焦磷酸测序原理

合集下载

焦磷酸测序反应

焦磷酸测序反应
PyroMark Q24 Advanced CpG Reagents (4x24)
(Cat. No 970922 for CpG and long sequencing runs)
E-Mix (Enzyme Mix, lyophilized) S-Mix (Substrate Mix, lyophilized) dATPαS (1200µl) dGTP, dCTP, dTTP (660µl, 1 vial each) PyroMark Q24 Advanced Annealing Buffer* PyroMark Q24 Binding Buffer**
室温1400RPM振 摇5~10min
Pyro Q24 Adv 测序的工作流程
样品准备及上机运行
引物设计
PCR
程序设计
样品准备
程序设计——Assay
引物设计
PCR
程序设计
样品准备
设计dNTP分配顺序: 点击工具栏 New Assay图标;文件夹右 键>New Assay;File> New Assay; AQ Assay: 等位基因 SNP Assay:核苷酸多态性 CpG Assay:甲基化 SEQ Assay:未知序列测序
上机运行
结果分析
Pyro Q24 Adv 测序的工作流程
程序设计——Assay
引物设计
PCR
程序设计
AQ/SNP Assay设计:
Sequence to Analyze; Generate Dispensation Order; Dispensation Order
SEQ Assay 设计:
直接在Dispensation Order 输入
Pyro Q24 Adv 测序的工作流程

(医学PPT课件)pyrosequencing焦磷酸测序

(医学PPT课件)pyrosequencing焦磷酸测序

Fast
Simple
Dedicated Software
Accuracy
Sequence
Dedicated Reagent Kit
Flexibility
Efficient
Scalable
Multiplexing
Short Optimization Time
3’TAAGCCGAATG
16
Multiplexing
SNPs located on different fragments…... …..or on the same
17
Principle of multiplexing
Design of sequencing primers and dispensation order
Single nucleotide InDels (e.g. [C]) Multiple nucleotide InDels (e.g. [CGACGGT])
11
CYP2D6 - A2637del (Allele 3)
T/T
Sequence (reverse) : TCC[ T ]GTG
T/-
3
ref
ref
2,5
2
1,5
1
0,5
0 TA GCT G CA CG AT G
18
User creates a SNP/ mutation sequence database
Software calculates theoretical genotyping results
Each DNA fragment is assigned a color
-/-
12
Large deletion

焦磷酸测序技术的原理及应用

焦磷酸测序技术的原理及应用
维普资讯
SOI OE & TE EN CHNOLOOY NFORMATI I ON 术的原理及应用
葛剑徽
( 东南大学生物科学和医学工程系 209 ) 106 摘 要:焦磷酸测序技术是由4 种酶催化的同一反应体系中的酶级联化学发光反应 ,适于对已知的短序列的测序分析,其可重复 性和精确性能 与 S n e N a grD A测序法相媲美 ,而速度却大大的提高。焦磷酸测序技 术不需要凝胶 电泳 ,也不需要对 D A样品进行 N 任何特殊形式的标记和染色,具备同时对大量样品进行测序分析的能力。在单核苷酸多态性、病原微生物快速鉴定、病因学和法医

长 度很短 (0—3 b 2 0 p)的主要原因之一 。而 G a ia e h r d h等人对 z 此进行了变革1, 7 他们在反应体系中只加人 S — AT I p d P一 0 一S 【 , 而 不加入无用的 Rp d T — — ,提高了反应的效率 。 —AP S 大大降 低了d T 一0一 降解产物的浓度 , A P 【S 使得 A yae p rs酒性 能够维持
鉴定研究等方面有着越来越广泛 的应用。 美键词 : 焦磷酸测序技术 单核苷酸 多态性 中圈分类号 : Ql1 T l 文献标识码 : A AT - 焦磷酸测 序技 术(y o qec g是 由N r 等人于 t8年 有效地利用 ,也 能更有利于 阅读富含 T地区域。但 d P q— p rs uni ) e n ye n 7 9 发展起来的一种新 型的 酶联级联测序技 术[ 】 】 ,焦磷酸 测序法适 S是两种异构体 S - AT — — p d P S和 Rp A — — -d TP S的混合 p ATP — — S。为 了得到最佳反应效 于对 已知的短序列的测序分析 , 其可重复性和精确性能与S n e 物 ,聚 合酶 只能利用 S -d a gr D NA测序法相媲美 ,而速度却大大的提高。焦磷酸测序技术产 品具备同时对大量样 品进行测序分析的 能力 ,为大通量 、低成 本 、适时 、快速 、直观地进行单核苷酸多态性 (ige n ce sn l u l— oie p tmop i ,S s 研究和临床检验提供 了非常理想 t oy r hs d ms NP ) 的技术操 作平台 。 该技术进行改进后可 以满足上百个核苷酸序列 的测序工作 , 这样该技术 又可 以满 足对重要微生物的 鉴定与分 型 .特定 DNA片段的突变检测和克隆鉴定等方面的应用。 率 ,必需在 反应 体系中保持最佳浓度的 S - AT - p d P— S,与 此 同时 相应的 Rp d P~ C — - AT t S的浓度也在增加。而 d ATP - S A yae 被 p rs降解后的产物是 A y ae p rs 的抑制剂 , 随着反应 的进行 ,Ap r s 的活性会越来越低 ,这是焦磷酸测序技术测序 y ae

焦磷酸光化测序技术的基本原理及运用-人类学论文-生物学论文

焦磷酸光化测序技术的基本原理及运用-人类学论文-生物学论文

焦磷酸光化测序技术的基本原理及运用-人类学论文-生物学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:人类基因组计划(Human Genome Project, HGP)不仅极大地提高了人类对基因组和相关遗传信息的认识水平,而且促进了生命科学研究技术的发展和应用。

正是在这样的历史背景下,焦磷酸光化测序技术(pyrosequencing)由瑞典研究人员发明。

焦磷酸光化测序技术的基础原理是基于通过合成测序原理进行酶促反应的DNA测序方法,通过基于释放焦磷酸盐时的链式反应的可见光检测,即可获得一个特异的检测峰,峰值的高低和相匹配的碱基数成正比。

该技术可应用于DNA核苷酸序列和突变的检测、单核苷酸多态性的基因型的鉴定,以及DNA甲基化水平变化的分析等。

近年来,随着摄影器材和成像技术的快速发展,这项技术的原理是基于通过酶促反应而实时检测可见光,因此,有望在检测的敏感性方面得到更进一步的发展。

该文根据笔者在瑞典近三十年的工作经验和积累的文献,首先阐明焦磷酸光化测序的基本原理,然后介绍该技术的应用,最后讨论其发展前景。

关键词:人类基因组计划; 焦磷酸光化测序; 基因变异; 基因型; DNA甲基化;Abstract:The Human Genome Project(HGP)not only greatly improved the understanding of human genome and related genetic information, but also promoted the development of technologies in life science research. It was under this historical context that pyrosequencing was invented by Swedish researchers. Pyrosequencing is a method of DNA sequencing based on the sequencing by synthesis principle with enzymatic reactions, and relies on light detection based upon a chain reaction when pyrophosphate is released. The application of this technology involved the detection of DNA nucleotide sequences and mutations, the identification of genotypes of single nucleotide polymorphisms, the analysis of changes in DNA methylation levels etc. With the recent rapid development of photographic equipment and imaging technology, this technology is expected to have an increasing sensitivity in signal detection. Based upon the working experiences in Sweden for nearly 30 years and accumulated literature, this review first clarified the basic principles of pyrosequencing, then introduced the applications of this technology, and finally discussed its development prospects in the near future.Keyword:Human Genome Project; pyrosequencing; genetic variation; genotype; DNA methylation;1 、引言本世纪是生命科学的世纪。

焦磷酸测序

焦磷酸测序

2、复性:温度下降到50 ℃左右,两种引物 通过碱基互补配对与两条单链DNA结合
3、延伸:温度上升到72℃左右,溶液中的 四种脱氧核苷酸(A,T,C,G)在DNA聚合 酶的作用下,根据碱基互补配对原则合成新 的DNA链。
4、 循环特点:
① 上一链的只两 条(无引物存于两个子代DNA分 子中 ) ,其它子代DNA分子都为 双引物分子 ③ 处于两引物之间的DNA序列呈 指数增长1×2N
• 在80-100℃的温度范围内,DNA的 双螺旋结构将解体,双链分开,这个 过程称为变性;当温度缓慢降低后, 两条彼此分离的DNA链又会重新结合 成双链,这个过程称为复性。
三、复制方向(5’~3’)
1、DNA分子的3’端与5’端:-OH端 为3’; 磷酸基团的末端为5’ 。 2、DNA分子由两条反向平行的脱氧核 苷酸链根据碱基互补配对原则形成氢键 连接而成。
焦磷酸测序
峰形图
➢ 峰高与结合模板的dNTP数量成正比 ➢ 原始数据会被软件自动转化为序列信息
✓ 高温变性 ✓ 低温退火 ✓ 适温延伸
具有特异性强、灵敏度高、操 作简便、省时等特点
一、PCR反应的条件
1、一定的缓冲溶液; 2、DNA模板; 3、分别与两条模板链相结合的两种引物; 4、四种脱氧核苷酸:4种dNTP混合物; 5、耐热的DNA聚合酶; 6、控制温度(PCR重要条件)。
二、DNA变性和复性
基因测序
➢ 对DNA分子的核苷酸排列顺序的测 定,也就是测定组成DNA分子的A、 T、G、C的排列顺序。
A-T-T-C-A-C-G-G-T-AC
焦磷酸测序步骤
一 PCR 二 焦磷酸测序
PCR
➢ 聚合酶链式反应 ➢ 亦称之为DNA扩增,是 DNA复制的体外模拟

焦磷酸测序名词解释

焦磷酸测序名词解释

焦磷酸测序名词解释焦磷酸测序(Pyrosequencing)是一种基因测序技术,它可以快速、高效地测定 DNA 序列。

焦磷酸测序的原理是通过对 DNA 序列进行扩增,并对扩增产物进行测序,最终得到 DNA 序列信息。

焦磷酸测序主要应用于基因组学、遗传学、转录组学等领域,可以用于基因表达谱分析、基因突变检测、基因调控机制研究等。

相比其他基因测序技术,焦磷酸测序具有很多优势,如测序成本低、速度快、精度高等。

但是,焦磷酸测序也存在一些缺陷,如测序长度有限、难以测序复杂基因结构等。

尽管焦磷酸测序技术已经发展了多年,但它仍在不断演进和改进。

未来,焦磷酸测序技术将继续发展,并在更多领域得到应用。

1. 什么是焦磷酸测序焦磷酸测序(Pyrosequencing)是一种基因测序技术,它可以快速、高效地测定 DNA 序列。

焦磷酸测序的工作原理是通过扩增 DNA 序列,并对扩增产物进行测序,最终得到DNA 序列信息。

具体来说,焦磷酸测序技术利用了聚苯乙烯四氢呋喃(ATP)合成酶的特性,可以通过检测 ATP 合成过程中的光谱变化来确定 DNA 序列。

焦磷酸测序技术最初由来自瑞典斯德哥尔摩大学的科学家们开发,并于 1998 年由瑞典Pyrosequencing AB 公司商业化。

自此,焦磷酸测序技术就成为了一种广泛应用于基因组学、遗传学、转录组学等领域的技术手段。

2. 焦磷酸测序的原理焦磷酸测序(Pyrosequencing)是一种基因测序技术,它可以快速、高效地测定 DNA序列。

焦磷酸测序的工作原理是通过扩增 DNA 序列,并对扩增产物进行测序,最终得到DNA 序列信息。

焦磷酸测序的工作流程如下:1. 先将 DNA 样本进行扩增,得到扩增产物。

2. 然后将扩增产物与一种叫做反转录酶的蛋白质混合,使其能够将 DNA 序列转录成RNA 序列。

3. 将转录后的 RNA 序列与一种叫做聚苯乙烯四氢呋喃(ATP)合成酶的蛋白质混合,使其能够将 RNA 序列通过合成 ATP 来反应出 DNA 序列信息。

基因定量分析系统-焦磷酸测序 [兼容模式]

基因定量分析系统-焦磷酸测序 [兼容模式]
o
a/g C T G C C T A/G Heterozygote Single height ref peaks 单个高度的参考峰 Double height ref peak两倍高 度的参考峰
Genotype:基因型 2 half height peaks 两个半高峰
C
A
G
T
C
T
G
C
T
Negative controls阴性
For Internal Use Only
- 15 -
Sample & Assay Technologies
焦磷酸测序流程
实验设计 测序 PCR 试样预处理, 获得单链模板
结果分析
1-2h /96 sample
SNP: 10min/96 sample SQA:35 min/96 sample 15 min/96 sample
Homozygous G 纯合子G
GCTGCCT --------CGACGGA--GCTGCCT --------CGACGGA--A
G
C
T
A
G
Heterozygous A/G 杂合子A/G
ACTGCCT --------TGACGGA--GCTGCCT --------CGACGGA--A G C T A G
C
A
G
T
C
T
G
C
T
Negative controls阴性
For Internal Use Only -6-
Reference Peaks参考峰
Sample & Assay Technologies
Pyro技术原理
Pyrogram™ 的产生

焦磷酸测序

焦磷酸测序

焦磷酸测序:DNA序列分析技术是现代生命科学研究的核心技术之一,而双脱氧核苷酸链终止法(Sanger法)是目前使用最普遍的DNA序列分析技术。

在基于Sanger法的全自动DNA测序技术中,测序反应产生的DNA片段是荧光标记的,这些片段经过平板胶电泳或毛细管电泳得到分离,荧光分子被激发而发光,发出的光信号被检测系统检测。

Sanger法的优势在于可以分析未知DNA的序列,且单向反应的读序能力较长,目前的技术可以达到1000bp以上。

在实际工作中,很多情况需要对已知序列的DNA片段进行序列验证,而这种分析往往测几十bp就可以满足需要.在这种情况下,Sanger法未必是最合适的DNA序列分析技术。

新发展的Pyrosequencing(焦磷酸测序)技术应该是目前最适合这些应用的DNA序列分析技术。

Pyrosequencing技术是新一代DNA序列分析技术,该技术对DNA的序列分析无须进行电泳,DNA片段无须荧光标记,因此相应的仪器系统无须荧光分子的激发和检测装置.本文将就Pyrosequencing技术的原理和应用进行介绍和讨论.一、Pyrosequencing技术的原理首先通过PCR制备待测序的DNA模板,PCR的引物之一是用生物素标记的。

PCR产物和偶连avidin的Sepharose微珠孵育,DNA双链经碱变性分开;纯化得到含生物素标记引物的待测序单链,并和测序引物结合成杂交体。

Pyrosequencing技术是由四种酶催化的同一反应体系中的酶级连反应,四种酶是:DNA聚合酶(DNA polymerase)、硫酸化酶(ATP sulfurylase)、荧光素酶(luciferase)和双磷酸酶(apyrase).反应底物为adenosine 5′ phosphosulfate (APS)、荧光素(luciferin)。

反应体系还包括待测序DNA单链和测序引物。

反应体系配置好后就可以加入底物dNTP进行序列分析了。

焦磷酸测序技术原理及应用

焦磷酸测序技术原理及应用

焦磷酸测序(Pyrosequencing)技术焦磷酸测序技术(pyrosequencing)是由Nyren等人于1987年发展起来的一种新型的酶联级联测序技术,焦磷酸测序法适于对已知的短序列的测序分析,其可重复性和精确性能与SangerDNA测序法相媲美,而速度却大大的提高。

焦磷酸测序技术产品具备同时对大量样品进行测序分析的能力,为大通量、低成本、适时、快速、直观地进行DNA甲基化、SNP等单个/连续多个核苷酸变异进行实时定量检测提供了非常理想的技术操作平台。

一.焦磷酸测序技术原理焦磷酸测序技术是由4种酶催化的同一反应体系中的酶级联化学发光反应。

焦磷酸测序技术的原理是:引物与模板DNA退火后,在DNA聚合酶(DNA polymerase)、ATP硫酸化酶(ATP sulfurytase).荧光素酶(1uciferase)和三磷酸腺苷双磷酸酶(Apyrase)4种酶的协同作用下,将引物上每一个dNTP的聚合与一次荧光信号的释放偶联起来,通过检测荧光的释放和强度,达到实时测定DNA序列的目的。

焦磷酸测序技术的反应体系由反应底物、待测单链、测序引物和4种酶构成。

反应底物为5’-磷酰硫酸(adenosine-5’-phosphosulfat,APS)、荧光素(1uciferin)。

1.每次加入一个dNTP,在聚合酶作用下产生一个焦磷酸(PPi);2.硫酸化酶转化PPi为ATP,ATP使荧光素酶发出荧光(产生的光强度与结合的核苷数量成正比).3.多余的dNTP被降解,开始新一个循环.4.测序结果2.技术平台:QIAGEN公司PyroMark Q24,PyroMark Q48Autoprep,PyroMark Q96ID焦磷酸测序仪.3.焦磷酸测序实验流程4.焦磷酸测序技术应用1)DNA甲基化检测2)全基因组甲基化水平检测:LUMA法4.SNP定量检测/等位基因差异表达检测。

焦磷酸测序

焦磷酸测序

罗氏454测序系统中文名罗氏454测序系统测试原理基于焦磷酸测序法特点依靠生物发光对DNA序列进行检测测序流程支持各种不同来源的样品序列测定测试原理GS FLX系统的测序原理是基于焦磷酸测序法,依靠生物发光对DNA序列进行检测。

在DNA聚合酶,ATP硫酸化酶,荧光素酶和双磷酸酶的协同作用下,GSFLX系统将引物上每一个dNTP的聚合与一次荧光信号释放偶联起来。

通过检测荧光信号释放的有无和强度,就可以达到实时测定DNA序列的目的。

此技术不需要荧光标记的引物或核酸探针,也不需要进行电泳;具有分析结果快速、准确、高灵敏度和高自动化的特点。

测序流程1. 样品种类:GS FLX系统支持各种不同来源的样品序列测定,包括基因组DNA,PCR产物,BACs,cDNA及小分子RNA等,不同类型的样品测序都可在一台仪器上完成。

2. 样品DNA打断:样品如基因组DNA或BAC等被打断成300到800bp的片段;对于小分子的非编码RNA,这一步骤并不需要。

短的PCR产物则可利用GS融合引物扩增后直接进行步骤4。

3. 加接头:借助一系列标准的分子生物学技术,将3′端和5′端有特异性的A和B接头连接到DNA片段上。

接头也将在后继的纯化,扩增和测序步骤中用到。

图中仅仅显示了后续步骤中要用到的单链的DNA片段。

4. 一条DNA片段=一个磁珠:接头使成百上千条DNA片段分别结合到一个磁珠上,磁珠被单个油水混合小滴包被后,在这个小滴里进行独立的扩增,而没有其他的竞争性或者污染性序列的影响,从而实现了所有DNA片段进行平行扩增(emPCR)。

5. 一个磁珠=一条读长:经过emPCR扩增后,每个磁珠上的DNA片段拥有了成千上万个相同的拷贝。

经过富集以后,这些片段仍然和磁珠结合在一起,随后就可以放入到Pico Titer Plate板中供后继测序使用了。

6. 数据读取和分析工具:GS FLX系统提供三种不同的生物信息学工具对测序数据进行分析,适用于不同的应用。

焦磷酸测序

焦磷酸测序

焦磷酸测序:DNA序列分析技术是现代生命科学研究的核心技术之一,而双脱氧核苷酸链终止法(Sanger法)是目前使用最普遍的DNA序列分析技术。

在基于Sanger法的全自动DNA测序技术中,测序反应产生的DNA片段是荧光标记的,这些片段经过平板胶电泳或毛细管电泳得到分离,荧光分子被激发而发光,发出的光信号被检测系统检测。

Sanger法的优势在于可以分析未知DNA的序列,且单向反应的读序能力较长,目前的技术可以达到1000bp以上。

在实际工作中,很多情况需要对已知序列的DNA片段进行序列验证,而这种分析往往测几十bp就可以满足需要.在这种情况下,Sanger法未必是最合适的DNA序列分析技术。

新发展的Pyrosequencing(焦磷酸测序)技术应该是目前最适合这些应用的DNA序列分析技术。

Pyrosequencing技术是新一代DNA序列分析技术,该技术对DNA的序列分析无须进行电泳,DNA片段无须荧光标记,因此相应的仪器系统无须荧光分子的激发和检测装置.本文将就Pyrosequencing技术的原理和应用进行介绍和讨论.一、Pyrosequencing技术的原理首先通过PCR制备待测序的DNA模板,PCR的引物之一是用生物素标记的。

PCR产物和偶连avidin的Sepharose微珠孵育,DNA双链经碱变性分开;纯化得到含生物素标记引物的待测序单链,并和测序引物结合成杂交体。

Pyrosequencing技术是由四种酶催化的同一反应体系中的酶级连反应,四种酶是:DNA聚合酶(DNA polymerase)、硫酸化酶(ATP sulfurylase)、荧光素酶(luciferase)和双磷酸酶(apyrase).反应底物为adenosine 5′ phosphosulfate (APS)、荧光素(luciferin)。

反应体系还包括待测序DNA单链和测序引物。

反应体系配置好后就可以加入底物dNTP进行序列分析了。

焦磷酸测序

焦磷酸测序

Pyrosequencing是对短到中等长度的DNA序列样品进行高通量的、精确和重复性好的分析的技术。

第一步——测序引物和PCR扩增的、单链的DNA模板杂交,与酶—DNA聚合酶(DNA polymerase)、ATP硫酸化酶(ATP sulfurylase)、荧光素酶(luciferase)、三磷酸腺苷双磷酸酶(apyrase)—和底物—adenosine 5´ phosphosulfate (APS)、荧光素(luciferin)孵育。

第二步——四种dNTP(dATPS,dTTP,dCTP,dGTP)之一被加入反应体系,如与模扳配对(A—T,C—G),此dNTP与引物的末端形成共价键,dNTP的焦磷酸基团(PPi)释放出来。

注意:反应时deoxyadenosine alfa-thio triphosphate (dATPS)是dATP的替代物,因为DNA聚合酶对dATPS的催化效率比对dATP的催化效率高,且dATPS不是荧光素酶的底物。

第三步——ATP硫酸化酶在APS存在的情况下催化焦磷酸形成ATP,ATP驱动荧光素酶介导的荧光素向氧化荧光素(oxyluciferin)的转化,氧化荧光素发出与ATP量成正比的可见光信号。

ATP sulfurylasePPi+APS —————————> ATPLuciferase,ATPLuciferin —————————> oxyluciferin光信号由CCD摄像机检测并由软件pyrogram™反应为峰。

每个光信号的峰高与反应中掺入的核苷酸数目成正比。

第四步——ATP和未掺入的dNTP由三磷酸腺苷双磷酸酶降解,淬灭光信号,并再生反应体系。

第五步——然后加入下一种dNTP。

在以上步骤循环进行中,互补DNA链合成,序列从pyrogram™的信号峰中决定。

利用PSQ96系统进行测序分析可期望得到20-30个碱基的读序长度,但是和任何测序技术一样,最大读序长度取决于模板的二级结构、碱基组成、PCR产物质量和其他参数。

甲基化 焦磷酸测序

甲基化 焦磷酸测序

甲基化焦磷酸测序什么是甲基化焦磷酸测序?甲基化焦磷酸测序(Methylated CpG island recovery assay sequencing,MIRA-seq)是一种用于检测DNA甲基化的高通量测序技术。

DNA甲基化是一种重要的表观遗传修饰形式,它在调控基因表达、细胞分化和发育、肿瘤发生等过程中起着重要的作用。

MIRA-seq技术通过将DNA中的甲基化位点与未甲基化位点区分开来,从而实现对DNA甲基化状态的检测和定量。

该技术结合了焦磷酸测序(sequencing by synthesis,SBS)和甲基化特异性结合蛋白质(methyl-CpG binding domain protein,MBD)的结合能力,能够高效地富集甲基化位点,并通过高通量测序得到其精确位置和数量信息。

MIRA-seq的原理MIRA-seq主要包括以下几个步骤:1.DNA提取:从待检样品中提取总DNA。

2.修剪:将提取得到的总DNA进行修剪处理,去除低质量碱基。

3.甲基化富集:使用甲基化特异性结合蛋白质(MBD)结合甲基化位点,将甲基化的DNA片段富集出来。

未甲基化的DNA片段则不会与MBD结合。

4.PCR扩增:对富集得到的甲基化DNA片段进行PCR扩增,以得到足够多的DNA样本用于测序。

5.测序:对PCR扩增得到的甲基化DNA样本进行高通量测序。

可以选择不同的测序平台,如Illumina、PacBio等。

6.数据分析:将测序得到的数据进行比对和分析,确定甲基化位点的位置和数量信息。

MIRA-seq与其他甲基化检测方法的比较与传统的甲基化检测方法相比,MIRA-seq具有以下优势:1.高通量:MIRA-seq利用高通量测序技术进行数据获取,能够同时检测大量的甲基化位点。

2.高灵敏度:MIRA-seq能够将目标片段从复杂的DNA混合物中富集出来,提高了目标位点的检测灵敏度。

3.高准确性:MIRA-seq采用了PCR扩增和高通量测序技术,可以获得高质量的测序数据,提高了甲基化位点的检测准确性。

e7-3焦磷酸测序与深度测序

e7-3焦磷酸测序与深度测序

e7-3 焦磷酸测序与深度测序1. 焦磷酸测序的原理焦磷酸测序需要在同一反应体系中发生由4种特异性酶催化的级联化学发光反应,在每一轮测序反应中,只加入一种dNTP,若该dNTP与模板配对,聚合酶就可以将其参入到引物链的3′-端,并释放出等量的焦磷酸基团(PPi)。

PPi可转化为可见光信号,并最终转化为一个峰值。

每个峰值的高度与反应中参入的核苷酸数目成正比。

第一轮反应结束后,再加入下一种dNTP,继续下一轮DNA链的合成。

整个测序反应分为四步[图e7-3(1)]:图e7-3(1) 焦磷酸测序的原理(1)将单链DNA模板与其特异性的测序引物结合,然后加入四种酶的混合物,包括:DNA聚合酶、ATP硫酸化酶(A TP sulfurylase,APS)、荧光素酶(luciferase)和双磷酸酶(apyrase)。

反应底物有腺苷-5′-磷酸硫酸(adenosine-5′-phosphosulfate,APS)和荧光素(luciferin)。

(2)向反应体系中加入1种dNTP,如果它正好能和DNA模板的下一个碱基配对,就会在DNA 聚合酶的作用下,被添加到测序引物的3′-端,同时释放出1分子的PPi。

dA TP 由腺苷-α硫-三磷酸(deoxyadenosine alfa-thio triphosphate,dATPαS)替代,原因是DNA聚合酶对dATPαS的催化效率比对dA TP的催化效率高,且dATPαS不是荧光素酶的底物。

(3)在ATP硫酸化酶的作用下,生成的PPi可以和APS结合形成ATP;在荧光素酶的催化下,生成的ATP又可以和荧光素结合,形成氧化荧光素,同时产生可见光。

通过电荷耦合器(charge coupled device,CCD)光学系统,即可获得一个特异的检测峰,峰值的高低和相匹配的碱基数成正比。

(4)反应体系中剩余的dNTP和残留的少量A TP在双磷酸酶的作用下发生降解。

(5)加入另一种dNTP,按第2、3、4步反应重复进行,根据获得的峰值图即可读取准确的DNA序列信息。

焦磷酸测序专题知识讲座专家讲座

焦磷酸测序专题知识讲座专家讲座

Instrumentation
第6页
Pyrosequencing 系统平台
PyroMarkTM ID
Complete solution for Clinical Microbiology
Assay Design SW Sample Prep
Pyrosequencing
IdentiFireTM SW
Triple Double Single
T GG CC GGG T C A C G A GG CCC TA ...
1分子dNTP掺入,释放出1分子PPi,生成1分子ATP ,产生单位强度光信号
焦磷酸测序专题知识讲座
第29页
Pyrosequencing: Quantitative Accuracy Test
焦磷酸测序专题知识讲座
第33页
Pyrosequencing焦磷酸测 序系统卓越表现:
99.998% accurate
(based on analysis of 100,000 wells
with known genotype)
焦磷酸测序专题知识讲座
第34页
Integrated Software Package
C
T AG T A GA G
T/T
E
S
G
C
Байду номын сангаас
T AG T A GA G
C/T
Since Pyrosequencing shows polymorphisms
with sequence context, you can
always trust the validity of the
data.
E
S
G
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

焦磷酸测序原理
焦磷酸测序是一种常用的测序技术,通过测序仪器对DNA序列进行快速而准确的测定。

它是一种基于合成DNA链延伸的原理,可以在短时间内测定DNA序列。

焦磷酸测序的原理是利用DNA合成过程中的焦磷酸(dideoxynucleotide)来终止链延伸的反应。

焦磷酸是一种具有缺少3'-羟基的核苷酸,它会被DNA多聚酶插入到正在合成的DNA链中,但一旦焦磷酸被插入,DNA链延伸就会停止。

这样,每次加入一个不同的焦磷酸,就可以得到具有不同长度的DNA片段。

焦磷酸测序的步骤如下:
1. DNA模板制备:首先,需要从待测DNA样本中提取出目标DNA片段。

这可以通过PCR(聚合酶链反应)或其他方法来进行。

然后,将目标DNA片段加入到一个含有多聚酶和引物的反应混合物中。

2. DNA合成:在反应混合物中,加入四种不同的焦磷酸(ddATP、ddCTP、ddGTP和ddTTP),以及四种普通的核苷酸(dATP、dCTP、dGTP和dTTP)。

这样,当DNA链延伸到某个位置时,如果接下来要插入的是焦磷酸,链延伸就会终止。

3. 前序列扩增:在DNA合成过程中,每次加入的焦磷酸是不同的,因此会得到不同长度的DNA片段。

然后,将反应混合物分离成不同长度的DNA片段。

4. DNA片段分离:将反应混合物中的DNA片段进行电泳分离,根据片段大小的不同,可以得到一个DNA片段长度的分布图。

5. 数据分析:通过测序仪器对DNA片段进行测定,得到每个片段的长度信息。

根据这些信息,可以推导出DNA序列。

焦磷酸测序的优点是速度快、准确性高、适用于多种类型的样品。

它被广泛应用于基因组学、遗传学、生物医学研究等领域。

然而,焦磷酸测序也存在一些限制,例如不能测定长片段的DNA,且在测序过程中容易产生误差。

焦磷酸测序是一种基于合成DNA链延伸的原理,通过插入焦磷酸来终止链延伸的反应,从而快速而准确地测定DNA序列。

它在基因组学和生物医学研究中具有重要的应用价值,为我们深入了解DNA序列提供了有效的工具。

相关文档
最新文档