高考数学 专题07 直线与椭圆的解题方法(解析版)
专题07 切线问题-2020年高考数学多题一解篇(文理通用)(原卷版)

2020年高考数学二轮复习微专题(文理通用)多题一解之切线问题篇【知识储备】直线与曲线相切涉及到三个量:直线、曲线、切点,直线与圆相切也涉及到三个量:直线、圆、点。
因此它们有共同的命题方式:知“二”求“一”,即知道其中的两个量去求另外一个两,虽然考查的知识点不一样,但思维方式是一样的,常常利用切点既在曲线上又在直线上来建立方程解决问题,都在考查方程思想的应用,因此它们属于多题一解。
1.导数的概念(1)函数y=f(x)在x=x0处的导数:函数y=f(x)在x=x0处的瞬时变化率limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx。
(2)导数的几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数)。
相应地,切线方程为y-y0=f′(x0)·(x-x0)。
(3)曲线切线方程的求法:①以曲线上的点(x0,f(x0))为切点的切线方程的求解步骤:i、求出函数f(x)的导数f′(x);ii、求切线的斜率f′(x0);iii、写出切线方程y-f(x0)=f′(x0)(x-x0),并化简.②如果已知点(x1,y1)不在曲线上,则设出切点(x0,y0),解方程组001010()()y f xy yf xx x=⎧⎪-⎨'=⎪-⎩得切点(x0,y0),进而确定切线方程.2.直线与圆的位置关系与判断方法【走进高考】【例1】【2019年高考全国Ⅲ卷理、文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -=,1b =-【例2】【2019年高考全国Ⅰ卷文、理数】曲线23()e x y x x =+在点(0)0,处的切线方程为____________. 【例3】【2019年高考全国Ⅱ卷理数】已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e x y =的切线. 【例4】【2019年高考浙江卷】已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =___________,r =___________.【例5】【2019年高考全国Ⅰ卷文数】已知点A ,B 关于坐标原点O 对称,│AB │ =4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,│MA │−│MP │为定值?并说明理由.【例6】【2019年高考全国Ⅲ卷文数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点;(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.【典例分析】已知曲线的方程、切点坐标求切线方程【例】【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=【例】经过点(3,0)M 作圆22243x y x y +---0=的切线l ,则l 的方程为( )A .30x y +-=B .30x y +-=或3x =C .30x y --=D .30x y --=或3x =已知曲线的方程、切线方程求切点坐标【例】【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 .【例】【2014·高考江西卷】若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.已知切线方程、切点坐标求曲线方程【例】(2015·高考全国卷Ⅱ)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.【例】若圆心在x O 位于y 轴左侧,且与直线20x y += 相切,则圆O 的方程是A .22(5x y +=B .22(5x y +=C .22(5)5x y -+=D .22(5)5x y ++= 曲线的切线与函数性质相结合:【例】【2018全国卷Ⅰ】设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =曲线的切线与两直线位置关系相结合:【例】【2015陕西】设曲线x y e =在点(0,1)处的切线与曲线1(0)y x x=>上点P 处的切线垂直,则P 的坐标为 .【例】【2014江苏】在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 . 圆的切线与椭圆相结合:【2019年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .已知|2||OA OB =(O 为原点).(1)求椭圆的离心率;(2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC AP ∥,求椭圆的方程. 圆的切线与双曲线相结合:【例】已知双曲线的标准方程为22221x y a b -=,恰好与圆222x y a +=相切,则双曲线的渐近线方程为( )A .12y x =±B .2y x =±C .y x =D .y =【例】过双曲线22134x y -=的左焦点1F 引圆223x y +=的切线,切点为T ,延长1FT 交双曲线右支于P 点,M 为线段1F P 的中点,O 为坐标原点,则MO MT -=( )A .1B .2C .1+D .2圆的切线与抛物线相结合:【例】【2019年高考北京卷文数】设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________.【例】【2019年高考全国Ⅲ卷理数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点:(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.【跟踪练习】1.若3()3()21f x f x x x +-=++对x ∈R 恒成立,则曲线()y f x =在点()()1,1f 处的切线方程为A .5250x y +-=B .10450x y +-=C .540x y +=D .204150x y --=2.“1c =”是“直线0x y c ++=与圆()()22212x y -++=”相切的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件3.(2015广东)平行于直线210x y ++=且与圆225x y +=相切的直线的方程是A .250x y ++=或250x y +-=B .20x y +=或20x y +=C .250x y -+=或250x y --=D .20x y -=或20x y --=4.已知圆C 与直线0x y -=及40x y --=都相切,并且圆心在0x y +=上,则圆C 的方程为( )A .()()22112x y ++-= B .()()22112x y -++= C .()()22332x y -++=D .()()22332x y ++-=5.(2018全国卷Ⅱ)曲线2ln(1)=+y x 在点(0,0)处的切线方程为__________. 6.(2018全国卷Ⅲ)曲线(1)x y ax e =+在点(0,1)处的切线的斜率为2-,则a =____.7.(2016年全国Ⅱ)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b = .8.(2014安徽)若直线l 与曲线C 满足下列两个条件:)(i 直线l 在点()00,y x P 处与曲线C 相切;)(ii 曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .下列命题正确的是_________(写出所有正确命题的编号) ①直线0:=y l 在点()0,0P 处“切过”曲线C :3y x = ②直线1:-=x l 在点()0,1-P 处“切过”曲线C :2)1(+=x y③直线x y l =:在点()0,0P 处“切过”曲线C :x y sin = ④直线x y l =:在点()0,0P 处“切过”曲线C :x y tan = ⑤直线1:-=x y l 在点()0,1P 处“切过”曲线C :x y ln =.9.(2010江苏)函数2y x =(0x >)的图像在点2(,)k k a a 处的切线与x 轴交点的横坐标为1k a +,其中*k N ∈,若116a =,则135a a a ++= .10.(2016年全国Ⅲ) 已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =,在点(1,3)-处的切线方程是_________.11. 曲线21()ln 2f x x x x =+在点(1(1))f ,处的切线与直线10ax y --=垂直,则a =________. 12.【2019年高考天津文数】曲线cos 2xy x =-在点(0,1)处的切线方程为__________.13.过点A (4,1)的圆C 与直线0x y -=相切于点(2,1)B ,则圆C 的方程为 .14.如图,圆C 与x 轴正半轴交于两点A ,B (B 在A 的右方),与y 轴相切于点()0,1M ,已知23AB =.(1)求圆C 的标准..方程; (2)求圆C 在点A 处的切线l 的方程.15.在平面直角坐标系xOy 中,椭圆E :22221x y a b +=()0a b >>2,焦距为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l :13y k x =-E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且122k k =,M 是线段OC 延长线上一点,且:2:3MC AB =,Me的半径为MC ,,OS OT 是Me的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.C TS OM BAly。
高考数学专题《椭圆》习题含答案解析

专题9.3 椭圆1.(浙江高考真题)椭圆的离心率是( ) A B C .D .【答案】B 【解析】,选B . 2.(2019·北京高考真题)已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b【答案】B 【解析】 椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =, 故选B.3.(上海高考真题)设p 是椭圆2212516x y+=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A.4B.5C.8D.10【答案】D 【解析】因为椭圆的方程为2251162x y +=,所以225a =,由椭圆的的定义知12=210PF PF a +=,故选D .4.(2020·四川资阳�高三其他(理))已知椭圆C :()222210x y a b a b +=>>经过点(1,)2,且C 的离心率为12,则C 的方程是( ) A .22143x y +=B .22186x y +C .22142x y +=D .22184x y +=22194x y +=235933e ==练基础【答案】A 【解析】依题意,可得2131412a ⎧+=⎪=,解得2243a b ⎧=⎨=⎩,故C 的方程是22143x y +=. 故选:A5.(2020·河北枣强中学高三月考(文))已知椭圆C 的方程为()222210x y a b a b+=>>,焦距为2c,直线:4l y x =与椭圆C 相交于A ,B 两点,若2AB c =,则椭圆C 的离心率为( ) AB .34C .12D .14【答案】A 【解析】设直线与椭圆在第一象限内的交点为()x,y A,则4y x =由2AB c =,可知OA c ==c =,解得3x =,所以1,33A c c ⎛⎫⎪ ⎪⎝⎭把点A代入椭圆方程得到2222131c a b ⎫⎛⎫⎪ ⎪⎝⎭⎝⎭+=,整理得4281890e e -+=,即()()2243230e e --=, 因01e <<,所以可得e =故选A 项.6.(2021·全国高三专题练习)已知1F ,2F 分别是椭圆2211615y x+=的上、下焦点,在椭圆上是否存在点P ,使11PF ,121F F ,21PF 成等差数列?若存在求出1PF 和2PF 的值;若不存在,请说明理由.【答案】不存在;理由见解析. 【分析】假设存在点P 满足题设,解方程组1212121282112PF PF F F PF PF F F ⎧⎪+=⎪⎪=⎨⎪⎪+=⎪⎩得1PF 和2PF 的值,再检验即得解.【详解】解:假设存在点P 满足题设,则由2211615y x +=及题设条件有1212121282112PF PF F F PF PF F F ⎧⎪+=⎪⎪=⎨⎪⎪+=⎪⎩,即121288PF PF PF PF ⎧+=⎪⎨=⎪⎩,解得1244PF PF ⎧=+⎪⎨=-⎪⎩1244PF PF ⎧=-⎪⎨=+⎪⎩由2211615y x +=,得4a =,1c =. 则135a c PF a c -=≤≤+=,235a c PF a c -=≤≤+=.∵45+,43-, ∴不存在满足题设要求的点P .7.(2021·全国高三专题练习)设F 是椭圆22176x y +=的右焦点,且椭圆上至少有21个不同的点i P (1i =,2,…),使1FP ,2FP ,3FP ,…组成公差为d 的等差数列,求a 的取值范围.【答案】11,00,1010⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦【分析】分情况讨论等差数列是递增,还是递减,分别列出不等式求解范围. 【详解】解:注意到椭圆的对称性及i FP 最多只能两两相等,可知题中的等差数列可能是递增的,也可能是递减的,但不可能为常数列,即0d ≠.先考虑一般情形,由等差数列的通项公式有()11n FP FP n d =+-,(n *∈N ),因此11n FP FP n d-=+.对于椭圆2222x y a b +(0a b >>),其焦半径的最大值是a c +,最小值是a c -(其中c =.当等差数列递增时,有n FP a c ≤+,1FP a c ≥-. 从而()12n FP FP a c a c c -≤+--=. 再由题设知1c =,且21n ≥,故2211d ≤+,因此1010d <≤. 同理,当等差数列递减时,可解得1010d -≤<, 故所求d 的取值范围为11,00,1010⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦.8.(2021·全国高三专题练习)已知定点()2,2A -,点2F 为椭圆2212516x y +=的右焦点,点M 在椭圆上移动时,求2AM MF +的最大值;【答案】10+ 【分析】由椭圆定义,转化1121010A MF M MF AM AF ≤+=-++,即得解 【详解】如图所示,设1F 是左焦点,则()13,0F -,1121010A MF M MF AM AF ≤+=-++,而1AF ==∴10AM MF +≤当点F 1在线段AM 上时,等号成立,即AM MF +的最大值为109.(2021·云南师大附中高三月考(理))椭圆C : 22221(0)x y a b a b +=>>点A (2,1)在椭圆C 上,O 是坐标原点. (1)求椭圆C 的方程;(2)直线l 过原点,且l ⊥OA ,若l 与椭圆C 交于B , D 两点,求弦BD 的长度.【答案】(1)22182x y C +=:;(2 【分析】(1)利用离心率和点在椭圆上可求出椭圆的标准方程;(2)先利用直线垂直的判定得到直线l 的斜率和方程,联立直线和椭圆的方程,消元得到关于x 的一元二次方程,进而求出交点坐标,再利用两点间的距离公式进行求解. 【详解】(1)由e =得:12c b a =,, 又点(21)A ,在椭圆上, 所以224114a a +=,得a =b =所以椭圆的方程是22182x y C +=:.(2)直线OA 的方程是12y x =, 因为l OA ⊥,且l 过点O ,所以直线l 的方程是2y x =-, 与椭圆联立,得:2178x =,即x =所以B D ⎛ ⎝,,则||BD = 10.(2021·南昌大学附属中学高二月考)已知()()122,0,2,0F F -是椭圆()222210x y a b a b +=>>两个焦点,且2259a b =.(1)求此椭圆的方程;(2)设点P 在椭圆上,且123F PF π∠=,求12F PF △的面积.【答案】(1)此椭圆的方程为22195x y +=;(2)12F PF △. 【分析】(1)由已知条件求出椭圆中229,5a b ==即可得到椭圆方程;(2)结合椭圆的定义以及余弦定理的知识求出12PF PF ⋅的值,运用三角形面积公式即可求解. 【详解】(1)因为()()122,0,2,0F F -是椭圆()222210x y a b a b +=>>两个焦点,所以2224c a b =-=,① 又因为2259a b =,②所以由①②可得229,5a b ==,所以此椭圆的方程为22195x y +=.(2)设()12,,,0PF m PF n m n ==>, 由椭圆定义可知26m n a +==,③在12F PF △中,由余弦定理得()2222cos23m n mn c π+-=,即2216m n mn +-=,④由③④式可得,203mn =,所以121120sin 2323F PF S mn π==⨯=△. 即12F PF △.1.(2021·全国高二课时练习)已知椭圆()22122:10x y C a b a b +=>>与圆2222:C x y b +=,若在椭圆1C 上存在点P ,使得过点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是( ) A .1,12⎡⎫⎪⎢⎣⎭B .⎣⎦C .2⎫⎪⎢⎪⎣⎭ D .⎫⎪⎣⎭【答案】C 【分析】练提升若长轴端点P ',由椭圆性质:过P 的两条切线互相垂直可得45AP O α'=∠≤︒,结合sin baα=求椭圆离心率的范围. 【详解】在椭圆1C 的长轴端点P '处向圆2C 引两条切线P A ',P B ',若椭圆1C 上存在点P ,使过P 的两条切线互相垂直,则只需90AP B '∠≤︒,即45AP O α'=∠≤︒,∴sin sin 452b a α=≤︒=222a c ≤, ∴212e ≥,又01e <<,1e ≤<,即e ⎫∈⎪⎪⎣⎭. 故选:C2.(2020·湖北黄州�黄冈中学高三其他(文))已知椭圆C :22221x y a b+=(0a b >>)的左焦点为F ,经过原点的直线与C 交于A ,B 两点,总有120AFB ∠≥︒,则椭圆C 离心率的取值范围为______.【答案】10,2⎛⎤⎥⎝⎦【解析】如图,设椭圆右焦点为2F ,由对称性知2AFBF 是平行四边形,22AF F BFF ∠=∠, ∵120FB ∠≥︒,∴260FAF ∠≤︒,设AF m =,2AF n =,由椭圆定义知2m n a +=,则22()4m n mn a +≤=,当且仅当m n =时等号成立, 在2AFF 中,由余弦定理得2222222222222()244444cos 11122222m n FF m n mn c a c a c FAF e mnmn mn a+-+----∠===-≥-=-,又260FAF ∠≤︒,21cos 2FAF ∠≥,∴21122e -≥,解得102e <≤. 故答案为:10,2⎛⎤ ⎥⎝⎦.3.(2019·浙江高三月考)已知1F 、2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点2F 关于直线y x =对称的点Q 在椭圆上,则椭圆的离心率为______;若过1F 且斜率为(0)k k >的直线与椭圆相交于AB 两点,且113AF F B =,则k =___.【答案】21 【解析】由于点2F 关于直线y x =对称的点Q 在椭圆上,由于y x =的倾斜角为π4,画出图像如下图所示,由于O 是坐标原点,根据对称性和中位线的知识可知12QF F ∆为等腰直角三角形,且Q 为短轴的端点,故离心率πcos 42c a ==.不妨设,a b c t ===,则椭圆方程化为222220x y t +-=,设直线AB 的方程为10x my t m k ⎛⎫=-=> ⎪⎝⎭,代入椭圆方程并化简得()222220my mty t +--=.设()()1122,,,A x y B x y ,则12222mty y m +=+①,21222t y y m -⋅=+②.由于113AF F B =,故123y y =-③.解由①②③组成的方程组得1m =,即11,1k k==.故填:(1)2;(2)1.4.(2019·浙江温州中学高三月考)已知点P 在圆22680x y y +-+=上,点Q 在椭圆()22211x y a a+=>上,且PQ 的最大值等于5,则椭圆的离心率的最大值等于__________,当椭圆的离心率取到最大值时,记椭圆的右焦点为F ,则PQ QF +的最大值等于__________.5+【解析】22680x y y +-+=化简为22(3)1x y +-=,圆心(0,3)A .PQ 的最大值为5等价于AQ 的最大值为4设(,)Q x y ,即22(3)16x y +-≤,又()22211xy a a+=>化简得到222(1)670(11)a y y a y --+-≤-≤≤ 当1y =-时,验证等号成立 对称轴为231x a =-满足231,21x a a =≤-≤-故12a <≤22222211314c a e e a a a -===-≤∴≤故离心率最大值为2当2a =时,离心率有最大值,此时椭圆方程为2214x y +=,设左焦点为1F11141455PQ QF PQ QF AQ QF AF +=+-≤++-≤+=+当1,,,A F P Q 共线时取等号.5+5.(2020·浙江高三月考)已知P 是椭圆2222111x y a b +=(110>>a b )和双曲线2222221x y a b -=(220,0a b >>)的一个交点,12,F F 是椭圆和双曲线的公共焦点,12,e e 分别为椭圆和双曲线的离心率,若123F PF π∠=,则12e e ⋅的最小值为________.【答案】2. 【解析】根据椭圆与双曲线的对称性,不妨设点P 在第一象限,那么12PF PF >, 因为椭圆与双曲线有公共焦点,设椭圆与双曲线的半焦距为c , 根据椭圆与双曲线的定义,有:1212+=PF PF a ,1222-=PF PF a , 解得112=+PF a a ,212=-PF a a , 在12F PF ∆中,由余弦定理,可得: 2221212122cos3π=+-F F PF PF PF PF ,即222121212124()()()()=++--+-c a a a a a a a a , 整理得2221243=+c a a , 所以22121134+=e e ,又221212113+≥e e ,所以12≥e e .6.(2020·浙江高三其他)已知当动点P 到定点F (焦点)和到定直线0x x =的距离之比为离心率时,该直线便是椭圆的准线.过椭圆2214x y +=上任意一点P ,做椭圆的右准线的垂线PH (H 为垂足),并延长PH 到Q ,使得HQ =λPH (λ≥1).当点P 在椭圆上运动时,点Q 的轨迹的离心率的取值范围是___.【答案】⎫⎪⎪⎣⎭【解析】由题可知:椭圆2214x y +=的右准线方程为x =设()()00,,,P x y Q x y ,所以点03⎫⎪⎝⎭H y由λ=HQ PH ,所以λ=HQ PH0⎛⎫=- ⎪⎝⎭HQ x y y ,0,0⎫=⎪⎭PH x又λ=HQ PH ,所以00,0λ⎛⎫⎫-=- ⎪⎪⎝⎭⎭x y y x 所以00x y y ==由220014x y +=221=y 则点Q 221+=y 设点Q 的轨迹的离心率e则2222411144λλλ-==-e 由1λ≥,所以213144λ-≥ 所以234e ≥,则e ≥,又1e < 所以⎫∈⎪⎪⎣⎭e 故答案为:⎫⎪⎪⎣⎭7.(2021·全国高三专题练习)设椭圆的中心在坐标原点.长轴在z 轴上,离心率e =知点30,2P ⎛⎫⎪⎝⎭,求椭圆方程,并求椭圆上到点O 的距离的点的坐标.【答案】2214x y +=;12⎫-⎪⎭,12⎛⎫- ⎪⎝⎭.【分析】设以P 点为圆心的圆与椭圆相切,结合判别式等于零,参数值可确定,符合条件的两个点的坐标也可求得. 【详解】∵e =c a =2234c a =.∵222a c b -=,∴2214a b =,224a b =,∴设椭圆方程为222214x y b b+=①又∵30,2P ⎛⎫⎪⎝⎭,则可构造圆22372x y ⎛⎫+-= ⎪⎝⎭. ②此圆必与椭圆相切,如图所示,由①②整理得221933404y y b ++-=.∵椭圆与圆相切,∴219912404b ⎛⎫∆=--= ⎪⎝⎭,③ ∴1b =,则2a =.则所求椭圆方程为2214x y +=. ④把1b =代入方程③可得12y =-,把12y =-代入④得x =∴椭圆上到点P的点的坐标为12⎫-⎪⎭,12⎛⎫- ⎪⎝⎭.8.(2021·全国高三专题练习)椭圆22194x y +=的焦点为1F 、2F ,点P 为其上动点,当12F PF ∠为钝角时,求点P 横坐标的取值范围.【答案】⎛ ⎝⎭【分析】当12F PF ∠为直角时,作以原点为圆心,2OF 为半径的圆,若该圆与已知椭圆相交,则圆内的椭圆弧所对应的x 的取值范围即为所求点P 横坐标的取值范围. 【详解】22194x y +=的焦点为1(F、2F , 如图所示:A 、B 、C 、D 四点, 此时12F AF ∠、12F BF ∠、12F CF ∠、12F DF ∠都为直角, 所以当角的顶点P 在圆内部的椭圆弧上时,12F PF ∠为钝角,由22221945x y x y ⎧+=⎪⎨⎪+=⎩,解得x x ==. 因为椭圆和圆都关于坐标轴对称,所以点P横坐标的取值范围是⎛ ⎝⎭.9.(2021·全国)(1)已知1F ,2F 是椭圆22110064x y +=的两个焦点,P 是椭圆上一点,求12PF PF ⋅的最大值;(2)已知()1,1A ,1F 是椭圆225945x y +=的左焦点,点P 是椭圆上的动点,求1PA PF +的最大值和最小值.【答案】(1)100;(2)1||||PA PF +的最大值为66 【分析】(1)利用椭圆定义和基本不等式求12||||PF PF ⋅的最值;(2)求1||||PA PF +的最值时,利用椭圆的定义将其转化为求2||||PF PA -的最值,显然当P ,A ,2F 三点共线时取得最值. 【详解】(1)∵10a =,1220||||PF PF =+≥,当且仅当12||||PF PF =时取等号, ∴12||||100PF PF ⋅≤,当且仅当12||||PF PF =时取等号, ∴12||||PF PF ⋅的最大值为100.(2)设2F 为椭圆的右焦点,225945x y +=可化为22195x y+=, 由已知,得12||||26PF PF a +==,∴12||6||PF PF =-, ∴()12||||6||||PA PF PF PA +=--.①当2||||PA PF >时,有220||||||PA PF AF <-≤,等号成立时,1||||PA PF +最大,此时点P 是射线2AF 与椭圆的交点,1||||PA PF +的最大值是6②当2||||PA PF <时,有220||||||PF PA AF <-≤,等号成立时,1||||PA PF +最小,此时点P 是射线2F A 与椭圆的交点,1||||PA PF +的最小值是6 综上,可知1||||PA PF +的最大值为6610.(2021·贵州高三月考(文))已知椭圆C :22221(0)x y a b a b +=>>,直线l经过椭圆C 的右焦点F 与上顶点,原点O 到直线l. (1)求椭圆C 的方程;(2)斜率不为0的直线n 过点F ,与椭圆C 交于M ,N 两点,若椭圆C 上一点P 满足263MN OP =,求直线n 的斜率. 【答案】(1)2212x y +=;(2)±1.【分析】(1)由已知条件可得c a bc a⎧=⎪⎪⎨⎪=⎪⎩再结合222a b c =+,可求出,a b ,从而可求得椭圆方程,(2)设直线n 的方程为1x my =+,设点()()1122,,,M x y N x y ,将直线方程与椭圆方程联立方程组,消去x ,利用根与系数的关系,结合263MN OP =表示出点P 的坐标,再将其坐标代入椭圆方程中可求得直线n 的斜率 【详解】(1)由题意可得椭圆C 的右焦点(c,0)F 与上顶点(0,)b , 所以直线l 为1x yc b+=,即0bx cy bc +-=,因为椭圆C ,原点O 到直线0bx cy bc +-=所以c a bc a⎧=⎪⎪⎨⎪=⎪⎩且222a b c =+,解得1b c==,a =所以椭圆C 的方程为2212x y +=.(2)因为直线n 的斜率不为0,所以可设直线n 的方程为1x my =+.设点()()1122,,,M x y N x y ,联立方程22220,1,x y x my ⎧+-=⎨=+⎩得()222210my my ++-=,则12122221,22m y y y y m m +=-=-++. 因为263MN OP=,所以))2121P x x y y ⎫--⎪⎪⎝⎭, 将点P 的坐标代入椭圆方程得1212223x x y y +=-, 即()()121221123my my y y +++=-,解得21m =, 故直线n 的斜率为±1.1.(2021·全国高考真题(理))设B 是椭圆2222:1(0)x y C a b a b +=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )练真题A.⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C.⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C 【分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出 PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可. 【详解】设()00,P x y ,由()0,B b ,因为 2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32b b c-≤-,即 22b c ≥时,22max 4PB b =,即 max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即0e <≤当32b b c ->-,即22b c <时, 42222max b PB a b c=++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立. 故选:C .2.(2018·全国高考真题(理))已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A且斜率为6的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A .23B .12C .13D .14【答案】D 【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以PF 2=F 1F 2=2c, 由AP斜率为6得,222tan sin cos PAF PAF PAF ∠=∴∠=∠=, 由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以22214,54sin()3c a c e a c PAF =∴==+-∠,故选D. 3.(2019·全国高考真题(文))已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为( )A.2212x y += B.22132x y +=C.22143x y +=D.22154x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得2n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 4.(2019·全国高考真题(文))设12F F ,为椭圆22:+13620x y C =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(【解析】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△,解得0y =, 22013620x ∴+=,解得03x =(03x =-舍去),M 的坐标为(.5.(2021·江苏高考真题)已知椭圆()2222:10x y C a b a b +=>>. (1)证明:3ab ;(2)若点9,10M ⎛ ⎝⎭在椭圆C 的内部,过点M 的直线l 交椭圆C 于P 、Q 两点,M 为线段PQ 的中点,且OP OQ ⊥. ①求直线l 的方程; ②求椭圆C 的标准方程.【答案】(1)证明见解析;(20y -=;②2213x y +=.【分析】(1)由ba=可证得结论成立; (2)①设点()11,P x y 、()22,Q x y ,利用点差法可求得直线l 的斜率,利用点斜式可得出所求直线的方程;②将直线l 的方程与椭圆C 的方程联立,列出韦达定理,由OP OQ ⊥可得出0OP OQ ⋅=,利用平面向量数量积的坐标运算可得出关于2b 的等式,可求出2b 的值,即可得出椭圆C 的方程. 【详解】(1)c e a ===b a ∴=,因此,3a b ;(2)①由(1)知,椭圆C 的方程为222213x y b b+=,即22233x y b +=,当9,10⎛ ⎝⎭在椭圆C的内部时,22293310b ⎛⎛⎫+⋅< ⎪ ⎝⎭⎝⎭,可得b > 设点()11,P x y 、()22,Q x y,则121292102x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,所以,1212y y x x +=+ 由已知可得22211222223333x y b x y b ⎧+=⎨+=⎩,两式作差得()()()()1212121230x x x x y y y y +-++-=, 所以()12121212133y y x x x x y y -+⎛=-=-⨯= -+⎝ 所以,直线l方程为910y x ⎛⎫-=- ⎪ ⎭⎝⎭,即y = 所以,直线l0y --=;②联立)222331x y by x ⎧+=⎪⎨=-⎪⎩,消去y 可得221018930x x b -+-=.()222184093120360b b ∆=--=->, 由韦达定理可得1295x x +=,2129310b x x -=,又OP OQ ⊥,而()11,OP x y =,()22,OQ x y =,))()12121212121211433OP OQ x x y y x x x x x x x x ∴⋅=+=--=-++ ()22293271566055b b --+-===,解得21b =合乎题意,故2233a b ==,因此,椭圆C 的方程为2213x y +=.6. (2020·天津高考真题)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点. (Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【答案】(Ⅰ)221189x y +=;(Ⅱ)132y x =-,或3y x =-. 【解析】(Ⅰ)椭圆()222210x y a b a b+=>>的一个顶点为()0,3A -,∴3b =,由OA OF=,得3c b ==,又由222a b c =+,得2228313a =+=,所以,椭圆的方程为221189x y +=;(Ⅱ)直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在, 设直线AB 的斜率为k ,则直线AB 的方程为3y kx ,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+. 将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++, 所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭, 因为P 为线段AB 的中点,点A 的坐标为()0,3-,所以点P 的坐标为2263,2121kk k -⎛⎫ ⎪++⎝⎭, 由3OC OF =,得点C 的坐标为()1,0,所以,直线CP 的斜率为222303216261121CPk k k k k k --+=-+-+=, 又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =. 所以,直线AB 的方程为132y x =-或3y x =-.。
专题07(与椭圆相关的定值、定点问题)(教案)-高考数学中平面解析几何知识点提优(江苏专用)

例题1.(2020湖南,21题)已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a >1)的左、右顶点,G 为E 的上顶点,AG ⃗⃗⃗⃗⃗ ⋅GB ⃗⃗⃗⃗⃗ =8.P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点. 【分析】(1)根据椭圆的几何性质,可写出A 、B 和G 的坐标,再结合平面向量的坐标运算列出关于a 的方程,解之即可;(2)设C(x 1,y 1),D(x 2,y 2),P(6,t),然后分两类讨论:①t ≠0,设直线CD 的方程为x =my +n ,写出直线PA 和PB 的方程后,消去t 可得3y 1(x 2−3)=y 2(x 1+3),结合x 229+y 22=1,消去x 2−3,可得(27+m 2)y 1y 2+m(n +3)(y 1+y 2)+(n +3)2=0,然后联立直线CD 和椭圆的方程,消去x ,写出韦达定理,并将其代入上式化简整理得关于m 和n 的恒等式,可解得n =32或−3(舍),从而得直线CD 过定点(32,0);②若t =0,则直线CD 的方程为y =0,只需验证直线CD 是否经过点(32,0)即可. 本题考查椭圆方程的求法、直线与椭圆的位置关系中的定点问题,涉及分类讨论的思想,有一定的计算量,考查学生的逻辑推理能力和运算能力,属于难题. 思维升华解析几何包含两个主要问题,即已知曲线求方程和已知方程研究曲线的性质.对解析几何的复习,要在牢固掌握与解析几何有关的概念及几何性质的基础上,把上述两个问题作为复习和研究的重点,把握坐标法思想的精髓.这类题型的方法可以是设直线,运用韦达定理求出坐标之间的关系,过椭圆上一点的直线与椭圆相交是可以解出另一个交点的,而过椭圆外一点的直线与椭圆相交只能找到两个交点坐标的关系,不适宜解,再运用题目的条件整体化简。
也可以是设点的坐标,运用坐标在椭圆上或直线上整体代入化简,到底设什么需要根据题目条件,因题而异。
(完整版)直线和椭圆的交点问题

线和椭圆的交点问题
1.若直线与椭圆恒有公共点,求实数m的取值范围。
解法一:由可得,
∴即∴且
解法二:直线恒过一定点(0,1)当时,椭圆焦点在轴上,短半轴长,要使直线与椭圆恒有交点,则即
当时,椭圆焦点在轴上,长半轴长可保证直线与椭圆恒有交点,即综述:且
解法三:直线恒过一定点(0,1)要使直线与椭圆恒有交点,即要保证定点(0,1)在椭圆内部,即∴且
二、直线截椭圆所得弦长问题
2.已知椭圆,直线交椭圆于AB,求AB的长.
解法一:设A、B两点坐标分别为和
将直线方程代入椭圆方程
得关于的方程
∴
又。
∴AB长为。
解法二:∵直线过(1,0)点,即椭圆的右焦点∴
∴AB长为。
评注:法二利用了椭圆的焦半径公式,椭圆上一点到左、右焦点的距离分别为和。
三、直线截椭圆所得弦中点有关问题
3.已知椭圆方程为,求:
(1)中点为(4,1)的弦所在直线的方程;
(2)斜率为3的直线与椭圆相交所得弦的中点的轨迹;
(3)过点(4,3)的直线与椭圆相交所得弦的中点的轨迹。
解析:设直线与椭圆交点为,,则
①②
①-②得③
(1)∵弦中点坐标为(4,1),∴,,
则由③式得直线斜率为
∴直线方程为,即。
(2)设弦中点坐标为,则由③式可得④又∵∴
,即轨迹方程为。
(3)同(2),可知轨迹上的点是方程④的解
而,∴⑤
将⑤代入④可得当时,直线
与椭圆相交于和,中点为(4,0),经验证,也在上述椭圆上∴轨迹方程为。
高考数学:点差法(解析版)

第2讲 点差法一.解答题(共9小题)1.过椭圆221164x y +=内一点(2,1)M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程.【解答】解:设直线与椭圆的交点为1(A x ,1)y 、2(B x ,2)y (2,1)M 为AB 的中点 124x x ∴+=,122y y +=又A 、B 两点在椭圆上,则2211416x y +=,2222416x y += 两式相减得22221212()4()0x x y y -+-= 于是12121212()()4()()0x x x x y y y y +-++-=∴12121212414()422y y x x x x y y -+=-=-=--+⨯,即12AB k =-, 故所求直线的方程为11(2)2y x -=--,即240x y +-=.2.已知中心在原点,一焦点为(0,4)F 的椭圆被直线:32l y x =-截得的弦的中点横坐标为12,求此椭圆的方程.【解答】解:椭圆被直线:32l y x =-截得的弦的中点横坐标为12, 可得宗坐标为113222y =⨯-=-,可得中点11(,)22M -.设椭圆标准方程为:22221(0)y x a b a b+=>>.设直线l 与椭圆相交于点1(A x ,1)y ,2(B x ,2)y .则2211221y x a b +=,2222221y x a b +=,相减可得:1212121222()()()()0y y y y x x x x a b+-+-+=, 又121y y +=-,121x x +=,12123y y x x -=-, ∴22310a b-+=,又2224a b -=, 联立解得224a =,28b =.∴椭圆的标准方程为:221248y x +=.3.已知曲线22:3412C x y +=,试确定m 的取值范围,使得对于直线4y x m =+,曲线C 上总有不同两点关于该直线对称.【解答】解:设椭圆上关于直线4y x m =+对称的点1(A x ,1)y ,2(B x ,2)y , 则根据对称性可知线段AB 被直线4y x m =+垂直平分. 可得直线AB 的斜率14k =-,直线AB 与椭圆有两个交点,且AB 的中点0(M x ,0)y 在直线4y x m =+, 故可设直线AB 的方程为14y x n =-+,联立方程组22341214x y y x n ⎧+=⎪⎨=-+⎪⎩, 整理可得2213816(3)0x nx n -+-= 12813n x x ∴+=,1212124()2413n y y x x n +=-++=, △226441316(3)0n n =-⨯⨯->,n << 0413n x ∴=,01213n y =,代入4y x m =+, 413n m =-,∴m <<, m ∴的范围就是(. 4.已知椭圆C 过点(2P,,且与椭圆2214013x y +=有相同的焦点. (1)求椭圆C 的标准方程;(2)若椭圆C 上存在A 、B 两点关于直线:l y x m =+对称,求实数m 的取值范围. 【解答】解:(1)由椭圆2214013x y +=,可得c =(±.设椭圆C 的标准方程为22221(0)x y a b a b +=>>,则22222481a b c a b c ⎧+=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得251a =,224b =.∴椭圆C 的标准方程为2215124x y +=.(2)设直线AB 的方程为:y x t =-+,1(A x ,1)y ,2(B x ,2)y ,线段AB 的中点0(M x ,0)y .联立2215124y x t x y =-+⎧⎪⎨+=⎪⎩,化为:222534174080x tx t -+-=.∴△22234100(17408)0t t =-->,化为:275t <.123425tx x ∴+=,2121740825t x x -=. 12017225x x t x +∴==,00825ty x t =-+=. ∴8172525t t m =+, 解得259mt =-,代入275t <.可得m <<∴实数m的取值范围是m <<5.在ABC ∆中,||BC 是||AB 、||AC 的等差中项,且(1,0)B -,(1,0)C . (1)求顶点A 的轨迹G 的方程;(2)若G 上存在两点关于直线:2l y x m =+对称,求实数m 的取值范围. 【解答】解:(1)由题意,||||2||4||AB AC BC BC +==>,∴顶点A 的轨迹G 是以B ,C 为焦点的椭圆(除去A ,B ,C 共线),且2a =,1c =,b ∴∴顶点A 的轨迹G 的方程221(2)43x y x +=≠±;(2)解:设关于直线2y x m =+对称的点为A ,B ,则AB 的方程为12y x n =-+,与椭圆方程联立,消去y 整理得:22444120x nx n -+-=. 即22(3)0x nx n -+-=.由△224120n n =-+>,得22n -<<. 设1(A x ,1)y ,2(B x ,2)y , 则12x x n +=,2123x x n =-, 再设AB 的中点为0(C x ,0)y , 则02n x =, 又C 在12y x n =-+上,得034y n =,C 在2y x m =+上,得3242nn m =⨯+,即4n m =-.则222m -<-<,得1122m -<<.6.已知双曲线2212y x -=,经过点(1,1)M 能否作一条直线l ,使直线l 与双曲线交于A 、B ,且M 是线段AB 的中点,若存在这样的直线l ,求出它的方程;若不存在,说明理由. 【解答】解:设过点(1,1)M 的直线方程为(1)1y k x =-+或1x =(1)当k 存在时有22(1)112y k x y x =-+⎧⎪⎨-=⎪⎩得2222(2)(22)230k x k k x k k -+--+-= (1) 当直线与双曲线相交于两个不同点,则必有 △2222(22)4(2)(23)0k k k k k =----+->,32k <又方程(1)的两个不同的根是两交点A 、B 的横坐标 21222()2k k x x k -∴+=-又(1,1)M 为线段AB 的中点 ∴1212x x +=即22122k k k k -==- 2k ∴=,使220k -≠但使△0<因此当2k =时,方程(1)无实数解故过点(1,1)m 与双曲线交于两点A 、B 且M 为线段AB 中点的直线不存在.(2)当1x =时,直线经过点M 但不满足条件, 综上,符合条件的直线l 不存在7.已知椭圆2222:1(0)x y C a b a b+=>>的一个顶点为(2,0)A,离心率为2.(1)求椭圆C 的方程;(2)经过点(1,1)M 能否作一条直线l ,使直线l 与椭圆交于A ,B 两点,且使得M 是线段AB 的中点,若存在,求出它的方程;若不存在,说明理由. 【解答】解:(1)椭圆C 的顶点为(2,0)A ,2a ∴=,又c e a ==c ∴=2b a =-=,∴椭圆C 的方程为:22142x y +=.(2)当过点M 的直线斜率不存在时,显然不成立, 设直线的斜率为k ,则其方程为: 1(1)y k x -=-,联立方程组221(1)142y k x x y -=-⎧⎪⎨+=⎪⎩,消去y 并整理,得2222(12)4()2420k x k k x k k +--+--=,∴△222216()4(12)(242)0k k k k k =--+-->,整理,得 23210k k ++>,k R ∴∈,21224()12k k x x k -+=+, 且点(1,1)M 是线段AB 的中点, ∴224()212k k k -=+,12k ∴=-,故存在这样的直线,此时,直线方程为: 11(1)2y x -=--,即230x y +-=,∴存在符合条件的直线,它的方程230x y +-=.8.已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点与抛物线28y x =的焦点重合,点在C 上(Ⅰ)求C 的方程;(Ⅱ)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M ,证明:OM 的斜率与直线l 的斜率的乘积为定值.【解答】解:(Ⅰ)抛物线28y x =的焦点为(2,0),由题意可得:2c =,即224a b -=,又点在椭圆C 上,可得22231a b+=,解得:28a =,24b =, 2224c a b =-=,C ∴的方程:22184x y +=;⋯(5分)(Ⅱ)证明:设直线l 的方程为(,0)y kx b k b =+≠,1(A x ,1)y ,2(B x ,2)y ,⋯(6分)22184y kx bx y =+⎧⎪⎨+=⎪⎩,整理得:222(12)4280k x kbx b ++--=, 由韦达定理可知:122412kbx x k +=-+,⋯(8分)即有AB 的中点M 的横坐标为1222212M x x kb x k +==-+,纵坐标为222()1212M kb by k b k k =-+=++,⋯(10分) 直线OM 的斜率为12M OM M y k x k ==-,即有12OM k k =-, 故OM 的斜率与直线l 的斜率的乘积为定值.⋯(12分)9.已知椭圆2222:1(0)x y E a b a b +=>>的离心率是2,直线12y =被椭圆E .(Ⅰ)求椭圆E 的方程;(Ⅱ)若椭圆E 两个不同的点A ,B 关于直线12y mx =+对称,求实数m 的取值范围.【解答】解:(Ⅰ)由题设得,椭圆过点1)2,所以2222231124a b ca abc ⎧+=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得a =1b =,1c =, 所以椭圆的方程为2212x y +=;(Ⅱ)由(Ⅰ)易得知0m ≠,可设直线AB 的方程为1y x b m=-+. 由22112y x b m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩消去y 得222112()102b x x b m m +-+-=因为直线12y mx =+与椭圆2212x y +=有两个不同交点,所以224220b m=-++>① 设1(A x ,1)y ,2(B x ,2)y ,由韦达定理知,12242mbx x m +=+, 于是线段AB 的中点坐标为2222(,)22mb m bM m m ++,将其代入直线12y mx =+,解得2222m b m +=-② 将②代入①,得4211304mm --<,解得m <m >. 因此,所求实数m 的取值范围6(,(,)3-∞+∞.。
专题07 定点问题(解析版)

专题七 定点问题(平民解法,暴力美学)一、考情分析2019全国III 理21中出现,虽然以往全国卷高考题中出现较少,是圆锥曲线部分的小概率考点.但是在2019年出现,所以在2020年备考一定引起重视。
定点问题是比较常见出题形式,题目属于中等偏简单题目。
采取常规平民化解法,计算是暴力美学范畴。
化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.二、经验分享【直线过定点的解题策略】(1)如果题设条件没有给出这个定点,那么,我们可以这样思考:由于这个定点对符合要求的一些特殊情况必然成立,那么我们根据特殊情况先找到这个定点,再证明这个点与变量无关.(2)直接推理、计算,找出参数之间的关系,并在计算过程中消去部分参数,将直线方程化为点斜式方程,从而得到定点.(3)若直线方程含多个参数并给出或能求出参数满足的方程,观察直线方程特征与参数方程满足的方程的特征,即可找出直线所过顶点坐标,并带入直线方程进行检验.注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算. 【重要结论】1.动直线l 过定点问题,设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0).2.动曲线C 过定点问题,引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.3.“弦对定点张直角”-圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220ba b a y b a b a x +-+-. 4.只要任意一个限定AP 与BP 条件(如=•BP AP k k 定值,=+BP AP k k 定值),直线AB 依然会过定点三、题型分析(一)圆锥曲线中直线方程过未知定点例1.【2017新课标Ⅰ】已知椭圆C :22221(0)x y a b a b +=>>,四点1(1,1)P ,2(0,1)P ,3(P =-,4P =中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.【解析】(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由222211134a b a b +>+知,C 不经过点1P ,所以点2P 在C 上. 因此222111314b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎪⎨=⎪⎩.故C 的方程为2214x y +=.(2)设直线2P A 与直线2P B 的斜率分别为1k ,2k ,如果l 与x 轴垂直,设l :x t =,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t,(t,.则121k k +==-,得2t =,不符合题设.从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设11(,)A x y ,22(,)B x y ,则122841kmx x k +=-+,21224441m x x k -=+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+1212122(1)()kx x m x x x x +-+=. 由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-. 当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)【变式训练1】.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)考试数学试题】已知 抛物线()2:20C y px p >=的焦点为F ,直线4y =与y 轴的交点为P ,与抛物线C 的交点为Q ,且2QF PQ =.(1)求p 的值;(2)已知点(),2T t -为C 上一点,M ,N 是C 上异于点T 的两点,且满足直线TM 和直线TN 的斜率之和为83-,证明直线MN 恒过定点,并求出定点的坐标.【答案】(1)4;(2)证明过程见解析,直线MN 恒过定点()1,1--. 【解析】(1)设()0,4Q x ,由抛物线定义知02QF p x =+, 又2QF PQ =,0PQ x =,所以0022p x x =+,解得02p x =, 将点,42p Q ⎛⎫⎪⎝⎭代入抛物线方程,解得4p =. (2)由(1)知,C 的方程为28y x =,所以点T 坐标为1,22⎛⎫- ⎪⎝⎭,设直线MN 的方程为x my n =+,点()11,M x y ,()22,N x y ,由28x my ny x=+⎧⎨=⎩ 得2880y my n --=,264320m n +=>∆.所以128y y m +=,128y y n =-, 所以121222121222221111228282MT NT k k y y y y y y x x +++++=+=+----()()1212121288228+3224y y y y y y y y -=-++--+= 6432881643m n m -==---+,解得1n m =-,所以直线MN 的方程为1(1)x m y +=+,恒过定点()1,1--.【名师点睛】本题考查抛物线的定义,直线与抛物线相交,直线过定点问题,属于中档题. (1)设Q 点坐标,根据抛物线的定义得到Q 点横坐标,然后代入抛物线方程,得到p 的值;(2)()11,M x y ,()22,N x y ,直线和曲线联立,得到1212,y y y y +,然后表示出MT NT k k +,化简整理,得到m 和n 的关系,从而得到直线MN 恒过的定点.【变式训练2】. 【2019全国III 理21】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积. 【解析】(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=- ,整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -.故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+.由2122y tx xy ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()2121212122,1,121x x t x x y y t x x t +==-+=++=+,()212||21AB x t =-==+.设12,d d 分别为点D ,E到直线AB的距离,则12d d ==.因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+设M 为线段AB 的中点,则21,2M t t ⎛⎫+ ⎪⎝⎭.由于EM AB ⊥u u u u r u u u r ,而()2,2EM t t =-u u u u r ,AB u u u r 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,S =3;当1t=±时,S =因此,四边形ADBE的面积为3或(二)圆锥曲线中直线方程过已知定点例2.【2017新课标Ⅱ】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足 为N ,点P 满足NP =u u u r u u u r.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u r u u u r.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【解析】(1)设(,)P x y ,00(,)M x y ,则0(,0)N x ,0(,)NP x x y =-u u u r ,0(0.)NM y =u u u u r.由NP =u u u r u u u r得 0x x =,02y y =.因为00(,)M x y 在C 上,所以22122x y +=. 因此点P 的轨迹方程为222x y +=.(2)由题意知(1,0)F -.设(3,)Q t -,(,)P m n ,则(3,)OQ t =-u u u r ,(1,)PF m n =---u u u r ,33OQ PF m tn ⋅=+-u u u r u u u r, (,)OP m n =u u u r ,(3,)PQ m t n =---u u u r,由1OP PQ ⋅=u u u r u u u r 得2231m m tn n --+-=,又由(1)知222m n +=,故330m tn +-=.所以0OQ PF ⋅=u u u r u u u r ,即OQ PF ⊥u u u r u u u r.又过点P 存在唯一直线垂直与OQ ,所以过点P 且垂直于OQ 的直线l过C 的左焦点F .【变式训练1】.【2016年山东】平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>>的离心率是2,抛物线E :22x y =的焦点F 是C 的一个顶点. (Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S , 求12S S的最大值及取得最大值时点P 的坐标. 【解析】(Ⅰ) 由离心率是23,有224=b a ,又抛物线y x 2=2的焦点坐标为)21,0(F ,所以21=b ,于是1=a ,所以椭圆C 的方程为1=4+22y x .(Ⅱ) (i )设P 点坐标为2,),(0)2m P m m >(,由y x 2=2得x y =′,所以E 在点P 处的切线l 的斜率为m ,因此切线l 的方程为2=2m mx -y ,设),(),,(2211y x B y x A ,),(00y x D ,将2=2m mx -y 代入1=4+22y x ,得0=1+4)4+12322-m x m -x m (. 于是23214+14=+m m x x ,232104+12=2+=m m x x x ,又2200222(14)m m y mx m -=-=+, 于是 直线OD 的方程为x m -y 41=.联立方程x m -y 41=与m x =,得M 的坐标为1(,)4M m -. 所以点M 在定直线41=y -上.(ii )在切线l 的方程为2=2m mx -y 中,令0x =,得22m y =-,即点G 的坐标为2(0,)2m G -,又2(,)2m P m ,1(0,)2F ,所以4)1+(=×21=S 21m m GF m ;再由32222(,)412(41)m m D m m -++,得)1+4(8)1+2(=1+4+2×41+2×21=S 2222322m m m m m m m于是有 222221)1+2()1+)(1+4(2=S S m m m .令1+2=2m t ,得222111+2=)1+)(21(2=S S t -t t t t - 当21=1t时,即2=t 时,21S S 取得最大值49.此时21=2m ,22=m ,所以P 点的坐标为)41,22P(. 所以21S S 的最大值为49,取得最大值时点P的坐标为1()24P .【变式训练2】.已知抛物线)>0(2:2p px y C =的焦点为F ,A 为C 上异于原点的任意一点,过点A 的 直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有FA FD =,当点A 的横坐标为3时,ADF ∆为正 三角形。
直线与椭圆交点问题

直线与椭圆交点问题求解方法求解直线与椭圆交点的方法有多种,下面介绍两个常用的方法。
1. 代入法代入法是一种简单而常用的方法,通过将直线方程代入椭圆方程中,求解出交点的坐标。
假设直线的方程为 $y = kx + b$,椭圆的方程为$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,代入直线方程得到:$\frac{x^2}{a^2} + \frac{(kx + b)^2}{b^2} = 1$将上式整理为二次方程,解出两个 $x$ 坐标,再代入直线方程求得对应的 $y$ 坐标,即可得到交点的坐标。
这种方法简单直接,适用于一般的直线与椭圆交点求解问题。
2. 参数方程法参数方程法是一种更精确的求解方法,通过引入参数来表示直线上的点坐标,并将其代入椭圆方程求解。
假设直线的参数方程为 $x = x_0 + mt$,$y = y_0 + nt$,其中$(x_0, y_0)$ 是直线上的一点,$(m, n)$ 是直线的方向向量。
椭圆的方程仍然为 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$。
将参数方程代入椭圆方程,得到一个含有参数$t$ 的二次方程。
解出 $t$ 后,代入参数方程求得对应的 $x$ 和 $y$ 坐标,即可得到交点的坐标。
参数方程法对于直线的位置和方向有更精确的描述,适用于特定的直线与椭圆交点求解问题。
应用场景直线与椭圆交点问题在几何学、数学建模和计算机图形学等领域有广泛的应用。
在几何学中,直线与椭圆的交点问题可以帮助我们求解直线在椭圆上的切点,进而计算直线与椭圆的切线方程和切线长度。
在数学建模中,直线与椭圆交点问题可以应用于物理模型和工程问题中,例如轨迹分析、光学设计和电子电路等。
在计算机图形学中,直线与椭圆交点问题可以帮助我们进行图形的绘制和计算,例如绘制椭圆上的点、计算直线与椭圆的交叉区域等。
结论直线与椭圆交点问题是一个重要的几何问题,涉及到直线与椭圆的交点求解方法和应用场景。
专题07 切线问题-2020年高考数学多题一解篇(文理通用)(解析版)

2020年高考数学二轮复习微专题(文理通用)多题一解之切线篇【知识储备】直线与曲线相切涉及到三个量:直线、曲线、切点,直线与圆相切也涉及到三个量:直线、圆、点。
因此它们有共同的命题方式:知“二”求“一”,即知道其中的两个量去求另外一个两,虽然考查的知识点不一样,但思维方式是一样的,常常利用切点既在曲线上又在直线上来建立方程解决问题,都在考查方程思想的应用,因此它们属于多题一解。
1.导数的概念(1)函数y=f(x)在x=x0处的导数:函数y=f(x)在x=x0处的瞬时变化率limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx。
(2)导数的几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数)。
相应地,切线方程为y-y0=f′(x0)·(x-x0)。
(3)曲线切线方程的求法:①以曲线上的点(x0,f(x0))为切点的切线方程的求解步骤:i、求出函数f(x)的导数f′(x);ii、求切线的斜率f′(x0);iii、写出切线方程y-f(x0)=f′(x0)(x-x0),并化简.②如果已知点(x1,y1)不在曲线上,则设出切点(x0,y0),解方程组001010()()y f xy yf xx x=⎧⎪-⎨'=⎪-⎩得切点(x0,y0),进而确定切线方程.2.直线与圆的位置关系与判断方法【走进高考】【例1】【2019年高考全国Ⅲ卷理、文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -=,1b =-【答案】D【解析】∵e ln 1,x y a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=,将(1,1)代入2y x b =+,得21,1b b +==-.故选D .【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a ,b 的等式,从而求解,属于常考题型.【例2】【2019年高考全国Ⅰ卷文、理数】曲线23()e x y x x =+在点(0)0,处的切线方程为____________. 【答案】30x y -=【解析】223(21)e 3()e 3(31)e ,x x x y x x x x x '=+++=++所以切线的斜率0|3x k y ='==,则曲线23()e x y x x =+在点(0,0)处的切线方程为3y x =,即30x y -=.【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求. 【例3】【2019年高考全国Ⅱ卷理数】已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e x y =的切线. 【答案】(1)函数()f x 在(0,1)和(1,)+∞上是单调增函数,证明见解析;(2)见解析.【解析】(1)f (x )的定义域为(0,1)U (1,+∞).因为212()0(1)f 'x x x =+>-,所以()f x 在 (0,1),(1,+∞)单调递增.因为f (e )=e 110e 1+-<-,22222e 1e 3(e )20e 1e 1f +-=-=>--,所以f (x )在(1,+∞)有唯一零点x 1,即f (x 1)=0.又1101x <<,1111111()ln ()01x f x f x x x +=-+=-=-, 故f (x )在(0,1)有唯一零点11x .综上,f (x )有且仅有两个零点.(2)因为0ln 01e x x -=,故点B (–ln x 0,01x )在曲线y =e x 上.由题设知0()0f x =,即0001ln 1x x x +=-,故直线AB 的斜率0000000000111ln 111ln 1x x x x x k x x x x x x +---===+-----.曲线y =e x 在点001(ln ,)B x x -处切线的斜率是01x ,曲线ln y x =在点00(,ln )A x x 处切线的斜率也是01x ,所以曲线ln y x =在点00(,ln )A x x 处的切线也是曲线y =e x 的切线.【名师点睛】本题考查了利用导数求已知函数的单调性、考查了曲线的切线方程,考查了数学运算能力. 【例4】【2019年高考浙江卷】已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =___________,r =___________. 【答案】2-【解析】由题意可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入直线AC 的方程得2m =-,此时||r AC ===【名师点睛】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线AC 的斜率,进一步得到其方程,将(0,)m 代入后求得m ,计算得解.解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.【例5】【2019年高考全国Ⅰ卷文数】已知点A ,B 关于坐标原点O 对称,│AB │ =4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,│MA │−│MP │为定值?并说明理由. 【答案】(1)Me的半径=2r 或=6r ;(2)存在,理由见解析.【解析】(1)因为Me 过点,A B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线+=0x y 上,且,A B关于坐标原点O 对称,所以M 在直线y x =上,故可设(, )M a a . 因为Me与直线x +2=0相切,所以Me的半径为|2|r a =+.由已知得||=2AO ,又MO AO ⊥u u u u r u u u r,故可得2224(2)a a +=+,解得=0a 或=4a . 故Me的半径=2r 或=6r .(2)存在定点(1,0)P ,使得||||MA MP -为定值. 理由如下:设(, )M x y ,由已知得Me的半径为=|+2|,||=2r x AO .由于MO AO ⊥u u u u r u u u r,故可得2224(2)x y x ++=+,化简得M 的轨迹方程为24y x =.因为曲线2:4C y x =是以点(1,0)P 为焦点,以直线1x =-为准线的抛物线,所以||=+1MP x . 因为||||=||=+2(+1)=1MA MP r MP x x ---,所以存在满足条件的定点P .【名师点睛】本题考查圆的方程的求解问题、圆锥曲线中的定点定值类问题.解决定点定值问题的关键是能够根据圆的性质得到动点所满足的轨迹方程,进而根据抛物线的定义得到定值,验证定值符合所有情况,使得问题得解.【例6】【2019年高考全国Ⅲ卷文数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点;(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.【答案】(1)见详解;(2)22542x y ⎛⎫+-= ⎪⎝⎭或22522x y ⎛⎫+-= ⎪⎝⎭. 【解析】(1)设()111,,,2D t A x y ⎛⎫- ⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=-.整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -.故直线AB 的方程为2210tx y -+=.所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+.由2122y tx xy ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()21212122,121x x t y y t x x t +=+=++=+.设M 为线段AB 的中点,则21,2M t t ⎛⎫+ ⎪⎝⎭.由于EM AB ⊥u u u u r u u u r,而()2,2EMt t =-u u u u r ,AB u u u r与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,||EM u u u u r =2,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭;当1t =±时,||EM =u u u u r ,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭.【名师点睛】此题第一问是圆锥曲线中的定点问题和第二问是求圆的方程,属于常规题型,按部就班地求解就可以,思路较为清晰,但计算量不小. 【典例分析】已知曲线的方程、切点坐标求切线方程【例】【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=【答案】C【解析】2cos sin ,y x x '=-Q π2cos πsin π2,x y =∴=-=-'则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=.故选C .【名师点睛】本题考查利用导数工具研究曲线的切线方程,渗透了直观想象、逻辑推理和数学运算素养.采取导数法,利用函数与方程思想解题.学生易在非切点处直接求导数而出错,首先证明已知点是否为切点,若是切点,可以直接利用导数求解;若不是切点,设出切点,再求导,然后列出切线方程. 【例】经过点(3,0)M 作圆22243x y x y +---0=的切线l ,则l 的方程为( )A .30x y +-=B .30x y +-=或3x =C .30x y --=D .30x y --=或3x =【答案】C【解析】22222430(1)(2)8x y x y x y +---=⇒-+-=,所以圆心坐标为(1,2),半径为, 当过点()3,0M 的切线存在斜率k ,切线方程为(3)30y k x kx y k =-⇒--=,圆心到它的距离为1k =⇒=,即切线方程为30x y --=,当过点()3,0M 的切线不存在斜率时,即3x =,显然圆心到它的距离为2≠3x =不是圆的切线.因此切线方程为30x y --=,故本题选C.【名师点睛】本题考查了求圆的切线.本题实际上是过圆上一点求切线,所以只有一条.解答本题时,设直线l 存在斜率k ,点斜式设出方程,利用圆心到直线l 的距离等于半径求出斜率k ,再讨论直线l 不存在斜率时,是否能和圆相切,如果能,写出直线方程,综合求出切线方程. 已知曲线的方程、切线方程求切点坐标【例】【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 . 【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标.设点()00,A x y ,则00ln y x =.又1y x'=,当0x x =时,01y x '=,则曲线ln y x =在点A 处的切线为0001()y y x x x -=-, 即00ln 1x y x x -=-,将点()e,1--代入,得00e1ln 1x x ---=-,即00ln e x x =,考察()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >,且()ln 1H x x '=+,当1x >时,()()0,H x H x '>单调递增,注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =,此时01y =, 故点A 的坐标为()e,1.【名师点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.【例】【2014·高考江西卷】若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.【解析】y ′=ln x +x ·1x =1+ln x ,直线2x -y +1=0的斜率为2.设P (m ,n ),则1+ln m =2,解得m =e ,所以n =eln e =e.即P (e ,e).答案:(e ,e) 已知切线方程、切点坐标求曲线方程【例】(2015·高考全国卷Ⅱ)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.【解析】法一:∵y ′=1+1x,∴y ′|x =1=2,∴y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),∴y =2x -1.又切线与曲线y =ax 2+(a +2)x +1相切,当a =0时,y =2x +1与y =2x -1平行,故a ≠0,由⎩⎪⎨⎪⎧y =ax 2+?a +2?x +1,y =2x -1,得ax 2+ax +2=0,∵Δ=a 2-8a =0,∴a =8.法二:∵y ′=1+1x,∴y ′|x =1=2,∴y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),∴y =2x -1,又切线与曲线y =ax 2+(a +2)x +1相切,当a =0时,y =2x +1与y =2x -1平行,故a ≠0.∵y ′=2ax +(a +2),∴令2ax +a +2=2,得x =-12,代入y =2x -1,得y =-2,∴点⎝ ⎛⎭⎪⎫-12,-2在y =ax 2+(a +2)x +1的图象上,故-2=a ×⎝ ⎛⎭⎪⎫-122+(a +2)×⎝ ⎛⎭⎪⎫-12+1,∴a =8. 答案:8【例】若圆心在x O 位于y 轴左侧,且与直线20x y += 相切,则圆O 的方程是A .22(5x y +=B .22(5x y +=C .22(5)5x y -+=D .22(5)5x y ++= 【答案】D【解析】设圆心(,0)(0)O a a <,则=,即||5a =,解得5a =-,所以圆O 的方程为22(5)5x y ++=.【小结】1.注意区分曲线在某点处的切线和曲线过某点的切线。
椭圆(知识点讲解)高考数学一轮复习(新教材新高考)(解析版)

专题9.3 椭圆(知识点讲解)【知识框架】【核心素养】1.结合椭圆的定义,考查应用能力,凸显逻辑推理、数学运算的核心素养.2.结合椭圆的定义、简单的几何性质、几何图形,会求椭圆方程及解与几何性质有关的问题,凸显数学运算、直观想象的核心素养.【知识点展示】一.椭圆的定义及其应用1.椭圆的概念(1)文字形式:在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.(2)代数式形式:集合①若,则集合P为椭圆;1212P={M||MF|+|MF|=2a|FF|=2c.}a c>②若,则集合P 为线段; ③若,则集合P 为空集.2.椭圆的标准方程:焦点在轴时,;焦点在轴时,二.椭圆的标准方程 1. 椭圆的标准方程:(1)焦点在轴,;(2)焦点在轴,.2.满足条件:三.椭圆的几何性质椭圆的标准方程及其几何性质条件图形标准方程范围对称性曲线关于轴、原点对称 曲线关于轴、原点对称 顶点 长轴顶点 ,短轴顶点长轴顶点 ,轴顶点焦点a c =a c <x 2222=1(a>b>0)x y ab +y 2222=1(a>b>0)y x a b+x 2222+=1(a>b>0)x y a by 2222y +=1(a>b>0)x a b22222000a c a b c a b c >,=+,>,>,>22222000a c a b c a b c >,=+,>,>,>2222+=1(a>b>0)x y a b 2222y +=1(a>b>0)x a bx a y b ≤≤,x b y a ≤≤,,x y ,x y (),0a ±()0,b ±()0,a ±(),0b ±(),0c ±()0,c ±焦距离心率,其中通径过焦点垂直于长轴的弦叫通径,其长为四.直线与椭圆的位置关系 1.直线与椭圆位置关系的判断(1)代数法:把椭圆方程与直线方程联立消去y ,整理得到关于x 的方程Ax 2+Bx +C =0.记该一元二次方程根的判别式为Δ,①若Δ>0,则直线与椭圆相交;②若Δ=0,则直线与椭圆相切;③若Δ<0,则直线与椭圆相离.(2)几何法:在同一直角坐标系中画出椭圆和直线,利用图象和性质可判断直线与椭圆的位置关系. 2.直线与椭圆的相交长问题:(1)弦长公式:设直线与椭圆有两个公共点则弦长公式为或 (2)弦中点问题,适用“点差法”. (3)椭圆中点弦的斜率公式若M (x 0,y 0)是椭圆的弦AB (AB 不平行y 轴)的中点,则有k AB ·k OM =22b a-,即k AB =2020b x a y -.【常考题型剖析】题型一:椭圆的定义及其应用例1.(2021·全国高考真题)已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C 【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答222122()F F c c a b -==() 0,1ce a∈=c =22a b -22b a1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-2222+=1(a>b>0)x y a b案. 【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .例2. (2021·全国)已知椭圆22:143x y C +=的右焦点为F ,P 为椭圆C 上一动点,定点(2,4)A ,则||||PA PF -的最小值为( ) A .1 B .-1 C 17 D .17-【答案】A 【分析】设椭圆的左焦点为F ',得到||4PF PF '=-,得出||||||4PA PF PA PF '-=+-,结合图象,得到当且仅当P ,A ,F '三点共线时,||PA PF '+取得最小值,即可求解.【详解】设椭圆的左焦点为F ',则||4PF PF '+=,可得||4PF PF '=-, 所以||||||4PA PF PA PF '-=+-,如图所示,当且仅当P ,A ,F '三点共线(点P 在线段AF '上)时, 此时||PA PF '+取得最小值,又由椭圆22:143x y C +=,可得(1,0)F '-且(2,4)A ,所以2(21)165AF '=++=,所以||||PA PF -的最小值为1. 故选:A .例3.(2023·全国·高三专题练习)已知P 是椭圆221259x y +=上的点,1F 、2F 分别是椭圆的左、右焦点,若1212PF PF PF PF ⋅=⋅12,则12F PF △的面积为( )A .33B .3C 3D .9【答案】A【分析】由已知可得12F PF ∠,然后利用余弦定理和椭圆定义列方程组可解. 【详解】因为121212121212cos 1cos 2PF PF F PF PF PF F PF PF PF PF PF ⋅∠⋅==∠=⋅⋅,120F PF π∠≤≤所以123F PF π∠=,又224c a b =-=记12,PF m PF n ==,则222464210m n mn c m n a ⎧+-==⋅⋅⋅⎨+==⋅⋅⋅⎩①②,②2-①整理得:12mn =,所以12113sin 12332322F PF S mn π==⨯⨯= 故选:A【规律方法】1.应用椭圆的定义,可以得到结论:(1)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2.2.对焦点三角形的处理方法,通常是运用.3.椭圆定义的应用技巧(1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及弦长、最值和离心率等. (2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题. 题型二:椭圆的标准方程例4.(2022·全国·高考真题(文))已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为( )A .2211816x y +=B .22198x yC .22132x y +=D .2212x y +=【答案】B【分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 的等量关系式,即可得解.【详解】解:因为离心率22113c b e a a ==-=,解得2289b a =,2289=b a ,12,A A 分别为C 的左右顶点,则()()12,0,,0A a A a -,B 为上顶点,所以(0,)B b .所以12(,),(,)=--=-BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆的方程为22198x y .12F PF △⎧⎪⎨⎪⎩定义式的平方余弦定理面积公式2212222121212(2a)212S θθ∆⎧⎪=⎪=-⋅⎨⎪⎪=⋅⎩⇔(|PF|+|PF|)(2c)|PF|+|PF||PF||PF|cos |PF||PF|sin故选:B.例5.(2019·全国高考真题(文))已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B两点.若222AF F B =││││,1AB BF =││││,则C 的方程为( )A.2212x y += B.22132x y +=C.22143x y +=D.22154x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得3n =. 22224233312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得32n =.22224233,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 例6.【多选题】(2023·全国·高三专题练习)点1F ,2F 为椭圆C 的两个焦点,若椭圆C 上存在点P ,使得1290F PF ∠=︒,则椭圆C 方程可以是( )A .221259x y +=B .2212516x y +=C .221189x y +=D .221169x y +=【答案】AC【分析】设椭圆上顶点为B ,由题满足1290F BF ∠≥︒,即2221212BF BF F F +≤,可得222a b ≥,即可得出答案.【详解】设椭圆方程为22221x y a b+=()0a b >>,设椭圆上顶点为B ,椭圆C 上存在点P ,使得1290F PF ∠=︒, 则需1290F BF ∠≥︒, 2221212BF BF F F ∴+≤,即2224a a c +≤,222c a b =-,222424a a b -≤, 则222a b ≥,所以选项AC 满足. 故选:AC. 【总结提升】1.用待定系数法求椭圆标准方程的一般步骤是: (1)作判断:根据条件判断焦点的位置.(2)设方程:焦点不确定时,要注意分类讨论,或设方程为 . (3)找关系:根据已知条件,建立关于的方程组. (4)求解,得方程.2.(1)方程与有相同的离心率.(2)与椭圆共焦点的椭圆系方程为,恰当运用椭圆系方程,可使运算简便. 题型三:椭圆的几何性质例7.(2022·全国·高考真题(理))椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A 3B 2C .12D .13【答案】A【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b+=,将1y 用1x 表示,整理,再结合离心率公式即可得解.221mx ny +=(0)0m n m n ≠>,>且a b c m n 、、或、2222y +=1x a b 2222y +=(>0)x a bλλ2222+=1(a>b>0)x y a b 22222+=1(a>b>0,0)x y b k a k b k+>++【详解】解:(),0A a -, 设()11,P x y ,则()11,Q x y -, 则1111,AP AQ y y k k x a x a==+-+, 故21112211114AP AQy y y k k x a x a x a ⋅=⋅==+-+-+, 又2211221x y a b +=,则()2221212b a x y a-=, 所以()2221222114b a x a x a -=-+,即2214b a =, 所以椭圆C 的离心率22312c b e a a ==-=. 故选:A .例8.(2023·全国·高三专题练习)画法几何的创始人——法国数学家加斯帕尔·蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆.我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆C :()222210x y a b a b +=>>的蒙日圆方程为2222x y a b +=+,1F ,2F 分别为椭圆C 的左、右焦点.5M 为蒙日圆上一个动点,过点M 作椭圆C 的两条切线,与蒙日圆分别交于P ,Q 两点,若MPQ 面积的最大值为36,则椭圆C 的长轴长为( ) A .25B .45C .3D .43【答案】B【分析】利用椭圆的离心率可得5a c =,分析可知PQ 为圆2223x y b +=的一条直径,利用勾股定理得出222236MP MQ PQ c +==,再利用基本不等式即可求即解【详解】因为椭圆C 的离心率55c e a ==,所以5a c =. 因为222a b c =+,所以2b c =,所以椭圆C 的蒙日圆的半径为223a b c +=. 因为MP MQ ⊥,所以PQ 为蒙日圆的直径, 所以6PQ c =,所以222236MP MQ PQ c +==. 因为222182MP MQMP MQ c +⋅≤=,当32MP MQ c ==时,等号成立, 所以MPQ 面积的最大值为:2192MP MQ c ⋅=.由MPQ 面积的最大值为36,得2936c =,得2c =,进而有24b c ==,25a =, 故椭圆C 的长轴长为45. 故选:B例9.(2018·全国·高考真题(文))已知椭圆C :2221(0)4x y a a +=>的一个焦点为(20),,则C 的离心率为( ) A .13B .12C 2D 22【答案】C【详解】分析:首先根据题中所给的条件椭圆的一个焦点为()20,,从而求得2c =,再根据题中所给的方程中系数,可以得到24b =,利用椭圆中对应,,a b c 的关系,求得22a =,最后利用椭圆离心率的公式求得结果.详解:根据题意,可知2c =,因为24b =, 所以2228a b c =+=,即22a =, 所以椭圆C 的离心率为22222e ==,故选C. 例10.(2022·四川成都·高三期末(理))已知椭圆()2222:10x y C a b a b +=>>的左,右焦点分别为1F ,2F ,以坐标原点O 为圆心,线段12F F 为直径的圆与椭圆C 在第一象限相交于点A .若122AF AF ≤,则椭圆C 的离心率的取值范围为______. 【答案】25,23⎛⎤⎥ ⎝⎦【分析】根据题意可得1290F AF ∠=,且c b >,再根据焦点三角形中的关系表达出离心率,结合函数的单调性求解即可【详解】由题意,因为线段12F F 为直径的圆与椭圆C 在第一象限相交于点A . 故半径1OF b >,即 c b >,且1290F AF ∠=.又离心率()22212121212121212222AFAF AF AF AF AF F F c c a a AF AF AF AF AF AF +-⋅+====+++()12212122122112AF AF AF AF AFAF AF AF ⋅=-=-+++,因为122AF AF ≤,结合题意有1212AF AF <≤, 设12AF t AF =,则2112c a t t=-++,易得对勾函数12y t t =++在(]1,2上单调递增, 故2112y t t=-++在(]1,2上单调递增, 故2221111111222212t t -<-≤-++++++,即2523c a <≤故答案为:25,23⎛⎤⎥ ⎝⎦【总结提升】1.关于椭圆几何性质的考查,主要有四类问题,一是考查椭圆中的基本量a ,b ,c ;二是考查椭圆的离心率;三是考查离心率发最值或范围;四是其它综合应用.2.学习中,要注意椭圆几何性质的挖掘:(1)椭圆中有两条对称轴,“六点”(两个焦点、四个顶点),要注意它们之间的位置关系(如焦点在长轴上等)以及相互间的距离(如焦点到相应顶点的距离为a -c ),过焦点垂直于长轴的通径长为等.(2)设椭圆上任意一点P (x ,y ),则当x =0时,|OP |有最小值b ,这时,P 在短轴端点处;当x =a 时,|OP |有最大值a ,这时P 在长轴端点处.(3)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(4)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2. 3.重视向量在解析几何中的应用,注意合理运用中点、对称、弦长、垂直等几何特征.4.求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆的几何特征,建2222e?b b c a =2222+=1(a>b>0)x y a b立关于参数c 、a 、b 的方程或不等式,通过解方程或不等式求得离心率的值或范围.较多时候利用.题型四:直线与椭圆的位置关系例11.(2022·全国·高三专题练习)椭圆2214x y +=,则该椭圆所有斜率为12的弦的中点的轨迹方程为_________________. 【答案】2xy =-()22-<<x 【分析】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y ,利用点差法可得答案. 【详解】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y , 设中点坐标为(),x y ,则211221121,,222y y x xy y x y x x -++=-==-, 所以221122221414⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式相减可得()()()()12221214+=-+-x x x x y y y y ,()()22121124-+-=+x x y y y y x x ,即2xy =-,由于在椭圆内部,由221412⎧+=⎪⎪⎨⎪=+⎪⎩x y y x b得22102++-=x bx b ,所以()22210∆=--=b b 时,即2b =±直线与椭圆相切,此时由22102±+=x x 解得2x =或2x =-,所以22x -<<, 所求得轨迹方程为2xy =-()22-<<x . 故答案为:2xy =-()22-<<x . 例12.(2022·北京八中高三阶段练习)已知P 为椭圆2222:1(0)x y E a b a b +=>>上任意一点,12,F F 为左、右焦点,M 为1PF 中点.如图所示:若1122OM PF +=,离心率3e = 22 ,1c b e e a a=-=(1)求椭圆E 的标准方程; (2)已知直线l 经过11,2且斜率为12与椭圆交于,A B 两点,求弦长AB 的值.【答案】(1)2214x y +=(2)5【分析】(1)由题意可得21||||2OM PF =结合1122OM PF +=求得a ,继而求得b ,即可得椭圆方程; (2)写出直线l 的方程,联立椭圆方程,可求得交点坐标,从而求得弦长. (1)由题意知,M 为1PF 中点,O 为12F F 的中点,故21||||2OM PF =, 又 1122OM PF +=,故121()22PF PF +=,即124PF PF +=,所以24,2a a == , 又因为32e =,故3c =,所以2221b a c =-= , 故椭圆E 的标准方程为2214x y += ;(2)由直线l 经过11,2⎛⎫- ⎪⎝⎭且斜率为12可知直线方程为11(1)22y x =+-,即112y x =+,联立2214x y +=,消去y 可得220x x += ,解得120,2x x ==- ,则,A B 两点不妨取为(0,1),(2,0)-, 故22215AB =+=.例13.(2022·天津·高考真题)椭圆()222210x y a b a b+=>>的右焦点为F 、右顶点为A ,上顶点为B ,且满足3BF AB=(1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于N (N 异于M ).记O 为坐标原点,若=OM ON ,且OMN 3 【答案】(1)63e =(2)22162x y +=【分析】(1)根据已知条件可得出关于a 、b 的等量关系,由此可求得该椭圆的离心率的值;(2)由(1)可知椭圆的方程为2223x y a +=,设直线l 的方程为y kx m =+,将直线l 的方程与椭圆方程联立,由0∆=可得出()222313m a k =+,求出点M 的坐标,利用三角形的面积公式以及已知条件可求得2a 的值,即可得出椭圆的方程.(1)解:()2222222222234332BF b c aa b a a b AB b a b a+===⇒=+⇒=++,离心率为22263c a b e a a -===. (2)解:由(1)可知椭圆的方程为2223x y a +=,易知直线l 的斜率存在,设直线l 的方程为y kx m =+,联立2223y kx mx y a=+⎧⎨+=⎩得()()222213630k x kmx m a +++-=,由()()()222222223641330313k m k m a m a k ∆=-+-=⇒=+,①2331M kmx k =-+,213M Mm y kx m k =+=+,由=OM ON 可得()()222229131m k m k+=+,②由3OMN S =可得2313213km m k⋅=+,③联立①②③可得213k =,24m =,26a =,故椭圆的标准方程为22162x y +=. 【规律方法】一.涉及直线与椭圆的基本题型有: 1.位置关系的判断2.弦长、弦中点问题.弦及弦中点问题的解决方法(1)根与系数的关系:直线与椭圆方程联立,消元,利用根与系数的关系表示中点; (2)点差法:利用弦两端点适合椭圆方程,作差构造中点、斜率. 3.轨迹问题4.定值、最值及参数范围问题5.存在性问题二.常用思想方法和技巧有:1.设而不求;2.坐标法;3.根与系数关系.三. 若直线与椭圆有两个公共点可结合韦达定理,代入弦长公式或 题型五:椭圆与圆的相关问题例14. (2019·天津·高考真题(文)) 设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .3|2||OA OB =(O 为原点). (Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C在直线4x =上,且OC AP ∥,求椭圆的方程.【答案】(I )12;(II )2211612x y +=.【分析】(I )根据题意得到32a b =,结合椭圆中,,a b c 的关系,得到2223()2a a c =+,化简得出12c a =,从而求得其离心率;(II )结合(I )的结论,设出椭圆的方程2222143x y c c +=,写出直线的方程,两个方程联立,求得交点的坐标,利用直线与圆相切的条件,列出等量关系式,求得2c =,从而得到椭圆的方程. 【详解】(I )解:设椭圆的半焦距为c ,由已知有32a b =, 又由222a b c =+,消去b 得2223()2a a c =+,解得12c a =,所以,椭圆的离心率为12.(II )解:由(I )知,2,3a c b c ==,故椭圆方程为2222143x y c c +=,由题意,(,0)F c -,则直线l 的方程为3()4y x c =+,点P 的坐标满足22221433()4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并化简,得到2276130x cx c +-=,解得1213,7cx c x ==-, 代入到l 的方程,解得1239,214y c y c ==-,因为点P 在x 轴的上方,所以3(,)2P c c ,1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-由圆心在直线4x =上,可设(4,)C t ,因为OC AP ∥,且由(I )知(2,0)A c -,故3242ct c c =+,解得2t =, 因为圆C 与x 轴相切,所以圆的半径为2,又由圆C 与l 相切,得23(4)24231()4c +-=+,解得2c =, 所以椭圆的方程为:2211612x y +=.【点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识,考查用代数方法研究圆锥曲线的性质,考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.例15.(陕西高考真题)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为. (Ⅰ)求椭圆的离心率;(Ⅱ)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.【答案】;(Ⅱ).【解析】(Ⅰ)过点的直线方程为, 则原点到直线的距离, 由,得,解得离心率. :E 22221x y a b+=0a b >>c O (),0c ()0,b 12c E AB :M ()()225212x y ++-=E A B E 3221123x y +=()(),0,0,c b 0bx cy bc +-=O 22bcd ab c ==+12d c =2222a b a c ==-32c e a ==(Ⅱ)由(1)知,椭圆的方程为. 依题意,圆心是线段的中点,且. 易知,不与轴垂直.设其直线方程为,代入(1)得.设,则,.由,得,解得. 从而.于是.由.故椭圆的方程为.例16.(2021·山东·高三开学考试)在平面直角坐标系xOy 中,已知点1(6,0)F -,2(6,0)F ,动点M 满足1243MF MF +=M 的轨迹为曲线C .(1)求C 的方程;(2)圆224x y +=的切线与C 相交于A ,B 两点,P 为切点,求||||PA PB ⋅的值.【答案】(1)221126x y +=(2)||||4PA PB ⋅=【分析】(1)结合椭圆的定义求得,,a b c ,由此求得C 的方程.(2)当直线AB 斜率不存在时,求得,PA PB ,从而求得PA PB ⋅;当直线AB 斜率存在时,设出直线AB 的方程,根据直线和圆的位置关系列方程,联立直线的方程和椭圆的方程,化简写出根与系数关系,求得0OA OB ⋅=,由此判断出90AOB ∠=︒,结合相似三角形求得PA PB ⋅.E 22244x y b +=()2,1M -AB 10AB =AB x ()21y k x =++()()()22221482142140k x k k x k b +++++-=()()1122,,,A x y B x y ()12282114k k x x k++=-+()22122421414k b x x k+-=-+124x x +=-()2821=414k k k +--+12k =21282x x b =-()()222121212151410222AB x x x x x b ⎛⎫=+-=+-=- ⎪⎝⎭10AB ()210210b -=23b =E 221123x y +=(1)为12124326MF MF F F +=>=,所以点M 的轨迹曲线C 是以1F ,2F 为焦点的椭圆.设其方程为22221(0)x y a b a b+=>>,则243a =,226a b -=,解得23a =,6b =,所以曲线C 的方程为221126x y +=.(2)当直线AB 的斜率不存在时,(2,0)P ±,此时||||2PA PB ==,则||||4PA PB ⋅=. 当直线AB 的斜率存在时,设直线AB 的方程为y kx m =+, 由直线AB 与圆224x y +=相切可得2||21m k =+,化简得()2241m k =+.联立22,1,126y kx m x y =+⎧⎪⎨+=⎪⎩得()2222142120k x kmx m +++-=,0∆>.设()11,A x y ,()22,B x y ,则122421km x x k -+=+,212221221m x x k -=+,所以1212OA OB x x y y ⋅=+()()2212121k x x km x x m =++++()()2222222121242121km k mm k k +-=-+++()222312121m k k -+=+()()222121121021k k k +-+==+,所以90AOB ∠=︒,所以AOB 为直角三角形.由OP AB ⊥,可得AOP OBP ∽△△, 所以||||||||PA OP OP PB =,所以2||||||4PA PB OP ⋅==. 综上,||||4PA PB ⋅=. 【总结提升】从高考命题看,与椭圆、圆相结合问题,一般涉及到圆的方程(圆心、半径)、直线与圆的位置关系(相切、相交)、点到直线的距离、直线方程等.。
椭圆中的定点、定值-2024年新高考数学(解析版)

椭圆中的定点、定值1(2023春·河北石家庄·高二校考开学考试)已知椭圆C:x28+y24=1,直线l:y=kx+n(k>0)与椭圆C交于M,N两点,且点M位于第一象限.(1)若点A是椭圆C的右顶点,当n=0时,证明:直线AM和AN的斜率之积为定值;(2)当直线l过椭圆C的右焦点F时,x轴上是否存在定点P,使点F到直线NP的距离与点F到直线MP的距离相等?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)见解析;(2)存在,P(4,0).【分析】(1)联立直线方程和椭圆方程得(1+2k2)x2-8=0,由韦达定理可得x1,x2的关系,再由k AM⋅k AN=y1x1-22⋅y2x2-22计算即可得证;(2)由题意可得直线l的方程为y=k(x-2),联立直线方程与椭圆方程得(1+2k2)x2-8k2x+8(k2-1)= 0,由韦达定理x3,x4之间的关系,假设存在满足题意的点P,设P(m,0),由题意可得k PM+k PN=0.代入计算,如果m有解,则存在,否则不存在.【详解】(1)证明:因为n=0,所以直线l:y=kx,联立直线方程和椭圆方程:y=kxx2+2y2-8=0,得(1+2k2)x2-8=0,设M(x1,y1),N(x2,y2),则有x1+x2=0,x1x2=-81+2k2,所以y1y2=k2x1x2=-8k21+2k2,又因为A(22,0),所以k AM=y1x1-22,k AN=y2x2-22,所以k AM⋅k AN=y1x1-22⋅y2x2-22=y1y2x1x2-22(x1+x2)+8=y1y2x1x2+8=-8k21+2k2-81+2k2+8=-8k21+2k216k21+2k2=-8k2 16k2=-12所以直线AM和AN的斜率之积为定值-1 2;(2)解:假设存在满足题意的点P,设P(m,0),因为椭圆C的右焦点F(2,0),所以2k+n=0,即有n=-2k,所以直线l的方程为y=k(x-2).由y=k(x-2)x2+2y2-8=0,可得(1+2k2)x2-8k2x+8(k2-1)=0,设M(x3,y3),N(x4,y4),则有x3+x4=8k21+2k2,x3x4=8(k2-1)1+2k2;因为点F到直线NP的距离与点F到直线MP的距离相等,所以PF平分∠MPN,所以k PM+k PN=0.即y 3x 3-m +y 4x 4-m =k (x 3-2)x 3-m +k (x 4-2)x 4-m =k (x 3-2)(x 4-m )+k (x 3-m )(x 4-2)(x 3-m )(x 4-m )=k [2x 3x 4-(m +2)(x 3+x 4)+4m ](x 3-m )(x 4-m )=0,又因为k >0,所以2x 3x 4-(m +2)(x 3+x 4)+4m =0,代入x 3+x 4=8k 21+2k 2,x 3x 4=8(k 2-1)1+2k 2,即有4m -161+2k 2=0,解得m =4.故x 轴上存在定点P (4,0),使得点F 到直线NP 的距离与点F 到直线MP 的距离相等.2(2023·全国·模拟预测)在平面直角坐标系xOy 中,A -2,0 ,B 2,0 ,M -1,0 ,N 1,0 ,点P 是平面内的动点,且以AB 为直径的圆O 与以PM 为直径的圆O 1内切.(1)证明PM +PN 为定值,并求点P 的轨迹Ω的方程.(2)过点A 的直线与轨迹Ω交于另一点Q (异于点B ),与直线x =2交于一点G ,∠QNB 的角平分线与直线x =2交于点H ,是否存在常数λ,使得BH =λBG恒成立?若存在,求出λ的值;若不存在,请说明理由.【答案】(1)证明见解析,x 24+y 23=1(2)存在,λ=12【分析】(1)依题意可得OO 1 =2-PM 2,连接PN ,可得OO 1 =PN2,即可得到PM +PN 为定值,根据椭圆的定义得到点P 的轨迹是以M ,N 为焦点的椭圆,且2a =4,c =1,即可求出椭圆方程;(2)设Q x 0,y 0 ,G 2,y 1 ,H 2,y 2 ,直线AQ 的方程为x =my -2m ≠0 ,即可得到m =4y 1,再联立直线与椭圆方程,解出y 0,从而得到k QN ,k NH ,设∠BNH =θ,再根据二倍角的正切公式得到方程,即可得到y 2=12y 1,从而得解;【详解】(1)解:如图,以AB 为直径的圆O 与以PM 为直径的圆O 1内切,则OO 1 =AB 2-PM 2=2-PM2.连接PN ,因为点O 和O 1分别是MN 和PM 的中点,所以OO 1 =PN2.故有PN 2=2-PM2,即PN +PM =4,又4>2=MN,所以点P的轨迹是以M,N为焦点的椭圆.因为2a=4,c=1,所以b2=a2-c2=3,故Ω的方程为x24+y23=1.(2)解:存在λ=12满足题意.理由如下:设Q x0,y0,G2,y1,H2,y2.显然y1y2>0.依题意,直线AQ不与坐标轴垂直,设直线AQ的方程为x=my-2m≠0,因为点G在这条直线上,所以my1=4,m=4 y1 .联立x=my-2,3x2+4y2=12,得3m2+4y2-12my=0的两根分别为y0和0,则y0=12m3m2+4,x0=my0-2=6m2-83m2+4,所以k QN=y0x0-1=12m3m2+46m2-83m2+4-1=4mm2-4=4y14-y21,k NH=y2.设∠BNH=θ,则∠BNQ=2θ,则k QN=tan2θ,k NH=tanθ,所以tan2θ=2tanθ1-tan2θ=2y21-y22=4y14-y21,整理得y1-2y2y1y2+2=0,因为y1y2>0,所以y1-2y2=0,即y2=12y1.故存在常数λ=12,使得BH=λBG.3(2023·全国·高三专题练习)仿射变换是处理圆锥曲线综合问题中求点轨迹的一类特殊而又及其巧妙的方法,它充分利用了圆锥曲线与圆之间的关系,具体解题方法为将C:x2a2+y2b2=1(a>b>0)由仿射变换得:x =xa,y=yb,则椭圆x2a2+y2b2=1变为x 2+y 2=1,直线的斜率与原斜率的关系为k =abk,然后联立圆的方程与直线方程通过计算韦达定理算出圆与直线的关系,最后转换回椭圆即可.已知椭圆C:x2 a2+y2b2=1(a>b>0)的离心率为55,过右焦点F2且垂直于x轴的直线与C相交于A,B两点且AB=855,过椭圆外一点P作椭圆C的两条切线l1,l2且l1⊥l2,切点分别为M,N.(1)求证:点P的轨迹方程为x2+y2=9;(2)若原点O到l1,l2的距离分别为d1,d2,延长表示距离d1,d2的两条直线,与椭圆C交于Y,W两点,过O作OZ⊥YW交YW于Z,试求:点Z所形成的轨迹与P所形成的轨迹的面积之差是否为定值,若是,求出此定值;若不是,请求出变化函数.【答案】(1)证明见解析(2)是定值,定值为619π【分析】(1)利用仿射变换将椭圆方程变为圆的方程,设原斜率分别为k1,k2,k1k2=-1,则变换后斜率k 1⋅k 2=a2b2k1k2,设变换后坐标系动点Q x0,y0,过点Q x0,y0的直线为l:y-y0=k x-x0,将圆的方程和直线方程联立,利用直线和圆相切结合韦达定理求解即可;(2)由图中的垂直关系,利用等面积法S△OYW=12OYOW=12YWOZ和1|OY|2+1|OW|2=OY|2+OW|2 OY|2OW|2=|YW|2OW|2OY|2,结合椭圆的性质求解即可.【详解】(1)由仿射变换得:x =xa,y=yb,则椭圆x2a2+y2b2=1变为x 2+y 2=1设原斜率存在分别为k1,k2,k1k2=-1,变换后为k 1=abk1,k 2=abk2,所以k 1⋅k 2=a2b2k1k2=-a2b2=e2-1,设变换后的坐标系动点Q x0,y0,过点Q x0,y0的直线为l:y-y0=k x-x0l:kx-y-kx0-y0=0到原点距离为d=kx0-y0k2+1=1,即kx0-y02=k2+1⇒x20-1k2-2x0y0k+y20-1=0,由韦达定理得:k 1k 2=y20-1x20-1=-a2b2,化简得:a2x20+b2y20=a2+b2由于原坐标系中x0=xa,y0=yb⇒x=ax0,y=by0所以在原坐标系中轨迹方程为:x2+y2=a2+b2,由e=ca=55b2a=455解得a2=5b2=4,所以点P的轨迹方程为x2+y2=9,当切线斜率不存在时,由椭圆方程x25+y24=1易得P点在x2+y2=9上.(2)如图所示延长OY交l1于N,延长OW交l2于M,由题意可知∠GPM=∠OGP=∠OHP=π2,所以四边形OGPH为矩形,∠YOW=π2,所以S△OYW=12OYOW=12YWOZ,且1|OY|2+1|OW|2=OY|2+OW|2OY|2OW|2=|YW|2OW|2OY|2,|YW |2OW |2OY |2分子分母同乘|OZ |2得4S 24OZ 2S 2=1OZ 2=1OY 2+1OW 2,因为OY ⊥OW ,当直线OY ,OW 斜率存在时,设l OY :y =k 3x ,l OW :y =-1k 3x ,由x 2a 2+y 2b 2=1y =k 3x解得x 2Y=a 2b 2b 2+a 2k 23,y 2Y =a 2b 2k 23b 2+a 2k 23,所以OY 2=a 2b 21+k 23 b 2+a 2k 23,由x 2a 2+y 2b 2=1y =-1k 3x解得x 2W=a 2b 2k 23b 2k 23+a 2,y 2W =a 2b 2b 2k 23+a 2,所以OW 2=a 2b 21+k 23 b 2k 23+a2,所以1OY 2+1OW 2=b 2+a 2k 23a 2b 2(1+k 23)+b 2k 23+a 2a 2b 2(1+k 23)=a 2+b 2a 2b 2,当斜率不存在时仍成立,所以1|OZ |2=a 2+b 2a 2b 2,OZ 2=x 2+y 2=a 2b 2a 2+b 2=209,所以Z 所形成的轨迹与P 所形成的轨迹的面积之差=9-209 π=619π是定值.4(2023·湖南·湖南师大附中校联考模拟预测)在平面直角坐标系xOy 中,已知椭圆W :x 2a 2+y 2b2=1(a >b >0)的离心率为22,椭圆W 上的点与点P 0,2 的距离的最大值为4.(1)求椭圆W 的标准方程;(2)点B 在直线x =4上,点B 关于x 轴的对称点为B 1,直线PB ,PB 1分别交椭圆W 于C ,D 两点(不同于P 点).求证:直线CD 过定点.【答案】(1)x 28+y 24=1(2)证明见解析【分析】(1)根据离心率可得a =2b =2c ,设点T m ,n 结合椭圆方程整理得TP =-(n +2)2+8+2b 2,根据题意分类讨论求得b =2,即可得结果;(2)设直线CD 及C ,D 的坐标,根据题意结合韦达定理分析运算,注意讨论直线CD 的斜率是否存在.【详解】(1)设椭圆的半焦距为c ,由椭圆W 的离心率为22,得a =2b =2c ,设点T m ,n 为椭圆上一点,则m 22b 2+n 2b2=1,-b ≤n ≤b ,则m 2=2b 2-2n 2,因为P 0,2 ,所以TP =m 2+(n -2)2=2b 2-2n 2+n 2-4n +4=-(n +2)2+8+2b 2,①当0<b <2时,|TP |max =-(-b +2)2+8+2b 2=4,解得b =2(舍去);②当b ≥2时,|TP |max =8+2b 2=4,解得b =2;综上所述:b =2,则a =22,c =2,故椭圆W 的标准方程为x 28+y 24=1.(2)①当CD 斜率不存在时,设C x 0,y 0 ,-22<x 0<22且x 0≠0,则D x 0,-y 0 ,则直线CP 为y =y 0-2x 0x +2,令x =4,得y =4y 0-8x 0+2,即B 4,4y 0-8x 0+2,同理可得B 14,-4y 0-8x 0+2.∵B 与B 1关于x 轴对称,则4y 0-8x 0+2+-4y 0-8x 0+2=0,解得x 0=4>22,矛盾;②当直线CD 的斜率存在时,设直线CD 的方程为y =kx +m ,m ≠2,设C x 1,y 1 ,D x 2,y 2 ,其中x 1≠0且x 2≠0,联立方程组y =kx +mx 28+y 24=1,消去y 化简可得2k 2+1 x 2+4kmx +2m 2-8=0,Δ=16k 2m 2-42k 2+1 2m 2-8 =88k 2+4-m 2 >0,则m 2<8k 2+4,所以x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-81+2k 2,由P 0,2 ,可得k PC =y 1-2x 1,k PD =y 2-2x 2,所以直线PC 的方程为y =y 1-2x 1x +2,令x =4,得y =4y 1-8x 1+2,即4,4y 1-8x 1+2,直线PD 的方程为y =y 2-2x 2x +2,令x =4,得y =4y 2-8x 2+2,即4,4y 2-8x 2+2,因为B 1和B 关于x 轴对称,则4y 1-8x 1+2+4y 2-8x 2+2=0,把y 1=kx 1+m ,y 2=kx 2+m 代入上式,则4kx 1+m -8x 1+2+4kx 2+m -8x 2+2=0,整理可得1+2k x 1x 2+m -2 x 1+x 2 =0,则1+2k ×2m 2-81+2k 2+m -2 ×-4km1+2k2=0,∵m ≠2,则m -2≠0,可得1+2k ×m +2 -2km =0,化简可得m =-4k -2,则直线CD 的方程为y =kx -4k -2,即y +2=k x -4 ,所以直线CD 过定点4,-2 ;综上所述:直线CD 过定点4,-2 .【点睛】方法定睛:过定点问题的两大类型及解法(1)动直线l 过定点问题.解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0).(2)动曲线C 过定点问题.解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.5(2023春·四川眉山·高二校考阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,短轴长为2.(1)求椭圆C 的标准方程;(2)点D (4,0),斜率为k 的直线l 不过点D ,且与椭圆C 交于A ,B 两点,∠ADO =∠BDO (O 为坐标原点).直线l 是否过定点?若过定点,求出定点坐标;若不过定点,说明理由.【答案】(1)x 24+y 2=1;(2)过定点,1,0 .【分析】(1)根据已知条件列方程即可解得a ,b 值,方程可求解;(2)设直线l 的方程为y =kx +m ,联立椭圆方程结合韦达定理得x 1,x 2关系,又∠ADO =∠BDO 得k AD +k BD =0,代入坐标化简即可求解.【详解】(1)由题意可得2b =2ca =32c 2=a 2-b 2,解得a 2=4,b 2=1所以椭圆C 的标准方程为x 24+y 2=1.(2)设直线l 的方程为y =kx +m ,A x 1,y 1 ,B x 2,y 2 联立y =kx +mx 24+y 2=1整理得4k 2+1 x 2+8kmx +4m 2-4=0,则Δ=8km 2-44k 2+1 (4m 2-4)>0,即4k 2-m 2+1>0又x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1因为∠ADO =∠BDO ,所以k AD +k BD =0,所以y 1x 1-4+y 2x 2-4=kx 1+m x 2-4 +kx 2+m x 1-4x 1-4 x 2-4 =0所以2kx 1x 2+(m -4k )x 1+x 2 -8m =0,即2k ⋅4m 2-44k 2+1+(m -4k )⋅-8km 4k 2+1-8m =0整理得8k +8m =0,即m =-k ,此时Δ=3k 2+1>0则直线l 的方程为y =kx -k ,故直线l 过定点1,0 .6(2023·内蒙古赤峰·校联考模拟预测)已知椭圆C :y 2a 2+x 2b2=1a >b >0 的离心率为12,且经过点6,2 ,椭圆C 的右顶点到抛物线E :y 2=2px p >0 的准线的距离为4.(1)求椭圆C 和抛物线E 的方程;(2)设与两坐标轴都不垂直的直线l 与抛物线E 相交于A ,B 两点,与椭圆C 相交于M ,N 两点,O 为坐标原点,若OA ⋅OB=-4,则在x 轴上是否存在点H ,使得x 轴平分∠MHN ?若存在,求出点H 的坐标;若不存在,请说明理由.【答案】(1)y 212+x 29=1;y 2=4x(2)存在;H 92,0 【分析】(1)依题意得到方程组,即可求出a 2,b 2,从而得到椭圆方程,再求出椭圆的右顶点,即可求出p ,从而求出抛物线方程;(2)设直线l 的方程为y =kx +m ,A x 1,y 1 ,B x 2,y 2 ,联立直线与抛物线方程,消元、列出韦达定理,根据OA ⋅OB=-4得到m =-2k ,再假设在x 轴上存在点H x 0,0 ,使得x 轴平分∠MHN ,则直线HM 的斜率与直线HN 的斜率之和为0,设M x 3,y 3 ,N x 4,y 4 ,联立直线与椭圆方程,消元、列出韦达定理,由y 3x 3-x 0+y 4x 4-x 0=0,即可求出x 0,从而求出H 的坐标;【详解】(1)解:由已知得c a =124a 2+6b 2=1a 2=b 2+c 2,∴a 2=12,b 2=9.∴椭圆C 的方程为y 212+x 29=1.∴椭圆C 的右顶点为3,0 .∴3+p2=4,解得p =2.∴抛物线E 的方程为y 2=4x .(2)解:由题意知直线l 的斜率存在且不为0.设直线l 的方程为y =kx +m ,A x 1,y 1 ,B x 2,y 2 .由y =kx +my 2=4x消去y ,得k 2x 2+2km -4 x +m 2=0.∴Δ1=2km -4 2-4k 2m 2=-16km +16>0,∴km <1.∴x 1+x 2=4-2km k 2,x 1x 2=m 2k2.∴y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2=km 4-2km k2+2m 2=4m k .∴OA ⋅OB =x 1x 2+y 1y 2=m 2k2+4m k =-4.∴m k +2 2=0,∴mk=-2.∴m =-2k ,此时km =-2k 2<1.∴直线l 的方程为y =k x -2 .假设在x 轴上存在点H x 0,0 ,使得x 轴平分∠MHN ,则直线HM 的斜率与直线HN 的斜率之和为0,设M x 3,y 3 ,N x 4,y 4 ,由y =k x -2y 212+x 29=1消去y ,得3k 2+4 x 2-12k 2x +12k 2-36=0.∴Δ2=12k 2 2-43k 2+4 12k 2-36 >0,即5k 2+12>0恒成立.∴x 3+x 4=12k 23k 2+4,x 3x 4=12k 2-363k 2+4.∵y 3x 3-x 0+y 4x 4-x 0=0,∴k x 3-2 x 4-x 0 +k x 4-2 x 3-x 0 =0.∴2x 3x 4-x 0+2 x 3+x 4 +4x 0=0.∴24k 2-723k 2+4-x 0+2 12k 23k 2+4+4x 0=0.∴16x 0-723k 2+4=0.解得x 0=92.∴在x 轴上存在点H 92,0 ,使得x 轴平分∠MHN .【点睛】本题考查直线与圆锥曲线的综合问题,考查椭圆的方程以及韦达定理法在圆锥曲线综合中的应用,属于难题;在解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.7(2023·宁夏·六盘山高级中学校考一模)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,上顶点为B 1,若△F 1B 1F 2为等边三角形,且点P 1,32在椭圆E 上.(1)求椭圆E 的方程;(2)设椭圆E 的左、右顶点分别为A 1,A 2,不过坐标原点的直线l 与椭圆E 相交于A 、B 两点(异于椭圆E 的顶点),直线AA 1、BA 2与y 轴的交点分别为M 、N ,若|ON |=3|OM |,证明:直线过定点,并求该定点的坐标.【答案】(1)x 24+y 23=1(2)点1,0 或4,0【分析】(1)由已知条件,椭圆的定义及a ,b ,c 的关系可知a 2=4c 2和b 2=3c 2,再设出椭圆的方程,最后将点代入椭圆的方程即可求解;(2)设点A x 1,y 1 ,B x 2,y 2 ,由直线AA 1的方程即可求出点M 的坐标,由BA 2的方程即可求出点N 的坐标,由已知条件可知5x 1+x 2 -2x 1x 2-8=0,分直线AB 的斜率存在和直线AB 的斜率不存在两种情况分别求解,得出直线AB 的方程,即可判断出直线恒过定点的坐标.【详解】(1)∵△F 1B 1F 2为等边三角形,且B 1F 1 +B 1F 2 =2a ,∴a =2c ,又∵a 2=b 2+c 2,∴b 2=3c 2,设椭圆的方程为x 24c 2+y 23c 2=1,将点P 1,32 代入椭圆方程得14c 2+912c2=1,解得c 2=1,所以椭圆E 的方程为x 24+y 23=1.(2)由已知得A 1-2,0 ,A 22,0 ,设A x 1,y 1 ,B x 2,y 2 ,则直线AA 1的斜率为y 1x 1+2,直线AA 1的方程为y =y 1x 1+2x +2 ,即点M 坐标为0,2y 1x 1+2,直线BA 2的斜率为y 2x 2-2,直线AA 1的方程为y =y 2x 2-2x -2 ,即点N 坐标为0,-2y 2x 2-2,∵|ON |=3|OM |,∴|ON |2=9|OM |2,∴4y 22x 2-2 2=36y 21x 1+2 2,又∵y 21=3-3x 214=12-3x 214,y 22=3-3x 224=12-3x 224,∴4-x 22x 2-2 2=9×4-x 21x 1+22,即2+x 22-x 2=92-x 1 2+x 1,整理得5x 1+x 2 -2x 1x 2-8=0,①若直线AB 的斜率存在时,设直线AB 的方程为y =kx +b ,将直线方程与椭圆方程联立y =kx +bx 24+y 23=1得3+4k 2 x 2+8kbx +4b 2-12=0,其中Δ=64k 2b 2-43+4k 2 4b 2-12 =1612k 2-3b 2+9 >0,x 1+x 2=-8kb 3+4k 2,x 1x 2=4b 2-123+4k 2,即-5×8kb 3+4k 2-2×4b 2-123+4k2-8=0,4k 2+5kb +b 2=0,4k +b k +b =0,所以b =-4k 或b =-k ,当b =-4k 时,直线AB 的方程为y =kx -4k =k x -4 ,此时直线AB 恒过点4,0 ,当b =-k 时,直线AB 的方程为y =kx -k =k x -1 ,此时直线AB 恒过点1,0 ,②若直线AB 的斜率不存在时x 1=x 2,由2+x 22-x 2=92-x 1 2+x 1得2+x 22-x 2=92-x 2 2+x 2,即x 22-5x 2+4=0,解得x 2=1或x 2=4,此时直线AB 的方程为x =1或x =4,所以此时直线AB 恒过点1,0 或4,0 ,综上所述,直线AB 恒过点1,0 或4,0 .8(2023·江苏扬州·仪征中学校考模拟预测)已知F 1(-2,0),F 2(2,0)为椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,且A 2,53为椭圆上的一点.(1)求椭圆E 的方程;(2)设直线y =-2x +t 与抛物线y 2=2px (p >0)相交于P ,Q 两点,射线F 1P ,F 1Q 与椭圆E 分别相交于M 、N .试探究:是否存在数集D ,对于任意p ∈D 时,总存在实数t ,使得点F 1在以线段MN 为直径的圆内?若存在,求出数集D 并证明你的结论;若不存在,请说明理由.【答案】(1)x 29+y 25=1(2)存在,D =(5,+∞),证明见解析【分析】(1)求出点A 2,53到两焦点的距离,再用椭圆的定义可得a =3,结合b 2=a 2-c 2可得b 2,从而可得椭圆的方程;(2)直线l 与抛物线联立,结合判别式有p +4t >0,要使得点F 1在以线段MN 为直径的圆内,根据题意,有F 1P ⋅F 1Q<0,结合韦达定理可得p >5,从而可证明问题.【详解】(1)由题意知c =2,A 2,53为椭圆上的一点,且AF 2垂直于x 轴,则AF 2 =53,AF 1 =(2+2)2+53 2=133,所以2a =AF 1 +AF 2 =133+53=6,即a =3,所以b 2=32-22=5,故椭圆的方程为x 29+y 25=1;(2)l 方程为y =-2x +t ,联立抛物线方程,得y 2=2px y =-2x +t ,整理得y 2+py -pt =0,则Δ=p 2+4tp >0,则p +4t >0①,设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=-p ,y 1y 2=-pt ,则x 1+x 2=t +p 2,x 1x 2=(y 1y 2)24p 2=t 24,由F 1的坐标为(-2,0),则F 1P =(x 1+2,y 1),F 1Q=(x 2+2,y 2),由F 1M 与F 1P 同向,F 1N 与F 1Q 同向,则点F 1在以线段MN 为直径的圆内,则F 1M ⋅F 1N <0,则F 1P ⋅F 1Q<0,则(x 1+2)(x 2+2)+y 1y 2<0,即x 1x 2+2(x 1+x 2)+4+y 1y 1<0,则t 24+2t +p 2 +4-pt <0,即t 24+(2-p )t +p +4<0②,当且仅当Δ=(2-p )2-4×14(p +4)>0,即p >5,总存在t >-p4使得②成立,且当p >5时,由韦达定理可知t 24+(2-p )t +p +4=0的两个根为正数,故使②成立的t >0,从而满足①,故存在数集D =(5,+∞),对任意p ∈D 时,总存在t ,使点F 1在线段MN 为直径的圆内.9(2023·四川绵阳·四川省绵阳南山中学校考模拟预测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右顶点分别为M 1、M 2,短轴长为23,点C 上的点P 满足直线PM 1、PM 2的斜率之积为-34.(1)求C 的方程;(2)若过点1,0 且不与y 轴垂直的直线l 与C 交于A 、B 两点,记直线M 1A 、M 2B 交于点Q .探究:点Q是否在定直线上,若是,求出该定直线的方程;若不是,请说明理由.【答案】(1)x 24+y 23=1(2)点Q 在定直线x =4上【分析】(1)设点P x 0,y 0 ,则x 0≠±a ,可得出y 20=b 21-x 20a2,利用斜率公式结合已知条件可得出b 2=34a 2,再利用椭圆的短轴长可得出b 2、a 2的值,即可得出椭圆C 的方程;(2)设l 的方程为x =my +1,设点A x 1,y 1 、B x 2,y 2 ,设点Q x ,y ,将直线l 的方程与椭圆C 的方程联立,列出韦达定理,写出直线M 1A 、M 2B 的方程,联立这两条直线方程,可得出点Q 的横坐标,即可得出结论.【详解】(1)解:设P x 0,y 0 ,则x 0≠±a ,且x 20a 2+y 20b 2=1,所以,y 20=b 21-x 20a2,则k PM 1⋅k PM 2=y 0x 0+a ⋅y 0x 0-a =y20x 20-a 2=b 21-x 20a 2x 20-a2=-b 2a2=-34,故b 2=34a 2①,又2b =23②,联立①②,解得a 2=4,b 2=3,故椭圆C 的方程为x 24+y 23=1.(2)解:结论:点Q 在定直线上x =4.由(1)得,M 1-2,0 、M 22,0 ,设Q x ,y ,设直线l 的方程为x =my +1,设点A x 1,y 1 、B x 2,y 2 ,联立x 24+y 23=1x =my +1,整理得3m 2+4 y 2+6my -9=0,Δ=36m 2+363m 2+4 =144m 2+1 >0,∴y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4, 直线M 1A 的方程为y =y 1x 1+2x +2 ,直线M 2B 的方程为y =y 2x 2-2x -2 ,所以,y 1x 1+2x +2 =y 2x 2-2x-2 ,可得x +2x -2=y 2x 1+2 y 1x 2-2 =y 2my 1+3 y 1my 2-1 =my 1y 2+3y 2my 1y 2-y 1=-9m 3m 2+4+3-6m 3m 2+4-y 1 -9m 3m 2+4-y 1=-27m 3m 2+4-3y 1-9m 3m 2+4-y 1=3,解得x =4,因此,点Q 在直线x =4上.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 、x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.10(2023·全国·高三专题练习)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)内切于矩形ABCD ,其中AB ,CD 与x 轴平行,直线AC ,BD 的斜率之积为-12,椭圆的焦距为2.(1)求椭圆E 的标准方程;(2)椭圆上的点P ,Q 满足直线OP ,OQ 的斜率之积为-12,其中O 为坐标原点.若M 为线段PQ 的中点,则MO 2+MQ 2是否为定值?如果是,求出该定值;如果不是,说明理由.【答案】(1)x 22+y 2=1(2)是定值,定值为32【分析】(1)由题意求出直线AC ,BD 的斜率,即可求出-b 2a2=-12,又因为焦距为2,即可就出椭圆的标准方程.(2)方法一:联立直线PQ 与椭圆的方程由k OP ⋅k OQ =-12可求出2t 2=1+2k 2,又因为:MO 2+MQ 2=x 21+x 222+y 21+y 222,又点P ,Q 在椭圆上,代入即可求出答案.方法二:由P ,Q 是椭圆C 上的点,可得x 21+2y 21=2x 22+2y 22=2,联立直线PQ 与椭圆的方程由k OP ⋅k OQ =-12可求出y 1=-x 1x 22y 2,代入化简得x 21=2y 22,即可求出答案.【详解】(1)由题意,c =1,则A -a ,-b ,B a ,-b ,C a ,b ,D -a ,b ,所以k AC =2b 2a =b a ,k BD =2b-2a=b -a ,所以k AC ⋅k BD =-b 2a2=-12,解得:a =2,=1,∴椭圆的标准方程为x 22+y 2=1.(2)(方法一)设P x 1,y 1 ,Q x 2,y 2 ,则M x 1+x 22,y 1+y 22.设直线PQ :y =kx +t ,由y =kx +t x 22+y 2=1,得:1+2k 2 x 2+4ktx +2t 2-2=0,x 1+x 2=-4kt1+2k2x 1x 2=2t 2-21+2k2,由k OP ⋅k OQ =-12,得x 1x 2+2y 1y 2=1+2k 2 x 1x 2+2kt x 1+x 2 +2t 2=0,代入化简得:2t 2=1+2k 2.∵MO 2+MQ 2=x 1+x 22 2+y 1+y 22 2+x 1-x 1+x 22 2+y 1-y 1+y 222=x 21+x 222+y 21+y 222,又点P ,Q 在椭圆上,∴x 212+y 21=1,x 222+y 22=1,即x 21+x 224+y 21+y 222=1,∵x 21+x 22=x 1+x 2 2-2x 1x 2=-4kt 2t 22-2⋅2t 2-22t 2=2,∴x 21+x 224=12.∴MO 2+MQ 2=x 21+x 224+y 21+y 222+x 21+x 224=32.即MO 2+MQ 2=32为定值.(方法二)由P ,Q 是椭圆C 上的点,可得x 21+2y 21=2x 22+2y 22=2 ,把y 1=-x 1x 22y 2代入上式,化简x 21=2y 22,得y 21+y 22=1,x 21+x 22=2,MO 2+MQ 2=12x 21+x 22+y 21+y 22 =32.11(2023春·湖北襄阳·高三襄阳五中校考阶段练习)已知离心率为22的椭圆C :x 2a 2+y 2b2=1a >b >0 的左焦点为F ,左、右顶点分别为A 1、A 2,上顶点为B ,且△A 1BF 的外接圆半径大小为3.(1)求椭圆C 方程;(2)设斜率存在的直线l 交椭圆C 于P ,Q 两点(P ,Q 位于x 轴的两侧),记直线A 1P 、A 2P 、A 2Q 、A 1Q 的斜率分别为k 1、k 2、k 3、k 4,若k 1+k 4=53k 2+k 3 ,求△A 2PQ 面积的取值范围.【答案】(1)x 24+y 22=1(2)0,5830 【分析】(1)根据椭圆离心率确定椭圆中a ,b ,c 的关系,再结合正弦定理的推论确定外接圆半径与边角关系即可得c 的值,从而求得椭圆方程;(2)由题可设直线l :x =ty +m t ≠0 ,P x 1,y 1 ,Q x 2,y 2 ,联立直线与椭圆即可得交点坐标关系,根据斜率的计算式可得k 1k 2=-12,k 3k 4=-12,再由已知等式k 1+k 4=53k 2+k 3 确定k 2k 3=-310,由坐标关系进行转化可求得m 的值,求解△A 2PQ 面积的表达式,结合函数性质即可得△A 2PQ 面积的取值范围.【详解】(1)根据椭圆C 的离心率为22知a =2c ,所以b =a 2-c 2=c ,如图,则OF =OB =c则在△A 1BF 中,可得∠BFA 1=3π4,A 1B =OA 1 2+OB 2=3c ,由正弦定理得A 1Bsin ∠BFA 1=3c22=6c =2×3,解得c =2,所以a =2,b =2,所以椭圆C 的方程为x 24+y 22=1.(2)由条件知直线l 的斜率不为0,设直线l :x =ty +m t ≠0 ,P x 1,y 1 ,Q x 2,y 2 ,联立x =ty +mx 24+y 22=1,得t 2+2 y 2+2mty +m 2-4=0,Δ>0得2t 2+4>m 2于是y 1+y 2=-2mt t 2+2,y 1y 2=m 2-4t 2+2,因为A 1-2,0 ,A 22,0 ,P x 1,y 1 代入椭圆方程得x 214+y 212=1,所以k 1k 2=y 1x 1+2⋅y 1x 1-2=y 21x 21-4=21-x 214 x 21-4=-12,同理k 3k 4=-12,于是k 1=-12k 2,k 4=-12k 3,因为k 1+k 4=53k 2+k 3 ,所以-12k 2-12k 3=53k 2+k 3 ,即-k 2+k 32k 2k 3=53k 2+k 3 .又直线l 的斜率存在,所以k 2+k 3≠0,于是k 2k 3=-310,所以y 1x 1-2⋅y 2x 2-2=-310,即10y 1y 2+3x 1-2 x 2-2 =0,又x 1=ty 1+m ,x 2=ty 2+m ,所以10y 1y 2+3ty 1+m -2 ty 2+m -2 =0,整理得3t 2+10 y 1y 2+3t m -2 y 1+y 2 +3m -2 2=0,所以3t 2+10 m 2-4t 2+2 +3t m -2 -2mt t 2+2+3m -2 2=0,化简整理得m -2 2m +1 =0,又P 、Q 位于x 轴的两侧,所以y 1y 2=m 2-4t 2+2<0,解得-2<m <2,所以m =-12,此时直线l 与椭圆C 有两个不同的交点,于是直线l 恒过定点D -12,0 .当m =-12时,y 1+y 2=t t 2+2,y 1y 2=-154t 2+2,△A 2PQ 的面积S △A 2PQ =12A 2D ⋅y 1-y 2 =12×52×y 1+y 2 2-4y 1y 2=54t t 2+22-4-154t 2+2 =54⋅16t 2+30t 2+2,令16t 2+30=λ,因为直线l 的斜率存在,则λ>30,t 2=λ2-3016,于是S △A 2PQ =54⋅16λλ2+2=20λ+2λ,又函数y =20λ+2λ在30,+∞ 上单调递减,所以△A 2PQ 面积的取值范围为0,5830 .【点睛】关键点点睛:本题考查了直线与椭圆相交的坐标关系,利用坐标运算解决直线斜率关系及面积关系.解决本题的关键是确定直线直线A 1P 、A 2P 、A 2Q 、A 1Q 之间的斜率关系,结合椭圆上的任意一点与左右顶点之间的斜率关系,可将四个斜率值简化为两个斜率关系,即可减少位置数,从而利用坐标运算及坐标关系确定所设直线过定点,于是简化所求面积表达式中的变量个数从而可结合函数关系确定取值范围,得以解决问题.12(2023·江西南昌·统考模拟预测)已知A 2,0 ,B 0,1 是椭圆E :x 2a 2+y 2b2=1a >b >0 的两个顶点.(1)求椭圆E 的标准方程;(2)过点P 2,1 的直线l 与椭圆E 交于C ,D ,与直线AB 交于点M ,求PM PC +PMPD的值.【答案】(1)x 24+y 2=1(2)PM PC +PM PD =2【分析】(1)根据椭圆顶点坐标直接可得椭圆方程;(2)设直线方程,可得点M ,联立直线与椭圆结合韦达定理,再根据两点间距离化简可得解.【详解】(1)由A 2,0 ,B 0,1 是椭圆E :x 2a 2+y 2b2=1a >b >0 的两个顶点,得a =2,b =1,即E :x 24+y 2=1;(2)当直线l 的斜率不存在时,直线l 与椭圆有且只有一个公共点,不成立,所以设C x 1,y 1 ,D x 2,y 2 ,M x 3,y 3 ,直线l 的斜率为k ,则PC =x P -x 1 1+k 2=2-x 1 1+k 2,同理PD =2-x 2 1+k 2,PM =2-x 3 1+k 2,则PM PC+PM PD=2-x 32-x 1+2-x 32-x 2.设l :y -1=k x -2 ,而AB :x 2+y =1,联立解得x 3=4k2k +1,所以2-x 3=2-4k 2k +1=22k +1;联立直线l 与椭圆E 方程,消去y 得:4k 2+1 x 2-8k 2k -1 x +16k 2-16k =0,所以x 1+x 2=8k 2k -1 4k 2+1,x 1x 2=16k 2-16k 4k 2+1,所以12-x 1+12-x 2=-x 1+x 2-4x 1-2 x 2-2=-x 1+x 2-4x 1x 2-2x 1+x 2 +4=-8k 2k -14k 2+1-416k 2-16k4k 2+1-2×8k 2k -1 4k 2+1+4=2k +1,所以2-x 32-x 1+2-x 32-x 2=22k +1×2k +1 =2,即PM PC +PMPD =2.【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.13(2023·江苏盐城·校考三模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点A 在C 上,当AF 1⊥x 轴时,AF 1 =12;当AF 1 =2时,∠F 1AF 2=2π3.(1)求C 的方程;(2)已知斜率为-1的直线l 与椭圆C 交于M ,N 两点,与直线x =1交于点Q ,且点M ,N 在直线x =1的两侧,点P (1,t )(t >0).若|MP |⋅|NQ |=|MQ |⋅|NP |,是否存在到直线l 的距离d =2的P 点?若存在,求t 的值;若不存在,请说明理由.【答案】.(1)x 24+y 2=1(2)存在,t =52【分析】(1)利用通径公式和椭圆定义,结合余弦定理即可建立方程,从而可求解椭圆方程;(2)由点M ,N 在直线x =1的两侧可得1-32<m <1+32,设直线l :x +y =m ,点M x 1,y 1 ,N x 2,y 2 ,联立椭圆方程,消元,利用韦达定理可得y 1+y 2=2m 5,y 1y 2=m 2-45.根据MP ⋅NQ =MQ ⋅NP ,得到k MP +k NP =0.代入斜率公式,得到4m -5 t =4-m ,再由d =1+t -m2=12-4m 2+8m -14m -5=2,求出m 的取值范围即可.【详解】(1)当AF 1⊥x 轴时,AF 1 =b 2a =12,即b 2=12a ①,当AF 1 =2时,AF 2 =2a -2,在△AF 1F 2中,F 1F 2 =2c ,由余弦定理可知,AF 12+AF 2 2-F 1F 2 2=2AF 1 AF 2 cos ∠F 1AF 2,即22+2a -2 2-2c 2=2×2×2a -2 ×-12,整理,可得a 2-c 2-a +1=0,即b 2=a -1②,由①②,解得a =2,b =1.所以C 的方程为x 24+y 2=1.(2)设直线l :x +y =m ,点M x 1,y 1 ,N x 2,y 2 ,令x =1,则14+y 2=1,y =±32,由点M ,N 在直线x =1的两侧,可得1-32<m <1+32,联立x +y =m x 24+y 2=1,消去x ,可得5y 2-2my +m 2-4=0,则Δ=4m 2-20m 2-4 =165-m 2 >0恒成立,所以y 1+y 2=2m 5,y 1y 2=m 2-45.因为MP ⋅NQ =MQ ⋅NP ,所以MP MQ=NP NQ,由正弦定理,得sin ∠MQP sin ∠MPQ =sin ∠NQPsin ∠NPQ,而∠MQP +∠NQP =π,即sin ∠MQP =sin ∠NQP ,所以sin ∠MPQ =sin ∠NPQ ,而∠MPQ +∠NPQ =∠MPN <π,则∠MPQ =∠NPQ ,所以k MP +k NP =0,则y 1-t x 1-1+y 2-t x 2-1=0,即y 1-t -y 1+m -1+y 2-t-y 2+m -1=0,即-2y 1y 2+m +t -1 y 1+y 2 -2m -1 t =0,整理,得4-m -4mt +5t =0,所以4m -5 t =4-m ,因为1-32<m <1+32,所以4-m >0,又t =4-m 4m -5>0,所以54<m <1+32,所以d =1+t -m 2=121+4-m 4m -5-m =12-4m 2+8m -14m -5 .令d =12-4m 2+8m -14m -5=2,结合54<m <1+32,解得m =32,则t =4-324×32-5=52.所以t =52时,点P 到直线l 的距离d =2.【点睛】关键点睛:第二问中的关键是能把MP ⋅NQ =MQ ⋅NP 转化为MP MQ=NP NQ,由正弦定理,得sin ∠MQP sin ∠MPQ =sin ∠NQPsin ∠NPQ,从而得到∠MPQ =∠NPQ ,即k MP +k NP =0,从而利用斜率公式和韦达定理求解.14(2023·全国·高三专题练习)已知椭圆C :x 2b 2+y 2a2=1a >b >0 与椭圆x 28+y 24=1的离心率相同,P 22,1为椭圆C 上一点.(1)求椭圆C 的方程.(2)若过点Q 13,0 的直线l 与椭圆C 相交于A ,B 两点,试问以AB 为直径的圆是否经过定点T ?若存在,求出T 的坐标;若不存在,请说明理由.【答案】(1)x 2+y 22=1(2)存在T 的坐标为(-1,0),理由见解析【分析】(1)先求出椭圆x 28+y 24=1的离心率为22,由此得到a 2=2b 2,将点P 的坐标代入椭圆C ,得到12b 2+1a2=1,再代入a 2=2b 2,解得b 2=1,a 2=2,则可得结果;(2)先用两个特殊圆求出交点(-1,0),再猜想以AB 为直径的圆经过定点T (-1,0),再证明猜想,设直线l :x =my +13,并与x 2+y 22=1联立,利用韦达定理得到y 1+y 2,y 1y 2,进一步得到x 1+x 2,x 1x 2,利用y 1+y 2,y 1y 2,x 1+x 2,x 1x 2证明TA ⋅TB=0即可.【详解】(1)在椭圆x 28+y 24=1中,a 1=22,b 1=2,c 1=8-4=2,离心率e =c 1a 1=222=22,在椭圆C :x 2b 2+y 2a2=1a >b >0 中,e =c a =a 2-b 2a =1-b 2a 2,所以1-b 2a2=22,化简得a 2=2b 2,因为P 22,1 在椭圆C :x 2b 2+y 2a 2=1a >b >0 上,所以12b 2+1a 2=1,所以12b 2+12b2=1,所以b 2=1,a 2=2,所以椭圆C :x 2+y22=1.(2)当直线l 的斜率为0时,线段AB 是椭圆的短轴,以AB 为直径的圆的方程为x 2+y 2=1,当直线l 的斜率不存在时,直线l 的方程为x =13,代入x 2+y 22=1,得y =±43,以AB 为直径的圆的方程为x -13 2+y 2=169,联立x 2+y 2=1x -13 2+y 2=169,解得x =-1y =0 ,由此猜想存在T (-1,0),使得以AB 为直径的圆是经过定点T (-1,0),证明如下:当直线l 的斜率不为0且斜率存在时,设直线l :x =my +13,联立x =my +13x 2+y 22=1,消去x 并整理得m 2+12 y 2+23my -89=0,Δ=49m 2+4m 2+12 ⋅89>0,设A (x 1,y 1)、B (x 2,y 2),则y 1+y 2=-2m 3m 2+12 ,y 1y 2=-89m 2+12,则x 1+x 2=my 1+13+my 2+13=m (y 1+y 2)+23=-2m 23m 2+12 +23,x 1x 2=my 1+13 my 2+13 =m 2y 1y 2+13m (y 1+y 2)+19=-8m 29m 2+12 -2m 29m 2+12 +19=-10m 29m 2+12 +19,因为TA ⋅TB=(x 1+1,y 1)⋅(x 2+1,y 2)=(x 1+1)(x 2+1)+y 1y 2=x 1x 2+x 1+x 2+1+y 1y 2=-10m 29m 2+12 +19-2m 23m 2+12 +23+1-89m 2+12 =-16m 2+89m 2+12+169=0,所以TA⊥TB,所以点T(-1,0)在以AB为直径的圆上,综上所述:以AB为直径的圆是经过定点T(-1,0).【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x1,y1,x2,y2;(2)联立直线与圆锥曲线的方程,得到关于x(或y)的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x1+x2、x1x2(或y1+y2、y1y2)的形式;(5)代入韦达定理求解.15(2023·广东广州·广州市从化区从化中学校考模拟预测)已知双曲线C:x2a2-y23a2=1(a>0)的左、右焦点分别为F1,F2,且F2到C的一条渐近线的距离为3.(1)求C的方程;(2)过C的左顶点且不与x轴重合的直线交C的右支于点B,交直线x=12于点P,过F1作PF2的平行线,交直线BF2于点Q,证明:Q在定圆上.【答案】(1)x2-y23=1(2)证明见解析【分析】(1)根据焦点到渐近线的距离求出c=2即可得解;(2)由题意可设PA,PF2的斜率分别为k,-k,设直线AP的方程为y=k x+1,联立双曲线方程,求出B3+k23-k2,6k 3-k2,由三角函数可得∠F2F1Q=∠PF2A=∠BF2P=∠F1QF1,即化为QF2= F1F2=4得证.【详解】(1)根据题意可知C的一条渐近线方程为y=3aax=3x,设F2c,0(c>0),F2到渐近线y=3x的距离为d=3c3+1=3,所以c=2,c2=4=a2+3a2,a2=1,所以C的方程为x2-y23=1.(2)设C的左顶点为A,则A(-1,0),故直线x=12为线段AF2的垂直平分线.所以可设PA,PF2的斜率分别为k,-k,故直线AP的方程为y=k x+1.与C 的方程联立有3-k 2 x 2-2k 2x -k 2-3=0,设B (x 1,y 1),则-1+x 1=2k 23-k 2,即x 1=3+k 23-k 2,所以B 3+k 23-k 2,6k3-k 2当BF 2⊥x 轴时,BF 2= AF 2 =3,△AF 2B 是等腰直角三角形,且易知∠PF 2A =∠BF 2P =π4当BF 2不垂直于x 轴时,直线BF 2的斜率为2k k 2-1,故tan ∠BF 2A =2kk 2-1因为tan ∠PFA =-1,所以tan2∠PF 2A =2kk 2-1=tan ∠BF 2A ,所以∠BF 2A =2∠PF 2A ,∠PF 2A =∠BF 2P因为QF 1∥PF 2所以∠F 2F 1Q =∠PF 2A =∠BF 2P =∠F 1QF 1所以QF 2= F 1F 2 =4为定值,所以点Q 在以F 2为圆心且半径为4的定圆上.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.16(2023春·湖南常德·高二临澧县第一中学校考开学考试)如图,椭圆M :y 2a 2+x 2b2=1a >b >0 的两顶点A -2,0 ,B 2,0 ,离心率e =32,过y 轴上的点F 0,t t <4,t ≠0 的直线l 与椭圆交于C ,D两点,并与x 轴交于点P ,直线AC 与直线BD 交于点Q .(1)当t =23且CD =4时,求直线l 的方程;(2)当点P 异于A ,B 两点时,设点P 与点Q 横坐标分别为x P ,x Q ,是否存在常数λ使x P ⋅x Q =λ成立,若存在,求出λ的值;若不存在,请说明理由.【答案】(1)2x -y +23=0或2x +y -23=0(2)存在,λ=4【分析】(1)先求得椭圆M 的方程,再以设而不求的方法即可求得直线l 的方程;(2)先以设而不求的方法得到x P 、x Q 的解析式,再去计算x P ⋅x Q 是否为定值即可解决.【详解】(1)椭圆的方程y 2a 2+x 2b2=1a >b >0 ,由题可得b =2;由e =c a =32,结合a 2=b 2+c 2,得a =4,椭圆的标准方程:y 216+x 24=1;当直线l 的斜率不存在时,CD =8,与题意不符,故设直线l 的方程为y =kx +23,代入椭圆方程y 2+4x 2=16整理得k 2+4 x 2+43kx -4=0,设C x 1,y 1 ,D x 2,y 2 ,x 1+x 2=-43k k 2+4,x 1⋅x 2=-4k 2+4;∴CD =1+k 2x 1+x 2 2-4x 1x 2=1+k 2-43k k 2+42-4-44+k 2=8k 2+1 k 2+4=4,解得k =± 2.则直线l 的方程为2x -y +23=0或2x +y -23=0.(2)当直线l 的斜率不存在时,直线l 与y 轴重合,由椭圆的对称性可知直线AC 与直线BD 平行,不符合题意;∴由题意可设直线的方程:x =my +n m ≠0,n ≠0 代入椭圆方程,得1+4m 2 y 2+8mny +4n 2-16=0;设C x 1,y 1 ,D x 2,y 2 ,∴y 1+y 2=-8mn 1+4m 2,y 1⋅y 2=4n 2-161+4m 2;∴my 1⋅y 2=4-n 22ny 1+y 2 ①直线AC 的方程为y =y 1x 1+2x +2 ②则直线BD 的方程为y =y 2x 2-2x -2 ③由②③得x -2x +2=y 1x 2-2 y 2x 1+2 =y 1my 2+n -2 y 2my 1+n +2 =my 1y 2+y 1n -2 my 1y 2+y 2n +2由①代入,得x -2x +2=2-n n +2 y 2+2-n y 1 2+n n +2 y 2+2-n y 1 =2-n 2+n ,解得x =4n ,即x Q =4n ;且知x P =n ;∴x P ⋅x Q =n ×4n=4(常数)即点P 与点Q 横坐标之积为定值4.故存在常数λ=417(2023春·四川遂宁·高三射洪中学校考阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点1,62 ,且离心率为22.(1)求椭圆C 的方程;(2)已知直线l :y =mx +2与椭圆交于不同的两点P ,Q ,那么在x 轴上是否存在点M ,使MP =MQ 且MP ⊥MQ ,若存在,求出该直线的方程;若不存在,请说明理由.【答案】(1)x 24+y 22=1(2)详见解析【分析】(1)根据条件得到关于a ,b ,c 的方程组,即可求得椭圆方程;。
专题07 点差法(新高考地区专用)(原卷版)

专题07 点差法1.点差法适用范围 (1)中点弦(2)圆锥曲线有三点P 、A 、B 且A 、B 关于原点对称 2.点差法在中点弦中推导过程3点差法在对称中的推导过程4.点差法在圆锥曲线中的结论总结:小题可以直接利用结论解题,解答题需要写推导过程 技巧1 点差法在椭圆在的应用【例1】(1)(2020·全国高三专题练习)直线1y kx =+与椭圆2214xy +=相交于,A B 两点,若AB 中点的横坐标为1,则k =( )A .2-B .1-C .12-D .1(2)2.(2020·高密市教育科学研究院高三其他模拟)已知椭圆的右焦点为F (3,0),过点F 的直线交椭圆于A ,B 两点.若AB 的中点坐标为(1,-1),则G 的方程为( )A .2214536x y +=B .2213627x y +=C .2212718x y +=D .(3).(2020·黑龙江哈尔滨市·哈九中高三三模(文))已知斜率为1k 的直线l 与椭圆2214y x +=交于,B 两点,线段AB 的中点为C ,直线OC (O 为坐标原点)的斜率为2k ,则12k k ⋅=( )A .14-B .C .12-D .(4).(2020·全国高三专题练习)已知椭圆22221(0,0)x y a b a b+=>>与直线40x y -+=交于A ,B 两点,过原点与线段AB 中点所在的直线的斜率为13-,则椭圆的离心率为( )A .3B .C .D .【举一反三】1.(2020·广东珠海市·高三一模)已知椭圆的右焦点为F ,离心率,过点F 的直线l 交椭圆于,A B 两点,若AB 中点为(1,1),则直线l 的斜率为( ) A .2B .C .12-D .122.(2020·安徽安庆市·高三其他模拟)已知椭圆22:1(0)2x y E m m m+=>的右焦点为F ,过点F 的直线交椭圆E 于,B 两点,若AB 的中点坐标为(1,-1),则椭圆E 的方程为( ) A .B .2212718x y +=C .2213627x y +=D .2214536x y +=3.(2020·全国高三专题练习)椭圆与直线1y x =-交于,A B 两点,过原点与线段AB 中点的直线的斜率为,则ba的值为( )A .B C D .274.(2019·北大附中深圳南山分校高三)已知椭圆,作倾斜角为的直线交椭圆C 于AB 、两点,线段AB 的中点为M O ,为坐标原点,若直线OM 的斜率为12,则b =( )A .1B C D .5.(2020·湖南长沙市·浏阳一中高三)已知椭圆的右焦点为(3,0)F ,过点F 的直线交E 于A 、B 两点.若AB 的中点坐标为,则椭圆E 的离心率为( )A .12B .C .D .技巧2 点差法在双曲线在的应用【例2】(1)(2020·全国高三专题练习)已知双曲线E :24x -22y =1,直线l 交双曲线于A ,B 两点,若线段AB 的中点坐标为,则直线l 的方程为( ) A .4x +y -1=0 B .2x +y =0 C .2x +8y +7=0D .x +4y +3=0(2)(2020·沙坪坝区·重庆一中高三)在平面直角坐标系xOy 中,双曲线()2222:10,0x y E a b a b-=>>的离心率为2,过点()2,1P 的直线m 与双曲线E 交于,B 两点.若P 是AB 的中点,则直线m 的斜率为( ) A .2B .4C .6D .8(3).(2020·河南鹤壁市·鹤壁高中高三)已知直线l :30x y -+=与双曲线C :22221x ya b-=(0a >,0b >)交于,B 两点,点()1,4P 是弦AB 的中点,则双曲线C 的离心率为( )A .43B .2C .D (4)(2020·全国高三专题练习)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为A .22136x y -=B .22145x y -=C .22163x y -=D .22154x y -=【举一反三】1.(2019·陕西宝鸡市·高考模拟)双曲线的一条弦被点(4,2)P 平分,那么这条弦所在的直线方程是( )A .20x y --=B .2100x y +-=C .20x y -=D .280x y +-=2.(2019·广东佛山市·佛山一中高三期中)已知双曲线C :22221x y a b-=(a>0,b>0),斜率为1的直线与C 交于两点A ,B ,若线段AB 的中点为(4,1),则双曲线C 的渐近线方程是A .2x ±y =0B .x ±2y =0C ±y =0D .x =03.(2020·吉林长春市·高三月考)双曲线()2222:10,0x y E a b a b-=>>被斜率为4的直线截得的弦AB 的中点为则双曲线E 的离心率为( )A B C .2D 4.(2020·全国高三专题练习)过点P (4,2)作一直线AB 与双曲线C :22x -y 2=1相交于A ,B 两点,若P为线段AB 的中点,则|AB |=( )A .B .C .D .5.(2020·全国高三专题练习)已知斜率为1的直线l 与双曲线C :22221x y a b -=(0a >,0b >)相交于B 、D 两点,且BD 的中点为3(1)M ,.则C 的离心率为( ) A .2B .C .3D .技巧3 点差法在抛物线在的应用【例3】(1)(2020·云南昆明市·昆明一中高三月考)已知抛物线2:4C y x =,以为中点作C 的弦,则这条弦所在直线的方程为( ) A .210x y --= B .210x y -+= C .230x y +-=D .230x y ++=(2)(2020·贵州高三其他模拟)已知抛物线2:2(0)C y px p =>,倾斜角为6π的直线交C 于,A B 两点.若线段AB中点的纵坐标为p 的值为( ) A .12B .1C .2D .4【举一反三】1.(2020·全国高三专题练习)直线l 过点(1,1)P 与抛物线24y x =交于,A B 两点,若P 恰为线段AB 的中点,则直线l 的斜率为( ) A .2B .C .12D .12-2.(2020·河北衡水市·衡水中学高三)已知直线l 与抛物线26y x =交于、B 两点,直线l 的斜率为3,线段AB 的中点M 的横坐标为12,则AB =( ) A . B.3 C.3D.31.(2020·全国高三专题练习)已知椭圆的右焦点为F (3,0),过点F 的直线交椭圆于A .B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A .2214536x y +=B .2213627x y +=C .2212728x y +=D .2.(2020·全国高三专题练习)椭圆2249144x y +=内有一点(3,2)P ,则以P 为中点的弦所在直线的斜率为( ) A .23-B .32-C .49-D .94-3.(2020·黑龙江哈尔滨市·哈九中高三三模)已知斜率为()110k k ≠的直线l 与椭圆2214y x +=交于,B两点,线段AB 的中点为C ,直线OC (O 为坐标原点)的斜率为2k ,则12k k ⋅=( ) A .14-B .C .12-D .4.(2020·全国高三专题练习)已知离心率为12的椭圆内有个内接三角形ABC ,O 为坐标原点,边的中点分别为D E F 、、,直线的斜率分别为123k k k ,,,且均不为0,若直线OD OE OF 、、斜率之和为1,则123111k k k ++=( ) A .43-B .43C .34-D .345.(2020·全国高三专题练习)中心为原点,一个焦点为F (y =3x -2所得弦中点的横坐标为12,则该椭圆方程为( ) A .222217525x y +=B .2217525x y +=C .2212575x y +=D .222212575x y +=6.(2020·全国高三专题练习)椭圆mx 2+ny 2=1与直线y =1-x 交于M ,N 两点,连接原点与线段MN 中点所得直线的斜率为,则mn的值是( ) A .B.3C.2D7.(2020·黑龙江哈尔滨市·哈师大附中高三)已知双曲线C :,斜率为2的直线与双曲线C 相交于点、B ,且弦AB 中点坐标为,则双曲线C 的离心率为( )A .2BCD .38.(2020·青海西宁市·高三二模)已知倾斜角为π4的直线与双曲线C :22221x y a b-=(0a >,0b >)相交于A ,B 两点,(4,2)M 是弦AB 的中点,则双曲线的离心率为( ) ABC .32D .9.(2020·银川三沙源上游学校高三)已知直线l :30x y -+=与双曲线C :22221x ya b-=(0a >,0b >)交于,B 两点,点()1,4P 是弦AB 的中点,则双曲线C 的离心率为( ) A .43B .2C .D10.(2020·齐齐哈尔市第八中学校高三)已知A ,B 为双曲线2222x y a b-=1(a >0,b >0)上的两个不同点,M 为AB 的中点,O 为坐标原点,若k AB •k OM 12=,则双曲线的离心率为( )A B C .2D .11.(2020·甘肃兰州市·高三月考)过点()42P ,作一直线AB 与双曲线22:12x C y -=相交于、B 两点,若P 为AB 中点,则AB =( )A .B .C .D .12.(2020·全国高三专题练习)已知F 是抛物线C :y 2=2px (p >0)的焦点,过点R (2,1)的直线l 与抛物线C 交于A ,B 两点,R 为线段AB 的中点.若|FA |+|FB |=5,则直线l 的斜率为( )A .3B .1C .2D .1213.(2020·湖北武汉市·高三三模)设直线:2AB y kx =-与抛物线28y x =交于,B 两点,若线段AB 中点横坐标为2,则直线的斜率k =( ). A .2B .1-C .D .1-或214.(2020·全国高三月考(理))已知圆22:3O x y +=与抛物线2:2(0)C y px p =>相交于,A B 两点,且||AB =C 上存在关于直线对称的相异两点P 和Q ,则线段PQ 的中点坐标为( ) A .B .(2,0)C .D .(1,1)15.(2020·全国高三月考)已知抛物线2:2C y px =的焦点到准线的距离为1,若抛物线C 上存在关于直线对称的不同两点P 和Q ,则线段PQ 的中点坐标为( ) A .B .C .D .16.(2020·全国高三专题练习)已知直线l 过抛物线2:8C y x =的焦点,并交抛物线C 于A 、B 两点,|16|AB =,则弦AB 中点M 的横坐标是( )A .3B .4C .6D .817.(2020·河北衡水市·衡水中学高三月考)抛物线方程为24x y =,动点P 的坐标为,若过P 点可以作直线与抛物线交于,A B 两点,且点P 是线段AB 的中点,则直线AB 的斜率为( )A .12B .12-C .2D .18.(2020·全国高三专题练习)过椭圆内的一点(21)M ,引一条弦,使弦被M 点平分,求这条弦所在的直线方程 .19.(2020·全国高三专题练习)已知双曲线E 的中心为原点,(30)F ,是E 的焦点,过F 的直线l 与E 相交于、B 两点,且AB 的中点为,求双曲线E 的方程 .20.(2020·全国高三专题练习)直线m 与椭圆22x +y 2=1交于P 1,P 2两点,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1k 2的值为________.21.(2020·全国高三其他模拟)已知直线3y x m =-与椭圆相交于P ,Q 两点,若PQ 中点的横坐标恰好为2m ,则椭圆C 的离心率为______.22.(2019·浙江宁波市·镇海中学高三开学考试)已知椭圆r :的离心率为,△ABC 的三个顶点都在椭圆r 上,设△ABC 三条边AB 、BC 、AC 的中点分别为D 、E 、M ,且三条边所在直线的斜率分别为1k 、2k 、3k 且均不为0,O 为坐标原点,若直线OD 、OE 、OM 的斜率之和为2,则123111k k k ++=___________. 23.(2020·四川成都市·高三二模)设直线:1l y x =-与抛物线相交于,A B 两点,若弦AB 的中点的横坐标为2,则p 的值为___________.24.(2020·全国高三月考)已知椭圆的右焦点为,过点F 的直线交椭圆于、B 两点.若AB 的中点坐标为,则椭圆C 的方程为______.25.(2020·江苏)椭圆与直线y =1-x 交于A ,B 两点,过原点与线段AB 中点的直线的斜率为,则ba的值为________.26.(2020·湖北黄冈市·黄冈中学高三其他模拟(理))已知双曲线C 的中心在原点,是一个焦点,过F 的直线l 与双曲线C 交于,B 两点,且AB 的中点为,则C 的方程是______. 27.(2020·广东广州市·高三月考)已知直线l 与双曲线2221y x -=交于,A B 两点,当,A B 两点的对称中心坐标为时,直线l 的方程为________.28.(2020·西藏拉萨市·拉萨中学高三月考)已知双曲线2222:1(0,0)x y C a b a b-=>>上存在两点A ,B 关于直线8y x =-对称,且线段AB 的中点在直线2140x y --=上,则双曲线的离心率为_________.29.(2020·全国高三月考)过点()1,1P 作直线l 与双曲线222y x λ-=交于,B 两点,若点P 恰为线段AB的中点,则实数λ的取值范围是______.30.(2019·云南玉溪市·高三月考)已知抛物线22(0)y px p =>,焦点到准线的距离为1,若抛物线上存在关于直线20x y --=对称的相异两点,B ,则线段AB 的中点坐标为_________.。
谈直线和椭圆的公式化解题

谈直线和椭圆的公式化解题直线和椭圆的关系是解析几何中的典型题目,也是高考中经常出现的考点。
但是,许多学生对解析几何感到害怕,因此如何帮助学生突破这一重难点是摆在同行面前的一大难题。
本文旨在给出试题中常用的一些公式,力求公式化解题,使师生从繁琐的计算中解放出来,进而节省宝贵的时间。
解决直线和椭圆的问题,最主要的方法是将直线方程与椭圆方程联立。
解题的步骤如下:1.设定直线方程。
当直线的斜率不存在时,问题往往比较简单;当直线斜率存在时,设直线l的方程为y=kx+m。
2.联立方程。
设椭圆C的方程为x^2/a^2+y^2/b^2=1(a>b>0),记n=a^2k^2+b^2,由此消去y得到nx^2+2a^2kmx+a^2(m^2-b^2)=0.3.计算Δ的值。
Δ=4a^2b^2(n-m^2)。
这个值等价于n-m的平方,即方程的二次项系数减去直线l在y轴上的截距的平方。
4.设定交点坐标。
设直线l与椭圆C的交点为E(x1,y1)、F(x2,y2)。
5.写出和与积。
-2a^2kma^2(m^2-b^2)/n为x1+x2的值,x1*x2为n的值。
除此之外,还有一些公式可以应用于解决直线和椭圆的问题。
例如:1.2b^2m/(b^2(m^2-a^2k^2)) * y1*y2=1,y1+y2=n/(m^2-b^2)。
2.EF=√(Δ/n)。
3.SΔOEF=Δ/(2a^2n),m*(x1-x2)=m*(x1+x2)/(2n)。
这些公式的应用可以有效地降低解题的难度和运算量。
总之,解析几何中的直线和椭圆问题虽然看起来复杂,但是只要熟练掌握一些公式和解题步骤,就可以轻松应对。
在平面直角坐标系$xOy$中,已知椭圆$C$的中心在原点$O$,焦点在$x$轴上,短轴长为$2$,离心率为$\frac{\sqrt{3}}{2}$。
Ⅰ)求椭圆$C$的方程;Ⅱ)$A,B$为椭圆$C$上满足$\triangle AOB$的面积为$\frac{2}{26}$的任意两点,$E$为线段$AB$的中点,射线$OE$交椭圆$C$于点$P$。
【高考二轮复习】直线与椭圆(解析版)

椭圆的概念与几何性质一、知识梳理1.椭圆弦及弦中点问题解题方法(1)根与系数的关系:直线与椭圆方程联立、消元,利用根与系数关系表示中点; (2)点差法:利用弦两端点适合椭圆方程,作差构造中点、斜率.2.直线与椭圆相交问题解题方法(1) 解决直线与椭圆相交的问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题. (2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2), 则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] = ⎝ ⎛⎭⎪⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率).3.最值与范围问题的解题思路1.构造关于所求量的函数,通过求函数的值域来获得问题的解.2.构造关于所求量的不等式,通过解不等式来获得问题的解.在解题过程中,一定要深刻挖掘题目中的隐含条件,如判别式大于零等.二、例题精讲 + 随堂训练考点一 中点弦及弦长问题 角度1 中点弦问题【例1-1】 已知椭圆x 22+y 2=1,(1)过A (2,1)的直线l 与椭圆相交,求l 被截得的弦的中点轨迹方程; (2)求过点P ⎝ ⎛⎭⎪⎫12,12且被P 点平分的弦所在直线的方程.解 (1)设弦的端点为P (x 1,y 1),Q (x 2,y 2),其中点是M (x ,y ),则x 2+x 1=2x ,y 2+y 1=2y ,由于点P ,Q 在椭圆上,则有:⎩⎪⎨⎪⎧x 212+y 21=1,①x 222+y 22=1,②①-②得y 2-y 1x 2-x 1=-x 2+x 12(y 2+y 1)=-x2y , 所以-x 2y =y -1x -2,化简得x 2-2x +2y 2-2y =0(包含在椭圆x 22+y 2=1内部的部分).(2)由(1)可得弦所在直线的斜率为k =-x 2y =-12,因此所求直线方程是y -12=-12⎝ ⎛⎭⎪⎫x -12,化简得2x +4y -3=0.角度2 弦长问题【例1-2】 (2019·北京朝阳区模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,且点F 1到椭圆C 上任意一点的最大距离为3,椭圆C 的离心率为12.(1)求椭圆C 的标准方程;(2)是否存在斜率为-1的直线l 与以线段F 1F 2为直径的圆相交于A ,B 两点,与椭圆相交于C ,D ,且|CD ||AB |=837?若存在,求出直线l 的方程;若不存在,说明理由.解 (1)根据题意,设F 1,F 2的坐标分别为(-c ,0),(c ,0),由题意可得⎩⎪⎨⎪⎧a +c =3,c a =12,得a =2,c =1,则b 2=a 2-c 2=3,故椭圆C 的标准方程为x 24+y 23=1.(2)假设存在斜率为-1的直线l ,设为y =-x +m ,由(1)知F 1,F 2的坐标分别为(-1,0),(1,0),所以以线段F 1F 2为直径的圆为x 2+y 2=1,由题意知圆心(0,0)到直线l 的距离d =|-m |2<1,得|m |< 2. |AB |=21-d 2=21-m 22=2×2-m 2,联立得⎩⎪⎨⎪⎧x 24+y 23=1,y =-x +m ,消去y ,得7x 2-8mx +4m 2-12=0,由题意得Δ=(-8m )2-4×7(4m 2-12)=336-48m 2=48(7-m 2)>0,解得m 2<7, 设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=8m7,x 1x 2=4m 2-127,|CD |=2|x 1-x 2|=2×⎝ ⎛⎭⎪⎫8m 72-4×4m 2-127=2×336-48m 249=467×7-m 2=837|AB |=837×2×2-m 2, 解得m 2=13<7,得m =±33.即存在符合条件的直线l ,其方程为y =-x ±33.【训练1】 (1)已知斜率为2的直线经过椭圆x 25+y 24=1的右焦点F 1,与椭圆相交于A ,B 两点,则弦AB 的长为________.解析 (1)法一 由题意知,椭圆的右焦点F 1的坐标为(1,0),直线AB 的方程为y =2(x -1),由⎩⎪⎨⎪⎧y =2(x -1),x 25+y 24=1消去y ,得3x 2-5x =0,故得A (0,-2),B ⎝ ⎛⎭⎪⎫53,43,则|AB |=⎝ ⎛⎭⎪⎫0-532+⎝ ⎛⎭⎪⎫-2-432=553. 法二 由题意知,椭圆的右焦点F 1的坐标为(1,0), 直线AB 的方程为y =2(x -1),由⎩⎪⎨⎪⎧y =2(x -1),x 25+y 24=1,消去y 得3x 2-5x =0,设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=53,x 1x 2=0,则|AB |=(x 1-x 2)2+(y 1-y 2)2=(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+22)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫532-4×0=553.(2)(2019·广东五校调研)若椭圆的中心在原点,一个焦点为(0,2),直线y =3x +7与椭圆相交所得弦的中点的纵坐标为1,则这个椭圆的方程为( ) A.x 212+y 220=1 B.x 24+y 212=1 C.x 212+y 28=1D.x 28+y 212=1解析:(2)法一 ∵椭圆的中心在原点,一个焦点为(0,2), ∴设椭圆方程为y 2b 2+4+x 2b 2=1(b >0),由⎩⎪⎨⎪⎧y2b 2+4+x 2b 2=1,y =3x +7消去x ,得(10b 2+4)y 2-14(b 2+4)y -9b 4+13b 2+196=0, 设直线y =3x +7与椭圆相交所得弦的端点分别为A (x 1,y 1),B (x 2,y 2), 由题意知y 1+y 22=1,∴y 1+y 2=14(b 2+4)10b 2+4=2,解得b 2=8.∴所求椭圆方程为x 28+y 212=1.法二 ∵椭圆的中心在原点,一个焦点为(0,2), ∴设椭圆的方程为y 2b 2+4+x 2b 2=1(b >0).设直线y =3x +7与椭圆相交所得弦的端点分别为A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 21b 2+4+x 21b 2=1, ①y 22b 2+4+x 22b 2=1, ②①-②得(y 1-y 2)(y 1+y 2)b 2+4+(x 1-x 2)(x 1+x 2)b 2=0,即y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=-b 2+4b 2,又∵弦AB 的中点的纵坐标为1,故横坐标为-2, k =y 1-y 2x 1-x 2=3,代入上式得3×2×12×(-2)=-b 2+4b 2,解得b 2=8,故所求的椭圆方程为x 28+y 212=1.答案 (1)553 (2)D考点二 最值与范围问题【例2】 (2019·天津和平区质检)已知P 点坐标为(0,-2),点A ,B 分别为椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点,直线BP 交E 于点Q ,△ABP 是等腰直角三角形,且PQ→=32QB →.(1)求椭圆E 的方程;(2)设过点P 的动直线l 与E 相交于M ,N 两点,当坐标原点O 位于以MN 为直径的圆外时,求直线l 斜率的取值范围.解 (1)由△ABP 是等腰直角三角形,得a =2,B (2,0).设Q (x 0,y 0),由PQ →=32QB →得⎩⎪⎨⎪⎧x 0=65,y 0=-45,代入椭圆方程得b 2=1,则椭圆E 的方程为x 24+y 2=1. (2)依题意得,直线l 的斜率存在,方程设为y =kx -2. 联立⎩⎪⎨⎪⎧y =kx -2,x 24+y 2=1,消去y 并整理得(1+4k 2)x 2-16kx +12=0.(*)因直线l 与E 有两个交点,即方程(*)有不等的两实根, 故Δ=(-16k )2-48(1+4k 2)>0,解得k 2>34. 设M (x 1,y 1),N (x 2,y 2),由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=16k1+4k 2,x 1x 2=121+4k 2,因坐标原点O 位于以MN 为直径的圆外,所以OM →·ON →>0,即x 1x 2+y 1y 2>0,又由x 1x 2+y 1y 2=x 1x 2+(kx 1-2)(kx 2-2)=(1+k 2)x 1x 2-2k (x 1+x 2)+4=(1+k 2)·121+4k 2-2k ·16k 1+4k 2+4>0,解得k 2<4,综上可得34<k 2<4,则32<k <2或-2<k <-32.则满足条件的斜率k 的取值范围为⎝ ⎛⎭⎪⎫-2,-32∪⎝ ⎛⎭⎪⎫32,2.【训练2】 已知P (x 0,y 0)是椭圆C :x 24+y 2=1上的一点,F 1,F 2是C 的两个焦点,若PF 1→·PF 2→<0,则x 0的取值范围是( )A.⎝ ⎛⎭⎪⎫-263,263 B.⎝ ⎛⎭⎪⎫-233,233 C.⎝ ⎛⎭⎪⎫-33,33D.⎝ ⎛⎭⎪⎫-63,63解析 由题意可知F 1(-3,0),F 2(3,0),则PF 1→·PF 2→=(x 0+3)(x 0-3)+y 2=x 20+y 20-3<0.因为点P 在椭圆上,所以y 20=1-x 204.所以x 20+⎝⎛⎭⎪⎫1-x 204-3<0,解得-263<x 0<263,即x 0的取值范围是⎝ ⎛⎭⎪⎫-263,263. 答案 A考点三 巧妙运用抛物线定义得出与根与系数关系的联系,从而设而不求 【例3】 (2017·山东卷)在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py (p >0)交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为________.解析 法一 设A (x A ,y A ),B (x B ,y B ),由抛物线定义可得|AF |+|BF |=y A +p 2+y B +p 2=4×p2⇒y A +y B =p ,由⎩⎪⎨⎪⎧x 2a 2-y 2b 2=1,x 2=2py ,可得a 2y 2-2pb 2y +a 2b 2=0,所以y A +y B =2pb 2a 2=p ,解得a =2b ,故该双曲线的渐近线方程为y =±22x .法二 (点差法)设A (x 1,y 1),B (x 2,y 2),由抛物线的定义可知|AF |=y 1+p2,|BF |=y 2+p 2,|OF |=p 2,由|AF |+|BF |=y 1+p 2+y 2+p2=y 1+y 2+p =4|OF |=2p ,得y 1+y 2=p .易知直线AB 的斜率k AB =y 2-y 1x 2-x 1=x 222p -x 212p x 2-x 1=x 2+x 12p .由⎩⎪⎨⎪⎧x 21a 2-y 21b 2=1,x 22a 2-y 22b 2=1,得k AB =y 2-y 1x 2-x 1=b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2·x 1+x 2p ,则b 2a 2·x 1+x 2p =x 2+x 12p ,所以b 2a 2=12⇒b a =22,所以双曲线的渐近线方程为y =±22x .答案 y =±22x考点四 中点弦或对称问题,可以利用“点差法”,“点差法”实质上是“设而不求”的一种方法【例4】 (1)△ABC 的三个顶点都在抛物线E :y 2=2x 上,其中A (2,2),△ABC 的重心G 是抛物线E 的焦点,则BC 所在直线的方程为________________. (2)抛物线E :y 2=2x 上存在两点关于直线y =k (x -2)对称,则k 的取值范围是________.解析 (1)设B (x 1,y 1),C (x 2,y 2),边BC 的中点为M (x 0,y 0),易知G ⎝ ⎛⎭⎪⎫12,0,则⎩⎪⎨⎪⎧x 1+x 2+23=12,y 1+y 2+23=0,从而⎩⎪⎨⎪⎧x 0=x 1+x 22=-14,y 0=y 1+y 22=-1,即M ⎝ ⎛⎭⎪⎫-14,-1,又y 21=2x 1,y 22=2x 2,两式相减得(y 1+y 2)(y 1-y 2)=2(x 1-x 2),则直线BC 的斜率k BC =y 1-y 2x 1-x 2=2y 1+y 2=22y 0=1y 0=-1,故直线BC 的方程为y -(-1)=-⎝ ⎛⎭⎪⎫x +14,即4x +4y +5=0.(2)当k =0时,显然成立.当k ≠0时,设两对称点为B (x 1,y 1),C (x 2,y 2),BC 的中点为M (x 0,y 0),由y 21=2x 1,y 22=2x 2,两式相减得(y 1+y 2)(y 1-y 2)=2(x 1-x 2),则直线BC 的斜率k BC = y 1-y 2x 1-x 2=2y 1+y 2=22y 0=1y 0,由对称性知k BC =-1k ,点M 在直线y =k (x -2)上,所以y 0=-k ,y 0=k (x 0-2),所以x 0=1.由点M 在抛物线内,得y 20<2x 0,即(-k )2<2, 所以-2<k <2,且k ≠0. 综上,k 的取值范围为(-2,2). 答案 (1)x +y +54=0 (2)(-2,2)考点五 中点弦或对称问题,可以利用“点差法”,但不要忘记验证Δ>0 【例5】 已知双曲线x 2-y 22=1,过点P (1,1)能否作一条直线l 与双曲线交于A ,B 两点,且点P 是线段AB 的中点?解 假设存在直线l 与双曲线交于A ,B 两点,且点P 是线段AB 的中点.设A (x 1,y 1),B (x 2,y 2),易知x 1≠x 2,由⎩⎪⎨⎪⎧x 21-y 212=1,x 22-y 222=1,两式相减得(x 1+x 2)(x 1-x 2)-(y 1+y 2)(y 1-y 2)2=0,又x 1+x 22=1,y 1+y 22=1,所以2(x 1-x 2)-(y 1-y 2)=0,所以k AB =y 1-y 2x 1-x 2=2,故直线l 的方程为y -1=2(x -1),即y =2x -1. 由⎩⎪⎨⎪⎧y =2x -1,x 2-y 22=1,消去y 得2x 2-4x +3=0, 因为Δ=16-24=-8<0,方程无解,故不存在一条直线l 与双曲线交于A ,B 两点,且点P 是线段AB 的中点.考点六 求解直线与圆锥曲线的相关问题时,若两条直线互相垂直或两直线斜率有明确等量关系,可用“替代法”,“替代法”的实质是设而不求【例6】 (2017·全国Ⅰ卷改编)已知F 为抛物线C :y 2=2x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为________.解析 法一 由题意知,直线l 1,l 2的斜率都存在且不为0,F ⎝ ⎛⎭⎪⎫12,0,设l 1:x =ty +12,则直线l 1的斜率为1t ,联立方程得⎩⎪⎨⎪⎧y 2=2x ,x =ty +12,消去x 得y 2-2ty -1=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t ,y 1y 2=-1.所以|AB |=t 2+1|y 1-y 2|=t 2+1(y 1+y 2)2-4y 1y 2=t 2+14t 2+4=2t 2+2, 同理得,用1t 替换t 可得|DE |=2t 2+2,所以|AB |+|DE |=2⎝ ⎛⎭⎪⎫t 2+1t 2+4≥4+4=8,当且仅当t 2=1t 2,即t =±1时等号成立,故|AB |+|DE |的最小值为8.法二 由题意知,直线l 1,l 2的斜率都存在且不为0,F ⎝ ⎛⎭⎪⎫12,0,不妨设l 1的斜率为k ,则l 1:y =k ⎝ ⎛⎭⎪⎫x -12,l 2:y =-1k ⎝ ⎛⎭⎪⎫x -12.由⎩⎪⎨⎪⎧y 2=2x ,y =k ⎝ ⎛⎭⎪⎫x -12,消去y 得k 2x 2-(k 2+2)x +k 24=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=1+2k 2. 由抛物线的定义知,|AB |=x 1+x 2+1=1+2k 2+1=2+2k 2.同理可得,用-1k 替换|AB |中k ,可得|DE |=2+2k 2,所以|AB |+|DE |=2+2k 2+2+2k 2=4+2k 2+2k 2≥4+4=8,当且仅当2k 2=2k 2,即k =±1时等号成立,故|AB |+|DE |的最小值为8. 答案 8三、课后练习1.(2019·北京东城区调研)已知圆M :(x -2)2+y 2=1经过椭圆C :x 2m +y 23=1(m >3)的一个焦点,圆M 与椭圆C 的公共点为A ,B ,点P 为圆M 上一动点,则P 到直线AB 的距离的最大值为( ) A.210-5 B.210-4 C.410-11D.410-10解析 易知圆M 与x 轴的交点为(1,0),(3,0),∴m -3=1或m -3=9,则m =4或m =12.当m =12时,圆M 与椭圆C 无交点,舍去.所以m =4.联立⎩⎪⎨⎪⎧(x -2)2+y 2=1,x 24+y 23=1,得x 2-16x +24=0.又x ≤2,所以x =8-210.故点P 到直线AB 距离的最大值为3-(8-210)=210-5. 答案 A2.(2019·广州调研)在平面直角坐标系xOy 中,直线x +2y -22=0与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相切,且椭圆C 的右焦点F (c ,0)关于直线l :y =cb x 的对称点E 在椭圆C 上,则△OEF 的面积为( ) A.12B.32C.1D.2解析 联立方程可得⎩⎪⎨⎪⎧x +2y -22=0,x 2a 2+y 2b 2=1,消去x ,化简得(a 2+2b 2)y 2-8b 2y +b 2(8-a 2)=0,由Δ=0得2b 2+a 2-8=0.设F ′为椭圆C 的左焦点,连接F ′E ,易知F ′E ∥l ,所以F ′E ⊥EF ,又点F 到直线l 的距离d =c 2c 2+b 2=c 2a ,所以|EF |=2c 2a ,|F ′E |=2a -|EF |=2b 2a ,在Rt △F ′EF 中,|F ′E |2+|EF |2=|F ′F |2,化简得2b 2=a 2,代入2b 2+a 2-8=0得b 2=2,a =2,所以|EF |=|F ′E |=2,所以S △OEF =12S △F ′EF =1. 答案 C3.已知直线l :y =kx +2过椭圆x 2a 2+y 2b 2=1(a >b >0)的上顶点B 和左焦点F ,且被圆x 2+y 2=4截得的弦长为L ,若L ≥455,则椭圆离心率e 的取值范围是________.解析 依题意,知b =2,kc =2.设圆心到直线l 的距离为d ,则L =24-d 2≥455, 解得d 2≤165.又因为d =21+k 2,所以11+k 2≤45, 解得k 2≥14. 于是e 2=c 2a 2=c 2b 2+c 2=11+k 2,所以0<e 2≤45,又由0<e <1,解得0<e ≤255. 答案 ⎝⎛⎦⎥⎤0,255 4.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (2,1),且离心率e =32.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点,求△P AB 的面积的最大值.解 (1)因为e 2=c 2a 2=a 2-b 2a 2=34,所以a 2=4b 2.又椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (2,1),所以4a 2+1b 2=1.所以a 2=8,b 2=2.故所求椭圆方程为x 28+y 22=1. (2)设l 的方程为y =12x +m ,点A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =12x +m ,x 28+y 22=1消去y 整理得x 2+2mx +2m 2-4=0.所以x 1+x 2=-2m ,x 1x 2=2m 2-4.又直线l 与椭圆相交,所以Δ=4m 2-8m 2+16>0,解得|m |<2.则|AB |=1+14×(x 1+x 2)2-4x 1x 2=5(4-m 2).点P 到直线l 的距离d =|m |1+14=2|m |5. 所以S △P AB =12d |AB |=12×2|m |5×5(4-m 2)=m 2(4-m 2)≤m 2+4-m 22=2. 当且仅当m 2=2,即m =±2时,△P AB 的面积取得最大值为2.5.椭圆x 2a 2+y 2b 2=1(a >b >0),直线l 1:y =-12x ,直线l 2:y =12x ,P 为椭圆上任意一点,过P 作PM ∥l 1且与直线l 2交于点M ,作PN ∥l 2且与l 1交于点N ,若|PM |2+|PN |2为定值,则椭圆的离心率为________.解析 设|PM |2+|PN |2=t ,M ⎝ ⎛⎭⎪⎫x 1,12x 1,N ⎝ ⎛⎭⎪⎫x 2,-12x 2,P (x ,y ).因为四边形PMON 为平行四边形,所以|PM |2+|PN |2=|ON |2+|OM |2=54(x 21+x 22)=t .因为OP →=OM →+ON →=⎝ ⎛⎭⎪⎫x 1+x 2,12x 1-12x 2, 所以⎩⎪⎨⎪⎧x =x 1+x 2,y =12x 1-12x 2,则x 2+4y 2=2(x 21+x 22)=85t ,此方程为椭圆方程,即x 28t 5+y 22t 5=1,则椭圆的离心率e =8t 5-2t58t 5=32.答案 32。
椭圆题型归纳之直线与椭圆周长

椭圆题型归纳之直线与椭圆周长椭圆是一种常见的几何图形,与直线相交的情况在许多题型中都经常出现。
本文将归纳总结直线与椭圆相交时的情况,并介绍如何计算直线与椭圆的周长。
直线与椭圆相交的情况直线与椭圆相交有三种基本情况:直线与椭圆相切、直线穿过椭圆并与椭圆有两个交点、直线与椭圆无交点。
情况一:直线与椭圆相切当直线与椭圆相切时,直线只与椭圆相交于一个点。
这个点既是直线的一个交点,也是椭圆的一个焦点。
在计算周长时,可以将直线分成两段,一段是直线与椭圆相切的那一段,另一段是直线与椭圆无交点的那一段。
情况二:直线穿过椭圆并与椭圆有两个交点当直线穿过椭圆并与椭圆有两个交点时,直线与椭圆有两个交点。
这两个交点分别位于椭圆的两个焦点之间。
在计算周长时,可以将直线分成三段,第一段是直线与椭圆第一个焦点之间的那一段,第二段是直线与椭圆相交的那一段,第三段是直线与椭圆第二个焦点之间的那一段。
情况三:直线与椭圆无交点当直线与椭圆无交点时,直线与椭圆没有交集。
在计算周长时,直线可以被看作是椭圆的切线或者不与椭圆有关的线段,所以直线的长度不会影响椭圆的周长。
计算直线与椭圆的周长直线与椭圆的周长可以通过计算直线与椭圆相交的弧长来获得。
在情况一和情况二中,需要计算直线与椭圆相交弧的长度,加上直线与椭圆无交点弧的长度;在情况三中,只需要计算直线与椭圆无交点弧的长度。
计算弧长时,可以使用椭圆的周长公式:L = π * (3(a + b) - sqrt((3a + b) * (a + 3b))),其中a和b分别是椭圆的两个半轴长度。
根据情况的不同,选择适当的a和b的值进行计算。
总结本文总结了直线与椭圆相交的三种情况,并介绍了计算直线与椭圆周长的方法。
通过对每种情况的分析和计算,我们可以得出直线与椭圆的周长。
对于解决涉及直线与椭圆的题型问题,可以根据具体情况选择适当的方法和公式进行计算。
直线与椭圆专题讲评

课堂引申 (3) 若N点坐标为(4,0),求证:E、F、N三点共线.
过椭圆上一点的 直线与椭圆相交——求交点
N 的坐标(4k22-k2+4k-1 2,-22k2k-2+41k+1).
第一步:联立、消元
第二步:检验
第三步:韦达定理求x 第四步:代入直线方程,求y
A
B
C
(过椭圆上一点的)直线与椭圆相交——求 E
A
O
M F Bx
二
(过原点的)直线与椭圆相交——求交点
(过椭圆上一点的)直线与椭圆相交——求交点
检验——提高正确率!
韦达定理——用“乘法”
解:2c=2 6,c= 6,
设椭圆方程为b2x+2 6+by22=1,代入点(2,1),
则b2+4 6+b12=1,解得 b2=2,
因此椭圆标准方程为x82+y22=1. 设直线 l 为 y-1=k(x-2),即 y=kx-2k+1,
过椭圆上一点的 直线与椭圆相交——求交点
N:yx= 2+k4xy+2-(18-=20k. ), 整理得:(1+4k2)x2+(8k-16k2)x+16k2-16k-4=0.
第一步:联立、消元
检验:x=2 时, 4+16k2+16k-32k2+16k2-16k-4=0 成立.
第二步:检验
x1x2=16k21-+146kk2-4,且 x1=2,所以 xN=8k21-+84kk-2 2, 第三步:韦达定理求x
yN=k(xN-2)+1=k·-18+k-k2 4+1=-4k12+-44kk2+1,
第四步:代入直线方程,求y
因此点 N 坐标为(8k21-+84kk-2 2,-4k12+-44kk2+1).
巩固练习 已知椭圆x62+y32=1,过椭圆上一点 M(2,1), 且斜率为 k 的直线与椭圆交于点 N,则点 N 的坐标为______________.
高考数学题型归纳,直线和椭圆综合应用

第二课时 直线与椭圆的综合问题考点一 弦中点问题[典例] (2018·南宁摸底联考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一条弦所在的直线方程是x -y +5=0,弦的中点坐标是M (-4,1),则椭圆的离心率是( )A.12 B.22 C.32D.55[解析] 设直线x -y +5=0与椭圆x 2a 2+y 2b 2=1相交于A (x 1,y 1),B (x 2,y 2)两点,因为AB 的中点M (-4,1),所以x 1+x 2=-8,y 1+y 2=2.易知直线AB 的斜率k =y 2-y 1x 2-x 1=1.由⎩⎨⎧x 21a 2+y 21b2=1,x 22a 2+y 22b 2=1,两式相减得,(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0,所以y 1-y 2x 1-x 2= -b 2a 2·x 1+x 2y 1+y 2,所以b 2a 2=14,于是椭圆的离心率e =c a = 1-b 2a 2=32,故选C. [答案] C[解题技法]1.用“点差法”求解弦中点问题的步骤 2.解有关弦中点问题的注意点对于弦中点问题,常用“根与系数的关系”或“点差法”求解.在用根与系数的关系时,要注意前提条件Δ>0;在用“点差法”时,要检验直线与圆锥曲线是否相交.1.已知椭圆:x 29+y 2=1,过点P ⎝⎛⎭⎫12,12的直线与椭圆相交于A ,B 两点,且弦AB 被点P 平分,则直线AB 的方程为( )A .9x +y -5=0B .9x -y -4=0C .x +9y -5=0D .x -9y +4=0解析:选C 设A (x 1,y 1),B (x 2,y 2),则有⎩⎨⎧x 219+y 21=1,x229+y 22=1,两式作差得(x 2-x 1)(x 2+x 1)9+(y 2-y 1)(y 2+y 1)=0,因为x 2+x 1=1,y 2+y 1=1,y 2-y 1x 2-x 1=k AB ,代入后求得k AB =-19,所以弦所在的直线方程为y -12=-19⎝⎛⎭⎫x -12,即x +9y -5=0. 2.焦点为F (0,52),并截直线y =2x -1所得弦的中点的横坐标是27的椭圆的标准方程为________________.解析:设所求的椭圆方程为y 2a 2+x 2b2=1(a >b >0),直线被椭圆所截弦的端点为A (x 1,y 1),B (x 2,y 2).由题意,可得弦AB 的中点坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22,且x 1+x 22=27,y 1+y 22=-37. 将A ,B 两点坐标代入椭圆方程中,得⎩⎨⎧y 21a 2+x 21b 2=1,y 22a 2+x22b 2=1.两式相减并化简,得a 2b 2=-y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=-2×-6747=3,所以a 2=3b 2,又c 2=a 2-b 2=50,所以a 2=75,b 2=25, 故所求椭圆的标准方程为y 275+x 225=1.答案:y 275+x 225=1考点二 弦长问题[典例] (2018·北京高考节选)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,焦距为2 2.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B .(1)求椭圆M 的方程; (2)若k =1,求|AB |的最大值.[解] (1)由题意得⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =63,2c =22,解得a =3,b =1.所以椭圆M 的方程为x 23+y 2=1.(2)设直线l 的方程为y =x +m ,A (x 1,y 1),B (x 2,y 2). 由⎩⎪⎨⎪⎧y =x +m ,x 23+y 2=1,得4x 2+6mx +3m 2-3=0,所以x 1+x 2=-3m2,x 1x 2=3m 2-34.所以|AB |=(x 2-x 1)2+(y 2-y 1)2=2(x 2-x 1)2=2[(x 1+x 2)2-4x 1x 2]= 12-3m 22. 当m =0,即直线l 过原点时,|AB |最大,最大值为 6. [解题技法] 弦长的求解方法(1)当弦的两端点坐标易求时,可直接利用两点间的距离公式求解. (2)当直线的斜率存在时,设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2), 则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=⎝⎛⎭⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率). [提醒] 利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.1.已知椭圆x 22+y 2=1与直线y =x +m 交于A ,B 两点,且|AB |=423,则实数m 的值为( )A .±1B .±12C. 2D .±2解析:选A 由⎩⎪⎨⎪⎧x 22+y 2=1,y =x +m 消去y 并整理,得3x 2+4mx +2m 2-2=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-4m3,x 1x 2=2m 2-23.由题意,得|AB |=2(x 1+x 2)2-8x 1x 2=433-m 2=423,解得m =±1.2.椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =12,过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8.(1)求椭圆E 的方程;(2)若直线AB 的斜率为3,求△ABF 2的面积. 解:(1)由题意知,4a =8,所以a =2, 又e =12,所以c a =12,c =1,所以b 2=22-1=3,所以椭圆E 的方程为x 24+y 23=1.(2)设直线AB 的方程为y =3(x +1),由⎩⎪⎨⎪⎧y =3(x +1),x 24+y 23=1,得5x 2+8x =0, 解得x 1=0,x 2=-85,所以y 1=3,y 2=-335.所以S △ABF 2=c ·|y 1-y 2|=1×⎪⎪⎪⎪3+335=835.考点三 椭圆与向量的综合问题[典例] (2019·长春质检)已知椭圆C 的两个焦点为F 1(-1,0),F 2(1,0),且经过点E ⎝⎛⎭⎫3,32. (1)求椭圆C 的方程;(2)过F 1的直线l 与椭圆C 交于A ,B 两点(点A 位于x 轴上方),若AF 1―→=2F 1B ―→,求直线l 的斜率k 的值.[解] (1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),由⎩⎪⎨⎪⎧2a =|EF 1|+|EF 2|=4,a 2=b 2+c 2,c =1,解得⎩⎪⎨⎪⎧a =2,c =1,b =3,所以椭圆C 的方程为x 24+y 23=1.(2)由题意得直线l 的方程为y =k (x +1)(k >0), 联立⎩⎪⎨⎪⎧y =k (x +1),x 24+y 23=1,整理得⎝⎛⎭⎫3k 2+4y 2-6k y -9=0, 则Δ=144k 2+144>0,设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=6k3+4k 2,y 1y 2=-9k 23+4k 2,又AF 1―→=2F 1B ―→,所以y 1=-2y 2, 所以y 1y 2=-2(y 1+y 2)2,则3+4k 2=8,解得k =±52,又k >0,所以k =52. [解题技法] 解决椭圆中与向量有关问题的方法(1)将向量条件用坐标表示,再利用函数、方程知识建立数量关系. (2)利用向量关系转化成相关的等量关系.(3)利用向量运算的几何意义转化成图形中位置关系解题.1.已知F 1,F 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,B 为椭圆短轴的一个端点,BF 1―→·BF 2―→≥14F 1F 2―→2,则椭圆的离心率的取值范围为( )A.⎝⎛⎦⎤0,12 B.⎝⎛⎭⎫0,22 C.⎝⎛⎦⎤0,33 D.⎝⎛⎭⎫12,1解析:选C 根据题意不妨设B (0,b ),F 1(-c,0),F 2(c,0),因为BF 1―→·BF 2―→≥14F 1F 2―→2,BF 1―→=(-c ,-b ),BF 2―→=(c ,-b ),|F 1F 2|2=4c 2,所以b 2≥2c 2,又因为b 2=a 2-c 2,所以a 2≥3c 2,所以0<c a ≤33.2.已知椭圆D :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,A 为短轴的一个端点,且|OA |=|OF |,△AOF的面积为1(其中O 为坐标原点).(1)求椭圆D 的标准方程;(2)过椭圆D 长轴左端点C 作直线l 与直线x =a 交于点M ,直线l 与椭圆D 的另一交点为P ,求OM ―→·OP ―→的值.解:(1)因为|OA |=|OF |,所以b =c ,又△AOF 的面积为1,所以12bc =1,解得b =c =2,所以a 2=b 2+c 2=4,所以椭圆D 的标准方程为x 24+y 22=1.(2)由题意可知直线MC 的斜率存在,设其方程为y =k (x +2), 代入x 24+y 22=1,得(1+2k 2)x 2+8k 2x +8k 2-4=0,所以P ⎝ ⎛⎭⎪⎫-4k 2-22k 2+1,4k 2k 2+1.又M (2,4k ), 所以OM ―→·OP ―→=(2,4k )·⎝ ⎛⎭⎪⎫-4k 2-22k 2+1,4k 2k 2+1=4.同步练习题A 级1.(2019·长春二检)椭圆4x 2+9y 2=144内有一点P (3,2),则以P 为中点的弦所在直线的斜率为( )A .-23B .-32C .-49D .-94解析:选A 设以P 为中点的弦所在的直线与椭圆交于点A (x 1,y 1),B (x 2,y 2),斜率为k ,则4x 21+9y 21=144,4x 22+9y 22=144,两式相减得4(x 1+x 2)(x 1-x 2)+9(y 1+y 2)(y 1-y 2)=0,又x 1+x 2=6,y 1+y 2=4,y 1-y 2x 1-x 2=k ,代入解得k =-23.2.已知直线y =-x +1与椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若椭圆的离心率为22,焦距为2,则线段AB 的长是( )A.223B.423C. 2D .2解析:选B 由条件知c =1,e =c a =22,所以a =2,b =1,椭圆方程为x 22+y 2=1,联立直线方程与椭圆方程可得交点坐标为(0,1),⎝⎛⎭⎫43,-13,所以|AB |=423. 3.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A .2 B.455 C.4105D.8105解析:选C 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t 消去y ,得5x 2+8tx +4(t 2-1)=0, 则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5.∴|AB |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =2·⎝⎛⎭⎫-85t 2-4×4(t 2-1)5 =425·5-t 2,当t =0时,|AB |max =4105. 4.(2019·石家庄质检)倾斜角为π4的直线经过椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F ,与椭圆交于A ,B 两点,且AF ―→=2FB ―→,则该椭圆的离心率为( )A.32B.23C.22D.33解析:选B 由题可知,直线的方程为y =x -c ,与椭圆方程联立⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =x -c ,得(b 2+a 2)y 2+2b 2cy-b 4=0,由于直线过椭圆的右焦点,故必与椭圆有交点,则Δ>0.设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧ y 1+y 2=-2b 2c a 2+b2,y 1y 2=-b 4a 2+b 2,又AF ―→=2FB ―→,∴(c -x 1,-y 1)=2(x 2-c ,y 2), ∴-y 1=2y 2,可得⎩⎪⎨⎪⎧-y 2=-2b 2c a 2+b 2,-2y 22=-b 4a 2+b2.∴12=4c 2a 2+b 2,∴e =23,故选B. 5.已知点P 是椭圆x 216+y 28=1上的动点,F 1,F 2分别是椭圆的左、右焦点,O 是坐标原点,若M 是∠F 1PF 2的平分线上一点,且F 1M ―→·MP ―→=0,则|OM ―→|的取值范围是( )A .[0,3)B .(0,22)C .[22,3)D .(0,4]解析:选B 如图,延长F 1M 交PF 2的延长线于点G . ∵F 1M ―→·MP ―→=0,∴F 1M ―→⊥MP ―→. 又MP 为∠F 1PF 2的平分线, ∴|PF 1|=|PG |,且M 为F 1G 的中点. ∵O 为F 1F 2中点,∴OM 綊12F 2G .∵|F 2G |=||PF 2|-|PG ||=||PF 1|-|PF 2||, ∴|OM ―→|=12|2a -2|PF 2||=|4-|PF 2||.∵4-22<|PF 2|<4或4<|PF 2|<4+22, ∴|OM ―→|∈(0,22).6.已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交椭圆C 于A ,B 两点,且|AB |=3,则椭圆C 的标准方程为________.解析:由题意知椭圆C 的焦点在x 轴上,且c =1,可设椭圆C 的方程为x 2a 2+y 2a 2-1=1(a >1),由|AB |=3,知点⎝⎛⎭⎫1,32在椭圆上,代入椭圆方程得4a 4-17a 2+4=0,所以a 2=4或a 2=14(舍去).故椭圆C 的标准方程为x 24+y 23=1.答案:x 24+y 23=17.已知焦点在x 轴上的椭圆C :x 2a 2+y 2=1(a >0),过右焦点作垂直于x 轴的直线交椭圆于A ,B 两点,且|AB |=1,则该椭圆的离心率为________.解析:因为椭圆x 2a 2+y 2=1(a >0)的焦点在x 轴上,所以c =a 2-1,又过右焦点且垂直于x 轴的直线为x =c ,将其代入椭圆方程中,得c 2a 2+y 2=1,则y =±1-c 2a2,又|AB |=1,所以21-c 2a2=1,得c 2a 2=34,所以该椭圆的离心率e =c a =32. 答案:328.已知P (1,1)为椭圆x 24+y 22=1内一定点,经过P 引一条弦,使此弦被P 点平分,则此弦所在的直线方程为________.解析:易知此弦所在直线的斜率存在,所以设斜率为k , 弦的端点坐标为(x 1,y 1),(x 2,y 2),则x 214+y 212=1 ①,x 224+y 222=1 ②, ①-②得(x 1+x 2)(x 1-x 2)4+(y 1+y 2)(y 1-y 2)2=0,∵x 1+x 2=2,y 1+y 2=2, ∴x 1-x 22+y 1-y 2=0, ∴k =y 1-y 2x 1-x 2=-12.∴此弦所在的直线方程为y -1=-12(x -1),即x +2y -3=0. 答案:x +2y -3=09.(2019·湖北武汉部分学校调研)设O 为坐标原点,动点M 在椭圆C :x 2a2+y 2=1(a >1,a ∈R )上,过O的直线交椭圆C 于A ,B 两点,F 为椭圆C 的左焦点.(1)若△F AB 的面积的最大值为1,求a 的值;(2)若直线MA ,MB 的斜率乘积等于-13,求椭圆C 的离心率.解:(1)因为S △F AB =12|OF |·|y A -y B |≤|OF |=a 2-1=1,所以a = 2.(2)由题意可设A (x 0,y 0),B (-x 0,-y 0),M (x ,y ), 则x 2a 2+y 2=1,x 20a2+y 20=1, k MA ·k MB =y -y 0x -x 0·y +y 0x +x 0=y 2-y 20x 2-x 20=1-x 2a 2-⎝⎛⎭⎫1-x 20a 2x 2-x 20=-1a 2(x 2-x 20)x 2-x 20=-1a 2=-13, 所以a 2=3,所以a =3,所以c =a 2-b 2=2, 所以椭圆C 的离心率e =c a =23=63.10.(2019·成都一诊)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),长半轴与短半轴的比值为2.(1)求椭圆C 的方程;(2)设经过点A (1,0)的直线l 与椭圆C 相交于不同的两点M ,N .若点B (0,1)在以线段MN 为直径的圆上,求直线l 的方程.解:(1)由题可知c =3,ab =2,a 2=b 2+c 2,∴a =2,b =1.∴椭圆C 的方程为x 24+y 2=1.(2)易知当直线l 的斜率为0或直线l 的斜率不存在时,不合题意.当直线l 的斜率存在且不为0时,设直线l 的方程为x =my +1,M (x 1,y 1),N (x 2,y 2).联立⎩⎪⎨⎪⎧x =my +1,x 2+4y 2=4消去x ,可得(4+m 2)y 2+2my -3=0. Δ=16m 2+48>0,y 1+y 2=-2m 4+m 2,y 1y 2=-34+m 2.∵点B 在以MN 为直径的圆上, ∴BM ―→·BN ―→=0.∵BM ―→·BN ―→=(my 1+1,y 1-1)·(my 2+1,y 2-1)=(m 2+1)y 1y 2+(m -1)(y 1+y 2)+2=0, ∴(m 2+1)·-34+m 2+(m -1)·-2m 4+m 2+2=0,整理,得3m 2-2m -5=0,解得m =-1或m =53.∴直线l 的方程为x +y -1=0或3x -5y -3=0.B 级1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为12,点A 在椭圆C 上,|AF 1|=2,∠F 1AF 2=60°,过F 2与坐标轴不垂直的直线l 与椭圆C 交于P ,Q 两点,N 为线段P Q 的中点.(1)求椭圆C 的方程;(2)已知点M ⎝⎛⎭⎫0,18,且MN ⊥P Q ,求线段MN 所在的直线方程. 解:(1)由e =12,得a =2c ,易知|AF 1|=2,|AF 2|=2a -2,由余弦定理,得|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|cos A =|F 1F 2|2, 即4+(2a -2)2-2×2×(2a -2)×12=a 2,解得a =2,则c =1, ∴b 2=a 2-c 2=3,∴椭圆C 的方程为x 24+y 23=1.(2)设直线l 的方程为y =k (x -1),P (x 1,y 1),Q (x 2,y 2), 联立⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1,整理得(3+4k 2)x 2-8k 2x +4k 2-12=0,则x 1+x 2=8k 23+4k 2,y 1+y 2=k (x 1+x 2)-2k =-6k 3+4k 2, ∴N ⎝ ⎛⎭⎪⎫4k 23+4k 2,-3k 3+4k 2.又M ⎝⎛⎭⎫0,18,则k MN =18+3k3+4k 20-4k 23+4k 2=-24k +3+4k 232k 2. ∵MN ⊥P Q ,∴k MN =-1k ,得k =12或32,则k MN =-2或k MN =-23,故直线MN 的方程为16x +8y -1=0或16x +24y -3=0.2.(2019·唐山五校联考)在直角坐标系xOy 中,长为2+1的线段的两端点C ,D 分别在x 轴,y 轴上滑动,CP ―→= 2 PD ―→.记点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)经过点(0,1)作直线l 与曲线E 相交于A ,B 两点,OM ―→=OA ―→+OB ―→,当点M 在曲线E 上时,求直线l 的方程.解:(1)设C (m,0),D (0,n ),P (x ,y ).由CP ―→= 2 PD ―→,得(x -m ,y )=2(-x ,n -y ),所以⎩⎨⎧ x -m =-2x ,y =2(n -y ),得⎩⎪⎨⎪⎧ m =(2+1)x ,n =2+12y ,由|CD ―→|=2+1,得m 2+n 2=(2+1)2,所以(2+1)2x 2+(2+1)22y 2=(2+1)2, 整理,得曲线E 的方程为x 2+y 22=1. (2)设A (x 1,y 1),B (x 2,y 2),由OM ―→=OA ―→+OB ―→,知点M 的坐标为(x 1+x 2,y 1+y 2).易知直线l 的斜率存在,设直线l 的方程为y =kx +1,代入曲线E 的方程,得(k 2+2)x 2+2kx -1=0,则x 1+x 2=-2k k 2+2, 所以y 1+y 2=k (x 1+x 2)+2=4k 2+2. 由点M 在曲线E 上,知(x 1+x 2)2+(y 1+y 2)22=1, 即4k 2(k 2+2)2+8(k 2+2)2=1,解得k 2=2,即k =±2, 此时直线l 的方程为y =±2x +1.。
专题07(与椭圆相关的定值、定点问题)(原卷版)-高考数学中平面解析几何知识点提优(江苏专用)

专题七 与椭圆相关的定值、定点问题一、解答题1. 已知椭圆E :x 2a 2+y2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,离心率为13,过F 1的直线与椭圆 E 交于A ,B 两点,且△ABF 2的周长为12.(1)求椭圆E的方程;(2)如图,点M 在圆O :x 2+y 2=b 2上,且M 在第一象限,过M 作圆O 的切线交椭圆E 于P ,Q 两点,求证:△PF 2Q 的周长是定值.2. 已知圆O :x 2+y 2=43,椭圆C :x 2a2+y 2b 2=1(a >b >0)离心率为√22,圆O 上在一点P 处的切线交椭圆C 于两点M ,N ,当P 恰好位于x 轴上时,△OMN 的面积为43. (1)求椭圆C的方程;(2)试判断|PM|⋅|PN|是否为定值?若为定值,求出该定值;若不是定值,请说明理由.自我检测定点问题是圆锥曲线中十分重要的内容,蕴含着动、静依存的辩证关系,深刻体现了数学的魅力,在高考中常常涉及此类问题且位于中档题的位置.本专题以椭圆中的具体问题入手,通过对解决方法进行总结辨析,使学生能够根据问题的条件寻找与设计更合理、更简捷的运算途径,并引导学生发现这类问题所具有的更一般性规律.3.已知椭圆E:x2a2+y2b2=1(a>b>0)的离心率为√22,F1,F2为E的左、右焦点,动点P在直线1:x=−3上,过P作E两条切线,切点分别为M,N.且|MF1|+|MF2|=2√2.(1)求椭圆E的方程;(2)如图,过F1,F2分别向PM,PN作垂线,垂足分别为A,B,C,D.(i)证明:|F1A|⋅|F2B|为定值;(ii)记△AF1C和△BF2D的面积分别为S1,S2.求S1S2的取值范围.4.已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率为12,A为椭圆C上一动点(异于左右顶点),△AF1F2面积的最大值为√3.(1)求椭圆C的方程;(2)设过点F1的直线l(l的斜率存在且不为0)与椭圆C相交于A,B两点,线段AB的垂直平分线交x轴于点P,试判断|PF1||AB|是否为定值?若是,求出该定值;若不是,请说明理由.5.设A(x1,y1),B(x2,y2)是椭圆C:y2a2+x2b2=1(a>b>0)上两点,已知m⃗⃗⃗ =(x1b,y1a),n⃗=(x2b,y2a),若m⃗⃗⃗ ·n⃗=0且椭圆的离心率e=√32,短轴长为2,O为坐标原点.(1)求椭圆的方程;(2)试问△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.6.椭圆x2a2+y2b2=1的左焦点为F,坐标原点为O,过点F作直线交椭圆于M、N两点,过点O作与MN平行的直线交椭圆于A、B两点.(1)当MN垂直于x轴时,有|MN|=1,|AB|=2,求椭圆标准方程;(2)在第(1)问所求椭圆方程的条件下,求证|AB|2|MN|为定值,并求出该定值.7.如图,设椭圆C:x2a2+y2b2=1(a>b>0)的离心率e=12,过右焦点F作PF⊥x轴交椭圆的上半部分于点P,且PF=32.(1)求椭圆C的方程及右准线l的方程.(2)过椭圆右焦点F的直线(不经过点P)与椭圆交于A,B两点,记PA,PB的斜率分别为k1,k2.①当∠APB的平分线为PF时,求直线AB的斜率k;②若直线AB与有准线l交于点M,记PM的斜率为k3,问:若k3=2,则k1+k2是否为定值?请说明理由.8.如图,已知椭圆O:x24+y2=1的右焦点为F,点B,C分别是椭圆O的上、下顶点,点P是直线l:y=−2上的一个动点(与y轴交点除外),直线PC交椭圆于另一点M.(1)当直线PM过椭圆的右焦点F时,求△FBM的面积;(2)①记直线BM,BP的斜率分别为k1,k1,求证:k1·k2为定值;②求PB⃗⃗⃗⃗⃗ ·PM ⃗⃗⃗⃗⃗⃗ 的取值范围.9. 已知椭圆M:x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,且过点(√3,12). (1)求椭圆M 的标准方程;(2)四边形ABCD 的顶点在椭圆M 上,且对角线AC,BD 过原点O ,设A(x 1,y 1),B(x 2,y 2),满足4y 1y 2=x 1x 2. ①求证:k AB +k BC的值为定值,并求出此定值;②求四边形面积ABCD 的最大值.10. 已知F 1、F 2分别是离心率为13的椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,点P 是椭圆C 上异于其左、右顶点的任意一点,过右焦点F 1作∠F 1PF 2的外角平分线L 的垂线F 2Q ,交L 于点Q ,且|OQ|=3(O 为坐标原点). (1)求椭圆C的方程;(2)若点M 在圆x 2+y 2=b 2上,且在第一象限,过M 作圆x 2+y 2=b 2的切线交椭圆于A 、B 两点,问:△AF 2B 的周长是否为定值?如果是,求出该定值;如果不是,说明理由.11.已知椭圆C:x2a2+y24=1(a>0)的中心为原点O,左焦点为F,离心率为√53,不与坐标轴垂直的直线l与椭圆C交于M,N两点.(Ⅰ)若K(2,1)为线段MN的中点,求直线l的方程.(Ⅱ)若点P是直线x=−√5a25上一点,点Q在椭圆C上,且满足PF⃗⃗⃗⃗⃗ ⋅QF⃗⃗⃗⃗⃗ =0,设直线PQ与直线OQ的斜率分别为k1,k2,问:k1k2是否为定值?若是,请求出k1k2的值;若不是,请说明理由.12.如图,已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√32,短轴的一个端点到右焦点的距离为2.设直线l:x=my+1(m≠0)与椭圆C相交于A,B两点,点A关于x轴对称点为A′.(1)求椭圆C的方程;(2)若以线段AB为直径的圆过坐标原点O,求直线l的方程;(3)试问:当m变化时,直线A′B与x轴是否交于一个定点?若是,请写出定点的坐标,并证明你的结论;若不是,请说明理由.13.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,焦距为2,右焦点为F,过F的直线交椭圆于A、B两点.(Ⅰ)求椭圆C的方程;(Ⅱ)在x 轴上是否存在定点M ,使得MA ⃗⃗⃗⃗⃗⃗ ⋅MB ⃗⃗⃗⃗⃗⃗ 为定值,若存在求出定值和定点坐标,若不存在,请说明理由.14. 如图,已知椭圆C 的左焦点为F(−1,0),且椭圆C 的离心率为√22.动直线l 与椭圆C 交于不同的两点A ,B(A,B 均在x 轴上方),且∠OFA +∠OFB =180°. (1)求椭圆C的标准方程;(2)对于动直线l ,是否存在一个定点,无论∠OFA 如何变化,直线l 总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.15. 已知椭圆E 的中心在原点,焦点在x 轴上,且椭圆的焦距为2,离心率为e =√22﹒ (Ⅰ)求椭圆E 的方程;(Ⅱ)过点(1,0)作直线l 交E 于P 、Q 两点,试问:在x 轴上是否存在一个定点M ,使MP ⃗⃗⃗⃗⃗⃗ ⋅MQ ⃗⃗⃗⃗⃗⃗⃗ 为定值?若存在,求出这个定点M 的坐标;若不存在,请说明理由.。
专题07 破译解析几何中点差法通法(解析版)

专题07 破译解析几何中点差法通法一、单选题1.(2020·盘县红果镇育才学校高三月考)已知椭圆22221(0,0)x y a b a b+=>>与直线40x y -+=交于A ,B 两点,过原点与线段AB 中点所在的直线的斜率为13-,则椭圆的离心率为( )A.3BCD【答案】B 【解析】设()11,A x y ,()22,B x y ,中点坐标()00,M x y ,代入椭圆方程中,得到2211221x y a b +=,2222221x y a b+=, 两式子相减得到22221212220x x y y a b --+=,()()()()222121212222121212y y y y y y b a x x x x x x -+-=-=---+, 结合12121y y x x -=-,1202x x x +=,1202y y y +=,且0013y x =-,代入上面式子得到2213b a =,3e ===,故选:B. 2.(2020·广东省高三期末)已知椭圆22221(0)x y a b a b +=>>的右焦点为F,离心率2,过点F 的直线l交椭圆于,A B 两点,若AB 中点为(1,1),则直线l 的斜率为( ) A .2 B .2-C .12-D .12【答案】C【解析】由题得222222242,4()2,2c c a a b a a b a =∴=∴-=∴=. 设1122(,),(,)A x y B x y ,由题得1212+=2+=2x x y y ,,所以2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩, 两式相减得2212121212()()a ()()0b x x x x y y y y +-++-=,所以2212122()2a ()0b x x y y -+-=,所以221212()240()y y b bx x -+=-,所以1120,2k k +=∴=-.故选C3.(2020·重庆一中高三期末)在平面直角坐标系xOy 中,双曲线()2222:10,0x y E a b a b-=>>的离心率为2()2,1P 的直线m 与双曲线E 交于A ,B 两点.若P 是AB 的中点,则直线m 的斜率为( ) A .2 B .4C .6D .8【答案】C【解析】由题,双曲线E 中2ca =,又焦点(),0c 到渐近线0ax by ±=的距离d b ===且222c a b =+,解得2221,3,4a b c ===.故双曲线22:13y E x -=. 设()()1122,,,A x y B x y 则221122221313y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得 ()221222121212121233x x y y y yx x x x y y +---=⇒=-+ .又AB 中点()2,1,故()121212123322621x x y y k x x y y +-⨯⨯====-+⨯.故选:C4.(2020·重庆高三)已知双曲线2222:1x y C a b-=(0,0)a b >>的左焦点为(,0)F c -,过点F 且斜率为1的直线与双曲线C 交于A ,B 两点,若线段AB 的垂直平分线与x 轴交于点(2,0)P c ,则双曲线C 的离心率为( ) ABCD .2【答案】D【解析】设线段AB 的中点坐标为()00,x y ,则有0000112y x c y x c⎧=⎪+⎪⎨⎪=-⎪-⎩0,2c x ⇒=032y c =, 设1122(,),(,)A x y B x y ,代入双曲线方程有,2222112222221,1x y x y a b a b-=-=两式相减得, 1212121222()()()()1x x x x y y y y a b -+-+-=可得002210x y a b -⋅=,即2213,a b=223b a =,2,c a ∴=2e =.故选:D. 5.(2020·四川省泸县第二中学高三月考)已知F 是抛物线2:2(0)C y px q =>的焦点,过点(2,1)R 的直线l 与抛物线C 交于A ,B 两点,R 为线段AB 的中点,若5FA FB +=,则直线l 的斜率为( )A .3B .1C .2D .12【答案】B【解析】由于()2,1R 为AB 中点,根据抛物线的定义225A B FA FB x x p p +=++=⨯+=,解得1p =,抛物线方程为22y x =.设()()1122,,,A x y B x y ,则2211222,2y x y x ==,两式相减并化简得21211222121y y x x y y -===-+⨯,即直线l 的斜率为1,故选B.6.(2020·河南省高三期末)已知椭圆E :()222210x y a b a b+=>>的右焦点为()3,0F ,过点F 的直线交椭圆E 于A ,B 两点,若AB 的中点坐标为()1,1-,则椭圆E 的方程为( )A .221189x y +=B .2212718x y +=C .2213627x y +=D .2214536x y +=【答案】A【解析】设1(A x ,1)y ,2(B x ,2)y ,代入椭圆方程得22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,相减得22221212220x x y y a b --+=, ∴12121222120x x y y y y a x x b +-++=-. 122x x +=,122y y +=-,1212101132AB y y k x x ---===--.∴2221202a b -+⨯=, 化为222a b =,又3c ==218a =,29b =.∴椭圆E 的方程为221189x y +=.故选:A .二、填空题7.(2020·陕西省高三)已知双曲线2222:1(0,0)x y C a b a b-=>>上存在两点A ,B 关于直线8y x =-对称,且线段AB 的中点在直线2140x y --=上,则双曲线的离心率为_________. 【答案】2【解析】点A ,B 关于直线8y x =-对称, 线段AB 的中点在直线2140x y --=上所以82140y x x y =-⎧⎨--=⎩得()2,6C -,设()()1122,,,A x y B x y ,所以1212412x x y y +=⎧⎨+=-⎩将()()1122,,,A x y B x y 代入椭圆,则有22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩ 两式相减得()()()()2212121212a x x x x y y y y b-+=-+.∵210x x -≠,∴2212122121y y y y b x x x x a-+⋅=-+, ∴22124AB k ab -⨯=.∵点A ,B 关于直线8y x =-对称,∴1AB k =-,所以()2213b a-⨯-=,即223b a =.∴双曲线的离心率为2c e a ===.故答案为:2 8.(2020·广西壮族自治区高三)已知椭圆C :22221(0)x y a b a b +=>>的一个顶点为()0,4B ,离心率e =,直线l 交椭圆于M ,N 两点,如果△BMN 的重心恰好为椭圆的左焦点F ,则直线l 方程为___________ 【答案】65280++=x y 【解析】由题意得4b =,又222222216115c a b e a a a -===-=,解得220a =. ∴椭圆的方程为2212016x y +=.∴椭圆左焦点F 的坐标为(2,0)-,设线段MN 的中点为0(Q x ,0)y ,由三角形重心的性质知2BF FQ =,从而(2-,04)2(2x -=+,0)y , 解得03x =-,02y =-, 所以点Q 的坐标为(3,2)--.设1(M x ,1)y ,2(N x ,2)y ,则126x x +=-,124y y +=-,且222211221,120162016x y x y +=+=,以上两式相减得12121212()()()()02016x x x x y y y y +-+-+=,∴1212121244665545MN y y x x k x x y y -+-==-=-⨯=--+-,故直线的方程为62(3)5y x +=-+,即65280++=x y .故答案为:65280++=x y .三、解答题9.(2020·广东省高三月考)已知椭圆22:143x y C +=的左、右焦点分别为1F ,2F ,直线l 与椭圆C 交于P ,Q 两点,且点M 满足PM MQ =.(1)若点3M ⎛ ⎝⎭,求直线l 的方程; (2)若直线l 过点2F 且不与x 轴重合,过点M 作垂直于l 的直线l '与y 轴交于点(0,)A t ,求实数t 的取值范围.【答案】(1)533y x =-+;(2)331212⎡-⎢⎣⎦【解析】(1)设()11,P x y ,()22,Q x y ,则2211143x y +=,2222143x y +=, 两式相减可得,()()()()12121212043x x x x y y y y +-+-+=,因为122x x +=,1232y y +=,则12123y y x x -=-, 故直线l 的方程为33(1)4y x -=-,即5334y x =+. (2)当直线l 的斜率存在且不为0时,设直线l 的方程为(1)(0)y k x k =-≠,设()00,M x y ,由22(1)143y k x x y =-⎧⎪⎨+=⎪⎩消去y 得()22224384120k x k x k +-+-=,则221212228412,4343k k x x x x k k -+==++,所以202443k x k =+,()0023143k y k x k -=-=+ 因为l '的方程为()001y y x x k-=--,令0x =,得002113434k t x y k k k k =+==++,当0k >时,34k k +≥,0,12t ⎛∈ ⎝⎦; 当k 0<时,34k k +≤-,012t ⎡⎫∈-⎪⎢⎪⎣⎭, 当l 的斜率不存在时,显然0t =,综上.t的取值范围是,1212⎡-⎢⎣⎦. 10.(2020·安徽省高三月考)已知椭圆()2222:10x y E a b a b+=>>的左焦点为()1,0F -,经过点F 的直线与椭圆相交于M ,N 两点,点P 为线段MN 的中点,点O 为坐标原点.当直线MN 的斜率为1时,直线OP 的斜率为12-. (1)求椭圆C 的标准方程;(2)若点A 为椭圆的左顶点,点B 为椭圆的右顶点,过F 的动直线交该椭圆于C ,D 两点,记ACD ∆的面积为1S ,BCD ∆的面积为2S ,求21S S -的最大值.【答案】(1)2212x y +=(2【解析】(1)设()11,M x y ,()22,N x y ,则点1212,22x x y y P ++⎛⎫⎪⎝⎭,由条件知, 直线MN 的斜率为12121y y x x -=-,直线OP 的斜率为121212y y x x +=-+,而22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式作差得,22221212220x x y y a b --+=, 所以()()()()22212121222212121212y y y y y y b a x x x x x x -+--===---+,即222a b =, 又左焦点为()1,0F -,所以22222221c a b b b b =-=-==,所以椭圆E 的标准方程为2212x y +=.(2)设直线CD 的方程为1x my =-,记C ,D 过标为()11,x y ,()22,x y ,则1121212S AF y y y y =⋅-=-,2121212S BF y y y =⋅-=-, 所以2112S S y y -=-.联立方程,22221x y x my ⎧+=⎨=-⎩,消去x ,得()222210m y my +--=,所以12222m y y m +=+,12212y y m =-+,12y y -==21tm =+,则1t ≥,且()()()2222818882122122m tt m t t+==≤=+++++,当且仅当1t =时等号成立, 所以2112S S y y -=-≤21S S -.11.(2020·四川省高三月考)已知椭圆C :2212x y +=,直线l 交椭圆C 于A ,B 两点.(1)若点()1,1P -满足0OA OB OP ++=(O 为坐标原点),求弦AB 的长;(2)若直线l 的斜率不为0且过点()2,0,M 为点A 关于x 轴的对称点,点(),0N n 满足MN NB λ=,求n 的值. 【答案】(1)(2) 1n = 【解析】(1)设()11,A x y ,()22,B x y由0OA OB OP ++=,且点()1,1P -,得121x x =+,121y y +=-.① ∴线段AB 的中点坐标为11,22⎛⎫-⎪⎝⎭,其在椭圆内 由222222111212x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得2222212102x x y y -+-=,整理得2221222112y y x x -=--,即()()()()2121212112y y y y x x x x +-=-+-. 将①代入,得212112AB y y k x x -==-.∴直线AB 方程为111222y x ⎛⎫⎛⎫--=- ⎪ ⎪⎝⎭⎝⎭,即2430x y --=.联立22122430x y x y ⎧+=⎪⎨⎪--=⎩消去x 得2242410y y ++=,由韦达定理得121y y +=-,12124y y =. ∴6AB ==. (2)设直线AB 的方程为2x ty =+,由题意得()11,M x y -,由已知MN NB λ=,可知M ,N ,B 三点共线,即MN MB k k =.∴()()1211210y y y n x x x ----=--,即121121y y y n x x x +=--,解得()121121y x x n x y y -=++.将112x ty =+,222x ty =+,代入得121222ty y n y y =++.②联立222202x y x ty ⎧+-=⎨=+⎩消去x 得()222420t y ty +++=由韦达定理得12242t y y t -+=+,12222y y t =+.③ 将③代入②得到1n =12.(2020·湖南省高三期末)如图,过抛物线()220y px p =>上一点()12P ,,作两条直线分别交抛物线于()11A x y ,,()22B x y ,,当PA 与PB 的斜率存在且倾斜角互补时:(Ⅰ)求12y y +的值;(Ⅱ)若直线AB 在y 轴上的截距[]13b ∈-,时,求ABP △面积ABP S △的最大值. 【答案】(I );(Ⅱ)323. 【解析】(Ⅰ)由抛物线过点,得,设直线PA 的斜率为,直线PB 的斜率为,由PA 、PB 倾斜角互补可知,即,将,代入得.(Ⅱ)设直线AB 的斜率为,由,得,由(Ⅰ)得,将其代入上式得.因此,设直线AB 的方程为,由,消去y 得,由,得,这时,,2121211()4421AB x x x x b =++-=+,又点P 到直线AB 的距离为,所以23114212(1)(3)222ABP b S AB d b b b ∆-=⋅=⋅+⋅=+-, 令,则由,令,得或.当时,,所以单调递增,当时,,所以单调递减,故的最大值为,故面积的最大值为1323239f ⎛⎫=⎪⎝⎭. (附:,当且仅当时取等号,此求解方法亦得分)13.(2020·全国高三专题练习)过抛物线2:4C x y =的焦点为F 且斜率为k 的直线l 交曲线C 于11(,)A x y 、22(,)B x y 两点,交圆()22:11F x y +-=于M ,N 两点(A ,M 两点相邻).(1)求证:12y y 为定值;(2)过A ,B 两点分别作曲线C 的切线1l ,2l ,两切线交于点P ,求AMP 与BNP △面积之积的最小值. 【答案】(1)证明见解析,(2)1 【解析】(1)24x y =()0,1F ∴依题意直线l 的方程为1y kx =+,代入24x y =得2440x kx --=,()24160k ∆=-+>,则124x x k +=,124x x =-.∴221212116x x y y ==为定值(2)因为24x y =,所以24x y =,2x y '=则切线P A 方程为2111()24x x y x x =-+① PB 方程为2222()24x x y x x =-+ ②②—①得221212244x x x x x -=-, 121()22x x x k =+= ③, 将③代入①得1y =-,所以()21P k -,P 到直线AB的距离d ==1||2AMP S AM d ∆=,1||2BNP S BN d ∆=,21||||4AMP BNP S S AM BN d =,因为1||||-1AM AF y ==,2||||-1BN BF y ==, 所以12||||1AM BN y y ==2214AMPBNPd SSk ==+当且仅当0k =时,AMPBNPSS取最小值1.14.(2020·河南省高三期末)已知点M ⎝⎭在椭圆C :()222210x y a b a b +=>>上,且点M 到C 的左、右焦点的距离之和为(1)求C 的方程;(2)设O 为坐标原点,若C 的弦AB 的中点在线段OM (不含端点O ,M )上,求OA OB ⋅的取值范围.【答案】(1)2212x y +=;(2)45,33⎛⎫- ⎪⎝⎭【解析】(1)由条件知2241133a b +=,2a =,所以a =1b =, ∴椭圆C 的方程为2212x y +=.(2)设点A 、B 的坐标为()11,A x y ,()22,B x y ,则AB 中点1212,22x x y y ++⎛⎫⎪⎝⎭在线段OM 上,且12OMk =, ∴()12122x x y y +=+,又221112x y +=,222212x y +=,两式相减得()()()()1212121202x x x x y y y y -++-+=,易知120x x -≠,120y y +≠,所以()1212121212y y x xx x y y -+=-=--+,即1AB k =-.设AB 方程为y x m =-+,代入2212xy +=并整理得2234220x mx m -+-=.由()2830m∆=->解得23m <,又由12223x x m +⎛=∈ ⎝,∴0m <<由韦达定理得1243m x x +=,()212213m x x -=,故()()12121212OA OB x x y y x x x m x m ⋅=+=+-+-+()()22221212414233m m x x m x x m m-=-++=-+243m =-.而0m <<OA OB ⋅的取值范围是45,33⎛⎫-⎪⎝⎭. 15.(2020·上海市南洋模范中学高三期末)设1P 和2P 是双曲线22221x y a b-=上的两点,线段12PP 的中点为M ,直线12PP 不经过坐标原点O .(1)若直线12PP 和直线OM 的斜率都存在且分别为1k 和2k ,求证:2122b k k a=;(2)若双曲线的焦点分别为()1F、)2F ,点1P 的坐标为()2,1,直线OM 的斜率为32,求由四点1P 、1F 、2P 、2F 所围成四边形1122PF P F 的面积.【答案】(1)见解析;(2【解析】(1)证明:法1:设不经过点O 的直线12PP 方程为11y k x =+,代入双曲线22221x y a b-=方程得:()222222222112110ba k x a k x ab a ----=.设1P 坐标为()11,x y ,2P 坐标为()22,x y ,中点坐标为(),M x y ,则122x x x +=,122y y y +=, 2112222121a k x x b a k +=-,222121212121y a k y b k k x x a k +-==++,所以,2222221211a k k a k b a k =+-,2122b k k a =. 法2:设()111,P x y 、()222,P x y ,中点(),M x y ,则122x x x +=,122y y y +=且()()2211222222221112x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩, (1)﹣(2)得:()()()()12121212220x x x x y y y y a b +-+--=.因为,直线12PP 和直线OM 的斜率都存在,所以()()12120x x x x +-≠,等式两边同除以()()1212x x x x +-,得:1212221212110y y y y a x x x x b +--⋅⋅=+-,即2122b k k a=.(2)由已知得222222113a b a b ⎧-=⎪⎨⎪+=⎩,求得双曲线方程为2212x y -=,直线12PP 斜率为223123b a ÷=, 直线12PP 方程为()1123y x -=-,代入双曲线方程可解得2101,77P ⎛⎫-- ⎪⎝⎭,中点M 坐标为23,77⎛⎫⎪⎝⎭.面积12121827F F y y ⋅-==另解:线段12PP 中点M 在直线32y x =上.所以由中点(),M x y ,可得点2P 的坐标为()222,31P x x --,代入双曲线方程可得()()22223112x x ---=,即2720x x -=,解得27x =(37y =),所以2101,77P ⎛⎫-- ⎪⎝⎭.面积12121827F F y y ⋅-==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题07 直线与椭圆的解题方法一.【学习目标】1.掌握椭圆的定义、几何图形、标准方程及简单几何性质.2.熟练掌握常见的几种数学思想方法——函数与方程、数形结合、转化与化归. 3.了解椭圆的实际背景及椭圆的简单应用. 二.【知识要点】 1.椭圆的定义平面内与两个定点F 1,F 2的距离的和等于常数(大于____________)的点的轨迹叫做椭圆,这两个定点F 1,F 2叫做焦点,两焦点间的距离叫做焦距. 2.椭圆的标准方程(1) ______________ (a >b >0),焦点F 1(-c ,0),F 2(c ,0),其中c =_____________. (2)y 2a 2+x 2b2=1(a >b >0),焦点___________________,其中c =_____________. 3.椭圆的几何性质以x 2a 2+y 2b2=1(a >b >0)为例(1)范围:________________.(2)对称性:对称轴:x 轴,y 轴;对称中心:O (0,0).(3)顶点:长轴端点:A 1(-a ,0),A 2(a ,0),短轴端点:B 1(0,-b ),B 2(0,b );长轴长|A 1A 2|=2a ,短轴长|B 1B 2|=2b ,焦距|F 1F 2|=2c .(4)离心率e =_______,0<e <1,e 越大,椭圆越______,e 越_______,椭圆越圆. (5)a ,b ,c 的关系:c 2=a 2-b 2或a 2=c 2+b 2. 三.【方法总结】(一)直线与椭圆关系求离心率 (二)对称问题 (三)椭圆与圆(四)直线与椭圆的中点弦问题 (五)定点问题 (六)定值问题 (七)范围问题 (八)探索性问题 四.【题型归纳】(一)直线与椭圆关系求离心率例1.在平面直角坐标系xOy 中,已知点, A F 分别为椭圆2222:1(0)x y C a b a b+=>>的右顶点和右焦点,过坐标原点O 的直线交椭圆C 于,P Q 两点,线段AP 的中点为M ,若, , Q F M 三点共线,则椭圆C 的离心率为( ) A .13 B .23 C .83D .32或83【答案】A【解析】如图 设()()0000,,,P x y Q x y --,又(,0),(,0)A a F c ,00,22x a y M +⎛⎫∴ ⎪⎝⎭,,,Q F M Q 三点共线,MF QF k k = 0000022y y x a c x c-∴=++-,即00002y y c x x a c =++-,002c x x a c ∴+=+-,3a c ∴=,13c e a ∴==,故选A.练习1.已知1F ,2F 为椭圆22221(0)x yC a b a b+=>>:的左右焦点,过原点O 且倾斜角为30°的直线l 与椭圆C 的一个交点为A ,若12AF AF ⊥,122F AF S ∆=,则椭圆C 的方程为A.22162x y += B.22184x y += C.22182x y += D.2212016x y += 【答案】A【解析】由题意,过原点O 且倾斜角为30o 的直线l 与椭圆C 的一个交点为A , 且12AF AF ⊥,且122F AF S ∆=,则可知OA c =, 设(,)A x y ,则31cos30,sin 302x c y c c ====o o ,即31,)2A c , 代入椭圆的方程可得2222144c c a b+=又由122F AF S ∆=,则211122222S c c c =⨯⨯== ,解答24c =,且222c a b =-, 解得226,2a b ==,所以椭圆的方程为22162x y +=,故选A.方法2,利用焦点三角形面积公式2tan ||||21221θb y F F S A ==(21AF F ∠=θ) 求出坐标31,)2A c ,带入第一个面积公式求c ,利用第二个面积公式2πθ=求b练习2.已知F 1,F 2为椭圆C :()222210x y a b a b+=>>的两个焦点,过点F 1作x 轴的垂线,交椭圆C 于P ,Q 两点.当△F 2PQ 为等腰直角三角形时,椭圆C 的离心率为e 1,当△F 2PQ 为等边三角形时, 椭圆C 的离心率为e 2,则e 1,e 2的大小关系为e 1______e 2 (用“>”,“<”或“=”连接) 【答案】< 【解析】把x c =-代入椭圆方程可得:22221c y a b+=,解得:2by a =± ①当2F PQ ∆为等腰直角三角形时,可得:22b c a=,即222a c ac -=化为:211210e e +-=,101e <<解得:1212e -+== ②当2F PQ ∆为等边三角形时,22b c a=)222a c ac -=22220e +=,201e <<解得:2e =则1e ,2e 的大小关系为:12e e <本题正确结果:<(二)对称问题例2. 在平面直角坐标系xOy 中,点P 为椭圆:C 22221y x a b+=()0a b >>的下顶点,M ,N 在椭圆上,若四边形OPMN 为平行四边形,α为直线ON 的倾斜角,若,64ππα⎛⎤∈ ⎥⎝⎦,则椭圆C 的离心率的取值范围为( ) A.0,3⎛ ⎝⎦B.0,2⎛ ⎝⎦C.,32⎣⎦D.,33⎣⎦ 【答案】A【解析】OP Q 在y 轴上,且平行四边形中,MN OP P ,∴M 、N 两点的横坐标相等,纵坐标互为相反数,即M 、N 两点关于x 轴对称,而MN OP a ==,可设,2a M x ⎛⎫-⎪⎝⎭,,2a N x ⎛⎫ ⎪⎝⎭,代入椭圆方程得:||x =,得,2a N ⎫⎪⎪⎝⎭, α为直线ON的倾斜角,tan aa ==,,,tan 164a ππα⎛⎤∈<≤ ⎥⎝⎦,1<≤,1a b ∴<≤1b a ≤<22113b a ∴≤<,而221ab ac e -==0e ∴<≤. ∴椭圆C的离心率的取值范围为⎛ ⎝⎦.故选A 项.练习1. 设1F ,2F 分别是椭圆()222210x y a b a b+=>>的左、右焦点,若在直线2a x c =(其中222cb a +=)上存在点P ,使线段1PF 的垂直平分线经过点2F ,则椭圆离心率的取值范围是( )A.0,2⎛ ⎝⎦B.0,3⎛ ⎝⎦ C.3⎫⎪⎪⎣⎭ D.,12⎫⎪⎪⎣⎭【答案】C【解析】由题意得 ()1,0)F c -,2F (),0c ,设点2,a P m c ⎛⎫⎪⎝⎭, 则由中点公式可得线段1PF 的中点221(,22a c K m c - ),∴线段1PF 的斜率与2KF 的斜率之积等于1-,即2221212m m a a c c c c c--⋅=--+-, 22230a a m c c c c ⎛⎫⎛⎫∴=-+⋅-≥ ⎪ ⎪⎝⎭⎝⎭,4224230a a c c ∴--≤,423210e e ∴+-≥,213e ∴≥,或21(e ≤-舍去),e ∴≥. 又椭圆的离心率 01e <<,故13e ≤<, 故选:C .练习2. 设椭圆C :22221(0)x y a b a b +=>>的左焦点为F ,上顶点为A ,过点A 与AF 垂直的直线分别交椭圆C 与x 轴正半轴于点P 、Q ,且85AP PQ =uu u r uu u r, 椭圆C 的离心率为___.【答案】12【解析】:设0(,0)Q x ,由(,0)F c -,(0,)A b 知∵FA AQ ⊥u u u r u u u r ,0FA AQ ⋅=u u u r u u u r ,∴200cx b -=,20b x c= 设11(,)P x y ,由85AP PQ =uu u r uu u r 得21813b x c =,1513y b = 因为点P 在椭圆上,所以222221851313b a c bb +⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝=⎭整理得2b 2=3ac ,即2(a 2-c 2)=3ac ,2e 2+3e -2=0,故椭圆的离心率12e =(三)椭圆与圆例3.如图,1A ,2A 分别是椭圆2214xy +=的左、右顶点,圆1A 的半径为2,过点2A 作圆1A 的切线,切点为P ,在x 轴的上方交椭圆于点Q ,则2PQ QA =_______.【答案】34【解析】连结1PO PA 、,可得1POA n 是边长为2的等边三角形,所以1160PAO POA ∠∠==︒, 可得直线1PA 的斜率1603k tan =︒=PO 的斜率为21203k tan =︒=- 因此,直线1PA 的方程为)32y x =+,直线PO 的方程为3y x =, 设()P m n ,,由)323y x y x⎧=+⎪⎨=⎪⎩解得1m =-, 因为圆1A 与直线2PA 相切于点P ,所以21PA PA ⊥,因此219030PA O PAO ∠∠=︒-=︒, 故直线2PA 的斜率3150k tan =︒=2PA 的方程为)32y x =-,代入椭圆方程2214x y +=,消去y 得271640xx -+=,解得2x =或27x =, 因为直线2PA 交椭圆于()22,0A 与Q 点,设(),Q s t ,可得27s =, 由此可得22213722427Q P A Q x x PQ s m QA x x s +--====---. 故答案为34练习1.祖暅原理:两个等高的几何体,若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.利用祖暅原理可以求旋转体的体积.比如:设半圆方程为222(0,0)x y r y r +=≥>,半圆与x 轴正半轴交于点A ,作直线x r =,y r =交于点P ,连接OP (O 为原点),利用祖暅原理可得:半圆绕y 轴旋转所得半球的体积与OAP ∆绕y 轴旋转一周形成的几何体的体积相等.类比这个方法,可得半椭圆22221(0,0)y x a b y a b+=>>≥绕y 轴旋转一周形成的几何体的体积是_________. 【答案】223ab π 【解析】如图,这是椭圆22221(0,0)y x a b y a b+=>>≥绕y 轴旋转一周形成的几何体,所以半椭圆22221(0,0)y x a b y a b+=>>≥绕y 轴旋转一周形成的几何体为:椭圆的长半轴为a ,短半轴为b ,现构造两个底面半径为b ,高为a 的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理,得出该几何体的体积是V V V =-圆柱圆锥22212=33b a b a b a πππ-=;答案:223ab π练习2.已知O 是椭圆E 的对称中心,1F ,2F 是E 的焦点,以O 为圆心,1OF 为半径的圆与E 的一个交点为A .若¼1AF 与¼2AF 的长度之比为2:1,则E 的离心率等于______. 【答案】31e =【解析】解法1:如图,设122F F c =,1OF c =,因为¼1AF 与¼2AF 的长度之比为2:1,故1120AOF ∠=o ,260AOF ∠=o ,所以2AOF △为正三角形,故2AF c =.在等腰1AOF △中,求得13AF c =.根据椭圆的定义,可得)12231a AF AF c =+=,故椭圆的离心率231231c c e a a ====+. 解法2:如图,设椭圆的方程为22221(0)x y a b a b+=>>,122F F c =.由题意,易知1120AOF ∠=o,260AOF ∠=o,所以2AOF △为正三角形,故13,22A c c ⎛⎫⎪ ⎪⎝⎭,因为点A 在椭圆上,所以22223144c c a b+=,即()222223144c c a a c +=-,即()22231441e e e +=-, 整理,得()22221344e eee -+=-,即42840e e -+=,解得2423e =+2423e =-31e =.练习3.设p 是椭圆2213632x y +=上一点,M ,N 分别是两圆:()2221x y -+=和()22124x y ++=上的点,则PM PN +的取值范围为______【答案】⎥⎦⎤⎢⎣⎡227221, 【解析】首先将P 点固定于一处,设两圆心分别为12,C C ,则1211,2r r ==,且12,C C 为椭圆的焦点, 根据圆外一点到与圆上的点的距离的范围可得11221111,22PC PM PC PC PN PC -≤≤+-≤≤+, 从而得到12123322PC PC PM PN PC PC +-≤+≤++,根据椭圆的定义可知1212PC PC +=,所以PM PN +的取值范围为2127[,]22, 故答案是:2127[,]22.(四)直线与椭圆的中点弦问题例4.已知椭圆T : 22221(>0)x y a b a b +=>的离心率为2,右焦点为()1,0F ,三角形ABC 的三个顶点都在椭圆T 上,设它的三条边AB BC AC 、、的中点分别为D E M 、、,且三条边所在直线的斜率分别1k 、2k 、3k ,且1k 、2k 、3k 均不为0。