机器学习原理及应用课程教学大纲
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《机器学习》课程教学大纲
课程代码:
课程名称:机器学习
开课学期:
学分/学时:3/48
课程类型:必修
适用专业/开课对象:
先修课程:
开课单位:
团队负责人:责任教授:
执笔人:核准院长:
一、课程的性质、目的与任务
《机器学习》是新工科专业中的一门非常实用的课程,该课程以机器学习算法为主题,从理解其中涉及的数学理论以及Python实现常见的机器学习算法方向出发,主要内容包括含有分类和回归问题、集成学习框架、无监督算法、神经网络与深度学习这几部分常见的机器学习模式,以及包括K-Means算法分类、朴素贝叶斯分类器、逻辑回归、线性回归和决策树及SVM分类、多层感知机模型和随机森林模型、生成式对抗网络、人脸识别等Python机器学习项目的实现方法。
本课程的目的与任务是使学生通过本课程的学习,从机器学习的基本数学知识入手,循序渐进的学习Python机器学习项目的开发,并通过引入实际案例的学习,帮助学生更好的系统性学习机器学习,做到理论与实践相结合,方法
与应用相结合。本课程除要求学生掌握基础机器学习算法的运用,更重要的是要求学生拥有分析问题、解决问题的能力和学以致用的思想,为更深入地学习和今后的实践打下良好的基础。
二、教学内容及教学基本要求
1. 机器学习概述(2学时)
了解机器学习的组成;了解不同划分标准下的机器学习算法;理解分类问题和回归问题;理解监督学习、半监督学习和无监督学习;了解生成模型和判别模型;了解模型评估方法;了解正则化处理;了解并使用Python的sklearn模块;
2. 逻辑回归及最大熵模型(2学时)
了解并掌握线性回归,包括一元线性回归和多元线性回归;理解广义线性回归,包括逻辑回归、多分类逻辑回归和交叉熵损失函数;理解最大熵模型;了解并掌握分类问题的评价指标;实现一个简单的逻辑回归案例;
3. k-近邻算法(2学时)
理解k-近邻算法的数学思想;掌握实现k-近邻算法所需要的一般手段,包括k值的选取、距离的度量和快速检索;实现简单的k-近邻算法,并自主对比不同参数下的表现;
4. 决策树(2学时)
理解决策树算法的思想;了解并掌握特征选取中的不同度量及数学含义,包括信息增益和信息增益比;了解并掌握决策树生成算法CART;理解决策树剪枝,包括预剪枝和后剪枝及之间的区别;实现简单的决策树算法完成分类问题;
5. 朴素贝叶斯分类器(2学时)
理解极大似然估计;理解并掌握朴素贝叶斯分类;了解拉普拉斯平滑;了解朴素贝叶斯分类器和极大似然估计之间的联系;实现简单的朴素贝叶斯分类器完成垃圾信息分类问题;
6. 支持向量机(2学时)
理解支持向量机的核心思想;理解最大间隔及超平面的数学定义;理解线性可分支持向量机的数学实现;理解线性支持向量机的数学实现;了解合页损失函数;理解并掌握核技巧解决线性不可分问题;了解并掌握SVM算法解决二分类问题和多分类问题;实现简单的SVM模型完成分类问题;
7. 集成学习(4学时)
理解回归问题中的偏差与方差;理解Bagging的思想和数学实现;了解随机森林与Bagging之间的区别;理解并掌握Boosting的思路和AdaBoost的算法实现;了解提升树及各自的特点,包括残差提升树、GBDT和XGBoost;了解Stacking;实现GBDT模型完成房价预测问题;
8. EM算法及其应用(4学时)
理解并掌握EM算法的算法流程;了解高斯混合模型,结合案例理解数学实现;了解并掌握隐马尔科夫模型,包括核心思想、观测概率的计算、估计隐马尔可夫模型的参数和隐变量序列预测;实现高斯混合模型完成分类问题;
9.降维(4学时)
了解降维的目的;理解主成分分析的数学实现;理解并掌握主成分分析算法的流程,实现鸢尾花数据降维;了解奇异值分解;了解并掌握奇异值分解的用途和几何解释;实现利用奇异值分解将图片压缩;
10.聚类(2学时)
了解聚类的目的;理解不同的距离度量;了解并掌握层次聚类的算法流程;理解并掌握K-Means聚类的算法流程;理解并掌握K-Medoids聚类的算法流程;理解并掌握DBSCAN的算法流程和含义;实现K-Means模型完成鸢尾花数据聚类;
11.神经网络与深度学习(6学时)
理解神经元模型和各种激活函数;掌握多层感知机的组成;理解损失函数的数学含义;了解并掌握反向传播算法,包括梯度下降法的算法流程及梯度消失问题的解决办法;理解卷积神经网络,包括卷积、池化和网络结构;理解循环神经网络,了解LSTM;理解生成对抗网络的组成和算法流程;了解图卷积神经网络的数学含义;实现卷积神经网络完成手写数字的识别;
12. 实验(16学时)
教学说明及教学基本要求见《机器学习》实验教学大纲。
三、教学方法
本课程教学方法以教师为主导的启发式讲授教学法为主,讨论(提问)式教学为辅,结合课外学习的教学方法。实验以学生动手实验为主,教师的启发式讲授教学法为辅,并结合讨论(提问)式教学,以及结合课外学习的教学方法。
1.本课程概念较多,因此教学形式以讲授方式为主。本课程拟采用多媒体PPT 的教学方法,增加课堂信息,浅显通俗地对概念、定义和原理进行解释,增加教学的直观性,教学过程中注意各个知识点的关联性,以使学生更好地理解课程内容。
2.对课程中关键性概念、设计思想方面的问题可辅以课堂讨论的形式。
3.为加强和落实动手能力的培养,每章课后应安排作业,帮助学生学习和应用。
四、课内外教学环节及基本要求
本课程共48个学时,其中理论32个学时,讲授16周(每周2学时);实验16个学时,讲授8周(每周2学时)。
课外学习要求:
1.做好课前预习,预习时以教材为主,了解相关的概念、定义、原理。预习中认真思考,以便带着问题主动地听课。
2.课后要复习,有余力的学生复习时还应阅读参考资料,认真整理课堂听课笔记。
3.要求学生课外自主学习,学生课外阅读的参考资料以本大纲所列参考资料为主。
五、考核内容及方式
本课程成绩由平时成绩和期末考核成绩组合而成,课程成绩以百分制计算,分配比例如下:
1.平时成绩占30%,主要考查作业的完成程度,理论课和实验课的出勤率,实验课的考试结果。其中作业占10%,实验占15%,出勤率占5%。
2.期末成绩占70%,采用考试的考核方式。考试采用闭卷形式,题型为选择题、正确/错误题、填空题、简答题,以及应用题。
六、持续改进
本课程根据学生作业、课堂讨论、平时考核情况和学生、教学督导等反馈,及时对教学中不足之处进行改进,并在下一轮课程教学中改进。