 9.给出下列4个命题:∥对顶角相等;∥同位角相等;∥同角的余角相等;∥两直线平行,同旁内角相等.其中真命题为( )A .∥∥B .∥∥C .∥∥∥D .∥∥∥ 10.下列图形是轴对称图形的是( )A .B .C .D . 11.如图,在ABC ∆中,90C =∠,12AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A .6B .5C .3D .212.大业物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y (千米)与货车行驶时间x (小时)之间的函数图像如图所示,现有以下4个结论:∥快递车从甲地到乙地的速度为100千米/时;∥甲、乙两地之间的距离为120千米;∥图中点B 的坐标为33,754⎛⎫ ⎪⎝⎭; ∥快递车从乙地返回时的速度为90千米/时.其中正确的个数为( )A .4个B .3个C .2个D .1个 13.如图,ABC 的面积为 1.第一次操作:分别延长 AB ,BC ,CA 至点 1A ,1B ,1C ,使 1A B AB =,1B C BC =,1C A CA =,顺次连接 1A ,1B ,1C ,得到 111A B C △.第二次操作:分别延长 11A B ,11B C ,11C A 至点 2A ,2B ,2C ,使 2111A B A B =,2111B C B C =,2111C A C A =,顺次连接 2A ,2B ,2C ,得到 222A B C △,,按此规律,要使得到的三角形的面积超过 2019,最少经过多少次操作( )A .4B .5C .6D .714.不等式组21{10x x ->-<的解集是( ) A .x >﹣12B .x <﹣12C .x <1D .﹣12<x <1 15.野外生存训练中,第一小组从营地出发向北偏东60°方向前进了3 km ,第二小组向南偏东30°方向前进了3 km ,第一小组准备向第二小组靠拢,则行走方向和距离分别为( ).A .南偏西15°,B .北偏东15°,C .南偏西15°,3 kmD .南偏西45°,16.如图,小亮拿一张矩形纸图(1),沿虚线对折一次得图(2),下将对角两顶点重合折叠得图(3),按图(4)沿折痕中点与重合顶点的连线剪开,得到三个图形,这三个图形分别是( )A .都是等腰梯形B .都是等边三角形C .两个直角三角形,一个等腰三角形D .两个直角三角形,一个等腰梯形17.如图,在ABC 中,5AB AC ==,6BC =,AD 是BAC ∠的平分线,4=AD .若P ,Q 分别是AD 和AC 上的动点,则PC PQ +的最小值是( )A .245B .4C .5D .21518.若一次函数y ax b =+(,a b 为常数且0a ≠)满足如表,则方程0ax b +=的解是( )A .1x =B .=1x -C .2x =D .3x = 19.有两条线段长度分别为:2cm ,5cm ,再添加一条线段能构成一个三角形的是( )A .1cmB .2cmC .3cmD .4cm 20.如图,△ABC 的两条内角平分线相交于点D ,过点D 作一条平分△ABC 面积的直线,那么这条直线分成的两个图形的周长比是( )A .2:1B .1:1C .2:3D .3:1二、填空题21.一次函数图象y =(k ﹣3)x +k 2﹣9经过原点,则k 的值为_____.22.举出命题“若4x ≥-,则2 16x >”是假命题的一个反例,则x 的值可取__________. 23.等腰三角形的一边等于2cm ,另一边等于7cm ,则此三角形的周长为_____cm . 24.一个三角形的两边长分别为2和5,则第三边的长度可取的整数值为_________(写出一个即可).25.如图,∥ABC 和∥DCE 都是边长为1的等边三角形,点B 、C 、E 在同一条直线上,连接BD ,则BD 的长为_______.26.如图,在等边三角形网格中,每个等边三角形的边长都为1,图中已经涂黑了3个三角形,从∥、∥、∥号位置选择一个三角形涂黑,其中不能..与图中涂黑部分构成轴对称图形的是______号位置的三角形.27.如图,把一张长方形纸片沿EF 折叠后,点D ,C 分别落在D ,C '的位置,若50AED '∠=︒,则EFB ∠的度数为_________︒.28.在平面直角坐标系中,对于平面内任意一点(a ,b ),若规定以下三种变换:∥f (a ,b )=(-a ,b ),如f (1,3)=(-1,3);∥g (a ,b )=(b ,a ),如g (1,3)=(3,1);∥h (a ,b )=(-a ,-b ),如h (1,3)=(-1,-3)按照以上变换有f [g (2,3)]=f (3,2)=(-3,2)那么g [h (5,1)]=______29.如图所示,有一块三角形的镜子,小明不小心弄破裂成1、2两块,现需配成同样大小的一块.为了方便起见,需带上___块,其理由是______________________.30.如图,在等腰直角三角形ABC 中,90,A AC AB ∠=︒=.BD 为ABC ∠的平分线,交AC 于点D ,若BCD △的面积为2,则ABD △的面积为____________.31.如图,已知一次函数y x a =+过点()2,4P ,且与一次函数4y ax =-的图象交于点Q ,则不等式4x a ax +<-的解集是_________.32.如图,在ABC 中,90C ∠=︒,以点A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E .已知14CB =,8BE =,则点E 到AB 的距离为________.33.如图:在∥ABC 中,若∥ABC=90°,∥A=58°,又CD=CB ,则∥ABD=____________.34.在等腰ABC 中,3AB AC ==,2BC =,则底边上的高等于__________. 35.如图,ABC 为等边三角形,边长为12D ,在AB 上,DE AC ⊥于E ,EF BC ⊥于F FH AB ⊥,于H ,若点D 与点H 重合时AD 的长为______.36.已知ABC 的面积是60,请完成下列问题:图1 图2 图3(1)如图1,若AD 是ABC 的BC 边上的中线,则ABD △的面积______ACD 的面积.(填“>”“<”或“=”)(2)如图2,若CD 、BE 分别是ABC 的AB 、AC 边上的中线,求四边形ADOE 的面积可以用如下方法:连接AO ,由AD DB =,AE EC =得ADO BDO SS =,CEO AEO S S =,通过设ADO BDO S S x ==△△,CEO AEO S S y ==△△列方程组,解这个方程组可得四边形ADOE 的面积为______.(3)如图3,:1:3AD DB =,:1:2CE AE =,四边形ADOE 的面积为______. 37.已知关于x 的方程122x m m x x++=+-的解为正数,则m 的取值范围是___________________________.38.如图,在平面直角坐标系中,一动点沿箭头所示的方向,每次移动一个单位长度,依次得到点()10,1P ,()21,1P ,()31,0P ,()41,1P -,()52,1P-,…,则2021P 的坐标是________.39.如图,在ABC ∆中,已知点D 为BC 上一点,E ,F 分别为AD ,BE 的中点,且9ABC S ∆=,则图中阴影部分CEF ∆的面积是______.40.如图,在Rt ∥ABC 中,∥BAC =90°,∥B =30°,AC =3,D 是AB 边上一点(不与点A ,B 重合),将∥BCD 沿CD 折叠,点B 的对应点为点B ',连接AB ',当∥AB 'D 为直角三角形时,BD 的长为______.三、解答题41.解不等式组:35131212x x x x -<+⎧⎪⎨--≥⎪⎩. 42.如图,点B 、E 、C 、F 在同一条直线上,∥B =∥DEF ,AB =DE ,BE =CF .求证:∥A =∥D .43.如图,BD ∥AC ,BD =BC ,且BE =AC .求证:∥D =∥ABC .44.(1)解方程组:325414x y x y -=⎧⎨+=⎩(2)解不等式组:()213122x x x ⎧-<⎪⎨+⎪⎩45.如图,在ABC 中,D 是边BC 上一点,AD 平分BAC ∠,在AB 上截取AE AC =,连接DE ,已知2cm DE =,3cm BD =,求线段BC 的长.46.如图,在44⨯的正方形网格中,每个小格的顶点叫做格点,边长为1,以格点为顶点的三角形叫做格点三角形,分别按下列要求作图.(1)在图∥中,画一个格点三角形ABC,使得AB =BC =5CA =;(2)在(1)的条件下,直接写出AC 边上的高;(3)在图∥中,画一个等腰直角三角形,使它的三边长都是无理数.47.如图,已知∥ABC ,∥A =100°,∥C =30°,请用尺规作图法在AC 上求作一点D ,使得∥ABD =25°.(保留作图痕迹,不写作法)48.在ABC ∆中,90BAC ∠=︒,AB AC =,AD BC ⊥于点D .(1)如图1,点E ,F 分别在AB ,AC 上,且90EDF ∠=︒,求证:AE CF =;(2)如图2,点M 在AD 的延长线上,点N 在AC 上,且90BMN ∠=︒,求证:AC AN +.49.如图,在∥ABC 和∥ADE 中,∥ACB =∥AED =90°,∥CAB =∥EAD =60°,点E ,A ,C 在同一条直线上,AC =2EA ,求∥ABD 的度数?50.如图,在平面直角坐标系中,已知,点()0,A a ,(),0B b ,()0,C c ,a ,b ,c 满足()28212a b -+-=(1)直接写出点A ,B ,C 的坐标及ABC 的面积;(2)如图2,过点C 作直线l //AB ,已知(),D m n )是l 上的一点且满足436m n +=-,且152ACD S ≤△,求n 的取值范围; (3)如图3,(),M x y 是线段AB 上一点,∥求x ,y 之间的关系;∥若点M 向左平移2x 个单位得到点N ,且21BCN S =△,求点M 的坐标.参考答案:1.B【分析】根据AB ∥x 轴,A (﹣3,2),可得B 点的纵坐标为2,又知AB =5,可以得到B 点的位于A 左右两边的两个坐标点.【详解】解:∵AB ∥x 轴,A (﹣3,2),∴B 点的纵坐标和A 点的纵坐标相同为2,∵AB =5,∴在直线AB 上可以找到两个到A 点距离为5的点,一个在A 点左边为(﹣8,2),一个在A 点右边为(2,2),∴B 点坐标为(﹣8,2)或(2,2),故选:B .【点睛】本题考查了直角坐标系和图形性质,易错点在于只找到一个点,考虑不全面. 2.C【分析】根据全等三角形的性质,可以得到AC 和AD 的长,然后根据CD AC AD =-,代入数据计算即可.【详解】解:∥ABD ACE ≌△△,3AE =,6AB =, ∥36AD AE AC AB ====,,∥633CD AC AD =-=-=,故选:C .【点睛】本题考查全等三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.3.C【分析】根据三角形三条边的关系计算即可.【详解】根据三角形的三边关系,得A 、1+3=4,不能组成三角形;B 、1+2=3,不能组成三角形;C 、6+6>10,能组成三角形;D 、1+4<6,不能组成三角形;.故选C .【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.三角形任意两边之和大于第三边,任意两边之差小于第三边.4.A【分析】根据等腰三角形性质即可直接得出答案.【详解】解:∥等腰三角形中,一个内角为120°,而三内角的和为180°,∥该内角为顶角,设顶角为∥A ,底角为∥B 、∥C ,则有∥B=∥C ,∥∥A=120°,∥∥B=∥C=()1180-1202︒︒=30°, 故选:A .【点睛】本题考查学生对等腰三角形的性质的理解和掌握,此题难度不大,属于基础题,能够掌握等腰三角形性质即可.5.D【分析】根据全等三角形的对应边相等分别求出BC 、CD ,计算即可.【详解】解:ABC DEC ≅,4CE =,7AC =,4BC CE ∴==,7CD AC ==,4711BD BC CD ∴=+=+=,故选:D .【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解题的关键. 6.A【分析】根据各项的特点求出各角即可判断.【详解】A. ∥∥A +∥B = ∥C ,又∥A +∥B + ∥C=180°,∥2∥C=180°得∥C=90°,故为直角三角形;B. ∥A = ∥B = ∥C, 又∥A +∥B + ∥C=180°,∥∥A = ∥B = ∥C =60°故不是直角三角形;C. ∥A-∥B = 90°,∥A +∥B + ∥C=180°,不能得到∥A=90°,∥B = 90°,∥C=90°,故不是直角三角形;D. ∥A = ∥B = 3∥C ,又∥A +∥B + ∥C=180°, ∥∥A = ∥B=67×180°≠90°,∥C=17×180°≠90°,故不是直角三角形;故选A.【点睛】此题主要考查直角三角形的判定,解题的关键求出各角.7.D【分析】根据三角形的分类方法进行分析判断.三角形按角分为锐角三角形、直角三角形和钝角三角形;三角形按边分为不等边三角形和等腰三角形(等边三角形).【详解】解:A、如等腰直角三角形,既是直角三角形,也是等腰三角形,故该选项错误;B、如顶角是120°的等腰三角形,是钝角三角形,也是等腰三角形,故该选项错误;C、如等边三角形,既是等腰三角形,也是锐角三角形,故该选项错误;D、一个等边三角形的三个角都是60°.故该选项正确.故选D.【点睛】此题考查了三角形的分类,理解各类三角形的定义是解题关键.8.A【分析】根据第三象限点的横坐标与纵坐标都是负数表示出a、b,再根据各象限内点的坐标特征解答.【详解】∥点M(a,-b)在第三象限,∥a<0,-b<0,∥b>0,∥点N(b,−a)在第一象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).9.B【分析】根据公理定义进行判断.【详解】解:∥、两直线相交,对顶角相等、故命题为真命题;∥、两直线平行,同位角相等,故命题为假命题;∥、同角的余角相等,故命题为真命题;∥、两直线平行,同旁内角互补,命题为假命题;故选:B.【点睛】本题考查了判断命题的真假,解题的关键是能通过运用所学定理、公理对命题进行推导.10.A【分析】根据轴对称图形的概念求解.【详解】A 、是轴对称图形,故本选项正确;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选A .【点睛】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.11.C【分析】由题意可求DC 的长,由角平分线的性质可求解.【详解】解:如图,过点D 作DH∥AB ,垂足为H ,∥12AC =,13DC AD =, ∥=3AD DC ∥412=+==AC DC AD DC∥DC=3,∥∥C=90︒∥DC∥BC∥BD 平分∥ABC ,DC∥BC ,DH∥AB ,∥CD=DH=3,∥点D 到AB 的距离等于3,故选:C .【点睛】本题主要考查了角平分线的性质,掌握角平分线的性质是解题的关键.12.B【分析】∥设快递车从甲地到乙地的速度为x 千米/时,根据两车3小时距离120千米,列出方程,可得∥正确;根据120千米是快递车到达乙地后两车之间的距离,可得∥错误;根据快递车到达乙地后卸完物品再另装货物共用45分钟,求出点B 横纵坐标,可得∥正确;设快递车从乙地返回时的速度为y 千米/时,则返回时与货车共同行驶的时间为134344⎛⎫- ⎪⎝⎭小时,此时两车还相距75千米,列出方程,即可求解.【详解】解:∥设快递车从甲地到乙地的速度为x 千米/时,则3(x -60)=120,解得:x =100,故∥正确;∥因为120千米是快递车到达乙地后两车之间的距离,不是甲、乙两地之间的距离,故∥错误;∥因为快递车到达乙地后卸完物品再另装货物共用45分钟,所以图中点B 的横坐标为333344+=,纵坐标为312060754-⨯=, 所以点B 的坐标为33,754⎛⎫ ⎪⎝⎭,故∥正确; ∥设快递车从乙地返回时的速度为y 千米/时,则返回时与货车共同行驶的时间为134344⎛⎫- ⎪⎝⎭小时,此时两车还相距75千米,由题意,得 ()1360437544y ⎛⎫+-= ⎪⎝⎭,解得:y =90,故∥正确; 所以正确的有∥∥∥,共3个.故选:B【点睛】本题主要考查了函数图象的动点问题,根据题意,从函数图象获取信息,并利用数形结合思想解答是解题的关键.13.A【分析】结合题意根据三角形的面积公式可知如果两个三角形等底同高,则它们面积相等,从而推出1ABC A BC SS =,111A BC A B C S S =,进而得到1117A B C ABC S S =,再以此类推进行求解即可.【详解】解:如图,连接1A C ,∥1AB A B =,1ABC S =△∥1ABC A BC S S =,∥1BC B C =,∥111A BC A B C SS =, ∥1122A B B ABC S S ==,同理可求:11112,2A C A ABC B C C ABC SS S S ==, ∥11111111177A B C A B B A C A B C C ABC ABC S S S S S S =+++==,同理可得,第二次操作后22211177749A B C A B C S S ==⨯=,第三次操作后的面积为749343⨯=,第四次操作后的面积为73432401⨯=,所以按此规律,要使得到的三角形的面积超过2019,至少要经过4次操作.故选:A .【点睛】本题考查三角形的面积,解题的关键是根据三角形边的关系推出其面积的关系:112A B B ABC S S =,从而结合图形进行求解.14.B【详解】试题分析:21 {10xx->-<由∥得,x<﹣12,由∥得,x<1,故不等式组的解集为:x<﹣12.故选B.【考点】解一元一次不等式组.15.A【分析】找出题目中隐藏的直角三角形,一小组行走路线和二小组行走路线的中点连接,构成一个直角三角形,可以运用勾股定理,计算第一小组要行走的路程.【详解】解:根据行走的路线画出图形:∥第一小组从营地出发向北偏东60°前进,第二小组向南偏东30°方向前进,∥第一小组走的距离为3千米,第二小组走的距离为3千米,而且他们行走的路线夹角为∥AOB=90°,∥∥OAC=60°,∥OAB=45°,∥∥BAC=15°,∥第一小组准备向第二小组靠拢,则行走方向南偏西15°,在图示的三角形中可以运用勾股定理,故选A.【点睛】本题考查勾股定理的应用,解决问题的关键是找出合适的直角三角形,并且用勾股定理求解.16.C【分析】按照图中的顺序对折再剪开即可.【详解】严格按照图中的顺序向上对折,对角顶点对折,沿折痕中点与重合顶点的连线剪开展开可得到两个直角三角形,一个等腰三角形.故选C.【点睛】本题主要考查图形翻折的应用,按照翻折方法进行操作是解题关键. 17.A【分析】由等腰三角形的三线合一可得出AD 垂直平分BC ,过点B 作BQ AC ⊥于点Q ,BQ 交 AD 于点P ,则此时的PC PQ +取最小值,最小值为BQ 的长度,在ABC 中,利用 面积法可求出BQ 的长.【详解】解:过点B 作BQ AC ⊥于点Q ,BQ 交 AD 于点P ,如图所示:5AB AC ==,AD 是BAC ∠的平分线,AD BC ∴⊥,∴AD 垂直平分BC ,PC PB ∴=,要使PC PQ +取最小值,则当BQ AC ⊥时,PC PQ PB PQ BQ +=+=为最小值, 11461222S ABC AD BC ∴=⋅=⨯⨯=, 又12ABC S AC BQ =⋅, 15122BQ ∴⨯⋅=, 245BQ ∴=, 故选:A .【点睛】本题考查了轴对称—最短路线问题,等腰三角形的性质以及等面积法,利用点到直线,垂线段最短找出PC PQ +的最小值为BQ 是解题的关键.18.A【分析】方程ax+b=0的解为y=0时函数y=ax+b 的x 的值,根据图表即可得出此方程的解.【详解】由表格可得:当0y =时,1x =,∴方程0ax b +=的解是1x =故选A .【点睛】本题考查了一次函数与一元一次方程之间的关系:方程ax+b=0的解为函数值y=0时函数y=ax+b 自变量x 的取值.19.D【分析】先根据三角形的三边关系确定第三边的范围,再判断各选项即可.【详解】解:∥有两条线段长度分别为:2cm ,5cm ,∥设第三条边长为acm ,故5﹣2<a <5+2,则3<a <7,故再添加一条线段长为4cm 时,能构成一个三角形.故选D .【点睛】本题考查了三角形的三边关系,三角形的三边满足:任意两边之和大于第三边,任意两边之差小于第三边.20.B【分析】连接AD ,过D 点作DE ∥AB 于点E ,作DF ∥AC 于点F ,作DG ∥BC 于点G ,根据角平分线的性质可知:AD 也是一条角平分线,则有DE =DF =DG ,根据MDN 平分△ABC 的面积以此来列等式即可求解.【详解】连接AD ,过D 点作DE ∥AB 于点E ,作DF ∥AC 于点F ,作DG ∥BC 于点G ,∥∥ABC 的两条内角平分线相交于点D ,∥DE =DF =DG ,设MN 平分△ABC 的面积,则BDM S △+BDN S △=ADM S △+ADC S △+DCN S △,∥BDM S △=12BM •DE ,ADM S △=12AM •DE ,ADC S △=12AC •DF ,DCN S △=12NC •DG ,BDN S △=12BN•DG,∥12BM•DE+12BN•DG=12AM•DE+12AC•DF+12NC•DG,∥BM+BN=AM+AC+NC,∥BM+BN+MN=AM+AC+NC+MN,即这条直线分成的两个图形的周长比是1:1;故选:B【点睛】本题主要考查了角平分线的性质,掌握三角形中三条角平分线的交点到三角形三边的距离相等是解答本题的关键.21.-3【分析】根据函数图象上点的坐标特征,把原点坐标代入解析式可求出k=3或-3.【详解】解:∥一次函数图象y=(k﹣3)x+k2﹣9经过原点,∥k﹣3≠0,即k≠3,把(0,0)代入y=(k-3)x+k2-9得k2-9=0,解得k=3或-3,∥k的值为-3.故答案为:-3.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b(k≠0,且k,b为常数)的图象是一条直线.直线上任意一点的坐标都满足函数关系式y=kx+b.注意一次项系数不为0.22.-3【分析】当x=-3时,满足x>-4,但不能得到x2>16,于是x=-3可作为说明命题“x>-4,则x2>16”是假命题的一个反例.【详解】解:说明命题“x>-4,则x2>16”是假命题的一个反例可以是x=-3.故答案为:-3.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.23.16【分析】此题先要分类讨论,已知等腰三角形的一边等于2cm,另一边等于7cm,先根据三角形的三边关系判定能否组成三角形,若能则求出其周长.【详解】解:当2cm为腰,7cm为底时,∥2+2<7,∥不能构成三角形;当腰为7cm时,∥2+7>7,∥能构成三角形,∥等腰三角形的周长为:7+7+2=16(cm).故此三角形的周长为16cm.故答案为:16.【点睛】本题考查等腰三角形的性质与三边关系,关键在于记住等腰三角形的性质和三边关系的判定条件.24.4,5,6(写出一个即可)【分析】由构成三角形三边成立的条件可得第三条边的取值范围.【详解】设第三条长为x∥2+5=7,5-2=3∥3<x<7.故第三条边的整数值有4、5、6.故答案为:4,5,6(写出一个即可)【点睛】本题考查了构成三角形的三边关系,任意两边之和大于第三边,任意两边之差小于第三边,关键为“任意”两边均满足此关系.25【详解】试题分析:过D作DF∥CE于F,根据等腰三角形的三线合一,得:CF=12.在Rt∥CDF中,根据勾股定理,得:23DF4=.在Rt∥BDF中,13 BF BC CF122 =+=+=,根据勾股定理得:3.考点: 1.等腰三角形的性质;2.勾股定理.26.∥【分析】直接利用轴对称图形的性质分析得出答案.【详解】解:从∥、∥、∥号位置选择一个三角形涂黑,其中不能与图中涂黑部分构成轴对称图形的是∥号位置的三角形.故答案为:∥.【点睛】此题主要考查了利用轴对称设计图案以及等边三角形的性质,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.27.65【分析】先利用平行线的性质得到∥DEF =∥BFE ,再利用折叠的性质与平角的定义求出∥DEF 的度数即可得到答案.【详解】解:由题意可知,AD ∥BC ,∥∥DEF =∥BFE ,由折叠的性质可知DEF D EF '∠=∠,∥50AED '∠=︒, ∥180652AE D DEF D EF '︒-∠'∠=∠==︒, ∥∥BFE =∥DEF =65°,故答案为:65.【点睛】本题主要考查了平行线的性质,折叠的性质,熟知相关知识是解题的关键. 28.(-1,-5)【分析】根据所给变换可得h (5,1)=(-5,-1),再计算g (-5,-1)即可.【详解】解:h (5,1)=(-5,-1),g (-5,-1)=(-1,-5),故答案为(-1,-5).【点睛】此题主要考查了点的坐标,关键是正确理解题意.29. 第1 利用SAS 得出全等三角形,即可配成与原来同样大小的一块【分析】利用SAS ,进而得出全等的三角形,进而求出即可.【详解】为了方便起见,需带上第1块,其理由是:利用SAS 得出全等三角形,即可配成与原来同样大小的一块.故答案为第1,利用SAS 得出全等三角形,即可配成与原来同样大小的一块.【点睛】本题考查了全等三角形的判定方法在实际生活中应用,通过实际情况来考查学生对常用的判定方法的掌握情况.30【分析】由等腰直角三角形的性质,得到2BCAB ,然后利用三角形的面积公式,即可求出答案.【详解】解:作DE∥BC ,垂足为E ,如图:∥BD 为ABC ∠的平分线,∥AD DE =,∥90,A AC AB ∠=︒=,∥∥ABC 是等腰直角三角形, ∥2BC AB ,∥BCD △的面积为2,∥122BC DE •=,∥122DE •=,∥12AB DE •=∥ABD △的面积为:12AB DE •=【点睛】本题考查了角平分线的性质,等腰直角三角形的性质,以及三角形的面积公式,解题的关键是熟练掌握角平分线的性质定理和等腰直角三角形的性质,正确得到2BC AB .31.6x >【分析】先将P(2,4)代入y=x+a 求a ,再将a 的值代入不等式,求解即可.【详解】解:∥一次函数y x a =+过点()2,4P ,∥4=2+a,∥a=2将a=2代入不等式得:x+2<2x-4解得:x >6故答案为:x >6【点睛】本题考查的是一次函数的性质和求不等式的解,熟练掌握性质是解题的关键. 32.6【分析】如图,过点E 作ET ∥AB 于T .证明ET =EC ,可得结论.【详解】解:如图,过点E 作ET ∥AB 于T .∥BC =14,BE =8,∥EC =BC -BE =6,由作图可知,AE 平分∥CAB ,∥EC ∥AC ,ET ∥AB ,∥ET =EC =6,故答案为:6.【点睛】本题考查作图——复杂作图,角平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.33.16°【详解】∥在∥ABC 中,若∥ABC=90°,∥A=58°,∥∥C=90°-58°=32°,∥CD=CB , ∥∥CBD=∥CDB=180180327422C -∠-==, ∥∥ABD=∥ABC-∥CBD=90°-74°=16°.34.【分析】根据题意画出以下图形,然后根据等腰三角形性质得出BD=DC=1,进而利用勾股定理求出AD 即可.【详解】如图所示,AB=AC=3,BC=2,AD 为底边上的高,根据等腰三角形性质易得:BD=CD=1,∥在Rt∥ADC 中,2AD故答案为:【点睛】本题主要考查了等腰三角形性质以及勾股定理的运用,熟练掌握相关概念是解题关键.35.8【分析】证明DEF 是等边三角形,设BD x =,根据等边三角形的性质,以及含30度角的直角三角形的性质,由AD BD AB +=即可得到结论.【详解】解:点D 与点H 重合时,如图,∥ABC 是等边三角形,∥60∠=∠=∠=︒A B C ,∥DE AC ⊥,EF BC ⊥FH AB ⊥,,∥90BDF DEA EFC ∠=∠=∠=︒,∥30ADE ∠=︒∥60EDF ∠=︒,同理可得,60DFE FED ∠=∠=︒∥DEF 是等边三角形∥DE EF DF ==∥ADE BFD CEF ≌≌∥BD AE CF ==,设BD x =,30DFB ∠=︒∥2AD BF x ==,∥4x =,∥8AD =.故答案为:8.【点睛】本题考查了等边三角形的性质与判定,含30度角的直角三角形的性质,证明DEF 是等边三角形是解题的关键.36. = 20 13【分析】(1)如图1,过A 作AH ∥BC 于H ,根据等底等高的两个三角形面积相等知,三角形的中线把三角形的面积分为相等的两部分,所以S △ABD =S △ACD ;(2)根据三角形的中线能把三角形的面积平分,等高三角形的面积的比等于底的比,即可得到结果;(3)连接AO ,由AD :DB =1:3,得到S △ADO =13S △BDO ,同理可得S △CEO =12S △AEO ,设S △ADO =x ,S △CEO =y ,则S △BDO =3x ,S △AEO =2y ,由题意得列方程组即可得到结果..【详解】解:(1)如图1,过点A 作AH ∥BC 于H ,∥AD 是∥ABC 的BC 边上的中线,∥BD =CD , ∥1122ABD ACD S AD BD S AD CD =⋅=⋅△△,∥ABD ACD S S ,故答案为:=;(2)由题意得:1302ABE ACD ABC S S S ===△△△, ∥230230x y x y +=⎧⎨+=⎩, 解得1010x y =⎧⎨=⎩, ∥10AOD BOD S S ==△△,∥101020AOD AOE ADOE S S S =+=+=△△四边形,故答案为:20;(3)如图3,连接AO ,∥AD :DB =1:3,∥S △ADO =13S △BDO , ∥CE :AE =1:2,∥S △CEO =12S △AEO ,设S △ADO =x ,S △CEO =y ,则S △BDO =3x ,S △AEO =2y , 由题意得:S △ABE =23S △ABC =40,S △ADC =14S △ABC =15, ∥3154240x y x y +=⎧⎨+=⎩解得92x y =⎧⎨=⎩ ∥S 四边形ADOE =S △ADO +S △AEO =x +2y =13,故答案为:13.【点睛】本题考查了三角形的中线能把三角形的面积平分,列二元一次方程组解决几何问题,等高三角形的面积的比等于底的比,熟练掌握这个结论是解题的关键.37.10m m <≠且【详解】去分母得(x-2)(x +m)−m(x +2)=(x +2)(x −2),整理,得-2x =4m-4,解得x=-2m+2,∥关于x 的分式方程122x m m x x ++=+-的解为正数, ∥x=-2m+2>0,∥1m <,∥20x +≠,20x -≠,∥x≠-2,x≠2,即m≠2,m≠0,∥10m m <≠且,故答案为10m m <≠且.38.()674,1-【分析】先根据()62,0P ,()124,0P ,即可得到()62,0n P n ,()612,1n P n +,再根据()63362336,0P ⨯⨯,可得()2016672,0P ,进而得到()2021674,1P -.【详解】解:由图可得,()62,0P ,()124,0P ,…()62,0n P n ,()612,1n P n +,()6221,1n P n ++,()6321,0n P n ++,()6421,1n P n ++-,()6522,1n P n ++- 202163365÷=⋅⋅⋅,∥()202123362,1P ⨯+-,即()2021674,1P -,故答案为:()674,1-.【点睛】本题主要考查了点的坐标变化规律,解决问题的关键是根据图形的变化规律得到P 6n (2n ,0).39.94. 【分析】由点E 为AD 的中点,可得ABC ∆与BCE ∆的面积之比,同理可得BCE ∆和EFC ∆的面积之比,问题即得解决.【详解】解:E 为AD 的中点,21ABD BDE SS ∴=::,21ACD CDE S S =::, 21ABC BCE S S ∴=::, F 为BE 的中点,21BCE EFC S S ∴=::,9ABC S =,1199444EFC ABC S S ∴==⨯=; 故答案为94. 【点睛】本题主要考查了三角形中线的性质和等积变换,解题的关键是熟知三角形的中线将三角形分成面积相等的两部分.40.2或【分析】依据在Rt∥ABC 中,∥BAC =90°,∥B =30°,AC =3,即可得到AB情况进行讨论:∥∥ADB '=90°,∥∥DAB '=90°,分别依据等腰直角三角形的性质以及含30°角的直角三角形的性质,即可得到BD 的长.【详解】解:在Rt∥ABC 中,∥BAC =90°,∥B =30°,AC =3,∥AB =分两种情况:∥如图(1)所示,若∥ADB '=90°,则AC B 'D ,∥∥ACB '=∥DB 'C =∥B =30°,∥BCB '=30°,由折叠可得∥DCB'=12∥BCB'=15°,∥∥ACD=45°,∥ADC=45°,∥AC=AD=3,∥BD=AB-AD=3;∥如图(2)所示,若∥DAB'=90°,则B',A,C三点共线,由折叠可得,∥B'=∥B=30°,∥Rt∥AB'D中,AD=12B'D=12BD,又∥AB∥BD=23AB=综上所述,BD的长为2或故答案为:2或【点睛】本题主要考查了折叠问题以及含30°角的直角三角形的性质,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.41.13x≤<【分析】先解不等式组中的每一个不等式,再根据两个不等式的解集取公共部分求出不等。
浙教版八年级数学上册单元测试题全套(含答案)
浙教版八年级数学上册单元测试题全套(含答案)第1章三角形的初步知识检测卷(时间:60分钟满分:100分)一、选择题(每题2分,共20分)1.如图,为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是( )(第1题图)A.5m B.15m C.20m D.28m2.一个三角形三个内角的度数之比为2∶3∶5,这个三角形一定是( )A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰三角形3.张师傅不小心将一块三角形玻璃打破成如图中的三块,他准备去店里重新配置一块与原来一模一样的,最省事的做法是( )(第3题图)A.带1去 B.带2去C.带3去 D.三块都带去4.下列说法:①全等三角形的面积相等;②全等三角形的周长相等;③全等三角形的对应角相等;④全等三角形的对应边相等.其中正确的有( )A.1个 B.2个 C.3个 D.4个5.如图,下列A,B,C,D四个三角形中,能和模板中的△ABC完全重合的是( )(第5题图)6.BD是△ABC的中线,若AB=5cm,BC=3cm,则△ABD与△BCD的周长之差是( )A.1cm B.2cm C.3cm D.5cm7.如图,已知MB=ND,∠MBA=∠NDC,下列不能判定△ABM≌△CDN的条件是( ) A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN(第7题图)(第8题图)8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( ) A.3 B.4 C.6 D.59.如图,锐角三角形ABC中,直线l为BC的中垂线,直线m为∠ABC的角平分线,l与m相交于点P.若∠BAC=60°,∠ACP=24°,则∠ABP是( )A.24° B.30° C.32° D.36°(第9题图)(第10题图)10.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是( )①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3. A.1个 B.2个 C.3个 D.4个二、填空题(每题3分,共30分)11.木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即图中AB,CD两个木条),这样做根据的数学道理是____.(第11题图)(第12题图)(第13题图)12.如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是____________________(只要求写一个条件).13.一副具有30°和45°角的直角三角板,如图叠放在一起,则图中∠α的度数是____.14.可以用来证明命题“如果a,b是有理数,那么|a+b|=|a|+|b|”是假命题的反例可以是____ .15.如图,在△ABC中,∠C=90°,BD平分∠ABC,交AC于点D.若DC=3,则点D到AB的距离是_______.(第15题图)(第16题图)16.如图,在△ABC中,AB=12,EF为AC的垂直平分线,若EC=8,则BE的长为____.17.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是___________. 18.如图,在△ABC中,高BD,CE相交于点H,若∠BHC=110°,则∠A等于____.19.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A,∠1,∠2之间有一种数量关系始终保持不变,这种关系是___ .(第18题图)(第19题图)(第20题图)20.如图,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大,若∠A减少α度,∠B增加β度,∠C增加γ度,则α,β,γ三者之间的等量关系是__ _.三、解答题(共50分)21.(6分)已知线段a,b及∠α,用直尺和圆规作△ABC,使∠B=∠α,AB=a,BC=b.(第21题图)22.(7分)如图,△ABC≌△ADE,且∠CAD=35°,∠B=∠D=20°,∠EAB=105°,求∠BFD和∠BED的度数.(第22题图)23.(6分)如图,在△ABC与△BAD中,AD与BC相交于点M,∠1=∠2,________,试说明△ABC≌△BAD.请你在横线上添加一个条件,使得它可以用“AAS”来说明△ABC≌△BAD,并写出说理过程.(第23题图)24.(7分)如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC,延长AD到点E,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.(第24题图)25.(8分)如图,在△ABC中,∠C=90°,BE平分∠ABC,AF平分外角∠BAD,BE与FA交于点E.求∠E的度数.(第25题图)26.(8分)如图,在△ABC中,AC=6cm,AB=9cm,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=2cm,BD=3cm.求:(1)线段BC的长;(2)若∠ACB的平分线CF交AD于点O,且点O的距离是a cm,请用含a的代数式表示△ABC的面积.(第26题图)27.(8分)如图,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于点E,求证:BD=2CE.(第27题图)参考答案一、1.D 2.B 3.C 4.D 5.A 6.B 7.C 8.A 9.C 10.D二、11.三角形的稳定性12.AB =AC 或∠B=∠C 或∠ADC=∠AEB13.75°14.答案不唯一,如a =-1,b =3等异号两数15.316.417.1918.70°19.2∠A=∠1+∠220.α=β+γ三、21.略22.∠BFD=90°,∠BED =70°23.答案不唯一,如横线上添加的条件是∠C=∠D.理由如下:在△ABC 与△BAD 中,⎩⎪⎨⎪⎧∠C =∠D(已知),∠2=∠1(已知),AB =BA (公共边),∴△ABC ≌△BAD(AAS).(第24题答图)24.(1)证明:在四边形ABCD 中,∵∠A =∠BCD=90°,∴∠B +∠ADC=180°.又∵∠ADC+∠EDC=180°,∴∠ABC =∠EDC.(2)证明:连结AC.在△ABC 和△EDC 中,⎩⎪⎨⎪⎧BC =DC ,∠ABC =∠EDC,AB =ED ,∴△ABC ≌△EDC.25.∠E=45°26.(1)BC =5cm (2)10acm 227.证明:延长CE 与BA 的延长线交于点F ,∵∠BAC =90°,CE ⊥BD ,∴∠BAC =∠DEC,∵∠ADB =∠CDE,∴∠ABD =∠DCE,在△BAD 和△CAF 中,⎩⎪⎨⎪⎧∠BAD =∠CAF,AB =AC ,∠ABD =∠DCE,∴△BAD ≌△CAF(ASA),∴BD =CF ,在△BEF 和△BEC 中,⎩⎪⎨⎪⎧∠1=∠2,BE =BE ,∠BEF =∠BEC,∴△BEF ≌△BEC(ASA),∴CE =EF ,∴DB =2CE.(第27题答图)第2章 特殊三角形检测卷(时间:60分 满分:100分)一、选择题(每题2分,共20分)1.下列图形不是..轴对称图形的是( ) A .线段 B .等腰三角形C .角D .有一个内角为60°的直角三角形2.下列命题的逆命题正确的是( )A .全等三角形的面积相等B .全等三角形的周长相等C .等腰三角形的两个底角相等D .直角都相等3.等腰三角形的两条边长是3和6,则它的周长是( )A .12B .15C .12或15D .15或184.如图,在△ABC 中,AB =AC =5,BC =6,AD 是BC 边上的中线,点E ,F ,M ,N 是AD 上的四点,则图中阴影部分的总面积是( )A .6B .8C .4D .12(第4题图) (第6题图)5.有一个角是36°的等腰三角形,其他两个角的度数是( )A .36°,108°B .36°,72°C .72°,72°D .36°,108°或72°,72°6.如图,在Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于点D.若BC =4cm ,BD =5cm ,则点D 到AB 的距离是( )A .5cmB .4cmC .3cmD .2cm7.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A .1,2,3B .1,1, 2C .1,1, 3D .1,2, 38.如图,△ABC 的顶点都在正方形网格的格点上,若小方格的边长为1,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形(第8题图)9.如图,已知:∠MON=30°,点1A ,2A , 3A …在射线ON 上,点6B 1B 、2B 、3B …在射线OM 上,△1A 1B 2A 、△2A 2B 3A 、△3A 3B 4A …均为等边三角形,若O 1A =1,则△6A 6B 7A 的边长为( )A .6B .12C .32D .64(第9题图) (第10题图)10.如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE=90°,连结CE 交AD 于点F ,连结BD 交CE 于点G ,连结BE.下列结论中,正确的结论有( )①CE =BD ;②△ADC 是等腰直角三角形;③∠ADB=∠AEB;④S 四边形BCDE =12BD ·CE ;⑤BC 2+DE 2=BE 2+CD 2. A .1个 B .2个 C .3个 D .4个二、填空题(每题3分,共30分)11.命题“角平分线上的点到角两边的距离相等”的逆命题是______.12.如图,在△ABC 中,AB =AC ,BC =6,AD ⊥BC 于点D ,则BD =________.(第12题图) (第13题图)13.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,若∠A=20°,则∠BDC=____.14.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和12,则b 的面积为____.(第14题图) (第15题图)15.如图,在等边三角形ABC 中,AB =6,D 是BC 的中点,将△ABD 绕点A 旋转后得到△ACE,那么线段DE 的长度为________.(第16题图) (第17题图)16.如图,△ABC 中,CD ⊥AB 于点D ,E 是AC 的中点.若AD =6,DE =5,则CD 的长等于_____.17.如图,折叠长方形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,则EC 的长为___cm.18.如图,在△ABC 中,∠BAC =90°,AB =AC ,AE 是经过点A 的一条直线,且B ,C 在AE 的两侧,BD ⊥AE 于点D ,CE ⊥AE 于点E ,CE =2,BD =6,则DE 的长为_____.19.如图,在Rt △ABC 中,∠C =90°,AC =BC ,将其绕点A 逆时针旋转15°得到Rt △AB ′C ′,B ′C ′交AB 于点E ,若图中阴影部分面积为23,则B′E 的长为__________.(第18题图) (第19题图) 20.在Rt △ABC 中,∠C =90°,BC =8 cm ,AC =4 cm ,在射线BC 上一动点D ,从点B 出发,以5厘米每秒的速度匀速运动,若点D 运动t 秒时,以A ,D ,B 为顶点的三角形恰为等腰三角形,则所用时间t 为_______秒(结果可含根号).三、解答题(共50分)21.(7分)如图,在Rt △ABC 中,∠B =90°,分别以点A ,C 为圆心,大于12AC 长为半径画弧,两弧相交于点M ,N ,连结MN ,与AC ,BC 分别交于点D ,E ,连结AE.(1)求∠ADE;(直接写出结果)(2)当AB =3,AC =5时,求△ABE 的周长.(第21题图)22.(8分)如图,在等边三角形ABC 中,点D ,E 分别在边BC ,AC 上,DE ∥AB ,过点E 作EF⊥DE,交BC 的延长线于点F.(1)求∠F 的度数;(2)若CD =2,求DF 的长.(第22题图)23.(8分)给出两个三角形(如图),请你把图1分割成两个等腰三角形,把图2分割成三个等腰三角形,并在图上标出分割后等腰三角形的顶角的度数.(第23题图)24.(8分)如图,在△ABC 中,D 是BC 边上一点,且BA =BD ,∠DAC =12∠B ,∠C =50°.求∠BAC 的度数.(第24题图)25.(9分)已知:如图,在△ABC 中,AD 是△ABC 的高,作∠DCE=∠ACD,交AD 的延长线于点E ,点F 是点C 关于直线AE 的对称点,连结AF.(1)求证:CE =AF ;(2)若CD =1,AD =3,且∠B=20°,求∠BAF 的度数.(第25题图)26.(10分) 在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连结CE.(1)如图1,当点D在线段BC上时,如果∠BAC=90°,则∠BCE=__ _°.(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.②当点D在直线BC上移动时,α,β之间有怎样的数量关系?请你在备用图上画出图形,并直接写出你的结论.(第26题图)参考答案一、1.D 2. C 3. B 4. A 5. D 6. C 7.D 8. B 9.C 10.C二、11.角的内部到角两边距离相等的点在角平分线上 12.3 13.40° 14.1715.3 3 16.8 17.3 18.4 19.23-2 20.5,4,1655 三、21.(1)∵由题意可知MN 是线段AC 的垂直平分线,∴∠ADE =90°.(2)∵在Rt △ABC 中,∠B =90°,AB =3,AC =5,∴BC =52-32=4.∵MN 是线段AC 的垂直平分线,∴AE =CE ,∴△ABE 的周长=AB +(AE +BE)=AB +BC =3+4=7.22.(1)∵△ABC 是等边三角形,∴∠B =60°.∵DE ∥AB ,∴∠EDC =∠B=60°.∵EF ⊥DE ,∴∠DEF =90°,∴∠F =90°-∠EDC=30°.(2)∵∠ACB=60°,∠EDC =60°,∴△EDC 是等边三角形.∴ED=DC =2.∵∠DEF =90°,∠F =30°,∴DF =2DE =4.23.略24.设∠DAC=x °,则∠B=2x °,∠BDA =∠C+∠DAC=50°+x °.∵BD =BA ,∴∠BAD =∠BDA=50°+x °(等边对等角).∵∠B +∠BAD+∠BDA=180°,2x +50+x +50+x =180.解得x =20.∴∠BAD =∠BDA=50°+20°=70°,∠BAC =∠BAD+∠DAC=70°+20°=90°.25.(1)证明:如答图.∵AD 是△ABC 的高,∴∠ADC =∠ADF=90°.又∵点F 是点C 关于直线AE 的对称点,∴FD =CD.∴AF=AC.又∵∠1=∠2,∴∠CAD =∠CED.∴EC=AC.∴CE=AF.(2)在Rt △ACD 中,CD =1,AD =3,∴AC =2,∴∠DAC =30°.同理可得∠DAF=30°,在Rt △ABD 中,∠B =20°,∴∠BAF =40°.(第25题答图)26.(1)90. ∵∠DAE=∠BAC,∠BAC =∠BAD+∠DAC=∠EAC+∠DAC;∴∠CAE=∠BAD;在△ABD 和△ACE中,⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAE,AD =AE ,∴△ABD ≌△ACE(SAS);∴∠B =∠ACE;∴∠BCE =∠BCA+∠ACE=∠BCA+∠B=180°-∠BAC=90°.(2)①由(1)中可知,β=180°-α,∴α、β存在的数量关系为α+β=180°;②当点D 在射线BC 上时,如答图1,α+β=180°;当点D 在射线BC 的反向延长线上时,如答图2,α=β.(第26题答图)第3章 一元一次不等式检测卷(时间:60分钟 满分:100分)一、选择题(每题2分,共20分)1.不等式2x>3-x 的解集是( )A .x<2B .x>2C .x>1D .x<1 2.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃3.已知a<b ,c 是有理数,下列各式正确的是( )A .ac 2<bc 2B .c -a<c -bC .a -3c<b -3c D. a c <b c4.不等式组⎩⎪⎨⎪⎧2x >-4,3x -5≤7的解集在数轴上可以表示为( )5.若2a +3b -1>3a +2b ,则a ,b 的大小关系为( )A .a<bB .a>bC .a =bD .不能确定6.设a ,b ,c 表示三种不同物体的质量,用天平称两次,情况如图,则这三种物体的质量从小到大排序正确的是( )(第6题图)A .c <b <aB .b <c <aC .c <a <bD .b <a <c7.若0<x<1,则x ,1x,x ²的大小关系是( ) A.1x <x<x 2 B .x<1x <x 2 C .x 2<x<1x D. 1x<x 2<x 8.如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x >m 无解,那么m 的取值范围是( ) A .m =2 B .m >2 C .m <2 D .m ≥29.某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则最多可打( )A .6折B .7折C .8折D .9折10.如果关于x 的不等式组⎩⎪⎨⎪⎧5x -2a>0,7x -3b≤0的整数解仅有7,8,9,那么适合这个不等式组的整数a ,b 的有序数对(a ,b)共有( )A .4对B .6对C .8对D .9对二、填空题(每题3分,共30分)11.用不等式表示“7与m 的3倍的和是正数“就是____.12.如果a<b ,那么3-2a___3-2b(用不等号连接).13.满足不等式2x -1<6的最大负整数为________.14.已知3x -2y =0,且x -1>y ,则x 的取值范围是___.15.若不等式组⎩⎪⎨⎪⎧x -m >4,n -2x >0的解集是-1<x <1,则m +n =____. 16.若关于x 的不等式3m -2x <5的解集是x >2,则实数m 的值为______.17.某企业向银行贷款100万元,一年后归还银行106.6多万元,则年利率高于__ %.18.下课时老师在黑板上抄了一道题:x +22≥2x -13+,是被一学生擦去的一个数字,又知其解集为x≤2,则被擦去的数字是_______.19.已知关于x 的方程2x +m x -2=3的解是正数,则m 的取值范围为___ . 20.小军的期末总评成绩由平时、期中、期末成绩按权重比1∶1∶8组成,现小军平时考试得90分,期中考试得60分,要使他的总评成绩不低于79分,那么小军的期末考试成绩x 满足的条件是____ .三、解答题(共50分)21.(6分)解不等式:x 3>1-x -36.22.(6分)解不等式组,并把它们的解集在数轴上表示出来.⎩⎪⎨⎪⎧x -32+3≥x,1-3(x -1)<8-x.23.(6分)已知a =x +43,b =2x -74,并且2b≤52<a.请求出x 的取值范围,并将这个范围在数轴上表示出来.24.(7分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧x -y =2m +7,①x +y =4m -3.②的解为负数,求m 的取值范围.25.(8分)为了提高饮水质量,越来越多的居民开始选购家用净水器.一商场抓住商机,从厂家购进了A ,B 两种型号家用净水器共160台,A 型号家用净水器进价是150元/台,B 型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A ,B 两种型号的家用净水器分别购进了多少台.(2)为了使每台B 型号家用净水器的毛利润是A 型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A 型号家用净水器的售价至少是多少元. (注:毛利润=售价-进价)26.(8分)先阅读理解下面的例题,再按要求解答:例题:解一元二次不等式x ²-9>0.解:∵x²-9=(x +3)(x -3),∴(x +3)(x -3)>0.由有理数的乘法法则“两数相乘,同号得正”,得(1)⎩⎪⎨⎪⎧x +3>0,x -3>0,(2)⎩⎪⎨⎪⎧x +3<0,x -3<0. 解不等式组(1),得x>3,解不等式组(2),得x<-3,故(x +3)(x -3)>0的解集为x>3或x<-3,即一元二次不等式x ²-9>0的解集为x>3或x<-3.问题:求分式不等式5x +12x -3<0的解集.27.(9分)为了更好地治理流溪河水质,保护环境,市治污公司决定购买10台污水处理设备.现有A ,B两种型号的设备,其中每台的价格,月处理污水量如表:经调查:购买一台A 型号设备比购买3台B 型号设备少6万元.(1)求a ,b 的值;(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案.(3)在(2)问的条件下,若每月要求处理流溪河两岸的污水量不低于2 040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.参考答案一、1.C 2.B 3.C 4.B 5.A 6.A 7.C 8.D 9.B 10.D二、11.7+3m>0 12.> 13.-1 14.x <-2 15.-316.3 17.6.6 18.1 19.m>-6且m≠-4 20.x≥80三、21.2x >6-(x -3),2x >6-x +3,3x >9,x >3.所以,不等式的解集为x >3.22.-2<x≤3,图略.23.72<x ≤6,图略. 24.⎩⎪⎨⎪⎧x =3m +2,y =m -5.由⎩⎪⎨⎪⎧3m +2<0,m -5<0得m <-23. 25.(1)设A 型号家用净水器购进了x 台,B 型号家用净水器购进了y 台.由题意,得⎩⎪⎨⎪⎧x +y =160,150x +350y =36000. 解得⎩⎪⎨⎪⎧x =100,y =60. 所以,A 型号家用净水器购进了100台,B 型号家用净水器购进了60台.(2)设每台A 型号家用净水器的毛利润为z 元,则每台B 型号家用净水器的毛利润为2z 元.由题意,得100z +60×2z≥11000,解得z≥50,又150+50=200.所以,每台A 型号家用净水器的售价至少为200元.26.∵5x +12x -3<0,∴①⎩⎪⎨⎪⎧5x +1<0,2x -3>0,或②⎩⎪⎨⎪⎧5x +1>0,2x -3<0.解不等式组①无解;解不等式组②,得-15<x<32. 即不等式5x +12x -3<0的解集是-15<x<32. 27.(1)根据题意,得⎩⎪⎨⎪⎧a -b =2,3b -2a =6,∴⎩⎪⎨⎪⎧a =12,b =10; (2)设购买A 型号设备x 台,B 型号设备(10-x)台,则12x +10(10-x)≤105,∴x ≤2.5.∵x 取非负整数,∴x =0,1,2,∴有三种购买方案:①A 型号设备0台,B 型号设备10台;②A 型号设备1台,B 型号设备9台;③A 型号设备2台,B 型号设备8台.(3)由题意,得240x +200(10-x)≥2040,∴x ≥1.又∵x≤2.5,x 取非负整数,∴x 为1,2.当x =1时,购买资金为12×1+10×9=102(万元);当x =2时,购买资金为12×2+10×8=104(万元).∴为了节约资金,应选购A 型号设备1台,B 型号设备9台.第4章 图形与坐标检测卷(时间:60分钟 满分:100分)一、选择题(每题2分,共20分)1.点P(-1,2)关于y 轴对称的点的坐标是( )A .(1,2)B .(-1,-2)C .(1,-2)D .(2,-1)2.如果P(m +3,2m +4)在y 轴上,那么点P 的坐标是( )A .(-2,0)B .(0,-2)C .(1,0)D .(0,1)3.点P(m -1,2m +1)在第二象限,则m 的取值范围是( )A .m>-12或m>1B .-12<m<1C .m<1D .m>-124.点P 在第四象限且到x 轴的距离为4,到y 轴的距离为5,则点P 的坐标是( )A .(4,-5)B .(-4,5)C .(-5,4)D .(5,-4)5.如图,将四边形ABCD 先向左平移3个单位,再向上平移2个单位,那么点A 的对应点A′的坐标是( )A .(6,1)B .(0,1)C .(0,-3)D .(6,-3)(第5题图) (第6题图) (第7题图)6.如图,在平面直角坐标系中,已知点A(a ,0),B(0,b),如果将线段AB 绕点B 顺时针旋转90°至CB ,那么点C 的坐标是( )A .(-b ,b +a)B .(-b ,b -a)C .(-a ,b -a)D .(b ,b -a)7.如图,△ABC 与△DEF 关于y 轴对称,已知A(-4,6),B(-6,2),E(2,1),则点D 的坐标为( )A .(-4,6)B .(4,6)C .(-2,1)D .(6,2)8.丽丽家的坐标为(-2,-1),红红家的坐标为(1,2),则红红家在丽丽家的( )A .东南方向B .东北方向C .西南方向D .西北方向9.在平面直角坐标系中,任意两点A(1x ,1y ),B(2x ,2y )规定运算:①A⊕B=(1x +2x ,1y +2y );②A ⊗B =1x 2x +1y 2y ;③当1x =2x 且1y =2y 时,A =B.有下列四个命题:(1)若A(1,2),B(2,-1),则A⊕B=(3,1),A ⊗B =0;(2)若A⊕B=B⊕C,则A =C ;(3)若A ⊗B =B ⊗C ,则A =C ;(4)对任意点A ,B ,C ,均有(A⊕B)⊕C=A⊕(B⊕C)成立;其中正确命题的个数为( )A .1个B .2个C .3个D .4个10.如图,一个动点P在平面直角坐标系中按箭头的方向做折线运动,即第一次从原点运动到(1,1),第二次从(1,1)运动到(2,0),第三次从(2,0)运动到(3,2),第四次从(3,2)运动到(4,0),第五次从(4,0)运动到(5,1),…,按这样的运动规律,经过第2013次运动后,动点P的坐标是( ) A.(2012,1) B.(2012,2) C.(2013,1) D.(2013,2)(第10题图)二、填空题(每题3分,共30分)11.如果电影院里的二排六号用(2,6)表示,则(1,5)的含义是____.12.若B地在A地的南偏东50°方向5km处,则A地在B地的____方向___处.13.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则ab的值为_______.14.△ABC在直角坐标系中的位置如图,若△A′B′C′与△ABC关于y轴对称,则点A的对应点A′的坐标为__ .(第14题图)(第15题图)(第16题图)15.如图,如果所在的位置坐标为(-1,-2),所在的位置坐标为(2,-2),则所在位置坐标为____.16.如图,已知A(0,1),B(2,0),把线段AB平移后得到线段CD,其中C(1,a),D(b,1),则a+b=______.17.在直角坐标系中,O为坐标原点,△ABO是正三角形,若点B的坐标是(-2,0),则点A的坐标是______.18.已知点P(2m-1,m)可能在某个象限的角平分线上,则点P坐标为______.19.已知点A(4,y),B(x,-3),若AB∥x轴,且线段AB的长为5,x=___ ,y=___ .20.如图,等边三角形OAB的顶点O在坐标原点,顶点A在x轴上,OA=2,将等边三角形OAB绕原点顺时针旋转105°至OA′B′的位置,则点B′的坐标为______.(第20题图)三、解答题(共50分)21.(7分)在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们的坐标分别是(-1,1),(0,0),(1,0).(1)如图2,添加棋子C ,使四颗棋子A ,O ,B ,C 成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P ,使四颗棋子A ,O ,B ,P 成为轴对称图形,请直接写出棋子P 的位置的坐标.(写出2个即可)(第21题图)22.(7分)已知四边形ABCD 各顶点的坐标分别是A(0,0),B(3,6),C(6,8),D(8,0).(1)请建立适当的平面直角坐标系,并描出点A ,点B ,点C ,点D.(2)求四边形ABCD 的面积.(第22题图)23.(8分)如图,图形中每一小格正方形的边长为1,已知△ABC.(1)AC 的长等于________,△ABC 的面积等于____.(2)先将△ABC 向右平移2个单位得到△A′B′C′,则A 点的对应点A′的坐标是______.(3)再将△ABC 绕点C 按逆时针方向旋转90°后得到111A B C ,则A 点对应点1A 的坐标是___.(第23题图)24.(8分)已知边长为4的正方形OABC 在直角坐标系中,(如图)OA 与y 轴的夹角为30°,求点A,点C,点B 的坐标.(第24题图)25.(10分)如图,在平面直角坐标系中,A(0,1),B(2,0),C(4,3).(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.(第25题图)26.(10分)在某河流的北岸有A,B两个村子,A村距河北岸的距离为1千米,B村距河北岸的距离为4千米,且两村相距5千米,现以河北岸为x轴,A村在y轴正半轴上(单位:千米).·B·A(第26题图)(1)请建立平面直角坐标系,并描出A,B两村的位置,写出其坐标.(2)近几年,由于乱砍滥伐,生态环境受到破坏,A,B两村面临缺水的危险.两村商议,共同在河北岸修一个水泵站,分别向两村各铺一条水管,要使所用水管最短,水泵站应修在什么位置?在图中标出水泵站的位置,并求出所用水管的长度.参考答案一、1.A 2.B 3.B 4.D 5.B 6.B 7.B 8.B 9.C 10.C二、11.一排五号 12.北偏西50° 5km 13.25 14.(3,2) 15.(-3,1)16.5 17.(-1,3)或(-1,-3) 18.(1,1)或⎝ ⎛⎭⎪⎫-13,13 19.9或-1 -3 20.(2,-2) 三、21.(1)如答图2,直线l 即为所求;(2)如答图1,P(0,-1),P ′(-1,-1)都符合题意.(第21题答图)22.(1)图略(2)过点B 作BE⊥AD 于点E ,过点C 作CF⊥AD 于点111A B C F ,则ABCD S 四边形=ABES +BEFC S 梯形+CFD S=38.23.(1)10 3.5 (2)(1,2) (3)(-3,-2) 24.A(2,23),B(-23+2,2+23),C(-2) 25.(1)过点C 作CH⊥x 轴于点H ,ABC S=AOHC S 梯形-AOB S-CHB S=12(1+3)×4-12×1×2-12×2×3=4; (2)当点P 在x 轴上时,设P(x ,0),得ABP S=12BP ·AO =12|x -2|×1=4,解得x =-6或10,故P(-6,0)或P(10,0),当点P 在y 轴上时,设P(0,y),得S △ABP =12BO ·AP =12|y -1|×2=4,解得y =-3或5,故P(0,-3)或P(0,5),综上,P 的坐标为(-6,0)或(10,0)或(0,-3)或(0,5). 26.(1)如答图①,点A(0,1),点B(4,4).(2)作A 关于x 轴的对称点A′,连结A′B 交x 轴于点P ,则P 点即为水泵站的位置,PA +PB =PA′+PB =A′B 且最短(如图②).过B,A′分别作x 轴,y 轴的垂线交于E ,作AD⊥BE,垂足为D ,则BD =3,在Rt △ABD 中,AD =52-32=4,所以A 点坐标为(0,1),B 点坐标为(4,4);A′点坐标为(0,-1),由A′E =4,BE =5知,在Rt △A ′BE 中,A ′B =42+52=41.故所用水管最短长度为41千米.① ②(第26题图)第5章 一次函数检测卷 (时间:60分钟 满分:100分) 一、选择题(每题2分,共20分)1.关于直线y =-2x ,下列结论正确的是( )A .图象必过点(1,2)B .图象经过第一、三象限C .与y =-2x +1平行D .y 随x 的增大而增大2.在平面直角坐标系上,一直线过(-3,4)和(-7,4)两点,则此直线会过的两象限是( ) A .第一象限和第二象限 B .第一象限和第四象限 C .第二象限和第三象限 D .第二象限和第四象限3.若点A(-3,3y 1y ),B(2,2y ),C(3,3y )是函数y =-x +2图象上的点,则( ) A .y 1>y 2>y 3 B .y 1<y 2<y 3 C .y 1<y 3<y 2 D .y 2>y 1>y 34.某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用时间x(分)之间的函数关系.下列说法错误的是( )(第4题图)A .小强从家到公共汽车站步行了2公里B .小强在公共汽车站等小明用了10分钟C .公共汽车的平均速度是30公里/小时D .小强乘公共汽车用了20分钟5.下列图形,表示一次函数y =mx +n 与正比例函数y =mnx(m ,n 为常数,且mn≠0)的图象的是( )6.把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是( ) A .1<m <7 B .3<m <4 C .m >1 D .m <4 7.下表给出的是关于某个一次函数的自变量x 及其对应的函数值y 的若干信息.A .5B .6C .7D .88.如图1,在矩形ABCD 中,动点P 从点B 出发,沿矩形的边由B→C→D→A 运动,设点P 运动的路程为x ,△ABP 的面积为y ,把y 看作x 的函数,函数的图象如图2,则△ABC 的面积为( ) A .10 B .16 C .18 D .20(第8题图) (第9题图)9.如图,直线y =-43x +8与x 轴、y 轴分别交于A ,B 两点,点M 是OB 上一点,若直线AB 沿AM 折叠,点B 恰好落在x 轴上的点C 处,则点M 的坐标是( )A .(0,4)B .(0,3)C .(-4,0)D .(0,-3)10.如图,点A ,B ,C 在一次函数y =-2x +m 的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( ) A .1 B .3 C .3(m -1) D. 32(m -2)(第10题图)二、填空题(每题3分,共30分)11.在圆的周长C =2πR 中,常量是______.12.若点(m ,m +3)在函数y =-x +2的图象上,则m =____.13.在一次函数y =2x -2的图象上,到x 轴的距离等于1的点的坐标是_______. 14.在函数x -2x -4中,自变量x 的取值范围是____. 15.已知点(3,5)在直线y =ax +b(a ,b 为常数,且a≠0)上,则ab -5的值为______.16.已知函数y =(2m -3)x +(3m +1)的图象经过第二、三、四象限,则m 的取值范围是________. 17.如图,已知函数y =x +b 和y =ax +3的图象交点为P ,则不等式x +b>ax +3的解集为___ .(第17题图) (第18题图)18.如图,是在同一坐标系内作出的一次函数1y 、2y 的图象1l 、2l ,设1y =1k x +1b ,2y =2k x +2b ,则方程组2t 的解是_______.19.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB=90°,BC =5,点A ,B 的坐标分别为(1,0),(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为________.(第19题图) (第20题图)20.如图,点M 是直线y =2x +3上的动点,过点M 作MN 垂直x 轴于点N ,y 轴上是否存在点P ,使△MNP 为等腰直角三角形,请写出符合条件的点P 的坐标_______. 三、解答题(共50分)21.(7分)已知1y 与x 成正比例,2y 与x +2成正比例,且y =1y +2y ,当x =2时,y =4;当x =-1时,y =7,求y 与x 之间的函数关系式.22.(8分)已知一次函数y =kx +b 的图象经过点A(-4,0),B(2,6)两点. (1)求一次函数y =kx +b 的表达式; (2)在直角坐标系中,画出这个函数的图象; (3)求这个一次函数与坐标轴围成的三角形面积.(第22题图)23.(8分)某市生态公园计划在园内的坡地上造一片有A ,B 两种树的混合林,需要购买这两种树苗2000棵.种植A ,B 两种树苗的相关信息如表:设购买A 种树苗x (1)写出y(元)与x(棵)(2)如果要求A 种树苗的数量不超过B 种树苗数量的两倍,问:造这片树林最多能种多少棵A 种树苗?24.(8分)如图,直线1l 过点A(0,4),点D(4,0),直线2l :y =12x +1与x 轴交于点C ,两直线1l ,2l 相交于点B.(1)求直线1l 的函数关系式; (2)求点B 的坐标; (3)求△ABC 的面积.(第24题图)25.(9分)某水果店计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如下表.(1)(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?26.(10分)甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图.(1)求甲行走的速度;(2)在坐标系中,补画s关于t的函数图象的其余部分;(3)问:甲、乙两人何时相距360米?(第26题图)参考答案一、1.C 2.A 3.A 4.D 5.A 6.C 7.B 8.A 9.B 10.B 二、11.2,π 12.-0.5 13.(0.5,-1)或(1.5,1)14.x≥2且x≠4 15.-13 16.m <-13 17.x >1 18.⎩⎪⎨⎪⎧x =-2,y =319.16 20.(0,0),(0,1),(0,34),(0,-3)三、21.设1y =kx ,2y =m(x +2).∵y =1y +2y ,∴y =kx +m(x +2), 当x =2时,y =4;当x =-1时,y =7,可得方程组为⎩⎪⎨⎪⎧4=2k +4m ,7=-k +m ,解得k =-4,m =3, ∴y 与x 之间的函数关系式为y =-x +6. 22.(1)y =x +4 (2)图略 (3)823.(1)y =(15+3)x +(20+4)(2000-x)=-6x +48000. (2)由题意得,x ≤2(2000-x),解得x≤133313.∵A 种树苗的棵数为整数,∴x 的最大值为1333. 答:造这片树林最多能种1333棵A 种树苗.24.(1)设1l 的函数关系式为y =kx +b ,根据题意得⎩⎪⎨⎪⎧b =4,4k +b =0,解得k =-1,所以1l :y =-x +4.(2)由题意得⎩⎪⎨⎪⎧y =-x +4,y =12x +1,解得⎩⎪⎨⎪⎧x =2,y =2, 所以B(2,2).(3)把y =0代入2l :y =12x +1,得x =-2,∴C(-2,0),∴ABC S=ACD S-BCD S=12×6×2=6. 25.(1)设购进甲种水果x 千克,则购进乙种水果(140-x)千克,根据题意可得: 5x +9(140-x)=1000,解得x =65, ∴140-x =75(千克),答:购进甲种水果65千克,乙种水果75千克;(2)由图表,可得甲种水果每千克利润为3元,乙种水果每千克利润为4元. 设总利润为W ,由题意可得出W =3x +4(140-x)=-x +560, 故W 随x 的增大而减小,则x 越小W 越大.因为该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍, ∴140-x≤3x,解得x≥35,∴当x =35时,W 最大=-35+560=525(元), 故140-35=105(kg).答:当购进甲种水果35千克,乙种水果105千克时,此时利润最大为525元. 26.(1)甲行走的速度:150÷5=30(米/分); (2)补画的图象如答图 (横轴上对应的时间为50);(第26题答图)(3)由函数图象可知,当t =12.5时,s =0. 当12.5≤t≤35时,s =20t -250. 当35<t≤50时,s =-30t +1500.∵甲、乙两人相距360米,即s =360,解得1t =30.5,2t =38. ∴当甲行走30.5分钟或38分钟时,甲、乙两人相距360米.。
浙教版八年级上册数学第1章 三角形的初步知识含答案(真题汇编)
浙教版八年级上册数学第1章三角形的初步知识含答案一、单选题(共15题,共计45分)1、如图,直尺经过一块三角板DCB的直角顶点B,若将边AB绕点B顺时针旋转,∠ABC=20°,∠C=30°,则∠DEF度数为()A.25°B.40°C.50°D.80°2、如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧,分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,下列结论:①AD是∠BAC的平分线;②∠ADB=120°;③AD=BD;④DB=2CD.其中正确的结论共有()A.4个B.3个C.2个D.1个3、在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A.1cm<AB<4cmB.5cm<AB<10cmC.4cm<AB<8cmD.4cm<AB<10cm4、如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18cm,则AC的长等于( )A.8cmB.10cmC.12cmD.14cm5、如图所示,△ABC≌△EDF,F、C在AE上,DF=BC,AB=ED, AE=20,FC=10,则AC的长为()A.10B.5C.15D.206、如图为正方形网格,则∠1+∠2+∠3=()A.105°B.120°C.115°D.135°7、如图,以直角三角形的三边为边,分别向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形有( )A.1个B.2个C.3个D.4个8、如图,已知直线a∥b,将一块含30°角的直角三角板(∠C=90°)按如图所示的位置摆放。
若∠1=25,则∠2的度数为( )A.55°B.70°C.85°D.65°9、下列图形中,∠1一定小于∠2的是()A. B. C.D.10、已知菱形ABCD,E、F是动点,边长为4,BE=AF,∠BAD=120°,则下列结论:①△BCE≌△ACF②△CEF为正三角形③∠AGE=∠BEC④若AF=1,则EG=3FG正确的有()个.A.1B.2 C.3D.411、如图,正方形ABCD中,E为BC的中点,CG⊥DE于G,BG延长交CD于点F,CG延长交BD于点H,交AB于N.下列结论:①DE=CN;② ;③S△DEC =3S△BNH;④∠BGN=45°;⑤ .其中正确结论的个数有()A.2个B.3个C.4个D.5个12、如图,一块三角形玻璃不小心摔碎成如图三片,只需带上其中的一片,玻璃店的师傅就能重新配一块与原来相同的三角形玻璃,你知道应带碎玻璃.()A.③B.②C.①D.都不行13、如图所示,已知矩形ABCD,AB=4,AD=3,点E为边DC上不与端点重合的一个动点,连接BE,将BCE沿BE翻折得到BEF,连接AF并延长交CD于点G,则线段CG的最大值是()A.1B.1.5C.4-D.4-14、如图所示,是的角平分线,,垂足为,,和的面积分别为49,40,则的面积为()A.3.5B.4.5C.9D.1015、已知△ABC,两个完全一样的三角板如图摆放,它们的一组对应直角边分别在AB,AC上,且这组对应边所对的顶点重合于点M,点M一定在()A.∠ A的平分线上B. AC边的高上C. BC边的垂直平分线上 D. AB边的中线上二、填空题(共10题,共计30分)16、如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=42°,则∠AEB=________.17、如右上图,在△ABC中,∠C=90°,AC=3,BC=4,点O是BC中点,将△ABC绕点O旋转得△A′B'C,则在旋转过程中点A、C′两点间的最大距离是________.18、如图,工人师傅制作门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是________.19、如图,口ABCD中,对角线AC、BD交于点O,OE⊥AC交AB于点E,已知△BCE 的周长为14,则口ABCD的周长为________.20、如图,C、E和B、D、F分别在∠GAH的两边上,且AB=BC=CD=DE=EF,若∠A=18°,则∠GEF的度数是________21、如图,将沿边向右平移得到,交于点G,已知,,,则图中阴影部分的面积为________ .22、如图,在平面直角坐标系中,⊙P的圆心在x轴上,且经过点A(m,﹣3)和点B(﹣1,n),点C是第一象限圆上的任意一点,且∠ACB=45°,则⊙P的圆心的坐标是________.23、如图,AD是△ABC的角平分线,DE AB于点E,DE=2,AB=4,则AC长是________.24、如图,已知是的直径,半径是的切线,连接交于点连接.若则图中阴影部分的面积为________.(结果保留)25、如图,把长短确定的两根木棍的一端固定在处,和第三根木棍摆出,木棍固定,木棍绕转动,得到,这个实验说明________.三、解答题(共5题,共计25分)26、如图所示,已知∠A=48°,∠D=25°,FD⊥BC于E,求∠B的度数.27、如图,若△OAD≌△OBC,且∠0=65°,∠BEA=135°,求∠C的度数.28、如图,AB是⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OB,CD的延长线交⊙O于点E.若∠C=19°,求∠BOE的度数.29、已知:如图,A、B、C、D四点在同一直线上, 且。
浙教版数学八上第三章不等式组的应用解答题 专项练习
浙教版初中数学八年级上册第三章不等式组的应用解答题专项练习一、解答题1.一工厂要将100吨货物运往外地,计划租用某运输公司甲、乙两种型号的汽车共6辆一次将货物全部运输.已知每辆甲型汽车最多能装该种货物16吨,租金800元,每辆乙型汽车最多能装该种货物18吨,租金850元,若此工厂计划此次租车费用不超过5000元,通过计算求出该公司共有几种租车方案?请你设计出来,并求出最低的租车费用.2.一个三角形的三边长分别是xcm、(x+2)cm、(x+5)cm.它的周长不超过37cm.求x的取值范围.3.已知a,b,c是△ABC的三边长,若b=2a﹣1,c=a+5,且△ABC的周长不超过20cm,求a的范围.4.某校准备组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案.5.一幢学生宿舍楼有一些空宿舍,现有一批学生要入住,若每间住5人,则有25人无法入住;若每间住10人,则有1间房不空也不满.求空宿舍的间数和这批学生的人数.6.工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需要甲种原料9千克,乙种原料3千克;生产一件B 种产品需要甲种原料4千克,乙种原料10千克.则安排A、B两种产品的生产件数有几种方案?7.为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序.若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.求这个中学共选派值勤学生多少人?共有多少个交通路口安排值勤?8.把若干颗花生分给若干只猴子,如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子得不到5颗,求猴子的只数和花生的颗数.9.某旅店有两种客房,甲种客房每间可安排4位客人入住,乙种客房每间可安排3位客人入住。
最新浙教版数学八年级上册全部知识点汇总及试卷含答案(1)
第一章 三角形的初步知识复习总目1、掌握三角形的角平分线、中线和高线2、理解三角形的两边之和大于第三边的性质3、掌握三角形全等的判定方法 知识点概要1、 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC 用符号表示为△ABC ,三角形ABC的边AB 可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示. 注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC 是三角形ABC 的符号标记,单独的△没有意义.2、 三角形的分类: (1)按角分类:(2)按边分类:三角形直角三象形斜三角形锐角三角形钝角三角形_C_B _A三角形等腰三角形底边和腰不相等的等腰三角形 等边三角形21DC B AADC BA3、 三角形的主要线段的定义: (1)三角形的中线三角形中,连结一个顶点和它对边中点的线段. 表示法:1.AD 是△ABC 的BC 上的中线.2.BD=DC=12BC. 注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点; ④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段表示法:1.AD 是△ABC 的∠BAC 的平分线.2.∠1=∠2=12∠BAC.注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部; ③三角形三条角平分线交于三角形内部一点; ④用量角器画三角形的角平分线.(3)三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.表示法:1.AD是△ABC的BC上的高线.2.AD⊥BC于D.3.∠ADB=∠ADC=90°.注意:①三角形的高是线段;②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;③三角形三条高所在直线交于一点.4、三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边.5、三角形的角与角之间的关系:(1)三角形三个内角的和等于180 ;(2)三角形的一个外角等于和它不相邻的两个内角的和;(3)三角形的一个外角大于任何一个和它不相邻的内角.(4)直角三角形的两个锐角互余.6、三角形的稳定性:三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性.注意:(1)三角形具有稳定性;(2)四边形没有稳定性.7、全等三角形(1)全等三角形的概念能够完全重合的两个三角形叫做全等三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版初中数学八年级上册专题50题含答案一、单选题1.下列是我省几家著名煤炭企业的徽标,其中轴对称图形是( )A .B .C .D .2.若66x y >-,则下列不等式中一定成立的是( )A .0x y +>B .0x y ->C .0x y +<D .0x y -< 3.如图,已知,AB AD =,ACB AED ∠=∠,DAB EAC ∠=∠,则下列结论错误..的是( )A .B ADE ∠=∠B .BC AE = C .ACE AEC∠=∠ D .CDE BAD ∠=∠ 4.如图所示的容器内装满水,打开排水管,容器内的水匀速流出,则容器内液面的高度h 随时间x 变化的函数图象最接近实际情况的是( )A .B .C .D .5.下列图象中,表示y 是x 的函数的是( )A .B .C .D .6.在平面直角坐标系中,将点(2,3)向上平移1个单位,再向左平移2个单位,所得到的点的坐标是( )A .(-2,3)B .(-1,2)C .(0,4)D .(4,4) 7.下列四组数,是勾股数的是( )A .1,2,3B .2,3,4C .1,3D .5,12,13 8.在ABC 中,A ∠,B ∠,C ∠的对边分别为a ,b ,c ,下列条件不能判定ABC 为直角三角形的是( )A .ABC ∠∠=∠+B .222a c b =-C .23a =,24b =,25c =D .5a =,12b =,13c =9.在平面直角坐标系中,若点()2P x -,在第二象限,则x 是( )A .正数B .负数C .正数或0D .任意数 10.如图是由圆和正方形组成的轴对称图形,对称轴的条数有 ( )A .2条B .3条C .4条D .6条 11.点A 的位置如图所示,下列说法正确的是( )A .点A 在点O 的30°方向,距点O 10.5km 处B .点A 在点O 北偏东30°方向,距点O 10.5km 处C .点O 在点A 北偏东60°方向,距点A 10.5km 处D .点A 在点O 北偏东60°方向,距点O 10.5km 处12.如图,已知A 1(1,0),A 2(1,1),A 3(-1,1),A 4(-1,-1),A 5(2,-1),…,则A 2017的坐标为( )A .(505,504)B .(505,-504)C .(-504,504)D .(-504,-504)13.已知4<m ≤5,则关于x 的不等式组0420x m x -<⎧⎨-≤⎩的整数解的个数共有( ) A .2 B .3 C .4 D .514.若x y <,则下列不等式一定成立的是( )A .22x y -<-B .22x y -<-C .nx my >D .22x y > 15.如图,OA 和BA 分别表示甲乙两名学生练习跑步的一次函数的图象,图中S 和t 分别表示路程(米)和时间(秒),根据图象判定跑210米时,快者比慢者少用( )秒.A .4秒B .3.5秒C .5秒D .3秒 16.如图,在ABC 中,AD BC ⊥于D ,且AD BC =,以AB 为底边作等腰直角三角形ABE ,连接ED 、EC ,延长CE 交AD 于点F ,下列结论:①ADE BCE △△≌;①BD DF AD +=;①CE DE ⊥;①BDE ACE S S =△△,其中正确的有( ).A .①①B .①①C .①①①D .①①①① 17.如图,在△ABC 中,①A =80°,①C =60°,则外角①ABD 的度数是( )A .100°B .120°C .140°D .160° 18.如图,一个长方体的长宽高分别是6米、3米、2米,一只蚂蚁沿长方体的表面从点A 到点C '所经过的最短路线长为( )A B C D .以上都不对 19.如图,BAC ∠的平分线与BC 的垂直平分线相交于点D ,ED AB ⊥于点E ,11AB =,5AC =,则BE 的长为( )A .3B .4C .5D .6二、填空题20.若关于x 的方程7x 62a 5x +-=的解是负数,则a 的取值范围是__________. 21.如图,在ABC 和△FED 中,BD EC =,AB FE =,当添加条件______时,就可得到ABC EDF △≌△.(只需填写一个即可)22.点P(在第________象限. 23.若一次函数26y x =-的图像过点(),a b ,则21b a -+=______.24.我国古代称直角三角形为“勾股形”,并且直角边中较短边为勾,另一直角边为股,斜边为弦如图1所示,数学家刘徽(约公元225年~公元295年)将勾股形分割成一个正方形和两对全等的直角三角形,后人借助这种分割方法所得的图形证明了勾股定理如图2所示的长方形是由两个完全相同的“勾股形”拼接而成,若4a =,6b =,则长方形的面积为______.25.将直线21y x =-向上平移4个单位长度,平移后直线的函数解析式为 _____. 26.小明某天离家,先在A 处办事后,再到B 处购物,购物后回家.下图描述了他离家的距离s (米)与离家后的时间t (分钟)之间的函数关系,请根据图象回答下列问题:(1)A 处与小明家的距离是_________米,小明在从家到A 处过程中的速度是________米/分;(2)小明在B 处购物所用的时间是_______分钟,他从B 处回家过程中的速度是________米/分;(3)如果小明家、A 处和B 处在一条直线上,那么小明从离家到回家这一过程的平均速度是_________米/分.27.关于x 的解集3x a -<<有五个整数解,则a 的取值范围为______.28.如图:已知,平行四边形ABCD 中,CE AB ⊥,E 为垂足,如果A 120︒∠=,则BCE ∠的度数是______________.29.若关于x 的方程3(4)25x a +=+的解大于关于x 的方程(41)(34)43a x a x +-=的解,则a 的取值范围为________. 30.若等腰三角形的一个内角为50,则它的底角的度数为______.31.随着各行各业有序复工复产,企业提倡员工实行“两点一线”上下班模式,减少不必要的聚集.小华爸爸早上开车以60/km h 的平均速度行驶20min 到达单位,下班按原路返回,若返回时平均速度为v ,则路上所用时间t (单位:h )与速度v (单位:/km h )之间的关系可表示为________.32.规定:经过三角形的一个顶点且将三角形的周长分成相等的两部分的直线叫做该角形的“等周线”,“等周线”被这个三角形截得的线段叫做该三角形的“等周径”.例如等腰三角形底边上的中线即为它的“等周径”Rt △ABC 中,①C =90°,AC =4,BC =3,若直线l 为△ABC 的“等周线”,则△ABC 的所有“等周径”长为________.33.如图,已知EA=CE,①B=①D=①AEC=90°,AB=3 cm,CD=2 cm,则①CDE 和①EBA 的面积之和是____.34.(1)点(2,36)P a a -+到两坐标轴的距离相等,则点P 的坐标为__________; (2)正方形的两边与x ,y 轴的负方向重合,其中正方形的一个顶点坐标为(2,23)C a a --,则点C 的坐标为_______.35.已知长方形的两邻边的差为2,对角线长为4,则长方形的面积是________. 36.如图,圆柱形容器中,高为1.2m ,底面周长为1m ,在容器内壁离容器底部0.3m 的点B 处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m 与蚊子相对的点A 处,则壁虎捕捉蚊子的最短距离为_______m (容器厚度忽略不计).37.已知关于x 的不等式组1x x m>-⎧⎨<⎩的整数解共有2个,则m 的取值范围是___________38.如图,在①ABC 中,3∠=∠ABC C ,12∠=∠,BE AE ⊥,5AB =,3BE =,则AC =_____39.在直角坐标系中,直线1y x =+与y 轴交于点1A ,按如图方式作正方形111A B C O 、2221A B C C 、3332A B C C 、…,点1A 、2A 、3A 、…在直线1y x =+上,点1C 、2C 、3C 、…,在x 轴上,图中阴影部分三角形的面积从左到右依次记为1S 、2S 、3S 、…n S ,则1S =_______,=n S ________.(用含n 的代数式表示,n 为正整数)三、解答题40.如图,①MOP =60°,OM =5,动点N 从点O 出发,以每秒1个单位长度的速度沿射线OP 运动.设点N 的运动时间为t 秒,当△MON 是锐角三角形时,求t 满足的条件.41.如图所示,AE AC =,AB AD =,EAB CAD ∠=∠.求证:B D ∠=∠.42.某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同. (1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么最多购买多少件甲种商品43.给出如下规定:两个图形1G 和2G ,点P 为1G 上任一点,点Q 为2G 上任一点,如果线段PQ 的长度存在最小值,就称该最小值为两个图形1G 和2G 之间的距离.在平面直角坐标系xOy 中,O 为坐标原点.(1)点A 的坐标为()10A ,,则点()2,3B 和射线OA 之间的距离为 ,点(3,4)C -和射线OA 之间的距离为 .(2)点E 的坐标为(1,1),将射线OE 绕原点O 逆时针旋转90︒,得到射线OF ,在坐标平面内所有和射线OE OF ,之间的距离相等的点所组成的图形记为图形M .①在坐标系中画出图形M ,并描述图形M 的组成部分;(若涉及平面中某个区域时可以用阴影表示)①将抛物线22y x =﹣与图形M 的公共部分记为图形N ,射线OE ,OF 组成的图形记为图形W ,请直接写出图形W 和图形N 之间的距离.44.某城市居民用水实行阶梯收费,每户每月用水量如果未超过15吨,按每吨2元收费.如果超过15吨,未超过的部分仍按每吨2元收费,超过部分按每吨2.8元收费.设某户每月用水量为x 吨,应收水费为y 元.(1)分别写出当每月用水量未超过15吨和超过15吨时,y 与x 之间的函数表达式; (2)若该城市某用户5月份和6月份共用水50吨,且5月份的用水量不足15吨,两个月一共交水费120元,求该用户5月份和6月份分别用水多少吨?45.有一块木板(图中阴影部分),测得4AB =,3BC =,12DC =,13AD =,90ABC ∠=︒.求阴影部分面积.46.ABC 在平面直角坐标系中的位置如图所示,(1)画出ABC 关于y 轴对称的111A B C △,并写出点111,,A B C 的坐标;(2)在x 轴上取一点P ,使1PB PC +的值最小,在图上标出点P 的位置,(保留作图痕迹);(3)在y 轴上求作一点Q ,使QA QB =.(尺规作图,保留作图痕迹,不写作法)47.已知方程组31313x y m x y m +=-+⎧⎨-=+⎩的解满足x 为非正数,y 为负数. (1)求m 的取值范围;(2)化简:324m m -++.48.在①ABC 中,CD 是AB 边上的高,AC =4,BC =3,DB =1.8. (1)求CD 的长;(2)求AB 的长;(3)①ABC 是直角三角形吗?请说明理由.49.如图,ABC 中,=45ABC ∠︒,D 为BC 上一点,60ADC ∠=︒,AE BC ⊥于点E ,CF AD ⊥于点F ,AE 、CF 相交于点G ,15CAE ∠=︒(1)求ACF∠的度数;(2)求证:12DF AG=.参考答案:1.C【分析】根据轴对称图形的定义分析判断即可知道正确答案.【详解】A 、不是轴对称图形,选项不符合题意;B 、不是轴对称图形,选项不符合题意;C 、是轴对称图形,选项符合题意;D 、不是轴对称图形,选项不符合题意.故选:C【点睛】本题考查轴对称图形的识别,牢记相关定义是解题关键.2.A【分析】根据不等式的性质可判断不等式的变形是否正确.【详解】① 66x y >-,① 6+60x y >,① +0x y >.故A 正确,B ,C ,D 错误.故选:A .【点睛】本题考查了不等式的性质,熟练运用不等式的性质是解题的关键.3.B【分析】先根据三角形全等的判定定理证得ABC ADE ∆≅∆,再根据三角形全等的性质、等腰三角形的性质可判断A 、C 选项,又由等腰三角形的性质、三角形的内角和定理可判断出D 选项,从而可得出答案.【详解】DAB EAC ∠=∠DAB CAD EAC CAD ∴∠+∠=∠+∠,即BAC DAE ∠=∠在ABC ∆和ADE ∆中,BAC DAE ACB AED AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABC ADE AAS ∴∆≅∆,,B ADE AC AE BC DE ∴∠=∠==,则A 选项正确ACE AEC ∴∠=∠(等边对等角),则C 选项正确AB AD =B ADB ∴∠=∠180B A B DB AD ∠+︒=∠+∠2180BA B D ∴∠=∠+︒,即1802B BAD ∠=︒∠-又180ADB A E DE CD ∠+∠+∠=︒180CDE B B ∠=∴∠+∠+︒,即1802B CDE ∠=︒∠-CDE BAD ∴∠=∠,则D 选项正确虽然,AC AE BC DE ==,但不能推出BC AE =,则B 选项错误故选:B .【点睛】本题考查了三角形全等的判定定理与性质、等腰三角形的性质、三角形的内角和定理等知识点,根据已知条件,证出ABC ADE ∆≅∆是解题关键.4.A【分析】根据容器内的水匀速流出,可得相同时间内流出的水相同,根据圆柱的直径越长,等体积的圆柱的高就越低,可得答案.【详解】解:最上面圆柱的直径较长,水流下降较慢;中间圆柱的直径最长,水流下降最慢;下面圆柱的直径最短,水流下降最快.故选:A .【点睛】本题考查了函数图象,利用了圆柱的直径越长,等体积的圆柱的高就越低. 5.A【分析】根据函数的定义,对任意的一个x 都存在唯一的y 与之对应可求.【详解】解:根据函数的定义,对任意的一个x 都存在唯一的y 与之对应,而B 、C 、D 都是一对多,只有A 是对任意的一个x 都存在唯一的y 与之对应.故选:A【点睛】本题主要考查了函数定义与函数对应的应用,要注意构成函数的要素之一:必须形成一一对应,但是不能一对多,属于基础试题.6.C【详解】由平移规律可知:点(2,3)平移后的横坐标为2-2=0;纵坐标为3+1=4; ①平移后点的坐标为(0,4).选C .【点睛】本题考查了平移变换,根据左右平移,横坐标变化,纵坐标不变,上下平移,横坐标不变,纵坐标变化,熟记“左减右加,下减上加”是解题关键.7.D【分析】先求出两小边的平方和和最长边的平方,看看是否相等即可.【详解】解:A 、①12+22≠32,①1,2,3不是勾股数,故本选项不符合题意;B 、①32+22≠42,①4,2,3不是勾股数,故本选项不符合题意;C 、①22213+≠,①13不是勾股数,故本选项不符合题意;D 、①52+122=132,①5,12,13是勾股数,故本选项符合题意;故选:D .【点睛】本题考查了勾股数和算术平方根,能熟记勾股数的意义是解此题的关键. 8.C【分析】根据三角形内角和定理求出最大内角,即可判断选项A 和选项B ,根据勾股定理的逆定理即可判断选项C 和选项D .【详解】解:A 、①A B C ∠∠=∠+,180A B C ∠+∠+∠=︒,①2180C ∠=︒,①90C ∠=︒,①ABC 是直角三角形,故本选项不符合题意;B 、①222a c b =-,①222+=a b c ,①以a ,b ,c 为边能组成直角三角形,故本选项不符合题意;C 、①23a =,24b =,25c =,2275a b +=≠,①222a b c +≠,①以a ,b ,c 为边不能组成直角三角形,故本选项符合题意;D 、①2251225144169+=+=,213169=,①22251213+=,①以a ,b ,c 为边能组成直角三角形,故本选项不符合题意.故选:C.【点睛】本题考查了勾股定理的逆定理和三角形内角和定理.理解和掌握勾股定理的逆定理是解题的关键,注意:如果一个三角形的两边a、b平方和等于第三边c的平方,那么这个三角形是直角三角形.9.A-,进行判断即可.【分析】根据第二象限,点的符号特征(),+-,【详解】解:①第二象限,点的符号特征是(),+①0x>,是正数;故选A.【点睛】本题考查坐标系下象限内点的符号特征.熟练掌握象限内点的符号特征,是解题的关键.10.C【详解】因为过圆心的直线都是圆的对称轴,所以这个图形的对称轴的条数即是正方形的对称轴的条数,而正方形有4条对称轴.故选C.11.D【分析】根据方向角的定义,即可解答.【详解】解:由题意得:90°-30°=60°,2.1×5=10.5(km),①点A在点O北偏东60°方向,距点O10.5km处,故选:D.【点睛】本题考查了方向角,熟练掌握方向角的定义是解题的关键.12.B【分析】根据题意可得各个点分别位于象限的角平分线上(A1和第四象限内的点除外),逐步探索出下标和个点坐标之间的关系,总结出规律,根据规律推理点A2017的坐标.【详解】通过观察可得数字是4的倍数的点在第三象限,数字是4的倍数余1的点在第四象限,数字是4的倍数余2的点在第一象限,数字是4的倍数的点在第二象限,且各个点分别位于象限的角平分线上(A1和第四象限内的点除外),①2017÷4=504…1,①点A 2017在第四象限,点A 2016在第三象限, ①20164=504, ①A 2016是第三象限的第504个点,①A 2016的坐标为(−504,−504),①点A 2017的坐标为 (505,-504).故选:B .【点睛】此题主要考查了点的坐标,属于规律型题目,解答此类题目一定要先注意观察,本题第三象限的点的坐标特点比较好判断,我们可以利用这一点达到简化步骤的效果. 13.B【分析】可先将不等式组求出解集,再通过m 的取值范围确定不等式组的解集中的整数解的个数即可.【详解】解:不等式组整理得:2x m x <⎧⎨≥⎩,解集为2x m ≤<, ①m 54<≤,①整数解为2,3,4,共3个,故选:B .【点睛】本题考查含参数的不等式,解题的关键是根据参数的范围来确定不等式组的解集. 14.B【分析】根据不等式的性质,依次分析各个选项,选出不等式的变形正确的选项即可.【详解】解:A 、①x y <,①22x y ->-,故该选项错误,不符合题意;B 、①x y <,①22x y -<-,故该选项正确,符合题意;C 、①x y <,①当0m n >>时,nx my <,故该选项错误,不符合题意;D 、①x y <,①22x y <,故该选项错误,不符合题意. 故选:B【点睛】本题考查了不等式的性质,能灵活运用不等式的性质进行变形是解本题的关键.不等式的性质1:不等式的两边都加(或减)同一个数或式子,不等号的方向不变;不等式的性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变;不等式的性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变.15.C【分析】利用图象分别得出快、慢者行驶的路程和时间,进而求出速度,再求出时间差.【详解】解:如图所示:快者的速度为:60÷10=6(米/秒),慢者的速度为:(60-10)÷10=5(米/秒),快者跑210米所用的时间为210÷6=35(秒),慢者跑210米所用的时间为(210-10)÷5=40(秒),①快者比慢者少用的时间为40-35=5(秒).故选:C .【点睛】此题主要考查了函数的图象,利用图象得出正确信息是解题关键.16.D【分析】①易证①CBE=①DAE ,用SAS 即可求证:①ADE①①BCE ;①根据①结论可得①AEC=①DEB ,即可求得①AED=①BEG ,即可解题;①证明①AEF①①BED 即可;①易证①FDC 是等腰直角三角形,则CE=EF ,S △AEF =S △ACE ,由①AEF①①BED ,可知S △BDE =S △ACE ,所以S △BDE =S △ACE .【详解】解:①AD 为①ABC 的高线①①CBE+①ABE+①BAD=90°,①Rt①ABE 是等腰直角三角形,①①ABE=①BAE=①BAD+①DAE=45°,AE=BE ,①①CBE+①BAD=45°,①①DAE=①CBE ,在①DAE 和①CBE 中,AE BE DAE CBE AD BC ⎪∠⎪⎩∠⎧⎨=== ①①ADE①①BCE (SAS );故①正确;①①ADE①①BCE ,①①EDA=①ECB ,AD=BC ,DE=EC ,①①ADE+①EDC=90°,①①EDC+①ECB=90°,①①DEC=90°,①CE①DE,①DEC是等腰直角三角形,易证①DFC是等腰直角三角形,故①正确,①DF=DC,①BC=BD+DC=BD+DF=AD,故①正确;①AD=BC,BD=AF,①CD=DF,①AD①BC,①①FDC是等腰直角三角形,①DE①CE,①EF=CE,①S△AEF=S△ACE,①①AEF①①BED,①S△AEF=S△BED,①S△BDE=S△ACE.故①正确;故选D.【点睛】本题考查了全等三角形的判定,等腰直角三角形的性质等知识,考查了全等三角形对应边相等的性质,熟练掌握全等三角形的判定与性质是解题的关键.17.C【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】由三角形的外角性质得,①ABD=①A+①C=80°+60°=140°.故选C.【点睛】考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.18.C【分析】蚂蚁有三种爬法,就是把正视和俯视(或正视和侧视,或俯视和侧视)二个面展平成一个长方形,然后求其对角线,比较大小即可求得最短的途径.【详解】解:如图所示,此时:AC;'此时,'AC此时,'AC>故选:C.【点睛】此题考查平面的最短路径问题,关键是把长方体拉平后用了勾股定理求出对角线的长度.19.A【分析】连接CD ,BD ,由①BAC 的平分线与BC 的垂直平分线相交于点D ,DE①AB ,DF①AC ,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD ,DF=DE ,继而可得AF=AE ,易证得Rt △CDF①Rt △BDE ,则可得BE=CF ,继而求得答案.【详解】如图,连接CD ,BD ,①AD 是①BAC 的平分线,DE①AB ,DF①AC ,①DF=DE ,①F=①DEB=90°,①ADF=①ADE ,①AE=AF ,①DG 是BC 的垂直平分线,①CD=BD ,在Rt △CDF 和Rt △BDE 中,CD BD DF DE ⎧⎨⎩==, ①Rt △CDF①Rt △BDE (HL ),①BE=CF ,①AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE ,①AB=11,AC=5, ①BE=12×(11-5)=3.故选:A .【点睛】此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题20.a <3【详解】7x 62a 5x +-=7x-5x=2a-62x=2a-6x=a-3因为关于x 的方程7x 62a 5x +-=的解是负数,所以a-3<0,所以a<3.故答案是:a<3.21.答案不唯一(如B E ∠=∠或AC FD =)【分析】根据题意可知BC=ED ,再结合三角形全等的判定定理“边角边”和“边边边”即可得出答案.【详解】①BD=EC ,①BC=ED ,由SSS 可知当AC=FD 时,①ABC①①EDF ;由SAS 可知当①B=①E 时,①ABC①①EDF ;故答案为:AC=FD 或①B=①E .【点睛】本题主要考查的是全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.22.三【分析】根据直角坐标系的象限特点即可判断.【详解】①点P 00,则点P 在第三象限. 【点睛】此题主要考查直角坐标系的象限分类,解题的关键是熟知各象限的坐标特点. 23.5-【分析】先把点(),a b 代入一次函数26y x =-,得到26b a =-,再代入代数式计算即可.【详解】①一次函数26y x =-的图像过点(),a b ,①26b a =-,①2126215b a a a -+=--+=-,故答案为:5-【点睛】此题主要考查了一次函数图像上点的坐标特点以及代数式求值的问题,关键是掌握凡是函数图像经过的点必能满足解析式.24.48【分析】设小正方形的边长为x ,在直角三角形ACB 中,利用勾股定理可建立关于x 的方程,利用整体代入的思想解决问题,进而可求出该长方形的面积.【详解】解:设小正方形的边长为x ,①46a b ==,,①4610AB =+=,在Rt ABC △中,222AC BC AB +=,即()()2224610x x +++=,整理得,210240x x +-=,即21024x x +=,而长方形面积为()()2461024242448x x x x ++=++=+=, 即该长方形的面积为48,故答案为:48.【点睛】本题考查了勾股定理的运用,利用勾股定理得到21024x x +=再整体代入计算是解题的关键.25.23y x =+【分析】利用将直线y kx b =+向上或平移n 个单位,再向左或向右平移m 个单位,平移后的函数解析式y k x m n ,据此可得到平移后的函数解析式.【详解】①将直线21y x =-向上平移4个单位长度,①平移后直线的函数的解析式21423y x x =-+=+.故答案为:23y x =+.【点睛】本题考查了直线的平移给函数解析式的影响,掌握一次函数图象的平移规律是解本题的关键.26. 200 40 5 160 64【分析】根据图象可得:5-10分钟小明在A 处办事,15-20分钟小明在B 处购物,20-25分钟为小明返回家途中,即可求解.【详解】解:(1)由图可知,x =5时小明到达A 处,A 处离家距离为200米;小明在从家到A 处过程中的速度是200÷5=40(米/分);(2)小明在B 处购物所用的时间是20-15=5(分);他从B 处回家过程中的速度是800÷(25-20)=160(米/分),(3)小明往返所走路程为800×2=1600(米),往返所用时间为25分,所以小明从离家到回家这一过程的平均速度是1600÷25=64(米/分).故答案为:(1)200,40;(2)5,160;(3)64.【点睛】本题考查函数与图象的结合,根据图象,解决实际问题,准确获取信息,找到题中各个点所对应坐标的实际意义是解题的关键.27.23a <≤【分析】根据不等式的正整数解为210,1,2--,,,即可确定出正整数a 的取值范围. 【详解】①不等式3x a -<<有5个正整数解,①这5个整数解为210,1,2--,,, 则23a <≤,故答案为23a <≤.【点睛】本题主要考查不等式组的整数解,解题的关键是掌握据得到的条件进而求得不等式组的整数解.28.30°【详解】试题分析:先根据平行四边形的性质求得①B 的度数,再由根据三角形的内角和定理求解即可.解:①平行四边形, ①①B=60°①①=180°-90°-60°=30°. 考点:平行四边形的性质,三角形的内角和定理点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.29.718a > 【分析】先求出两个方程的解,然后解关于a 的一元一次不等式,即可得到答案.【详解】解:解方程3(4)25x a +=+, 得:273a x -=, 解方程(41)(34)43a x a x +-=, 得:163x a =-. 由题意得:271633a a ->-. 解得:718a >. 故答案为:718a >. 【点睛】本题考查的是解一元一次方程和解一元一次不等式,根据题意列出关于x 的不等式是解答此题的关键.30.65°或50°.【分析】由等腰三角形的一个内角为50°,可分别从50°的角为底角与50°的角为顶角去分析求解,即可求得答案.【详解】①等腰三角形的一个内角为50°,若这个角为顶角,则底角为:(180°﹣50°)÷2=65°,若这个角为底角,则另一个底角也为50°,①其一个底角的度数是65°或50°.故答案为65°或50°.31.20t v= 【分析】根据路程=速度×时间,可计算出家与单位之间的总路程,再根据速度v =路程÷时间,即可得出答案.【详解】解:①20602060⨯=(km) ①小华爸爸下班时路上所用时间t (单位h )与速度v (单位:/km h )之间的关系可表示为:20t v=. 故答案为:20t v =.【点睛】本题考查的知识点是用关系式表示变量之间的关系,读懂题意,比较容易解答.32【分析】分三种情况:①当“等周线”经过点C时,直线l交AB于点E;①当“等周线”经过点A时,直线l交BC于点E,①当“等周线”经过点B时,直线l交AC于点E.画图并运用勾股定理计算.【详解】①Rt①ABC中,①C=90°,AC=4,BC=3,①AB=5①如图,当“等周线”经过点C时,直线l交AB于点E,设BE=x,则AE=5-x,作CH①AB于H.由题意得:3+x=4+5-x解得:x=3①CH=125 BC ACAB⋅=①BH9 5 =①EH=395-=65在Rt①ECH中,CE=①“等周径”①如图,当“等周线”经过点A时,直线l交BC于点E,设BE=x,则CE=3-x由题意得:4+3-x=5+x解得:x=1①EC=2在Rt①ACE中,AE①“等周径”长为①如图,当“等周线”经过点B时,直线l交AC于点E,设AE=x,则CE=4-x由题意得:3+4-x=5+x解得:x=1①CE=3在Rt①BCE中,BE①“等周径”长为综上所述,满足条件的“等周径”【点睛】本题考查“新定义”问题,分类讨论并准确画图,灵活运用勾股定理是解题关键.33.62cm【分析】只要证明△ECD①①AEB,再根据三角形面积公式计算即可.【详解】如图,①①B=①D=①AEC=90°,①①1+①2=90°,①2+①a=90°,①①1=①A ,①EC=AE ,①①ECD①①AEB ,①CD=EB=2cm ,DE=AB=3cm ,①①CDE 和△ABE 的面积之和为2×12×2×3=6cm 2,故答案为62 c m .【点睛】本题考查全等三角形的判定和性质、三角形的面积等知识,解题的关键是正确寻找全等三角形全等的条件.34. (3,3),(6,-6) 1-0(1,1)2⎛⎫-- ⎪⎝⎭,, 【分析】(1)根据点(2,36)P a a -+到两坐标轴的距离相等,可得2=36a a -+,当点P 在第一或第三象限时2=36a a -+或当点P 在第二或第四象限时2+360a a -+=,解方程即可;(2)由正方形的两边与x ,y 轴的负方向重合,当点C 在第三象限时,当点C 在x 轴上,与y 轴上分类列方程与解方程即可.【详解】解:(1)①点(2,36)P a a -+到两坐标轴的距离相等, ①2=36a a -+,当点P 在第一或第三象限时2=36a a -+解得1a =-,当1a =-时,2213,36363a a -=+=+=-+=,①点(3,3)P ,当点P 在第二或第四象限时2+360a a -+=解得4a =-当4a =-时,22+46,361266a a -==+=-+=-,①点(6,-6)P ,故答案为(3,3),(6,-6);(2)①正方形的两边与x ,y 轴的负方向重合,当点C 在第三象限时,(2,23)C a a --,①2=23a a --,解得=1a ,当=1a 时,2121,23231a a -=-=--=-=-,点(1,1)C --.当点C 在x 轴上时,①23=0a - 解得32a =当32a =时,312222a -=-=- 点1,02C ⎛⎫- ⎪⎝⎭; 当点C 在y 轴上时,2=0a -,解得=2a当=2a 时,23=4-3=10a ->不合题意舍去 故答案为1,02⎛⎫- ⎪⎝⎭, (-1,-1). 【点睛】本题考查点到两坐标轴的距离问题,根据坐标的符号分类构建方程是解题关键. 35.6【详解】试题解析:设长方形短边为x ,则长边为x+2,根据勾股定理得:x 2+(x+2)2=42,整理得:x 2+2x-6=0,解得:±①长方形宽为则面积为6.36.1.3.【详解】因为壁虎与蚊子在相对的位置,则壁虎在圆柱展开图矩形两边中点的连线上,如图所示要求壁虎捉蚊子的最短距离,实际上是求在EF 上找一点P ,使PA+PB 最短,过A 作EF 的对称点A',连接A'B ,则A'B 与EF 的交点就是所求的点P .过B 作BM AA'⊥于点M ,在Rt A'MB ∆中,A'M 1.2=,BM 0.5=,①A'B 1.3==.①A'B AP PB =+,①壁虎捉蚊子的最短距离为1.3m .37.12m <≤【分析】首先确定不等式组的整数解,即可确定m 的范围.【详解】解:关于x 的不等式组1x x m><-⎧⎨⎩的解集是:﹣1<x <m , ①不等式组的整数解有2个①这2个整数解是:0,1,①12m <≤故答案为:12m <≤.【点睛】本题考查了不等式组的整数解,正确理解m 与1和2的大小关系是关键. 38.11【分析】如图,延长BE 交AC 于M ,利用三角形内角和定理,得出①3=①4,AB=AM=5,BM=2BE=6,再利用①4是①BCM 的外角,利用等腰三角形判定得到CM=BM ,利用等量代换即可求证.【详解】证明:如图,延长BE 交AC 于M①BE AE ⊥①①AEB=①AEM=90°①①3=90°-①1,①4=90°-①2①①1=①2①①3=①4①AB=AM=5①BE AE ⊥①BM=2BE=6①①4是①BCM 的外角①①4=①5+①C①3∠=∠ABC C①①ABC=①3+①5=①4+①5①3①C=①4+①5=2①5+①C①①5=①C①CM=BM=6①AC=AM+CM=AB+2BE=11.【点睛】本题考查学生对等腰三角形的判定与性质的理解和掌握,本题的关键是作好辅助线,延长BE 交AC 于M ,利用三角形内角和定理、三角形外角的性质,考查的知识点较多,综合性较强.39. 12 232n -【分析】(1)如图所示,设直线与x 轴的交点为D. 计算直线与x 轴y 轴的交点坐标,从而求出正方形111A B C O 边长,然后计算12B A 即可解决问题.(2)分别计算2S 和3S 的面积,然后研究它们面积之间存在的数量关系即可解决n S .。