大学物理同步训练第 版 刚体定轴转动详解
2.6 大学物理 刚体的定轴转动详解
分析:
解:滑轮具有一定的转动惯量。 转动中受阻力矩,两边的张力不 再相等,设物体1这边绳的张 力为T1、 T1’(T1’= T1) , 物体2这边的张力为
T2、 T2’(T2’= T2)
m
1
T1 T
1
T2 T
2
a m
1
a
m G
2 1
a G
2
m
2
因m2>m1,物体1向上运动,物体2向下运动,滑轮以 顺时针方向旋转,Mr的指向如图所示。可列出下列方 程
分析: 飞轮制动 角加速度
正压力FN
力矩平衡
摩擦力矩
制动力F
分析: 飞轮制动
正压力FN
角加速度
摩擦力矩
l1
l2
F
力矩平衡
制动力F
解: 摩擦力矩是恒力矩,飞 轮做匀角加速度转动
0
t 2 n T
l1
FN
FN
l2
F f
F
由转动定律:M=Jβ 闸瓦对轮的摩擦力矩 M F f R FN R
(设轮轴光滑无摩擦,滑轮的初角速度为零)
求 滑轮转动角速度随时间变化的规律。
解 以m1 , m2 , m 为研究对象, 受力分析 物体 m1:
物体 m2: 滑轮 m:
例1 一飞轮半径为 0.2m、 转速为150r· min-1, 因受制动而均匀减速,经 30 s 停止转动 . 试求:(1) 角加速度和在此时间内飞轮所转的圈数;(2)制动开 始后 t = 6 s 时飞轮的角速度;(3)t = 6 s 时飞轮边缘 上一点的线速度、切向加速度和法向加速度 .
a m2 m1 g M / r 1 r m2 m1 m r 2
刚体定轴转动 大学物理习题答案
薄圆盘对过球心轴的转动惯量为 d J 1 r 2 d m 1 R5 cos 5 d
2
2
J 2
/2 1 r2 dm
/2
R5 cos 5d
8
R 5
8
m R5 2 mR 2
02
0
15
15 4 R 3
5
3
由平行轴定理, J J mR 2 2 mR 2 mR 2 7 mR 2
5
5
悬垂。现有质量 m=8g 的子弹,以 v=200m/s 的速率从 A 点射入棒中,假定 A 点与 O 点的距离为 3 l , 4
如图 4-11 所示。求:(1)棒开始运动时的角速度;(2)棒的最大偏转角。
解:(1) 子弹射入前后系统对 O 点的角动量守恒
mv 3 l J , J 1 Ml 2 m ( 3 l)2 1 1 0.42 0.008 9 0.42 0.054 kg m2
计小球大小)
A
解:M (3m m)g l cos l mg cos ,J 3m( l )2 1 ml2 m( l )2 1 ml 2
4
2
4 12
43
l/4 O
l
图 4-5
13
大学物理练习册—刚体定轴转动
M
l mg cos 2
3g
cos
J
1 ml 2
2l
3
4-6 一均匀圆盘,质量为 m,半径为 R,可绕通过盘中心的光滑竖直轴在水平桌面上转动,如图 4-6 所示。 圆盘与桌面间的动摩擦因数为 ,若用外力推动使其角速度达到 0 时,撤去外力,求(1)转动过程 中,圆盘受到的摩擦力矩;(2)撤去外力后,圆盘还能转动多少时间?
dt d 0
0
大学物理第5章刚体的定轴转动
d ctdt
对上式两边积分得
d c td t
0 0
t
1 2 ct 2
2 2 600π π 3 rad s 由给定条件, c 2 t 300 2 75
d π 2 由角速度的定义,则任意 t 时刻的角速度可写为: d t 150
得到: 转子转数:
A M d E K
a b
动能定理
动量定理
A F ds E K
动能定理 角动量定理 角动量 守恒
t 0Fdt P
t
动量守恒
F 0, P 0
t 0 M z dt Lz
t
M 0, L 0
§5.1 刚体、刚体运动
一、一般运动 二、刚体的定轴转动 三、解决刚体动力学问题的一般方法
基本方法: 加
质点系运动定理 刚体特性 平动:动量定理
刚体定轴转动的 动能定理 角动量定理
F mac
可以解决刚体的一般运动(平动加转动)
一、一般运动
1. 刚体 特殊的质点系, 形状和体积不变化 —— 理想化模型 在力作用下,组成物体的所有质点间的距离始终保持不变 2. 自由度 确定物体的位置所需要的独立坐标数 —— 物体的自由度数 z
刚体平面运动可看做刚体的平动与定轴转动的合成。 例如:车轮的滚动可以看成车轮随轮 轴的平动与绕轮轴的转动的组合。 描述刚体平面运动的自由度:3个
定点转动 刚体运动时,刚体上的一点固定不动,刚体绕过定点的一 瞬时转轴的转动,称作定点转动。
描述定点转动的自由度:3个
刚体的一般运动 质心的平动
+
绕质心的转动
z
描述刚体绕定轴转动的角量: 角坐标
大学物理 刚体的定轴转动-2
Rotating of a Rigid Body About a Fixed Axis
第1节 刚体的平动和转动 第2节 刚体定轴转动定律 第3节 刚体转动的功和能 第4节 刚体的角动量定理
和角动量守恒定律 第5节 进动
思考. 1、一轻绳跨过一质量为 m、半径为 R
的定滑轮(视为圆盘),绳两端各悬两物, m1 < m2 , 所受的摩擦阻力矩为 Mr ,绳与滑 轮间无相对滑动。试求:物体的加速度和绳 的张力。
质对点质角点动:量J =Lrm=r,2rr ×r仅mvr⊥rrvr部⊥ v分r L = mr2ω J
例1. 一轻绳跨过一质量为M 、半径为 R的定滑轮
(摩视擦为阻圆力盘矩)为,M绳r ,两绳端与各滑悬轮两间物无,相m对1 <滑m动T2 ,1。=所试T受求2的:??
物体的加速度和绳的张力。 arτ = βr × rr 解: 一、隔离法 研究对象 m1 m2 M
m1
.m R
m2
定轴O
m·
R 2、已知:绳轮无相对滑动,绳不可
伸长,下落时间t=3,R=0.2m,m=1kg,
绳 v0=0
h=1.5m, v0 =0.求:轮对轴的J
m
t h 3、刚体系统内力矩做功吗?
一、刚体的平动
质心运动定理 Fr合外 = Marc pr = Mvrc
rrc =
∑ mirri ∑ mi
Ek + Ep = C
Ek + Ep = C
∑ J = ∆miri2 (分立) Mz = 0 L = Jω
m r
J = 2 mR2 + mr2 5
发动机带动套
m 管上下移动时, ω变化
第5章 刚体的定轴转动 习题解答
对飞轮,由转动定律,有 式中负号表示摩擦力的力矩方向与角速度 方向相反。
联立解得
以 F 100 N 等代入上式,得
Fr R 2 (l1 l2 ) F J mRl1
5-1
第 5 章 刚体的定轴转动
2 0.40 (0.50 0.75) 40 100 rad s 2 60 0.25 0.50 3 t
由以上诸式求得角加速度
(2)
Rm1 rm2 g I m1 R 2 m2 r 2 0.2 2 0.1 2
1 1 10 0.202 4 0.102 2 0.202 2 0.102 2 2
9.8 6.13 rad s 2
T2 m2 r m2 g 2 0.10 6.13 2 9.8 20.8N T1 m1 g m1 R 2 9.8 2 0.2. 6.13 17.1N v 2a1h 2 Rh 2 6.13 0.2 2 2.21 m s 1
M M f J 1
t1
。移去力矩 M 后,根据转动定律,有
M f J 2
2
联立解得此转轮的转动惯量
0 t2
J
M 20 17.36 kg m 2 1 1 1 100 2 1 60 10 100 t1 t2
v0
6(2 3 3m M l J l 1M (1 2 ) (1 ) 2 ml 2 3m 12 m
(2) 由①式求得相碰时小球受到的冲量为:
I Fdt mv mv mv0
负号说明所受冲量的方向与初速度方向相反。
大学物理刚体的定轴转动练习习题包括答案.doc
第 4 章 刚体的定轴转动 习题及答案1. 刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度是否有法向加速度切向和法向加速度的大小是否随时间变化答:当刚体作匀变速转动时 ,角加速度 不变。
刚体上任一点都作匀变速圆周运动, 因此该点速率在均匀变化, v l,所以一定有切向加速度a t l ,其大小不变。
又因该点速度的方向变化,所以一定有法向加速度 a n l2,由于角速度变化,所以法向加速度的大小也在变化。
2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴 Z 转动时,动量矩定理的形式为M z dL z , M z 表示刚体对 Z 轴的合外力矩, L z 表示刚体对 Z 轴的动量矩。
dtL zml i i2I ,其中 I mlii2,代表刚体对定轴的转动惯量,所以M zdL z d I IdI 。
既M z I 。
dtdtdt所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。
3. 两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:( 1)如果它们的角动量相同,哪个轮子转得快( 2)如果它们的角速度相同,哪个轮子的角动量大答: (1)由于 L I ,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。
4. 一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问 平台如何运动如小汽车突然刹车,此过程角动量是否守恒动量是否守恒能量是否守恒答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。
大学物理第5章 刚体的定轴转动
用机械能守恒重解:
转轴光滑,初态静止,求下摆到θ角 时的角加速度,角速度。
解:杆机械能守恒
势能零点
l d 3 g cos 比用转动定律简单! dt 2l
l 1 2 0 mg sin J 2 2 绕固定轴 1 J ml 2 转动动能 3
Nt 转动:关于质心轴列转动定理 ( 2)
MC JC ,
C O
为什么?
l 1 2 MC Nt , J ml 2 C 12
Nt 1 mg cos 4
【例】一长为L,质量为m的均匀细棒,水平放 置静止不动,受垂直向上的冲力 F 作用,冲量 为 Ft ( t 很短),冲力的作用点距棒的质心 l 远,求冲力作用后棒的运动状态。 解 (1)质心的运动
角时的角加速度,角速度,转轴受力。
解:刚体定轴转动
1、受力分析 2、关于O轴列 转动定理
MO JO Mo l cos mg 2 2 1 JO ml 3
3 g cos 2l
【思考】为什么不关于过质心轴列转动定理?
由 求 :
3 g cos d , d dt , dt 2l
解:
M k
M I
k(
2
k 9I
2 0
9
0
3
)2
I
d M k I dt d 2 k I dt2 I 0
d
t
2I t k 0
10
与一维质点动力学方法一致
【例】转轴光滑,初态静止,求下摆到
( F mg) t mvC 0
l C F
vC 0
F mg t m
质心以vC0的初速做上抛运动。
53刚体定轴转动定律解析课件
Fz
F
O r
F
M z rF sin θ
2)合力 矩等 于各 分力 矩的矢量和。 M M1 M2 M3
注意:合力矩与合力的矩是不同的概念,不要混淆。2
5.3 刚体定轴转动定律
第5章 刚体的定轴转动
3) 刚体内,作用 力和反作用力的力 矩互相抵消。
M = rF sinθ = Fd M ij M ji
ml 2
O
绕杆的一端转动惯量为:
O´
l
J
1
ml
2
m
l
2
1 ml 2
12
2 3
刚体绕质心轴的转动惯量最小。
17
5.3 刚体定轴转动定律
第5章 刚体的定轴转动
例:如图所示,求:刚体对经过棒端且与棒垂直的 轴的转动惯量?( 棒长为L、圆半径为R )
J L1
1 3
mL L2,
JO
1 2
mO R2
mO
mL O’•
3)系统中既有转动物体又有平动物体时,则: 对转动物体按转动定律列方程; 对平动物体按牛顿定律列方程。
27
5.3 刚体定轴转动定律
第5章 刚体的定轴转动
例:滑轮半径为r 。 (设绳与滑轮间无相对滑动) 求:1)当m2与桌面间的摩擦系数为μ时,物体的
JO= m l 2 + m l 2 = 2ml 2
l
l
m
·c
r
m
ol
= m l 2 + (3m) r 2 = 2ml 2
11
5.3 刚体定轴转动定律
第5章 刚体的定轴转动
例:半径为 R 质量为 M 的圆环,绕垂直于圆环平面 的质心轴转动,求:转动惯量 J。
大学物理-刚体定轴转动
F Fz F
其中 Fz对转 轴的
力矩为零,故 F 对转
轴的力矩 M zk
r
F
z
F
k
O Fz r
F
M z rF sin
18
(2)合力矩等于各分力 矩的矢量和 M M1 M2 M3
(3)刚体内作用力和反作用力的力矩 互相抵消.
M ij
rj
j
O
d ri
i Fji
Fij
M ji
第5 刚体的定轴转动 §1 刚体的运动 §2 刚体定轴转动的运动定律
1
刚体:在外力作用下,形状和大小都不 发生变化的物体.(任意两质点间距离保持 不变的特殊质点组.)
说明:⑴ 刚体是理想模型 ⑵ 刚体模型是为简化问题引进的.
刚体的运动形式:平动、转动.
2
平动:刚体中所 有点的运动轨迹都保 持完全相同.
j
定义转动惯量
J mjrj2 J r2dm j
z
O rj
Fej
m j
Fij
转动定律 M J
刚体定轴转动的角加速度与它所受的合 外力矩成正比,与刚体的转动惯量成反比.
24
转动定律 M J
讨论 (1)M 0, ω不变
(2) M
J (3) M J J d
dt
25
三 转动惯量
J mjrj2 J r2dm j
特点:各点运动
状态一样,如:v、a
等都相同.
刚体平动 质点运动
3
转动:分定轴转动和非定轴转动 刚体的平面运动
4
一般运动
= (平动)+(转动)
原则: 随某点(基点)的平动
+ 过该点的定轴转动 基点任选。
大学物理:Cha.4 刚体定轴转动
上次课的主要内容
第四章 刚体的定轴转动
本章内容、重点、难点
第一节
一、刚体
刚体的基本运动--平动
二、刚体的基本运动
+ 刚体的运动 质心的平动 平动加转动
绕质心的转动
➢ 刚体的平面运动 .
+ 刚体的运动
质心的平动 (续)平动加转动
绕质心的转动
(续)二、基本运动--平动
转动与碰撞
(续)转动与碰撞
例
木棒 子弹
联立解得
例
以弹、棒为系统 击入阶段 子弹击入木棒瞬间,系统在
竖直位置,受合外力矩为零,角动量守恒。 该瞬间之始 该瞬间之末
弹
棒弹
棒
上摆阶段 弹嵌定于棒内与棒一起上摆,
用系统动能定理,其中非保守内力的功为零,
外力(重 上摆末动能
力)的功
上摆初动能
外
其中
例
(续)刚体定轴转动定律
定律应用的注意
两个常用的转动惯量
例
细绳缠绕轮缘
初 始 静 止
轮轴无摩擦 轻绳不伸长 轮绳不打滑
变力
制动前
例
0. 5
2
制动的 阻力矩
制动过程使得
降至 0.5 时的
需时
0.5
0.5
0.693
0.693
例
例
(续)例
匀直细杆一端为 轴水平静止释放
例
由 求 本题
力臂
代入得:
11.2 km/s > v1 > 7.9 km/s
椭圆
v1 = 7.9 km/s
圆
v1
远地点
v2
近地点
卫星 的角动量对地心 守恒
大学物理第一章 刚体的定轴转动
第一章 刚体的定轴转动1. 计算质量为m ,长度为L 的均匀细棒对通过距一端为a (外侧)且与棒垂直的轴的转动惯量。
解:dxx L mdm x dJ dx L mdx dm 22====λ)33(31])[(331223332aL a L m a L a Lmx L m dx x L m dJ J L a aL a a ++=-+=⋅===∴++⎰⎰或用平行轴定理:m L a J J C 2)2(++= 2. 如图,一块均匀的长方形薄板,边长为a 、b ,取中心O 为原点,坐标系OXYZ 如图所示。
设薄板的质量为M 。
求:薄板对OX 轴、OY 轴的转动惯量。
解:abM ady dS dm =⋅==σσσ,dy ay dm y dJ x 22σ==223221213122Mb y a dyy a dJ J b b x x ==⋅==∴⎰⎰σσ同理2121Ma J y =13. 质量为m 1的物体置于一张水平桌面上,桌面与该物体间的滑动摩擦系数为µ。
用一根不可伸长的细绳一端与m 1相连,另一端与质量为m 2的物体相连,细绳跨过固定于桌子边缘的定滑轮,如图。
定滑轮质量为m ,半径为r 。
若忽略轴间的摩擦力,求:滑轮与m 1之间的绳子张力F 1;滑轮与m 2之间的绳子张力F 2;两物体运动的加速度a (设m 2>m 1足以使m 1向右平移运动)。
解: 由图可得11122221F m g m a m g F m aF r F r J a r -μ=-=-=α=α解之,得121121212()m m m gF m m mμ+=++ mm m gm m a mm m gm m m m F 21)(21)21(2112212112++-=++++=μμ 4. 有一均匀圆盘,质量为m ,圆盘半径为R ,可绕过盘中心的光滑竖直轴在水平桌面上转动。
圆盘与桌面间的滑动摩擦系数为μ。
求圆盘转动后受到的摩擦力矩。
《大学物理》第三章 刚体的定轴转动
P
t
=
1 2
ω J 2 自
t
=
ω J 2 自 2P
=
2×105× (30π)
2×736×103
2
=
1.21×103s
(2) ω进 = 1度 秒 = 0.0175rad/s
ω进 =
M
Jω自
M = Jω进ω自
M = 2×105×0.0175×30π= 3.3×105 N返回.m退出
3-14 在如图所示的回转仪中,转盘的 质量为 0.15kg , 绕其轴线的转动惯量为: 1.50×10-4 kg.m2 ,架子的质量为 0.03kg, 由转盘与架子组成的系统被支持在一个支柱 的尖端O,尖端O到转盘中心的距离为0.04 m , 当转盘以一定角速度ω 绕其轴旋转时, 它便在水平面内以1/6 rev/s的转速进动。
为25cm,轴的一端 A用一根链条挂起,如
果原来轴在水平位置,并使轮子以ω自=12 rad/s的角速度旋转,方向如图所示,求:
(1)该轮自转的角动量;
(2)作用于轴上的外力矩;
(3)系统的进动角速度, ω
并判断进动方向。
AO
B
R
l 返回 退出
解:
(1)
J
=
m
R
2
回
=
5×(0.25 )2
ω
= 0.313 kg.m2
a
=
m
1+
m m
1g 2+
J
r2
T1 =
m 1g (m 2+ J m 1+m 2 + J
r 2) r2
T2 =
m 1m 2g m 1+m 2 + J
大学物理05刚体的定轴转动习题解答
第五章 刚体的定轴转动一 选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:( )A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B 。
2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。
( )A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C 。
简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。
3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。
简要提示:(1) 由定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21=(2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。
得:)/(222mr J Fr a +=,所以a 1 > a 2。
4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。
简要提示:由定轴转动定律: α221MR FR =,得:mRF t 4212==∆αθ 所以:m F M W /42=∆=θ5. 一电唱机的转盘正以ω 0的角速度转动,其转动惯量为J 1,现将一转动惯量为J 2的唱片置于转盘上,则共同转动的角速度应为: ( )A .0211ωJ J J +B .0121ωJ J J +C .021ωJ JD .012ωJ J 解:答案是A 。
大学物理习题答案解析第四章
第四章刚体的转动4-1有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.对上述说法下述判断正确的是( )(A) 只有(1)是正确的(B)(1)、(2)正确,(3)、(4)错误(C) (1)、(2)、(3)都正确,(4)错误 (D)(1)、(2)、(3)、(4)都正确分析与解力对轴之力矩通常有三种情况:其中两种情况下力矩为零:一是力的作用线通过转轴,二是力平行于转轴(例如门的重力并不能使门转).不满足上述情况下的作用力(含题述作用力垂直于转轴的情况)对轴之矩不为零,但同时有两个力作用时,只要满足两力矩大小相等,方向相反,两力矩对同一轴的合外力矩也可以为零,由以上规则可知(1)(2)说法是正确.对于(3)(4)两种说法,如作用于刚体上的两个力为共点力,当合力为零时,它们对同一轴的合外力矩也一定为零,反之亦然.但如这两个力为非共点力,则以上结论不成立,故(3)(4)说法不完全正确.综上所述,应选(B).4-2关于力矩有以下几种说法:(1) 对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度;(2) 一对作用力和反作用力对同一轴的力矩之和必为零;(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同.对上述说法下述判断正确的是( )(A) 只有(2)是正确的 (B) (1)、(2)是正确的(C)(2)、(3)是正确的 (D) (1)、(2)、(3)都是正确的分析与解刚体中相邻质元之间的一对内力属于作用力与反作用力,且作用点相同,故对同一轴的力矩之和必为零,因此可推知刚体中所有内力矩之和为零,因而不会影响刚体的角加速度或角动量等,故(1)(2)说法正确.对说法(3)来说,题述情况中两个刚体对同一轴的转动惯量因形状、大小不同有可能不同,因而在相同力矩作用下,产生的角加速度不一定相同,因而运动状态未必相同,由此可见应选(B).4-3均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是( )(A) 角速度从小到大,角加速度不变(B) 角速度从小到大,角加速度从小到大(C) 角速度从小到大,角加速度从大到小(D) 角速度不变,角加速度为零分析与解 如图所示,在棒下落过程中,重力对轴之矩是变化的,其大小与棒和水平面的夹角有关.当棒处于水平位置,重力矩最大,当棒处于竖直位置时,重力矩为零.因此在棒在下落过程中重力矩由大到小,由转动定律知,棒的角加速亦由大到小,而棒的角速度却由小到大(由机械能守恒亦可判断角速度变化情况),应选(C ). 4 -4 一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计.如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘和子弹系统的角动量L 以及圆盘的角速度ω的变化情况为( ) (A ) L 不变,ω增大 (B ) 两者均不变 (C ) L 不变,ω减小 (D ) 两者均不确定分析与解 对于圆盘一子弹系统来说,并无外力矩作用,故系统对轴O 的角动量守恒,故L 不变,此时应有下式成立,即式中m v D 为子弹对点O 的角动量ω0 为圆盘初始角速度,J 为子弹留在盘中后系统对轴O 的转动惯量,J 0为子弹射入前盘对轴O 的转动惯量.由于J >J 0 ,则ω<ω0 .故选(C ).4 -5 假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的( ) (A ) 角动量守恒,动能守恒 (B ) 角动量守恒,机械能守恒 (C ) 角动量不守恒,机械能守恒 (D ) 角动量不守恒,动量也不守恒 (E) 角动量守恒,动量也守恒分析与解 由于卫星一直受到万有引力作用,故其动量不可能守恒,但由于万有引力一直指向地球中心,则万有引力对地球中心的力矩为零,故卫星对地球中心的角动星守恒,即r ×m v =恒量,式中r 为地球中心指向卫星的位矢.当卫星处于椭圆轨道上不同位置时,由于|r |不同,由角动量守恒知卫星速率不同,其中当卫星处于近地点时速率最大,处于远地点时速率最小,故卫星动能并不守恒,但由万有引力为保守力,则卫星的机械能守恒,即卫星动能与万有引力势能之和维持不变,由此可见,应选(B ).4 -6 一汽车发动机曲轴的转速在12 s 内由1.2×103 r·min -1均匀的增加到2.7×103 r·min -1.(1) 求曲轴转动的角加速度;(2) 在此时间内,曲轴转了多少转?分析这是刚体的运动学问题.刚体定轴转动的运动学规律与质点的运动学规律有类似的关系,本题为匀变速转ωJ ωJ d m d m =+-00vv动.解 (1) 由于角速度ω=2π n (n 为单位时间内的转数),根据角加速度的定义,在匀变速转动中角加速度为(2) 发动机曲轴转过的角度为在12 s 内曲轴转过的圈数为圈 4 -7 某种电动机启动后转速随时间变化的关系为,式中ω0=9.0 s -1 ,τ=2 s .求:(1) t =6.0 s 时的转速;(2) 角加速度随时间变化的规律;(3) 启动后6.0 s 内转过的圈数.分析 与质点运动学相似,刚体定轴转动的运动学问题也可分为两类:(1) 由转动的运动方程,通过求导得到角速度、角加速度;(2) 在确定的初始条件下,由角速度、角加速度通过积分得到转动的运动方程.本题由ω=ω(t )出发,分别通过求导和积分得到电动机的角加速度和6.0 s 内转过的圈数. 解 (1) 根据题意中转速随时间的变化关系,将t =6.0 s 代入,即得(2) 角速度随时间变化的规律为(3) t =6.0 s 时转过的角度为则t =6.0 s 时电动机转过的圈数圈4 -8 水分子的形状如图所示,从光谱分析知水分子对AA ′ 轴的转动惯量J AA′=1.93 ×10-47 kg·m 2 ,对BB ′ 轴转动惯量J BB′=1.14 ×10-47 kg·m 2,试由此数据和各原子质量求出氢和氧原子的距离D 和夹角θ.假设各原子都可当质点处理.tωαd d =()200s rad 1.13π2-⋅=-=-=tn n t ωωα()0020π221n n t ωωt αt ωθ-=-=+=3902π20=+==t n n θN ()τt e ωω/01--=()10/0s 6.895.01--==-=ωe ωωτt ()22//0s rad e 5.4e d d ---⋅===t τt τωt ωα()rad 9.36d 1d /6060=-==-⎰⎰t e ωt ωθτt 87.5π2/==θN分析 如将原子视为质点,则水分子中的氧原子对AA ′轴和BB ′ 轴的转动惯量均为零,因此计算水分子对两个轴的转动惯量时,只需考虑氢原子即可. 解 由图可得此二式相加,可得 则由二式相比,可得 则 4 -9 一飞轮由一直径为30㎝,厚度为2.0㎝的圆盘和两个直径为10㎝,长为8.0㎝的共轴圆柱体组成,设飞轮的密度为7.8×103 kg·m -3,求飞轮对轴的转动惯量.分析 根据转动惯量的可叠加性,飞轮对轴的转动惯量可视为圆盘与两圆柱体对同轴的转动惯量之和;而匀质圆盘、圆柱体对轴的转动惯量的计算可查书中公式,或根据转动惯量的定义,用简单的积分计算得到. 解 根据转动惯量的叠加性,由匀质圆盘、圆柱体对轴的转动惯量公式可得θd m J H A A 22sin 2='θd m J H B B 22cos 2='22d m J J H B B A A =+''m 1059.9211-''⨯=+=HB B A A m J J d θJ J B B A A 2tan /=''o 3.521.141.93arctan arctan===''B B A A J Jθ4 -10 如图(a )所示,圆盘的质量为m ,半径为R .求:(1) 以O 为中心,将半径为R /2 的部分挖去,剩余部分对OO 轴的转动惯量;(2) 剩余部分对O ′O ′轴(即通过圆盘边缘且平行于盘中心轴)的转动惯量.分析 由于转动惯量的可加性,求解第一问可有两种方法:一是由定义式计算,式中d m 可取半径为r 、宽度为d r 窄圆环;二是用补偿法可将剩余部分的转动惯量看成是原大圆盘和挖去的小圆盘对同一轴的转动惯量的差值.至于第二问需用到平行轴定理. 解 挖去后的圆盘如图(b )所示. (1) 解1 由分析知解2 整个圆盘对OO 轴转动惯量为,挖去的小圆盘对OO 轴转动惯量,由分析知,剩余部分对OO 轴的转动惯量为(2) 由平行轴定理,剩余部分对O ′O ′轴的转动惯量为4 -11 用落体观察法测定飞轮的转动惯量,是将半径为R 的飞轮支承在O 点上,然后在绕过飞轮的绳子的一端挂一质量为m 的重物,令重物以初速度为零下落,带动飞轮转动(如图).记下重物下落的距离和时间,就可算出飞轮的转动惯量.试写出它的计算式.(假设轴承间无摩擦).2424122221121m kg 136.021π161 2212212⋅=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛⨯=+=ad ld ρd m d m J JJ m r J d 2⎰=22/3222/2203215d 2 d π2πd mR r r R m rr R mr m r J R R RR ====⎰⎰⎰2121mR J =2222232122ππ21mR R R Rm J =⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛=22103215mR J J J =-=22222032392ππ3215mR R R R m m mR J =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⋅-+='分析 在运动过程中,飞轮和重物的运动形式是不同的.飞轮作定轴转动,而重物是作落体运动,它们之间有着内在的联系.由于绳子不可伸长,并且质量可以忽略.这样,飞轮的转动惯量,就可根据转动定律和牛顿定律联合来确定,其中重物的加速度,可通过它下落时的匀加速运动规律来确定.该题也可用功能关系来处理.将飞轮、重物和地球视为系统,绳子张力作用于飞轮、重物的功之和为零,系统的机械能守恒.利用匀加速运动的路程、速度和加速度关系,以及线速度和角速度的关系,代入机械能守恒方程中即可解得.解1 设绳子的拉力为F T,对飞轮而言,根据转动定律,有(1)而对重物而言,由牛顿定律,有(2)由于绳子不可伸长,因此,有(3)重物作匀加速下落,则有(4) 由上述各式可解得飞轮的转动惯量为解2 根据系统的机械能守恒定律,有(1′)而线速度和角速度的关系为(2′)又根据重物作匀加速运动时,有(3′)(4′)由上述各式可得αJ R F T =ma F mg T =-αR a =221at h =⎪⎪⎭⎫⎝⎛-=1222h gt mR J 0212122=++-ωJ m mgh v ωR =v at =v ah 22=v ⎪⎪⎭⎫⎝⎛-=1222h gt mR J若轴承处存在摩擦,上述测量转动惯量的方法仍可采用.这时,只需通过用两个不同质量的重物做两次测量即可消除摩擦力矩带来的影响.4 -12 一燃气轮机在试车时,燃气作用在涡轮上的力矩为2.03×03N·m ,涡轮的转动惯量为25.0kg·m 2 .当轮的转速由2.80×103 r·min -1 增大到1.12×104 r·min -1时,所经历的时间t 为多少?分析 由于作用在飞轮上的力矩是恒力矩,因此,根据转动定律可知,飞轮的角加速度是一恒量;又由匀变速转动中角加速度与时间的关系,可解出飞轮所经历的时间.该题还可应用角动量定理直接求解. 解1 在匀变速转动中,角加速度,由转动定律,可得飞轮所经历的时间 解2 飞轮在恒外力矩作用下,根据角动量定理,有则 4 -13 如图(a ) 所示,质量m 1 =16 kg 的实心圆柱体A ,其半径为r =15 cm ,可以绕其固定水平轴转动,阻力忽略不计.一条轻的柔绳绕在圆柱体上,其另一端系一个质量m 2 =8.0 kg 的物体B .求:(1) 物体B 由静止开始下降1.0 s 后的距离;(2) 绳的张力F T .分析 该系统的运动包含圆柱体的转动和悬挂物的下落运动(平动).两种不同的运动形式应依据不同的动力学方程去求解,但是,两物体的运动由柔绳相联系,它们运动量之间的联系可由角量与线量的关系得到. 解 (1) 分别作两物体的受力分析,如图(b ).对实心圆柱体而言,由转动定律得t ωωα0-=αJ M =()s 8.10200=-=-=n n MJπJ M ωωt ()0d ωωJ t M t-=⎰()s 8.10π200=-=-=n n MJJ M ωωt对悬挂物体而言,依据牛顿定律,有且F T =F T′ .又由角量与线量之间的关系,得解上述方程组,可得物体下落的加速度在t =1.0 s 时,B 下落的距离为(2) 由式(2)可得绳中的张力为4 -14 质量为m 1 和m 2 的两物体A 、B 分别悬挂在图(a )所示的组合轮两端.设两轮的半径分别为R 和r ,两轮的转动惯量分别为J 1 和J 2 ,轮与轴承间、绳索与轮间的摩擦力均略去不计,绳的质量也略去不计.试求两物体的加速度和绳的张力.分析 由于组合轮是一整体,它的转动惯量是两轮转动惯量之和,它所受的力矩是两绳索张力矩的矢量和(注意两αr m αJ r F T 2121==a m F g m F P T T 222='-='-αr a =21222m m gm a +=m 45.222121222=+==m m gt m at s ()N 2.3922121=+=-=g m m m m a g m FT力矩的方向不同).对平动的物体和转动的组合轮分别列出动力学方程,结合角加速度和线加速度之间的关系即可解得.解 分别对两物体及组合轮作受力分析,如图(b ).根据质点的牛顿定律和刚体的转动定律,有(1) (2)(3) , (4)由角加速度和线加速度之间的关系,有(5) (6)解上述方程组,可得4 -15 如图所示装置,定滑轮的半径为r ,绕转轴的转动惯量为J ,滑轮两边分别悬挂质量为m 1 和m 2 的物体A 、B .A 置于倾角为θ 的斜面上,它和斜面间的摩擦因数为μ,若B 向下作加速运动时,求:(1) 其下落加速度的大小;(2) 滑轮两边绳子的张力.(设绳的质量及伸长均不计,绳与滑轮间无滑动,滑轮轴光滑.)分析 这是连接体的动力学问题,对于这类问题仍采用隔离体的方法,从受力分析着手,然后列出各物体在不同运动形式下的动力学方程.物体A 和B 可视为质点,则运用牛顿定律.由于绳与滑轮间无滑动,滑轮两边绳中的张力是不同的,滑轮在力矩作用下产生定轴转动,因此,对滑轮必须运用刚体的定轴转动定律.列出动力学方程,并考虑到角量与线量之间的关系,即能解出结果来.解 作A 、B 和滑轮的受力分析,如图(b ).其中A 是在张力F T1 、重力P 1 ,支持力F N 和摩擦力F f 的作用下运动,根据牛顿定律,沿斜面方向有(1)111111a m F g m F P T T =-='-222222a m g m F P F T T =-=-'()αJ J r F R F T T 2121+=-11T T F F ='22T T F F ='αR a =1αr a =2gR r m R m J J rm R m a 222121211+++-=gr rm R m J J rm R m a 222121212+++-=g m r m R m J J Rr m r m J J F T 1222121221211++++++=g m r m R m J J Rr m R m J J F T 2222121121212++++++=11111cos sin a m θg m μθg m F T =--而B 则是在张力F T2 和重力P 2 的作用下运动,有(2)由于绳子不能伸长、绳与轮之间无滑动,则有(3)对滑轮而言,根据定轴转动定律有(4) , (5)解上述各方程可得4 -16 如图(a )所示,飞轮的质量为60 kg ,直径为0.50 m ,转速为1.0 ×103 r·min -1 .现用闸瓦制动使其在5.0 s 内停止转动,求制动力F .设闸瓦与飞轮之间的摩擦因数 μ=0.40,飞轮的质量全部分布在轮缘上.2222a m F g m T =-αr a a ==21αJ r F r F T T ='-'1211T T F F ='22T T F F ='22111221cos sin rJm m θg m μθg m g m a a ++--==()()22121211//cos sin cos sin 1rJ m m r gJ m θμθθμθg m m F T ++++++=()22122212//cos sin 1rJ m m r gJ m θμθg m m F T +++++=分析 飞轮的制动是闸瓦对它的摩擦力矩作用的结果,因此,由飞轮的转动规律可确定制动时所需的摩擦力矩.但是,摩擦力矩的产生与大小,是由闸瓦与飞轮之间的正压力F N 决定的,而此力又是由制动力F 通过杠杆作用来实现的.所以,制动力可以通过杠杆的力矩平衡来求出.解 飞轮和闸杆的受力分析,如图(b )所示.根据闸杆的力矩平衡,有而,则闸瓦作用于轮的摩擦力矩为 (1) 摩擦力矩是恒力矩,飞轮作匀角加速转动,由转动的运动规律,有(2) 因飞轮的质量集中于轮缘,它绕轴的转动惯量,根据转动定律,由式(1)、(2)可得制动力()0121='-+l F l l F NNN F F '=d μF l ll d μF d F M N 121f2212+===tnt ωt ωωαπ200==-=4/2md J =αJ M =4 -17 一半径为R 、质量为m 的匀质圆盘,以角速度ω绕其中心轴转动,现将它平放在一水平板上,盘与板表面的摩擦因数为μ.(1) 求圆盘所受的摩擦力矩.(2) 问经多少时间后,圆盘转动才能停止?分析 转动圆盘在平板上能逐渐停止下来是由于平板对其摩擦力矩作用的结果.由于圆盘各部分所受的摩擦力的力臂不同,总的摩擦力矩应是各部分摩擦力矩的积分.为此,可考虑将圆盘分割成许多同心圆环,取半径为r 、宽为d r 的圆环为面元,环所受摩擦力d F f =2πr μmg d r /πR 2 ,其方向均与环的半径垂直,因此,该圆环的摩擦力矩d M =r ×d F f ,其方向沿转动轴,则圆盘所受的总摩擦力矩M =∫ d M .这样,总的摩擦力矩的计算就可通过积分来完成.由于摩擦力矩是恒力矩,则由角动量定理M Δt =Δ(Jω),可求得圆盘停止前所经历的时间Δt .当然也可由转动定律求解得.解 (1) 由分析可知,圆盘上半径为r 、宽度为d r 的同心圆环所受的摩擦力矩为式中k 为轴向的单位矢量.圆盘所受的总摩擦力矩大小为(2) 由于摩擦力矩是一恒力矩,圆盘的转动惯量J =mR 2/2 .由角动量定理M Δt =Δ(Jω),可得圆盘停止的时间为4 -18 如图所示,一通风机的转动部分以初角速度ω0 绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量.若转动部分对其轴的转动惯量为J ,问:(1) 经过多少时间后其转动角速度减少为初角速度的一半?(2) 在此时间内共转过多少转?分析 由于空气的阻力矩与角速度成正比,由转动定律可知,在变力矩作用下,通风机叶片的转动是变角加速转动,因此,在讨论转动的运动学关系时,必须从角加速度和角速度的定义出发,通过积分的方法去解. 解 (1) 通风机叶片所受的阻力矩为M =-Cω,由转动定律M =Jα,可得叶片的角加速度为(1) 根据初始条件对式(1)积分,有()N 1014.32211⨯=+=tl l μnmdl πF ()k F r M 22f /d 2d R r mg μr d -=⨯=mgR μr R mg μr M M R32d 2d 022===⎰⎰gμR ωM ωJ t 43Δ==JωC t ωα-==d d t J C ωωt ωωd d 00⎰⎰-=由于C 和J 均为常量,得(2)当角速度由ω0 → 12 ω0 时,转动所需的时间为(2) 根据初始条件对式(2)积分,有即 在时间t 内所转过的圈数为4 -19 如图所示,一长为2l 的细棒AB ,其质量不计,它的两端牢固地联结着质量各为m 的小球,棒的中点O 焊接在竖直轴z 上,并且棒与z 轴夹角成α角.若棒在外力作用下绕z 轴(正向为竖直向上)以角直速度ω=ω0(1 -e -t) 转动,其中ω0 为常量.求(1)棒与两球构成的系统在时刻t 对z 轴的角动量;(2) 在t =0时系统所受外力对z 轴的合外力矩.分析 由于棒的质量不计,该系统对z 轴的角动量即为两小球对z 轴的角动量之和,首先可求出系统对z 轴的转动惯量(若考虑棒的质量,其转动惯量为多少,读者可自己想一想),系统所受合外力矩既可以运用角动量定理,也可用转动定律来求解.相比之下,前者对本题更直接.解 (1) 两小球对z 轴的转动惯量为,则系统对z 轴的角动量为此处也可先求出每个小球对z 轴的角动量后再求和. (2) 由角动量定理得J Ct e ωω/0-=2ln CJt =t e ωθJ Ct tθd d /000-⎰⎰=CωJ θ20=CωJ θN π4π20==()()222sin 2sin 22αl m αl m mr J ===()αe ωml mr ωJ L t 2022sin 122--===t =0时,合外力矩为此处也可先求解系统绕z 轴的角加速度表达式,即,再由M =Jα求得M . 4 -20 一质量为m′、半径为R 的均匀圆盘,通过其中心且与盘面垂直的水平轴以角速度ω转动,若在某时刻,一质量为m 的小碎块从盘边缘裂开,且恰好沿垂直方向上抛,问它可能达到的高度是多少? 破裂后圆盘的角动量为多大?分析 盘边缘裂开时,小碎块以原有的切向速度作上抛运动,由质点运动学规律可求得上抛的最大高度.此外,在碎块与盘分离的过程中,满足角动量守恒条件,由角动量守恒定律可计算破裂后盘的角动量.解 (1) 碎块抛出时的初速度为由于碎块竖直上抛运动,它所能到达的高度为(2) 圆盘在裂开的过程中,其角动量守恒,故有式中为圆盘未碎时的角动量;为碎块被视为质点时,碎块对轴的角动量;L 为破裂后盘的角动量.则4 -21 在光滑的水平面上有一木杆,其质量m 1 =1.0 kg ,长l =40cm ,可绕通过其中点并与之垂直的轴转动.一质量为m 2 =10g 的子弹,以v =2.0×102 m · s -1 的速度射入杆端,其方向与杆及轴正交.若子弹陷入杆中,试求所得到的角速度.()[]αe ωml tt L M t 202sin 12d d d d --==t e αωml -=202sin 2αωml M 202sin 2=t e ωtωα-==0dd R ω=0v gR ωg h 222220==v L L L '-=0ωR m L 221'=ωmR L 2='ωR m m L 221⎪⎭⎫⎝⎛-'=分析 子弹与杆相互作用的瞬间,可将子弹视为绕轴的转动.这样,子弹射入杆前的角速度可表示为ω,子弹陷入杆后,它们将一起以角速度ω′ 转动.若将子弹和杆视为系统,因系统不受外力矩作用,故系统的角动量守恒.由角动量守恒定律可解得杆的角速度. 解 根据角动量守恒定理式中为子弹绕轴的转动惯量,J 2ω为子弹在陷入杆前的角动量,ω=2v/l 为子弹在此刻绕轴的角速度.为杆绕轴的转动惯量.可得杆的角速度为4 -22 半径分别为r 1 、r 2 的两个薄伞形轮,它们各自对通过盘心且垂直盘面转轴的转动惯量为J 1 和J 2 .开始时轮Ⅰ以角速度ω0 转动,问与轮Ⅱ成正交啮合后(如图所示),两轮的角速度分别为多大?分析 两伞型轮在啮合过程中存在着相互作用力,这对力分别作用在两轮上,并各自产生不同方向的力矩,对转动的轮Ⅰ而言是阻力矩,而对原静止的轮Ⅱ则是启动力矩.由于相互作用的时间很短,虽然作用力的位置知道,但作用力大小无法得知,因此,力矩是未知的.但是,其作用的效果可从轮的转动状态的变化来分析.对两轮分别应用角动量定理,并考虑到啮合后它们有相同的线速度,这样,啮合后它们各自的角速度就能求出. 解 设相互作用力为F ,在啮合的短时间Δt 内,根据角动量定理,对轮Ⅰ、轮Ⅱ分别有(1)(2)两轮啮合后应有相同的线速度,故有(3)()ωJ J ωJ '+=212()2222/l m J =12/211l m J =()1212212s 1.2936-=+=+='m m m J J ωJ ωv()0111ΔωωJ t F r -=-222ΔωJ t F r =2211ωr ωr =由上述各式可解得啮合后两轮的角速度分别为4 -23 一质量为20.0 kg 的小孩,站在一半径为3.00 m 、转动惯量为450 kg· m 2 的静止水平转台的边缘上,此转台可绕通过转台中心的竖直轴转动,转台与轴间的摩擦不计.如果此小孩相对转台以1.00 m· s -1 的速率沿转台边缘行走,问转台的角速率有多大?分析 小孩与转台作为一定轴转动系统,人与转台之间的相互作用力为内力,沿竖直轴方向不受外力矩作用,故系统的角动量守恒.在应用角动量守恒时,必须注意人和转台的角速度ω、ω0 都是相对于地面而言的,而人相对于转台的角速度ω1 应满足相对角速度的关系式 . 解 由相对角速度的关系,人相对地面的角速度为由于系统初始是静止的,根据系统的角动量守恒定律,有式中J 0 、J 1 =mR 2 分别为转台、人对转台中心轴的转动惯量.由式(1)、(2)可得转台的角速度为式中负号表示转台转动的方向与人对地面的转动方向相反.4 -24 一转台绕其中心的竖直轴以角速度ω0 =πs -1 转动,转台对转轴的转动惯量为J 0 =4.0 ×10-3 kg· m 2 .今有砂粒以Q =2t g· s -1 的流量竖直落至转台,并粘附于台面形成一圆环,若环的半径为r =0.10 m ,求砂粒下落t =10 s 时,转台的角速度.分析 对转动系统而言,随着砂粒的下落,系统的转动惯量发生了改变.但是,砂粒下落对转台不产生力矩的作用,因此,系统在转动过程中的角动量是守恒的.在时间t 内落至台面的砂粒的质量,可由其流量求出,从而可算出它所引起的附加的转动惯量.这样,转台在不同时刻的角速度就可由角动量守恒定律求出. 解 在时间0→10 s 内落至台面的砂粒的质量为根据系统的角动量守恒定律,有则t =10 s 时,转台的角速度4 -25 为使运行中的飞船停止绕其中心轴的转动,可在飞船的侧面对称地安装两个切向控制喷管(如图所示),利用喷管高速喷射气体来制止旋转.若飞船绕其中心轴的转动惯量J =2.0 ×103kg· m 2 ,旋转的角速度ω=0.2 rad· s -1 ,喷口与轴线之间的距离r =1.5 m ;喷气以恒定的流量Q =1.0 kg· s -1和速率u =50 m· s -1 从喷口喷出,问为使该飞船停止旋转,喷气应喷射多长时间?分析 将飞船与喷出的气体作为研究系统,在喷气过程中,系统不受外力矩作用,其角动量守恒.在列出方程时应注意:(1) 由于喷气质量远小于飞船质量,喷气前、后系统的角动量近似为飞船的角动量J ω;(2) 喷气过210222122011r ωJ r J r ωJ ω+=10ωωω+=Rωωωωv+=+=010()010100=++ωωJ ωJ 122020s 1052.9--⨯-=+-=RmR J mR ωv kg 10.0Qd s100==⎰t m ()ωmr J ωJ 2000+=112000s π80.0-=+=J mrJ ωJ ω程中气流速率u 远大于飞船侧面的线速度ωr ,因此,整个喷气过程中,气流相对于空间的速率仍可近似看作是 u ,这样,排出气体的总角动量.经上述处理后,可使问题大大简化.解 取飞船和喷出的气体为系统,根据角动量守恒定律,有(1)因喷气的流量恒定,故有(2)由式(1)、(2)可得喷气的喷射时间为4 -26 一质量为m′、半径为R 的转台,以角速度ωA 转动,转轴的摩擦略去不计.(1) 有一质量为m 的蜘蛛垂直地落在转台边缘上.此时,转台的角速度ωB 为多少? (2) 若蜘蛛随后慢慢地爬向转台中心,当它离转台中心的距离为r 时,转台的角速度ωc 为多少? 设蜘蛛下落前距离转台很近.分析 对蜘蛛和转台所组成的转动系统而言,在蜘蛛下落至转台面以及慢慢向中心爬移过程中,均未受到外力矩的作用,故系统的角动量守恒.应该注意的是,蜘蛛爬行过程中,其转动惯量是在不断改变的.由系统的角动量守恒定律即可求解.解 (1) 蜘蛛垂直下落至转台边缘时,由系统的角动量守恒定律,有式中为转台对其中心轴的转动惯量,为蜘蛛刚落至台面边缘时,它对轴的转动惯量.于是可得(2) 在蜘蛛向中心轴处慢慢爬行的过程中,其转动惯量将随半径r 而改变, 即.在此过程中,由系统角动量守恒,有4 -27 一质量为1.12 kg ,长为1.0 m 的均匀细棒,支点在棒的上端点,开始时棒自由悬挂.以100 N 的力打击它的下端点,打击时间为0.02 s .(1) 若打击前棒是静止的,求打击时其角动量的变化;(2) 棒的最大偏转角.()mur m r ωu m≈+⎰d 0=-mur ωJ Qt m 2=s 67.22==QurωJ t ()b a ωJ J ωJ 100+=2021R m J '=21mR J =a a b ωmm m ωJ J J ω2100+''=+=22mr J =()c a ωJ J ωJ 100+=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 刚体定轴转动一、选择题1. 两个匀质圆盘A 和B 相对于过盘心且垂直于盘面的轴的转动惯量分别为A J 和B J ,若B A J J >,但两圆盘的质量与厚度相同,如两盘的密度各为A ρ和B ρ,则(A )A B ρρ>(B )B A ρρ> (C )A B ρρ=(D )不能确定A ρ和B ρ哪个大答案:A 分析:22m m R R h hρππρ=→=,221122m J mR h πρ==,故转动惯量小的密度大。
2. 有两个半径相同、质量相等的细圆环。
1环的质量分布均匀,2环的质量分布不均匀。
它们对通过环心并与环面垂直的轴的转动惯量分别为1J 和2J ,则(A )12J J >(B )12J J < (C )12J J =(D )不能确定1J 和2J 哪个大 答案:C分析:22J R dm mR ==⎰,与密度无关,故C 选项正确。
3. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度1ω按图1所示方向转动。
将两个大小相等、方向相反的力F 沿盘面同时作用到圆盘上,则圆盘的角速度变为2ω,则(A )12ωω>(B )12ωω= (C )12ωω<(D )不能确定如何变化答案:C分析:左边的力对应的力臂大,故产生的(顺时针)力矩大于右边的力所产生的力矩,即合外力距(及其所产生的角加速度)为顺时针方向,故圆盘加速,角速度变大。
4. 均匀细棒OA 的质量为M ,长为L ,可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图2所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A )合外力矩从大到小,角速度从小到大,角加速度从大到小(B )合外力矩从大到小,角速度从小到大,角加速度从小到大(C )合外力矩从大到小,角速度从大到小,角加速度从大到小 (D )合外力矩从大到小,角速度从大到小,角加速度从小到大 答案:A分析:(定性)由转动定律M I β=可知,角加速度与力矩成正比,故B 、D 错误;由机械能守恒可知,棒在下落的过程中重力做功,故角速度从小到大,C 错误。
故选A 。
(定量)设某一时刻细棒与水平线夹角为θ,由力矩定义及转动定律可得21cos 23L M mg mL θβ=⋅=⋅ 可知当θ从0至90度的过程中,M (及β)从大到小。
由机械能守恒可得()22111cos 223L mg mL θωω⋅-=⋅⋅→=可知当θ从0至90度的过程中,角速度从小到大。
5. (☆)如图3所示,A 、B 为两个相同的绕着轻绳的定滑轮。
A 滑轮挂一质量为m 的物体,B 滑轮受拉力G ,而且G=mg 。
设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有(A )A B ββ=(B )A B ββ> (C )A B ββ<(D )开始时A B ββ=,以后A B ββ<答案:C分析:(定性)由于物体m 有向下的加速度,故作用于物体上的绳子张力小于mg ,即小于右边绳子的张力(=mg ),故A 滑轮受到的力矩小于B 滑轮,故A B ββ<。
(定量)设圆盘转动惯量为I ,参考计算题第1题的计算过程,可得A 、B 圆盘的转动角加速度为 2A A A A Amg T ma mgR T R I I mR R a βββ-=⎧⎪=→=⎨+⎪=⎩; B B mgR GR I I ββ=→= 故A B ββ<。
6. 一轻绳跨过一具有水平光滑轴、转动惯量为J 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图4所示。
绳与轮之间无相对滑动。
若某时刻滑轮沿逆时针方向转动,则绳中的张力(A )处处相等 (B )左边大于右边 (C )右边大于左边(D )无法判断哪边大 答案:C分析:(定性)由于重的物体m 2最终必然下落,可知圆盘最后将做顺时针转动,因此圆盘受到的合外力矩应为顺时针,即右边绳子的张力要大于左边绳子的张力。
(定量)参考课本例题((★)阿特伍德机:P84,例3-5)可得()()()()1112221212122221212120/m g T m a T m g m a m m g J m m g T T T T R J J m R m R m m J R R R a βββ-=⎧⎪-=--⎪→=→-=<⎨-=++++⎪⎪=⎩7. 几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A )必然不会转动 (B )转速必然不变 (C )转速必然改变 (D )转速可能不变,也可能改变答案:D分析:力的矢量和和力的作用点无关,力矩的矢量和和力的作用点有关,故力的矢量和为零不能导出力矩的矢量和为零,因此D 正确。
具体例子可参考选择题第3题,图中两力的矢量和为零,当两个力不在一条直线上时,外力矩不为零(此时转速改变);当两个力在一条直线上时,外力矩为零(此时转速不变)。
8. 一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,角速度为1ω,如图5所示,射来两个质量相同、速度大小相同、方向相反并在同一条直线上的子弹,子弹射入圆盘并且停留在盘内,若子弹射入后的瞬间圆盘的角速度为2ω,则(A )12ωω> (B )12ωω< (C )12ωω= (D )无法确定答案:A分析:由于子弹和圆盘构成的系统与外界的接触只有固定的光滑转轴,故该系统对该转轴角动量守恒。
设两子弹的速度大小为v ,动量线(速度所在直线)与O 的垂直距离为h ,圆盘的转动惯量为I ,子弹射入圆盘并嵌在圆盘上时与O 的距离为r ,则有()()212211222I I mvh mvh I mr I mr ωωωωω++-=+→=<+ 即,选项A 正确。
9. 现有A 、B 两个系统,如图6所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始态为静止悬挂。
现有一个小球自左方水平打击细杆。
设小球与细杆之间为非弹性碰撞,把碰撞过程中的细杆与小球取作系统A ;另外,一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人。
当此人在盘上随意走动时(若忽略轴的摩擦),若人和圆盘取作系统B ,则(A )A 、B 两系统机械能都守恒(B )A 、B 两系统只有对转轴O 的角动量守恒(C )A 、B 两系统动量都守恒 (D )A 、B 两系统机械能、动量和角动量均守恒答案:B分析:由于两个系统都有非保守内力做功(A :非弹性碰撞;B :人随意走动),机械能不守恒,选项AD 错误。
由于两个系统都有可能受到转轴上的力(外力)的作用,故系统的动量不一定守恒,选项C 错误。
由于两个系统只与光滑固定转轴接触,受到的合外力矩必然为0,故满足角动量守恒,选项B 正确。
10. (☆)一个物体正在绕固定光滑轴自由转动,则它受热膨胀时(A )角速度不变 (B )角速度变小 (C )角速度变大 (D )无法确定角速度如何变化答案:B分析:物体与外界的接触为固定光滑轴,故物体角动量守恒,即L I ω==常数,由转动惯量的定义2i i i I m ρ=∑可知,当物体膨胀时,质元i m 与转轴的距离i ρ变大,故转动惯量变大。
由角动量不变可知角速度变小。
二、填空题1. 刚体对轴的转动惯量取决于: 、 、 。
答案:刚体质量;质量分布;转轴位置。
分析:略。
2. (☆)如图7所示,Q 、R 和S 是附于刚性轻质细杆上的质量分别为3m 、2m 和m 的3个质点,QR=RS=l ,则系统对OO ’轴的转动惯量为 。
答案:214ml分析:由转动惯量的定义2i ii I m ρ=∑可得22223(2)2014I m l m l m ml =⋅+⋅+⋅=。
3. (☆)如图8所示,一长为l 的均匀直棒可绕其一端且与棒垂直的水平光滑固定轴转动。
抬起另一端使棒向上与水平面成60o ,然后无初速地将棒释放。
已知棒对轴的转动惯量为2/3ml ,其中m 和l 分别为棒的质量和长度,则放手时棒的角加速度为 ,棒转到水平位置时的角加速度为 。
答案:34g l ;32g l分析:由力矩定义可知,当棒与水平面夹角为θ时,产生的力矩为cos 2l M mg θ=⋅ 由转动定律可得213cos cos 232l g mg I ml lθβββθ⋅==⋅→= 故,60o θ=时,3/4g l β=;0o θ=时,3/2g l β=。
4. (☆)一飞轮以角速度0ω绕光滑固定轴旋转,飞轮对轴的转动惯量为J 1;另一静止飞轮突然和上述转动的飞轮啮合并绕同一转轴转动,该飞轮对轴的转动惯量为前者的两倍。
啮合后整个系统的角速度ω为 。
答案:0/3ω分析:物体与外界接触的地方只有光滑固定转轴,系统角动量守恒,即()101102/3J J J ωωωω=+→=5. (☆)如图9所示,A 、B 两飞轮的轴杆在一条直线上,并可用摩擦啮合器C 使它们联结。
开始时B 轮以角速度B ω转动,A 轮以角速度A ω转动,设在啮合过程中两飞轮不受其他力矩的作用。
当两轮联结在一起后,共同的角速度为ω。
若A 轮的转动惯量为J A ,则B 轮的转动惯量J B = 。
答案:A A BJ ωωωω-- 分析:系统与外界接触的只有光滑固定转轴,系统角动量守恒,即()A A A B B A B B A BJ J J J J J ωωωωωωω-+=+→=- 6. (☆)如图10所示,一静止的均匀细棒,长为L ,质量为m 1,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为m 1L 2/3。
一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v/2,则此时棒的角速度应为 。
答案:132mv m L分析:由角动量守恒可得21113232v mv mvL m L m L m Lωω=+→= 式中质点的角动量为质点的动量乘以动量臂。
7. (☆)光滑的水平桌面上有一长为2L 、质量为m 的均质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为mL 2/3,起初杆静止。
桌面上有两个质量均为m 的小球各自在垂直于杆的方向上正对着杆的一端,以相同速率v 相向运动,如图11所示。
当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为 。
答案:67v L分析:由角动量守恒可得22162237v mvL mL mL L ωω⎛⎫=+→= ⎪⎝⎭ 注:两个小球的角动量方向相同(顺时针方向;等式右边第一项为小球粘在细杆上形成的新刚体对转轴O 的转动惯量。
8. 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度0ω转动,此时有一质量为m 的人站在转台中心。