《解直角三角形》课件ppt

合集下载

解直角三角形PPT课件

解直角三角形PPT课件
2024/1/25
正切定理
在直角三角形中,锐角的正切值等于其对边比邻边,即 tanα = a/b。
6
02
勾股定理及其逆定 理
2024/1/25
7
勾股定理内容及证明
2024/1/25
勾股定理内容
在直角三角形中,直角边的平方 和等于斜边的平方。
勾股定理证明
可以通过相似三角形、面积法、 向量法等多种方法进行证明。
2024/1/25
正弦、余弦定理
已知任意两边和夹角,可以利用正弦定理$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$或余弦定理$c^2 = a^2 + b^2 - 2abcos C$求出第三边和角度。
16
已知一边一角求其他元素
正弦、余弦函数
已知一条边和一个锐角,可以利用正弦或余弦函数求出另一条直角边和斜边。例如,已知直角边$a$和锐角$A$ ,则可以利用$sin A = frac{a}{c}$求出斜边$c$,再利用勾股定理求出另一条直角边$b$。
正切函数
正切(tangent)是一个 角的对边长度与邻边长度 的比值,即 tan(θ) = 对边 / 邻边。
12
特殊角度三角函数值
0°、30°、45°、60°、90°等特殊角 度的三角函数值,如 sin(30°) = 1/2 ,cos(45°) = √2/2,tan(60°) = √3 等。
特殊角度三角函数值的推导过程及其 在解题中的应用。
2024/1/25
13
三角函数图像与性质
正弦、余弦、正切函数的图像及其周期性、奇偶性、单调性等性质。 利用三角函数图像解决相关问题的思路和方法。
2024/1/25

《解直角三角形》PPT课件

《解直角三角形》PPT课件
这是已知直角三角形的两边解直角三角形的问题.
要会选择适当的三角比.
B
解:因为a2 + b2 = c2 , 所以
b = c2 - a2 = 63.52 -17.52 = 60.
A
b
C
由sin A = a = 17.5 = 0.28,得A = 16°15'37".
c 62.5
所以B = 90°- A = 90°-16°15'37"= 73°44'23".
c
b c
,tanA=
a b
利用这些关系,如果知道直角三角形的哪几个
元素就可以求其他的元素了?
两个角 × 两条边 √
一边一角 √
两个元素(至少一个是边)
由直角三角形中已知的元素求出未知元素的过 程,叫做解直角三角形.
例1 在Rt△ABC 中,已知∠C=90°,a = 17.5 ,c=
a
62.5 .解这个直角三角形
c = 12 5 , ∠A=30 °, ∠ B = 60° .
2.在Rt△ABC 中,∠C = 90 °. (l)已知c = 15 ,∠ B = 60° ,求a ; (2)已知∠A=35 ° ,a=24 ,求b , c .
(1)a=7.5 (2)b=34.3, c≈41.8
1.直角三角形的边角关系:
下载
/jiaoa
n/
例2在 RtDAP论PB坛TC 中 , 已知 C = 90 °,c = 128 , B = 52°.
解这个直:w角ww三. 角形 (边长精确到 0.01).
B
1ppt.
a
cn
PPT
A
课件
解:A =/nk/e9jia0°- B = 90°- 52°= 38°;

解直角三角形-完整版PPT课件

解直角三角形-完整版PPT课件
解成时就已经倾斜, 其塔顶中心点偏离中心线2.1m。1972年地震之 后塔顶中心点偏离垂直中心线增至5.2m,而且 还以每年增加1cm的速度继续倾斜,随时都有 倒塌的危险。经过维修2001年使塔顶中心点偏 离垂直中心线的距离比纠偏前减少了43.8cm。 问题:如果要你根据上述信息,用“塔身中心 线与垂直中心线所成的角θ”来描述比萨斜塔的 倾斜程度,你能完成吗?
解直角三角形
1972年的情形:设塔顶中心店为B,塔身中心线与垂 直中心线的夹角为A,经过点B向垂直中心线引垂线, 垂足为点C.在Rt△ABC中,∠C-90°,BC-5.2m, AB=54.5m,
SinA BC 5.2 0.0954 AB 54.5
利用计算器可得∠A≈5°28′。 类似地,可以求出2001年纠偏后塔身中心线与垂直中 心线的夹角。

解直角三角形-ppt课件

解直角三角形-ppt课件



,∴




∴CH = ,
∴AH=

∴AB=2AH=



.

=

,∵∠B=30°,

=



26.3 解直角三角形
重 ■题型 解双直角三角形

例 如图,在 Rt△ABC 中,∠C=90°,D 是 AC 上一



点,BD=10
,∠BDC=45°,sinA=
,求 AD 的长.

∴S






AB·AE= ×4×4 =8 ,


CD·DE= ×5 ×15=
四边形 ABDC=S△CDE-S△ABE=






(方法二)如图 2,过点 A 作 AF⊥CD 于点 F,过点
B 作 BG⊥AF 于点 G,则∠ABG=30°,
∴AG=


AB=2,BG= − =2 ,
况讨论,求出不同情况下的答案.
26.3 解直角三角形
■方法:运用割补法求不规则图形的面积


割补法是求不规则图形面积问题的最常用方法,割补法

巧 包含三个方面的内容:一是分割原有图形成规则图形;二

拨 是通过作辅助线将原有图形补为规则图形;三是分割和补
形兼而有之.
26.3 解直角三角形
例 如图,在四边形 ABDC 中,∠ABD=120°,AB⊥AC,


2

=25
26.3 解直角三角形
变式衍生 如图,在Rt△ABC中,∠ACB=90°,D 是 AB

解直角三角形完整版PPT课件

解直角三角形完整版PPT课件

余弦或正切函数计算得出。
已知一边和一角求另一边
02
在直角三角形中,已知一边长和一个锐角大小可以求出另一边
长,通过正弦、余弦或正切函数计算得出。
解直角三角形的实际应用
03
例如测量建筑物高度、计算航海距离等。
三角函数在实际问题中应用
测量问题
在测量问题中,可以利用三角函数计算高度、距离等未知量。例如,利用正切函数可以计算 山的高度或者河的宽度。
直角三角形重要定理
勾股定理
如上所述,勾股定理描述了直角三角 形三边之间的数量关系。
射影定理
相似三角形判定定理
若两个直角三角形的对应角相等,则 这两个直角三角形相似。根据此定理, 可以推导出一些重要的直角三角形性 质和定理。
射影定理涉及直角三角形中斜边上的 高与斜边及两直角边之间的数量关系。
02
三角函数在解直角三角形中应用
• 性质:正弦、余弦函数值域为[-1,1],正切函数值域为R;正弦、余弦函 数在第一象限为正,第二象限正弦为正、余弦为负,第三象限正弦、余 弦都为负,第四象限余弦为正、正弦为负;正切函数在第一、三象限为 正,第二、四象限为负。
利用三角函数求边长和角度
已知两边求角度
01
在直角三角形中,已知两边长可以求出锐角的大小,通过正弦、
注意单位换算和精确度
在求解过程中,要注意单位换算和精确度的控制,避免因单位或精 度问题导致答案错误。
拓展延伸:非直角三角形解法简介
锐角三角形和钝角三角形的解法
对于非直角三角形,可以通过作高线或利用三角函数等方法将其转化为直角三角形进行 求解。
三角形的边角关系和面积公式
了解三角形的边角关系和面积公式,有助于更好地理解和解决非直角三角形问题。

《解直角三角形》-完整版PPT课件

《解直角三角形》-完整版PPT课件

整理,得4t2-26t+39=0
解之,得
t1
13413,t2
13 13 4
∴台风抵达D港的时间为 1 3 1 3 小时.
B
∵轮船从A处用 1 3
≈25.5.
4
13
4
小时到达D港的速度为60÷
1
3413∴为台风抵达D港之前轮船到D港,轮船至少应提速6里/时.
例7 如图,公路MN和公路N上沿PN方向行驶时,学校是否会受 到噪声影响?请说明理由(2)如果受影响,已知拖拉机的速 度为18千米/时,那么学校受影响的时间为多少秒?
(1)切割法:把图形分成一个或几个直角三角形与 其 他特殊图形的组合;
(2)粘补法:此方法大都通过延长线段来实现
例1 要求tan30°的值,可构造如图所示的直角三角形进行
计算:作Rt△ABC,使∠C=90°,斜边AB=2,直角边AC=1,
那么BC= ,
3
∴tan30°= AC 1 3 BC 3 3
A
D
C
B
祝同学们学习进步! 再见!
∴C1D0=201208(02米)
学校受噪声影响的时间t=120米÷18千米/时= 时=1 24秒
150
小结:
1、将实际问题经提炼数学知识,建立数学模 型转化为数学问题 2、设法寻找或构造可解的直角三角形,尤其 是对于一些非直角三角形图形,必须添加 适当的辅助线,才能转化为直角三角形的 问题来解决
C FG
∵ sinB= ,AG AB
D E
AG=AB•sinB=415•sin37°=415 06=
A
37 °B
249 25cm,
即EF 25cm
答:球的直径约为25cm

解直角三角形(共30张)PPT课件

解直角三角形(共30张)PPT课件

比例性质应用
利用相似三角形中对应边 之间的比例关系进行计算。
实际应用举例
测量问题
利用相似三角形原理解决 测量中的实际问题,如测 量建筑物高度、河宽等。
航海问题
在航海中,利用相似三角 形原理解决船只定位、航 向确定等问题。
物理问题
在物理实验中,利用相似 三角形原理解决光学、力 学等问题,如光的折射、 力的合成与分解等。
利用相似三角形求边长
通过已知边长和相似比,可以求出未知边长。
利用相似三角形求角度
通过已知角度和相似关系,可以求出未知角度。
利用相似三角形求面积
通过已知面积和相似比,可以求出未知面积。
相似比计算方法和技巧
01
02
03
直接计算法
根据已知条件直接计算相 似比。
间接计算法
通过引入辅助线或构造特 殊图形来计算相似比。
解直角三角形(共30张)PPT课 件
目录
• 直角三角形基本概念与性质 • 解直角三角形方法论述 • 三角函数在解直角三角形中应用 • 相似三角形在解直角三角形中作用
目录
• 复杂图形中解直角三角形策略探讨 • 拓展延伸:非直角三角形解法探讨
01
直角三角形基本概念与性 质
直角三角形定义及特点
有一个角为90度的三角形称为直角三角形。
案例三
在三角形中解直角三角形问题。 通过作高线构造直角三角形,并
结合相似性质进行求解。
总结归纳与提高建议
总结归纳
在复杂图形中解直角三角形的关键在于构造直角三角形并利用 已知条件进行推理和计算。通过添加辅助线、利用相似性质和 三角函数关系等方法,可以有效地解决这类问题。
提高建议
为了更好地掌握解直角三角形的技巧和方法,建议多做相关练 习题并总结归纳经验。同时,也可以学习一些高级的数学知识 和技巧,如三角函数恒等式、极坐标等,以便更好地应对复杂 的数学问题。

解直角三角形(优质课)课件pptx

解直角三角形(优质课)课件pptx
思考题:请思考一下,除了上述提到的领域外,解直角三角形还可以应用于哪些领域?并尝试给出具体的例子。
练习题:请完成以下解直角三角形的练习题,巩固本节课所学的知识。
已知直角三角形的一个锐角为30度,斜边长为10cm,求这个三角形的面积。
一艘船在海上航行,测得前方两个灯塔之间的夹角为60度,且这两个灯塔与船的距离分别为10海里和15海里。求这艘船相对于两个灯塔的位置。
有效数字运算规则回顾
四舍五入法、进一法、去尾法等。
近似计算方法
在保证精度的前提下,尽量简化计算过程,减少计算量。例如,利用近似公式、近似数表等。
技巧
近似计算方法和技巧
06
总结回顾与拓展延伸
03
实际应用中的解直角三角形问题
如测量问题、航海问题、物理问题等,需要将实际问题转化为数学问题,通过建立直角三角形模型进行求解。
一个物体从斜面上滑下,已知斜面的倾角为45度,物体与斜面间的动摩擦因数为0.5。求物体下滑的加速度大小。
01
02
03
04
05
思考题与练习题
THANKS
在直角三角形中,当角度为30°、45°、60°时,可以通过简单的几何关系计算出对应的正弦、余弦、正切值。
特殊角的三角函数关系
掌握特殊角度的三角函数值之间的关系,如 sin(90°-θ) = cosθ,cos(90°-θ) = sinθ 等。
特殊角度三角函数值计算
利用三角函数求未知边长或角度
三边成比例
两个角相等
相似三角形判定定理回顾
01
02
通过相似比求解未知边长或角度
构建相似三角形,利用相似比求解未知量
利用相似三角形的性质,通过已知边长和角度求解未知边长或角度

解直角三角形公开课ppt课件

解直角三角形公开课ppt课件

综合应用举例
具体步骤
根据实际问题建立直角三角形模型,确定已知条件和所求量。然后选择合适的解 法(如已知两边求角、已知两角求边等)进行计算,得出结果并进行检验。
注意事项
在综合应用过程中,需要注意实际问题的背景和限制条件,以及计算结果的合理 性和准确性。同时,还需要掌握多种解法,以便灵活应对不同的问题和情况。
已知两角求边
具体步骤
设已知的两个锐角为α和β,其中α为与已知边相邻的角,β为另一个锐角。则 可以利用正弦函数sin(α) = a/c或余弦函数cos(α) = b/c求解边长a或b,其中c 为斜边。
注意事项
在求解过程中,需要注意角度的单位和范围,以及正弦和余弦函数在不同象限 的正负性。同时,还需要注意已知边与所求边之间的关系,避免出错。
直角三角形两直角边互相 垂直,且斜边是直角边的 平方和的平方根。
直角三角形的元素
包括直角边、斜边和两个 锐角。
解直角三角形的意义
解决实际问题
解直角三角形可以帮助我们解决很多 实际问题,如测量、航海、建筑等。
培养数学思维
为后续学习打下基础
解直角三角形是学习数学的基础,对 于后续学习三角函数、解析几何等具 有重要意义。
力学问题中的解直角三角形
力的分解与合成
在力学中,经常需要将一个力分解为两个或多个分力,或 将多个分力合成为一个力,这时可以利用直角三角形的性 质和三角函数进行计算。
运动学中的问题
在研究物体的运动轨迹、速度、加速度等问题时,可以利 用直角三角形的性质进行求解,如抛物线运动、圆周运动 等。
动力学中的问题
定义、性质、三角函数定义和应用的理解程度等。
学习困难与问题反馈
02
鼓励学生反馈在学习过程中遇到的困难和问题,以便教师及时

浙教版九年级下册 1.3 解直角三角形 课件(共42张PPT)

浙教版九年级下册 1.3 解直角三角形 课件(共42张PPT)

3.5 5
=0.7,
∴α≈350.
答:斜面钢条a的长度约为6.1米,坡角约为350.
特别强调:
在解直角三角形的过程中,常会遇到近似计
算,本书除特别说明外,边长保留四个有效数 字,角度精确到1′.
解直角三角形,只有下面两种情况: (1)已知两条边; (2)已知一条边和一个锐角 (必须有一个条件是边)
钢条的长度a和倾角a 吗?
L
变化:已知平顶屋面的宽度
L和坡顶的设计倾角α(如
述例题中,我们都是利用直角三角 形中的已知边、角来求出另外一些的边角. 像这样,
******************************** 在直角三角形中,由已知的一些
因此 AB=AE+EF+BF
≈6.72+12.51+7.90 ≈27.13(米).
图 19.4.6
答:路基下底的宽约为27.13米.
如图,沿水库拦水坝的背水坡将坝面加宽两 米,坡度由原来的1:2改成1:2.5,已知原背水坡 长BD=13.4米,
求: (1)原背水坡的坡角 和加宽后的背水
坡的坡角
(1)c=10,∠A=30°
B
(2)b=4,∠B=72°
(3)a=5, c=7
C
A
(4)a=20,sinA= 1
2
应用练习
如图东西两炮台A、B相距2000米,同时发现入侵敌 舰C,炮台A测得敌舰C在它的南偏东40゜的方向,炮台B 测得敌舰C在它的正南方,试求敌舰与两炮台的距离.
(精确到1米)
本题是已知
面的夹角叫做坡角,记作a,有i= h = tan a. l
显然,坡度越大,坡角a就越大,坡面就越陡.
试一试
1、如图
1)若h=2cm, l=5cm,则i= 2 ; 5

人教版九年级数学下册解直角三角形ppt课件

人教版九年级数学下册解直角三角形ppt课件
AD 4 2 2
∴∠ADC=45°, ∴∠ADB=180°-45°=135°.
5.(2018黑龙江大庆龙凤月考)在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边 分别为a,b,c.根据下列条件解直角三角形. (1)已知a=5,∠B=60°; (2)已知a=5 2 ,b=5 6 .
解析 (1)∵∠C=90°,∠B=60°, ∴∠A=30°, ∵cos B=cos 60°= a = 1 ,a=5,∴c=10,
5
(1)求AB的长; (2)求cos∠BAD的值.
图28-2-1-6
解析 (1)在Rt△ADC中,∵∠C=90°,sin∠ADC= AC = 4,AD=5,∴AC=4.
AD 5
由勾股定理得CD= AD2 -AC2 =3, ∴BC=CD+DB=3+5=8, 在Rt△ABC中,∠C=90°, 由勾股定理得AB= AC2 BC2 = 42 82 =4 5 . (2)∵AD=BD, ∴∠BAD=∠ABD.
知识点一 解直角三角形 1.解直角三角形的定义与边角关系
2.解直角三角形的类型
在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c.
已知条件
解法
两直角边 斜边、一直角边(如c,a) 一锐角与邻边(如∠A,b) 一锐角与对边(如∠A,a) 斜边与一锐角(如c,∠A)
由tan A= a,求∠A;∠B=90°-∠A;c= a2 b2
点O,AB⊥AC.若AB=8,tan∠ACB= 2,则BD的长是
.
3
图28-2-1-3
答案 20
解析 ∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB
⊥AC,AB=8,tan∠ACB= 2= AB ,∴AC= 3AB=12,∴OA=6,∴BO= OA2 AB2=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当堂反馈
1.如图1,已知楼房AB高为50m,铁塔塔基距楼房地 基间的水平距离BD为100m,塔高CD为 (100 3 50) m 3 ,则下面结论中正确的是( C ) A.由楼顶望塔顶仰角为60° B.由楼顶望塔基俯角为60° C.由楼顶望塔顶仰角为30° D.由楼顶望塔基俯角为30°
图1
2.如图2,在离铁塔BE 120m的A处, 用测角仪测量塔顶的仰角为30°, 已知测角仪高AD=1.5m,则塔高 BE= (40 3 1.5)m(根号保留). _________
Q P
答案:AB≈520(米)
60 °
30 °
450
A
B
C
图5
归纳与提高
α
450
β
α
β
45°
30°
45°
O
B
C
30°
60°
A
O
B
30° 400
A
P
A
P
45° 45°
200 200米
30° 30°
D
200 45° 200米
45°
O
B
O
B
练习:1、2003年10月15日“神舟”5号载人航天飞 船发射成功。当飞船完成变轨后,就在离地球表面 350km的圆形轨道上运行,如图,当飞船运行到地 球表面上P点的正上方时,从飞船上能直接看到地球 上最远的点在什么位置?这样的最远点与P点的距离 是多少?(地球半径约为6400km,Π 取3.142,结 果保留整数)
(1)两锐角这间的关系
斜边c ∠A的对边a
∠A+ ∠ B=90° 2+b2=c2 A (2)两边之间的关系:a
(3)边角之间的关系
斜边
┌ ∠A的邻边b C
asin c sin A的对边 aB sinb tan A的对边 b A A c cos B B
c
斜边 c 斜边 c a A的对边 a b a b B的对边 b tan B c tan A cos B B的邻边 a sin A A的邻边 b cos A sin B
F P O Q
2、热气球的探测器显示,从热气球看一栋高楼顶部的 仰角为300,看这栋楼底部的俯角为600,热气球与离楼的水 平距离为120m,这栋高楼有我高?(结果保留小数后一位) 3、如图,一艘海轮位于灯塔P的北偏东650方向,距离灯 塔80海里的A处,它沿正南方向航行一段时间后,到过位于 灯塔P的南偏东340方向上的B处,这时,海轮所在的B处距 离灯塔P有多远?(结果保留小数点后一位) B A A D P C
铅垂线 视线 仰角 俯角
水平线
视线
合作与探究
【探究1】直升飞机在跨江大桥AB的上方P点处, 此时飞机离地面的高度PO=450米,且A、B、O 三点在一条直线上,测得大桥两端的俯角分别 为α=30°,β=45°,求大桥的长AB .
解:由题意得,
PAO 30, PBO 45 PO PO tan 30, tan 45 P OA OB
A
30º D B
45º C
α
β
OA
450 450 3, 450米 tan 30
450 OB 450 tan 45
AB OA OB (450 3 450)(m) O 答:大桥的长AB为 (450 3 450)m.
B
A
合作与探究
变题1:直升飞机在长400米的跨江大桥AB的上 方P点处,且A、B、O三点在一条直线上,在大 桥的两端测得飞机的仰角分别为30°和45 °, 求飞机的高度PO .
25 5
A
濠 河 55°
40°
BC 50m D来自初探中考题【探究3】 在我市迎接奥运圣火的活动中,某校教学楼上 悬挂着宣传条幅DC,小丽同学在点A处,测得条幅顶端D 的仰角为30°,再向条幅方向前进10米后, 又在点B处测 得条幅顶端D的仰角为45°,已知点A、B和C离地面高度都 为1.44米,求条幅顶端D点距离地面的高度. (计算结果精确到0.1米) 参考数据:
2 1.414, 3 1.732
答案:15.1米
思想与方法
数学建模及 方程思想

解方程
直角三角形 解
简单实 际问题
构建
数学模型
三角形 梯形 组合图形
通过作高 转化为直 角三角形
思想与方法
1.把实际问题转化成数学问题,这个转化包括两个 方面:一是将实际问题的图形转化为几何图形,画 出正确的示意图;二是将已知条件转化为示意图中 的边、角或它们之间的关系. 2.把数学问题转化成解直角三角形问题,如果示 意图不是直角三角形,可添加适当的辅助线,画出 直角三角形.
例1:在Rt▲ABC中,∠C=900,AC= 2 , BC= 6 ,解这个直角三角形。 例2:在Rt▲ABC中, ∠C=900, ∠ B=350, b=20,解这个直角三角形。(结果保留小数点后 一位)
仰角、俯角
在进行测量时,
从下向上看,视线与水
平线的夹角叫做仰角; 从上向下看,视线与水 平线的夹角叫做俯角
初涉中考题
课后思考:如图,某幼儿园为了加强安全管理,决定将园 内的滑滑板的倾角由45º 降为30º ,已知原滑滑板AB的长为5 米,点D、B、C 在同一水平地面上. (1)改善后滑滑板会加长多少?(精确到0.01) (2)若滑滑板的正前方能有3米长的空地就能保证安全, 原滑滑板的前方有6米长的空地,像这样改造是否可行?说 明理由 (参考数据: 1.414, 3 1.732, 6 2.449 ) 2
思考1:一架直升机从某塔顶A测得地面C、D两 点的俯角分别为30°、 45°,若C、D与塔底B共 线,CD=200米,求塔高AB?
A
C
D
B
D′
思考2:有一块三形场地ABC,测得其中AB边长 为60米,AC边长50米,∠ABC=30°,试求出这 个三角形场地的面积.
更上一层楼
必做题: 书本P93/4、P94/7题.
B C
数学在身边
【探究2】学生小王帮在测绘局工作的爸爸买了一些仪器后 与同学在环西文化广场休息,看到濠河对岸的电视塔,他 想用手中的测角仪和卷尺不过河测出电视塔空中塔楼的高 度.现已测出∠ADB=40°,由于不能过河,因此无法知道 BD的长度,于是他向前走50米到达C处测得∠ACB=55°, 但他们在计算中碰到了困难,请大家一起想想办法,求出 21 7 电视塔塔楼AB的高. tan 40 , tan 55 ) (参考数据: 答案:空中塔楼AB高 约为105米
解直角三角形
一般地,直角三角形中,除直角外,共有 5个元素,即3条边和2个锐角,由直角三角形 中除直角外的已知元素,求出其余元素的过程, 叫做解直角三角形。
探究:(1)在直角三角形中,除直角外的5个 元素之间有哪些关系? (2)知道5个元素中的几个,就可以求 出其余元素?
温故而知新 如图:在Rt△ABC中,除直 B 角C外的5个元素之间有如下关系:
b c cos A的邻边 B a tanB的邻边 a B A c sin b cos A
cos B
斜边
c
利用上面的关系,知道其中的2个元素(至少有 一个是边),就可以求出其余的3个未知元素。
解直角三角形的原则: (1)有角先求角,无角先求边
温故而知新
(2)有斜用弦, 无斜用切; 宁乘毋除, 取原避中。
图2
当堂反馈
3.如图3,从地面上的C,D两点测得树顶A仰角分别是 45°和30°,已知CD=200m,点C在BD上,则树高 AB等于 100( 3 1)m(根号保留).
图3
图4
4.如图4,将宽为1cm的纸条沿BC折叠,使∠CAB=45°
,则折叠后重叠部分的面积为
2 2 cm (根号保留). 2
意犹未尽
A
P
45° 30°
200米 D
答案: (300100 3) 米
O B
合作与探究
变题4:(2008桂林)汶川地震后,抢险队派一架直升 飞机去A、B两个村庄抢险,飞机在距地面450米上空的 P点,测得A村的俯角为30°,B村的俯角为60°(如 图5).求A、B两个村庄间的距离.(结果精确到米, 2 1.414, 3 1.732 ). 参考数据
P
答案: (200 3 200) 米
45° 30°
O
B
400米
A
合作与探究
变题2:直升飞机在高为200米的大楼AB上方P 点处,从大楼的顶部和底部测得飞机的仰角为 30°和60°,求飞机的高度PO .
C
30°
P
A
200米
答案: (100 3 300) 米
45°
O
B
合作与探究
变题3:直升飞机在高为200米的大楼AB左侧P 点处,测得大楼的顶部仰角为45°,测得大楼底 部俯角为30°,求飞机与大楼之间的水平距离.
相关文档
最新文档