衡水中学2018届高三考试数学(理)试题+答案
河北省衡水中学2018-2019学年高三上学期一调考试数学(理)试题Word版含答案.pdf
A. 1 2
B. 2 2
3. 如图,网格纸上小正方形的边长为
积为( )
2
C.
4
D. 2 16
1 ,粗线或虚线画出某几何体的三视图,该几何体的体
A. 8
B. 12
C. 18
4. 已知 p :方程 x2 2ax 1 0 有两个实数根; q :函数 f x
下列: ① p q ;② p q ;③ p q ;④ p q .
b
( 1)若函数 y f x 存在极大值和极小值,求
的取值范围;
a
( 2)设 m, n分别为 f x 的极大值和极小值,若存在实数 b
e
1 e2 a,
1 a
,使得
2 e 2e
m n 1,求 a 的取值范围.
21. (本小题满分 12 分)
已知函数 f x xln x , g x
x ex .
( 1)记 F x f x g x ,判断 F x 在区间 1,2 内的零点个数并说明理由;
( 2)记 F x 在 1,2 内的零点为 x0 , m x min f x , g x ,若 m x n ( n R )
在 1, 内有两个不等实根 x1, x2 ( x1 x2 ),判断 x1 x2 与 2x0 的大小,并给出对应的证
明.
请考生在 22、 23、 24 三题中任选一题作答,如果多做,则按所做的第一题记分
2018-2019 学年
数学试卷(理科) 第Ⅰ卷(共 60 分) 最新试卷十年寒窗苦,踏上高考路,心态放平和,信心要十足,面对考试卷,下笔如有神,短信送祝福,愿你能高中,马到功自成,金榜定题名。
卷多少汗水曾洒下,多少期待曾播种,终是在高考交卷的一刹尘埃落地,多少记忆梦中惦记,多少青春付与流水,人生,总有一次这样的成败,才算长大。
河北省衡水中学2018届高三上学期五调考试数学(理)试题 Word版 含答案
2017~2018学年度上学期高三年级五调考试数学(理科)试卷本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
共150分。
考试时间120分钟.第I 卷(选择题 共60分)一、选择题(本题共12小题,每小题5分,共60分.从每小题所给的四个选项中,选出最佳选项,并在答题纸上将该项涂黑)1.设集合{}(){}2230,ln 2=A x x x B x y x A B =--<==-⋂,则 A .{}13x x -<< B .{}12x x -<< C .{}32x x -<< D .{}12x x <<2.已知复数z 满足()1z =(i 是虚数单位),则z =A .34+B .32-C .32+D .34- 3.要得到函数()cos 21y x =+的图像,只要将函数cos 2y x =的图像A .向左平移1个单位长度B .向右平移1个单位长度C .向左平移12个单位长度D .向右平移12个单位长度 4.已知向量()()2,1,1,3a b =-=-,则A .//a bB .a b ⊥C .()a a b ⊥-D .()//a a b -5.下列命题中正确的是A .若22a b ac bc >>,则B .若,a b a b c d c d><>,则C .若,a b c d a c b d >>->-,则D .若110,,ab a b a b >><则 6.已知一个几何体的三视图及有关数据如图所示,则该几何体的体积为A .3 BC .D 7.若()()()3230123021354x a a x a x a x a a a a +=++++-+=,则A .1-B .1C .2D .2-8.已知三角形的三边长构成等比数列,设它们的公比为q ,则q 的一个可能值为A .12B .35C .58D .539.已知两点()()(),0,,00A a B a a ->,若曲线22230x y y +--+=上存在点P ,使得90APB ∠=,则正实数a 的取值范围为A .(0,3]B .[1,3]C .[2,3]D .[1,2] 10.抛物线()()()()211223320,,,,,y px p A x y B x y C x y =>上有三点,F 是它的焦点,若,,AF BF CF 成等差数列,则A .132,,x x x 成等差数列B .123,,y y y 成等差数列C .123,,x x x 成等差数列D .132,,y y y 成等差数列11.已知点P 为双曲线()222210,0x y a b a b-=>>右支上一点,12F F ,分别为双曲线的左、右焦点,点I 为△PF 1F 2的内心(三角形内切圆的圆心),若恒有121212IPF IPF IF F S S S ∆∆∆-≥成立,则双曲线的离心率的取值范围为A .(1,2]B .(1,2)C .(0,2]D .(2,3] 12.已知()f x 是定义域为()0,+∞的单调函数,若对任意的()0,x ∈+∞,都有()13l o g 4f f x x ⎡⎤+=⎢⎥⎣⎦,且关于x 的方程()323694f x x x x a -=-+-+在区间(0,3]上有两解,则实数a 的取值范围是 A .(0,5] B .(),5-∞ C .(0,5) D .[5,+∞)第Ⅱ卷(非选择题 共90分)二、填空题(本题共4小题,每小题5分,共20分)13.设直线()()2230124ax y x y -+=-+-=与圆相交于A ,B 两点,且弦长为则a 的值是__________. 14.设12,F F 分别是椭圆2212516x y +=的左、右焦点,P 为椭圆上任意一点,点M 的坐标为()6,4,则1PM PF -的最小值为_________.15.已知抛物线24y x =,圆()22:11F x y -+=,直线()()10y k x k =-≠自上而下顺次与上述两曲线交于点A ,B ,C ,D ,则AB CD 的值是_________.16.已知四面体ABCD ,AB=4,AC=AD=6,∠BAC=∠BAD=60°,∠CAD=90°,则该四面体外接球的半径为__________.三、解答题(共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生必须作答.第22,23题为选考题,考生根据要求作答)(一)必考题:共60分.17.(本小题满分12分)已知等差数列{}n a 的公差不为零,且满足126146,,,a a a a =成等比数列.(1)求数列{}n a 的通项公式;(2)记()21n n b n a =+,求数列{}n b 的前n 项和n S .18.(本小题满分12分)已知函数()()sin 003f x x πωω⎡⎤=>⎢⎥⎣⎦在区间,上单调递增,在区间233ππ⎡⎤⎢⎥⎣⎦,上单调递减.如图,在四边形OACB 中,,,a b c 分别为△ABC 的内角A ,B ,C 的对边,且满足4cos cos sin sin 3sin cos B C B C A Aω--+=. (1)证明:2b c a +=.(2)若()022b c AOB OA OB θθπ=∠=<<==,设,,求四边形OACB 面积的最大值.19.(本小题满分12分)如图,四棱锥P-ABCD 的底面ABCD 为平行四边形,DA=DP ,BA=BP .(1)求证:PA BD ⊥;(2)若,60,2DA DP ABP BA BP BD ⊥∠====,求二面角D —PC —B 的正弦值.20. (本小题满分12分)已知椭圆()2222101x y C a b a b ⎛+=>> ⎝⎭:过点,椭圆C 的左焦点为A ,右焦点为B ,点P 是椭圆C 上位于x 轴上方的动点,且4AP BP +=,直线AP ,BP 与直线y=3分别交于G ,H 两点.(1)求椭圆C 的方程及线段GH 的长度的最小值;(2)T 是椭圆C 上一点,当线段GH 的长度取得最小值时,求△TPA 的面积的最大值.21.(本小题满分12分)已知函数()()22ln f x x x mx m R =+-∈. (1)若()f x 在其定义域内单调递增,求实数m 的取值范围;(2)若()175,2m f x <<且有两个极值点()()()121212,x x x x f x f x <-,求的取值范围.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,圆C 的参数方程为1cos sin x t y t =+⎧⎨=⎩,(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l的极坐标方程是2sin 4πρθ⎛⎫+= ⎪⎝⎭1C 的极坐标方程为()00θαρ=≥,其中0α满足0tan 2α=,曲线C 1与圆C 的交点为O ,P 两点,与直线l 的交点为Q,求线段PQ 的长.23.(本小题满分10分)选修4—5:不等式选讲已知函数()()f x x a a R =+∈.(1)若()23f x x ≥+的解集为[]3,1a --,求的值;(2)若x R ∀∈,不等式()22f x x a a a +-≥-恒成立,求实数a 的取值范围.。
2018届河北省衡水金卷全国高三大联考理科数学试题(解析版)教学内容
时, 取得最大值 .
即
,
当
或 时,
.
当
时,
.
所以
,解得
.
点睛:线性规划的实质是把代数问题几何化,即数形结合的思想
.需要注意的是:一、准确无误地作出可行
域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般
情况下,目标函数的最大或最小会在可行域的端点或边界上取得
芝麻向硬币内投掷 100 次,其中恰有 30 次落在军旗内,据此可估计军旗的面积大约是
()
只供学习交流用
此文档来源于网络,如有侵权请联系网站删除
A.
B.
C.
D.
【答案】 B
【解析】根据题意,可估计军旗的面积大约是
.
故选 B.
5. 已知双曲线 :
的渐近线经过圆 :
的圆心,则双曲线 的离心率为
()
A.
此文档来源于网络,如有侵权请联系网站删除
2018 届河北省衡水金卷全国高三大联考
理科数学试题(解析版)
第Ⅰ卷 一、选择题:本大题共 12 个小题 , 每小题 5 分 , 在每小题给出的四个选项中,只有一项是符合 题目要求的 .
1. 已知集合 A.
, B.
,则 ( )
C.
D.
【答案】 C
【解析】
.
所以 故选 C.
射出,经过抛物线上的点 反射后,再经抛物线上的另一点
射出,则
的周长
A.
B.
C.
D.
【答案】 B
【解析】令
,得 ,即
.
由抛物线的光学性质可知
经过焦点 ,设直线 的方程为
消去 ,得
河北省衡水中学2018届高三下学期第6周周考数学(理)试题(精校Word版含答案)
理数周日测试6 一、选择题1.已知集合{}{}2,,1,0,2,3,4,8A x x n n Z B ==∈=-,则()R A B ⋂=ð( ) A. {}1,2,6 B. {}0,1,2 C. {}1,3- D.{}1,6- 2.已知i 是虚数单位,则2331i i i -⎛⎫-= ⎪+⎝⎭( )A. 32i --B. 33i --C. 24i -+D. 22i -- 3.已知2sin 3α=,则()3tan sin 2ππαα⎛⎫++= ⎪⎝⎭( ) A. 23-B. 23C.4.已知椭圆()222210x y a b a b+=>>的离心率为12,且椭圆的长轴与焦距之差为4,则该椭圆为方程为( )A. 22142x y +=B. 22184x y +=C. 221164x y +=D.2211612x y += 5.公元五世纪,数学家祖冲之估计圆周率π的值的范围是:3.1415926 3.1415927π<<,为纪念祖冲之在圆周率的成就,把3.1415926称为“祖率”,这是中国数学的伟大成就.某小学教师为帮助同学们了解“祖率”,让同学们从小数点后的7位数字1,4,1,5,9,2,6随机选取两位数字,整数部分3不变,那么得到的数字大于3.14的概率为( ) A.2831 B. 1921 C. 2231 D.1721 6.运行如图所示的程序,输出的结果为( )A. 8B. 6C. 5D.47.已知某几何体的三视图如图所示,则该几何体的表面积为( )A. 6πB. 8πC. 6π+6D.8π+48.已知直线1:1l y x =+与2:l y x m =+之间的距离为2,则直线2l 被圆()22:18C x y ++=截得的弦长为( )A. 4B.3C.2D.19.已知实数,x y 满足不等式组10201x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则目标函数3z x y =-的最大值为( )A.1B.2C.53 D. 7310.在边长为1的正ABC ∆中,点D 在边BC 上,点E 是AC 中点,若316AD BE =-,则BDBC=( ) A.14 B. 12 C. 34 D. 7811.已知定义在R 上的函数()f x ,满足()()()f m x f m x x R +=-∈,且1x ≥时,()22x n f x -+=,图象如图所示,则满足()2n mf x -≥的实数x 的取值范围是( ) A. []-1,3 B. 1322⎡⎤⎢⎥⎣⎦, C. []0,2 D. 15,22⎡⎤-⎢⎥⎣⎦12.已知函数()()23sin cos 4cos 0f x x x x ωωωω=->的最小正周期为π,且()12f θ=,则2f πθ⎛⎫+= ⎪⎝⎭( ) A. 52-B. 92-C. 112-D. 132- 二、填空题13.在正方体1111ABCD A BC D -中,点M 是11C D 的中点,则1A M 与AB 所成角的正切值为. 14.已知双曲线()222210,0x y a b a b-=>>的离心率为2,过双曲线的右焦点垂直于x 轴的直线被双曲线截得的弦长为m ,则ma=. 15.已知函数()()()()ln 0ln 0x x f x x x >⎧⎪=⎨--<⎪⎩,若()()()20,0f a f b a b =><,且224a b +的最小值为m ,则()22log mab +-=.16.已知ABC ∆的三个内角所对的边分别为,,a b c ,且cos cos 2cos b C c B a B +=,sin 3sin B A =,则a c=. 三、解答题17.(12分)已知等比数列{}n a 满足:112a =,且895618a a a a +=+. (1)求{}n a 的通项公式及前n 项和; (2)若n nb na =,求{}n b 的前n 项和n T .18.(12分)如图,三棱锥P ABC -中,PAB ABC ⊥平面平面,PA PB =,且AB PC ⊥.(1)求证:CA CB =;(2)若2,PA PB AB PC ====P ABC -的体积.19.(12分)某搜索引擎广告按照付费价格对搜索结果进行排名,点击一次付费价格排名越靠前,被点击的次数也可能会提高,已知某关键词被甲、乙等多个公司竞争,其中甲、乙付费情况与每小时点击量结果绘制成如下的折线图.(1)试根据所给数据计算每小时点击次数的均值方差并分析两组数据的特征;(2)若把乙公司设置的每次点击价格为x ,每小时点击次数为y ,则点(x ,y )近似在一条直线附近.试根据前5次价格与每小时点击次数的关系,求y 关于x 的回归直线ˆˆˆybx a =+.(附:回归方程系数公式:1221ˆˆˆ,ni ii nii x y nxybay bx xnx =-=-==--∑∑) 20.(12分)如图,直线10l y ++=与y 轴交于点A ,与抛物线()2:20C x py p =>交于P ,Q ,点B 与点A 关于x 轴对称,连接QB ,BP 并延长分别与x 轴交于点M ,N. (1)若PQ =,求抛物线C 的方程;(2)若3MN =,求BMN ∆外接圆的方程.21.(12分)已知函数()()2ln f x x axa R =+∈.(1)若()y f x =在2x =处的切线与x 轴平行,求()f x 的极值;(2)若函数()()1g x f x x =--在()0∞,+上单调递增,求实数a 的取值范围. 选考题22.(10分)选修4-4坐标系与参数方程以原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为()253cos28ρθ-=,直线l的参数方程为22x m t y ⎧=-⎪⎪⎨⎪=⎪⎩(其中t 为参数).(1)把曲线C 的极坐标方程化为普通方程;(2)若直线l 与曲线C 有两个公共点,求实数m 的取值范围.23.(10分)选修4-5不等式选讲 已知函数()12f x x x =-+.(1)关于x 的不等式()2f x <的解集为M ,且(),12m m M -⊆,求实数m 的取值范围; (2)求()()22g x f x x x =-+-的最小值,及对应的x 的取值范围. 附加题. 已知函数()()()2ln f x x g x ax bx a b ==-,、为常数.(Ⅰ)求函数()f x 在点()()1,1f 处的切线方程;(Ⅱ)当函数()2g x x =在处取得极值-2,求函数()g x 的解析式;(Ⅲ)当12a=时,设()()()h x f x g x=+,若函数()h x在定义域上存在单调减区间,求实数b的取值范围.河北衡水中学2018届高三数学复习 周日测答案1.【答案】C 【解析】由条件可知A 为偶数集,故(){}R 1,3A B =-I ð.2.【答案】B 【解析】()()()22231i 3i 3i i i 12i i 33i 1i 2轾--骣-÷犏ç-=+=-+=--÷ç÷犏ç桫+臌. 3.【答案】A 【解析】()()32tan sin tan cos sin 23p p a a a a a 骣÷ç++=-=-=-÷ç÷ç桫. 4.【答案】D 【解析】设椭圆的焦距为2c ,由条件可得12c a =,故2a c =,由椭圆的长轴与焦距之差为4可得()24a c -=,即2a c -=,所以,4a =,2c =,故22212b a c =-=,故该椭圆的方程为2211612x y +=.5.【答案】A 【解析】从1,4,1,5,9,2,6这7位数字中任选两位数字的不同情况有:14,11,15,19,12,16,41,45,49,42,46,59,52,56,92,96,26,51,91,21,61,54,94,24,64,95,25,65,29,69,62,共31种不同情况,其中使得到的数字不大于3.14的情况有3种不同情况,故所求概率为32813131-=. 6.【答案】D 【解析】所给程序的运行过程如下:1b =,3a =;2b =,7a =;3b =,15a =;4b =,31a =,不满足30a <,输出b 的值为4.7.【答案】C 【解析】由三视图可知,该几何体是一个圆柱的34,故表面积为()232123213664p p p ??创=+.8.【答案】A 【解析】由条件可知,直线1l 过圆心():1,0C -,则圆心C 到直线2l 的距离等于直线1l 与2l 之间的距离2,故直线2l 被圆C 截得的弦长为4. 9.【答案】B 【解析】不等式组表示的平面区域如下图中的阴影部分所示:且点12,33A 骣÷ç-÷ç÷ç桫,()1,2B ,()1,2C -,易得目标函数3z x y =-在点C 处取得最大值5.10.【答案】C 【解析】设AB =uu u r a ,AC =uuu r b ,BD BC l =uu u r uu u r,则()()1AD AB BD l l l =+=+-=-+u u u r u u u r u u u r a b a a b ,12BE AE AB =-=-u u u r u u u r u u u r b a ,则()()()()()()2211111312221133131142416AD BE l l l l l l l l l 骣÷ç轾?-+?=-?-+÷ç臌÷ç桫=-+-+=-=-uuu r uu u r a b b a a b a b故34l =,即34BD BC =. 11.【答案】B 【解析】由条件可知,()f x 的图象关于直线1x =对称,结合()()()f m x f m x x +=-?R 可得1m =,而()11f =,即221n -+=,解之得2n =,由()2n m f x -≥可得()12f x ≥,当1x ≥时,由22122x -+≥,解之得32x ≤,所以,312x ≤≤,再结合对称性可得x 的取值范围是13,22轾犏犏臌.12.【答案】B 【解析】()()2353sin cos 4cos sin 22cos22sin 2222f x x x x x x x w w w w w w j =-=--=--,其中4sin 5j =,3cos 5j =,由()12f q =可得()sin 21wq j -=,即()f x 关于x q =对称,而2x p q =+与x q =的距离为12个周期,故sin 212p w q j 轾骣÷ç犏+-=-÷ç÷ç犏桫臌,所以,592222f p q 骣÷ç+=--=-÷ç÷ç桫. 13.【答案】2【解析】11MA B Ð即为1A M 与AB 所成角,取11A B 中点N ,连接MN ,则11MN A B ^,则111tan 2MNMA B A N?=. 14.【答案】6【解析】设双曲线的焦距为2c ,则2ca=,即2c a =,则b =2x c a==代入双曲线可得2b y a =?,故22b m a =,所以,2226m b a a==.15.【答案】3【解析】由()()()20,0f a f b a b =><可得()ln ln 2a b =--,即21ab -=,∴12ab =-,则2242242a b a bab +?=≥,当且仅当122ab a b ìïï=-ïíïï=-ïî,即112a b ì=ïïïíï=-ïïî时,224a b +取得最小值2.故()22212log 2log 32m ab +=+=.16.cos cos 2cos b C c B a B +=及正弦定理可得sin cos sin 2sin cos B C Ccos B A B +=,即()sin 2sin cos B C A B +=,而()sin sin 0A B C =+>,∴1cos 2B =.由sin 3sin B A =可得3b a =,由余弦定理可得2222cos b a c ac B =+-,即2229a a c ac =+-,解之得a c=(舍去负值). 17.【解析】(1)设{}n a 的公比为q ,由895618a a a a +=+可得318q =,∴12q =,∴12n n a =,∴11112211212n n n S 骣÷ç-÷ç÷ç桫==--.(5分) (2)由(1)可得2n n n b =,则231232222n n nT =++++L ① 所以,2341112322222n n nT +=++++L ②由①-②可得2311111111111222112222222212n n n n n n n n n T +++骣÷ç-÷ç÷ç桫+=++++-=-=--L , 所以,222n nn T +=-.(12分) 18.【解析】(1)取AB 的中点O ,连接PO ,PC .∵PA PB =,∴PO AB ^, ∵AB PC ^,PC PO P =I ,PC ,PO Ì平面POC , ∴AB ^平面POC ,又∵OC Ì平面POC ,∴AB OC ^, 而O 是AB 的中点,∴CA CB =.(6分)(2)∵平面PAB ^平面ABC ,PO Ì平面PAB ,平面PAB I 平面ABC AB =, ∴PO ^平面ABC,由条件可得PO =OC =.则11222ABC S AB OC =?创V ∴三棱锥P ABC -的体积为:1133ABC V S PO =?V .(12分)19.【解析】(1)由题图可知,甲公司每小时点击次数为9,5,7,8,7,6,8,6,7,7,乙公司每小时点击次数为2,4,6,8,7,7,8,9,9,10. 甲公司每小时点击次数的平均数为:9578768677710x +++++++++==甲,乙公司每小时点击次数的平均数为:24687789071091x +++++++++==乙.甲公司每小时点击次数的方差为:()()222222122212140 1.210S 轾=+-+??+?犏臌甲;乙公司每小时点击次数的方差为:()()()22222222153******** 5.410S 轾=-+-+-+??+?犏臌乙,由计算已知,甲、乙公司每小时点击次数的均值相同,但是甲的方差较小,所以,甲公司每小时点击次数更加稳定.(6分)(2)根据折线图可得数据如下:则3x =, 5.4y =,则5152215 1.4i i i ii x y xy b x n x=-=-==-åå$, 1.2a =$, ∴所求回归直线方程为: 1.4 1.2y x =+$.(12分)20.【解析】(1)由2102y x py++=ï=ïî可得220x p ++=, 设点()11,P x y ,()22,Q x y,则()280p D=->,即1p >,12x x +=-,122x x p =,故12PQ x =-=.由2p =(舍去负值), ∴抛物线C 的方程为24x y =.(5分)(2)设直线BN ,BM 的斜率分别为1k ,2k 点,21221111212111111122222x y x p x x x x x p k x x px px p-----=====,22222221221222221122222x y x p x x x x x p k x x px px p-----=====, ∴120k k +=.直线BN 的方程为:11y k x =+,直线BM 的方程为:21y k x =+,则11,0N k 骣÷ç÷-ç÷ç÷桫,21,0M k 骣÷ç÷-ç÷ç÷桫,则12211211k k MN k k k k -=-==,由120k k +=可得12k k =-,∴1212k k =,∴1k =2k =120k k <,故tan tan BNM BMN ??, 即BMN V 是等腰三角形,且1OB =,则BMN V 的外接圆的圆心一定在y 轴上,设为()0,t ,由圆心到点M ,B 的距离相等可得()2221t t -=+桫,解之得16t =-,外接圆方程为22149636x y 骣÷ç++=÷ç÷ç桫.(12分) 21.【解析】(1)∵()2ln f x x ax =+,∴()()120f x ax x x ¢=+>, 由条件可得()11402f a ¢=+=,解之得18a =-, ∴()21ln 8f x x x =-,()()()()2211044x x f x x x x x --+¢=-=>, 令()0f x ¢=可得2x =或2x =-(舍去)当02x <<时,()0f x ¢>;当2x >时,()0f x ¢<即()f x 在()0,2上单调递增,在()2,+?上单调递减,故()f x 有极大值()12ln 22f =-,无极小值(5分) (2)()2ln 1g x x ax x =+--,则()()2121210ax x g x ax x x x-+¢=+-=> 设()221h x ax x =-+,①当0a =时,()1x g x x-¢=-,当01x <<时,()0g x ¢>, 当1x >时,()0g x ¢<,即()g x 在()0,1上单调递增,在()1,+?上单调递减,不满足条件;②当0a <时,()221h x ax x =-+是开口向下的抛物线,方程2210ax x -+=有两个实根,设较大实根为0x .当0x x >时,有()0h x <,即()0g x ¢<,∴()g x 在()0,x +?上单调递减,故不符合条件(8分)③当0a >时,由()0g x ¢≥可得()221h x ax x =-+在()0,+?上恒成立,故只需()0010400h a a ìïïïï-ïï-ïíïïD >ïïïï>ïî≥≤或0D ≤,即101041800a a a ìïïïïïïïíïï->ïïïï>ïî≥≤或1800a a ì-ïïíï>ïî≤,解之得18a ≥. 综上可知,实数a 的取值范围是1,8轹÷ê+?÷÷êøë.(12分) 22.【解析】(1)方程()253cos28r q -=可化为()22532cos 18r q 轾--=犏臌,即22243cos 4r r q -=,把222c o s x x y r r q ìï=+ïíï=ïî代入可得()222434x y x +-=,整理可得2214x y +=.(5分)(2)把x m y ìïï=-ïïïíïïï=ïïî代入2214x y +=可得225280t m -+-=,由条件可得()()2220280m D =--->,解之得m -<即实数m的取值范围是(-.(10分)23.【解析】(1)当1x ≤时,不等式()2f x <可变为()122x x --+<,解之得1x <,∴1x <;当1x >时,不等式()2f x <可变为()122x x -+<,解之得1x <,∴x 不存在. 综上可知,不等式()2f x <的解集为(),1M =-?.由(),12m m M -?,可得12121m m m ì<-ïïíï-ïî≤,解之得103m <≤,即实数m 的取值范围是10,3轹÷ê÷÷êøë.(5分)(2)()()()()2212121g x f x x x x x x x =-+-=-+----=≥,当且仅当()()120x x --≤,即12x ≤≤时,()g x 取得最小值1,此时,实数x 的取值范围是[]1,2.(10分)附加题(1)1y x =-(2)()2122g x x x =-(3)()2,b ∈+∞ 试题解析:(Ⅰ)由()ln f x x =(0x >),可得()1'f x x =(0x >), ∴()f x 在点()()1,1f 处的切线方程是()()()111y f f x '-=-,即1y x =-,所求切线方程为1y x =-. (Ⅱ)∵又()2g x ax bx =-可得()2g x ax b '=-,且()g x 在2x =处取得极值2-. ∴()()20,22,g g '⎧=⎪⎨=-⎪⎩可得40,422,a b a b -=-=-⎧⎨⎩解得12a =,2b =. 所求()2122g x x x =-(x R ∈). (Ⅲ)∵()()()21ln 2h x f x g x x x bx =+=+-,()21x bx h x x -+'=(0x >). 依题存在0x >使()210x bx h x x-+'=<,∴即存在0x >使210x bx -+<, 不等式210x bx -+<等价于1b x x >+(*) 令()1x x x=+λ(0x >),∵()()()221111(0)x x x x x x λ+-'=-=>. ∴()x λ在()0,1上递减,在[)1,+∞上递增,故()[)12,x x x=+∈+∞λ, ∵存在0x >,不等式(*)成立,∴2b >,所求()2,b ∈+∞.。
2018衡中同卷高三一调理科数学答案
取得极小值
12.答案:D 解析:在区间 [2, 4] 上,当 x 3 时, f ( x ) 取得极大值 1,极大值点为 A(3,1) ,当 x [4,8] 时,
x x x [2, 4] , f ( x ) cf ,所以在区间 [4,8] 上,当 3 ,即 x 6 时, f ( x) 取得极大值 c , 2 2 2
1 c 1 3 1 B (6, c ) , C , 三点共线,所以 c ,解得 c 1 或 2 3 3 2 c 2 8 13.答案: 5
解析:不妨设正方形边长为 2,以 A 为坐标原点建立如图所示平面直角坐标系,则 AC (2, 2) ,
AM (2,1), BN (1, 2) ,因为 AC AM BN ,所以 (2 , 2 ) (2, 2) , 6 2 2 8 5 , 所以 ,解得 5 2 2 2 5
所以 a2016 S 2016 S 2015 1009 16.答案: 0 a ≤ 1 或 a
2
5 4
解析:由 5[ f ( x)] (5a 6) f ( x) 6a 0 可得 [5 f ( x) 6] [ f ( x) a] 0 ,所以 f ( x )
解得:
12k 5 12k 11 12k 5 12k 11 5 7 ≤ ≤ ≤ k ≤ ,又因为 ,所以 0 ,所以 2 3 2 3 12 12
5 11 k Z ,所以 k 0 ,所以 , 2 3
9.答案:D
11 5 3 (2 k 1) 3 T , k Z ,所以 T , k Z ,又因为 T 2 , 8 8 4 4 2k 1 2 2 5 5 ,当 x 2k , k Z , 所以 k 0, T 3 , 时, x T 3 8 12 2
河北省衡水中学2018届高三上学期一调考试理数试题 含解析
一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合错误!未找到引用源。
,错误!未找到引用源。
,则错误!未找到引用源。
()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
【答案】A考点:集合的运算.2.已知错误!未找到引用源。
为虚数单位,复数错误!未找到引用源。
满足错误!未找到引用源。
,则错误!未找到引用源。
为()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
【答案】C【解析】试题分析:由题意得,错误!未找到引用源。
,故选C.考点:复数的运算.3.如图,网格纸上小正方形的边长为错误!未找到引用源。
,粗线或虚线画出某几何体的三视图,该几何体的体积为()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
【答案】B【解析】试题分析:由题意得,根据给定的三视图可知,该几何体为如图所示的几何体,是一个三棱锥与三棱柱的组合体,其中三棱锥的体积为错误!未找到引用源。
,三棱柱的体积为错误!未找到引用源。
,所以该几何体的体积为错误!未找到引用源。
,故选B.考点:几何体的三视图及几何体的体积.【方法点晴】本题主要考查了空间几何体的三视图的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答中,根据给定的三视图,得出该几何体是一个三棱锥与三棱柱的组合体,即可求解该组合体的体积.4.已知命题错误!未找到引用源。
:方程错误!未找到引用源。
有两个实数根;命题错误!未找到引用源。
:函数错误!未找到引用源。
的最小值为错误!未找到引用源。
.给出下列命题:①错误!未找到引用源。
;②错误!未找到引用源。
;③错误!未找到引用源。
2018届河北省衡水中学高三下学期期中考试理科数学试题及答案精品
成绩分为优秀、良好、及格三个等级,横向、纵向分别表示语文成绩
与数学成绩,若在该样本中,数学成绩优秀率是 30%,求 a、b 的值;
( 3)在语文成绩为及格的学生中,已知
a 10,b 8 ,设随机变量
a b ,求① 的分布列、期望 ; ②数学成绩为优秀的人数比及格的
24. (本小题满分 10 分)选修 4-5 ,不等式选讲 在平面直角坐标系中,定义点 P(x1, y1) 、 Q( x2 , y2 ) 之间的直角距离
为 L( P,Q ) | x1 x2 | | y1 y2 |,点 A(x,1) , B(1,2) , C (5, 2) (1)若 L ( A, B) L( A,C) ,求 x 的取值范围; (2)当 x R 时,不等式 L ( A, B) t L( A, C ) 恒成立,求 t 的最小值 .
∴ O 为 B1C 中点又 D 为 AC 中点 , 从而 DO // AB1 (4 分)
∵ AB1 平面 BDC 1 , DO 平面 BDC1 ∴ AB1 // 平面 BDC1 (6 分) (Ⅱ)建立空间直角坐标系 B xyz 如图所示 ,
33
则 B(0,0,0) , A(
3,1,0) ,
C (0,2,0)
4
D.2k 或 2k 一 1 ( k∈Z)
4
C. 0
第Ⅱ卷(非选择题 共 90 分) 二、 填空题(每题 5分,共 20分。把答案填在答题纸的横线上)
13.设等比数列 { an} 满足公比 q N * ,a n N * ,且 { a n } 中的任意两项之积
也 是 该 数 列 中 的 一 项 , 若 a1 281 , 则 q 的 所 有 可 能 取 值 的 集 合
衡水中学2018届高三数学上学期周测一轮复习试卷理科有答案
衡水中学2018届高三数学上学期周测一轮复习试卷(理科有答案)2017-2018学年度高三一轮复习周测卷(一)理数一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法正确的是()A.0与的意义相同B.高一(1)班个子比较高的同学可以形成一个集合C.集合是有限集D.方程的解集只有一个元素2.已知集合,则()A.B.C.D.3.设命题“”,则为()A.B.C.D.4.已知集合,则集合()A.B.C.D.5.设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.设,若是的充分不必要条件,则实数的取值范围是()A.B.C.D.7.已知命题有解,命题,则下列选项中是假命题的为()A.B.C.D.8.已知集合,则集合不可能是()A.B.C.D.9.设,若是的充分不必要条件,则实数的取值范围是()A.B.C.D.10.已知命题,命题.若命题且是真命题,则实数的取值范围为()A.B.C.D.11.对于任意两个正整数,定义某种运算“*”,法则如下:当都是正奇数时,;当不全为正奇数时,,则在此定义下,集合的真子集的个数是()A.B.C.D.12.用表示非空集合中的元素个数,定义,若,且,设实数的所有可能取值集合是,则()A.4B.3C.2D.1二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题纸上)13.已知含有三个实数的集合既可表示成,又可表示成,则等于.14.已知集合,若是的充分不必要条件,则实数的取值范围为.15.已知集合,若,则实数的所有可能取值的集合为.16.下列说法中错误的是(填序号).①命题“,有”的否定是“,有”;②若一个命题的逆命题为真命题,则它的否命题也一定为真命题;③已知,若为真命题,则实数的取值范围是;④“”是“”成立的充分条件.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知集合.(1)分别求;(2)已知集合,若,求实数的取值范围.18.(1)已知关于的方程有实根;关于的函数在区间上是增函数,若“或”是真命题,“或”是真命题,“且”是假命题,求实数的取值范围;(2)已知,若是的必要不充分条件,求实数的取值范围.19.集合.(1)若集合只有一个元素,求实数的值;(2)若是的真子集,求实数的取值范围.20.已知函数的值域是集合,关于的不等式的解集为,集合,集合.(1)若,求实数的取值范围;(2)若,求实数的取值范围.21.已知函数的定义域为,集合.(1)若,求实数的值;(2)若,使,求实数的取值范围.22.已知是定义域为的奇函数,且当时,,设“”.(1)若为真,求实数的取值范围;(2)设集合与集合的交集为,若为假,为真,求实数的取值范围.试卷答案一、选择题1-5:DDBCA6-10:BBDAA11、12:CB二、填空题13.-114.15.16.①③④三、解答题17.解:(1)∵,即,∴,∴,∵,即,∴,∴,∴,;(2)由(1)知,若,当为空集时,,当为非空集合时,可得,综上所述,实数的取值范围为.18.解:(1)若真,则,∴或,若真,则,∴,由“或”是真命题,“且”是假命题,知、一真一假,当真假时:;当假真时:.综上,实数的取值范围为;(2),∴,∴,∴实数的取值范围为.19.解:(1)根据题意知集合有两个相等的实数根,所以或-1;(2)根据条件,知,是的真子集,所以当时,,当时,根据(1)将分别代入集合检验,当时,,不满足条件,舍去;当时,,满足条件.综上,实数的取值范围是.20.解:(1)因为,所以在区间上单调递增,所以,所以. 由,可得,即,所以,所以.又因为,所以.所以,解得,所以实数的取值范围为.(2)由,解得,所以.因为,①当,即时,,满足;②当,即时,,所以,解得,又因为,所以,综上所述,实数的取值范围为.21.解:(1),因为,所以,且,所以.(2)由已知,得,所以或,解得或,所以实数的取值范围为.22.解:(1)∵函数是奇函数,∴,∵当时,,∴函数为内的增函数,∵,∴,∴.若为真,则,解得.∴实数的取值范围是. (2),若为真,则.∵为假,为真,∴一真一假. 若真假,则;若假真,则.综上,实数的取值范围是.。
2018届河北省衡水中学高三下学期三调考试理科数学试题及答案 精品
2018-2018学年度下学期高三年级三调考试数学试卷(理科)第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共6分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知集合2{|11},{|560}A x x B x x x =-≤≤=-+≥,则下列结论中正确的是( ) A .AB B = B .A B A =C .A B ⊂D .R C A B =2、复数122i i+-的共轭复数是( )A .35i B .35i - C .i D .i -3、某工厂生产,,A B C 三种不同的型号的产品,产品数量之比依次为:5:3k ,现用分层抽样的方法抽出一个容量为120的样本,已知A 种型号产品共抽取了24件,则C 种型号产品抽取的件数为( )A .24B .30C .36D .40 4、如图给出的是计算111124620++++的值的一个框图,其中菱形判断框内应填入的条件是( ) A .8?i > B .9?i > C .10?i > D .11?i > 5、将函数()cos f x x x =-的图象向左平移m个单位(0)m >,若所得图象对应的函数为偶函数,则m 的最小值是( ) A .23π B .3π C .8π D .56π6、已知等比数列{}n a 中,3462,16a a a ==,则101268a a a a --的值为( )A .2B .4C .8D .16 7、已知身穿红、黄两种颜色衣服的各有两人,身穿蓝颜色衣服的有一人,现将这五人排成一行,要求穿相同颜色衣服的人不能相邻,则不同的排法共有( )A .48种B .72种C .78种D .84种8、已知点Q 在椭圆22:11610x y C +=上,点P 满足11()2OP OF OQ =+(其中O 为坐标原点,1F 为椭圆C 的左焦点),在点P 的轨迹为( )A .圆B .抛物线C .双曲线D .椭圆9、已知一个几何体的三视图如图所示,则该几何体的体积为( )A .3272π- B .3182π-C .273π-D .183π-10、三棱锥P ABC -中,PA ⊥平面,,1,ABC AC BC AC BC PA ⊥==则该三棱锥外接球的表面积为( ) A .5π BC .20πD .4π11、已知不等式组3410043x y x y +-≥⎧⎪≤⎨⎪≤⎩表示区域D ,过区域D 中任意一点P 作圆221x y +=的两条切线且切点分别为,A B ,当PAB ∠最大时,cos PAB ∠=( ) A.2B .12 C.2-.12-12、若函数[]111sin 20,)y x x π=∈,函数223y x =+,则221212()()x x y y -+-的最小值为( )A .12B .2(18)72π+ C .2(18)12π+ D第Ⅱ卷二、填空题:本大题共4题,每小题5分,共20,把答案填在答题卷的横线上。
2018年届河北省衡水中学高中高三下学期期初中中考试理科数学试卷试题及答案
河北省衡水中学 2018届高三下期期中考试数学(理)试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前。
考生务势必自己的姓名、准考据号填写在答题卡上.2.答第Ⅰ卷时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需变动,用橡皮擦洁净后,再选涂其余答案标号.写在本试卷上无效.3.答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1.已知i为虚数单位,则复数13i1iA.2i B.2i C.12i D.2.已知会合P0,1,2,Q y|y3x,则PQA.0,1B.1,2C.0,1,2D.3.已知cos k k R,,则sin,,2A.1k2k 12i4.以下说法中,不.正确的选项是A.已知a,b,m R,命题“若am2bm2,则a b”为真命题;B.命题“x0R,x02x00”的否认是“x R,x2x0”;C.命题“p 或”为真命题,则命题p和命题q均为真命题;qD.“x>3”是“x>2”的充足不用要条件.5.已知偶函数f(x),当x[0,2)时,f(x)=2sinx,当x [2,)时,fxlog2x,则f f43A.32B.1C.3D.326.履行下边的程序框图,假如输入的挨次是1,2,4,8,则输出的为A.2B.22C.4D.67.如图,在三棱柱ABC A1B1C1中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则BB1与平面AB1C1所成的角的大小为A.B.C.D.64328.已知O、A、B三地在同一水平面内,A地在O地正东方向2km 处,B地在O地正北方向2km处,某测绘队员在A、B之间的直线公路上任选一点C作为测绘点,用测绘仪进行测绘.O地为一磁场,距离其不超出3km的范围内会对测绘仪等电子仪器形成扰乱,使丈量结果不正确.则该测绘队员可以获得正确数据的概率是A.1B.2C.13D.12 22229.已知抛物线y22pxp0的焦点F恰巧是双曲线x2y21a0,b0的一个焦点,两条曲线的交点的连线经过a2b2点F,则双曲线的离心率为A.C.2B.12D.31310.一个几何体的三视图如下图,则该几何体的体积是A.64B.72C.80D.11211.已知平面图形ABCD为凸四边形(凸四边形即任取平面四边形一边所在的直线,其余各边均在此直线的同侧),且AB=2,BC=4,CD=5,DA=3,则四边形ABCD面积S的最大值为A.30B.230C.430D.63012.已知函数fx lnx,x0,若对于x的方程x24x1,x0f2xbfx c0b,cR 有8个不一样的实数根,则由点(,)bc确立的平面地区的面积为A.1B.1C.1D.2 6323第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每题5分.13.已知平面向量a,b的夹角为23|a+b|=.,|a|=2,|b|=1,则14.将甲、乙、丙、丁四名学生疏到两个不一样的班,每个班起码分到一名学生,且甲、乙两名学生不可以分到同一个班,则不同的分法的种数为(用数字作答).15.设过曲线f x e x x(e为自然对数的底数)上随意一点处的切线为 l1,总存在过曲线gx ax 2cosx上一点处的切线l2,使得l1l2,则实数a的取值范围为.22F 1,F 2,设P 为椭圆16.已知椭圆x2y21ab0的两个焦点分别为a b上一点,F 1PF 2的外角均分线所在的直线为 l ,过F 1,F 2分别作l的垂线,垂足分别为、,当 P在椭圆上运动时, 、 所形RSRS成的图形的面积为.三、解答题:本大题共6小题,共 70分.解答应写出文字说明, 证明过程或演算步骤.17.(本小题满分 12分)设数列a n 的前n 项和为S n ,a 11,a n1S n 1nN*,1,且a 1、2a 2、a 33为等差数列b n 的前三项.1)求数列a n 、b n 的通项公式;2)求数列a n b n 的前n 项和.18.(本小题满分 12分)集成电路 E 由3个不一样的电子元件构成,现因为元件老化,三个电子元件能正常工作的概率分别降为1、1 、2,且每个电子2 2 3元件可否正常工作互相独立.若三个电子元件中起码有2个正常工作,则 E 能正常工作,不然就需要维修,且维修集成电路 E 所需花费为 100元. 1)求集成电路E 需要维修的概率;2)若某电子设施共由2个集成电路E 构成,设X 为该电子设备需要维修集成电路所需的花费,求X 的散布列和希望.19.(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD为梯形,∠ABC=∠BAD=90°,AP=AD=AB=2,BC=t,∠PAB=∠PAD=.(1)当t32时,试在棱PA上确立一个点E,使得PC∥平面BDE,并求出此时AE的值;EP(2)当60时,若平面PAB⊥平面PCD,求此时棱BC的长.20.(本小题满分12分)在平面直角坐标系xOy 中,一动圆经过点切,设该动圆圆心的轨迹为曲线E.1,0且与直线x1相22(1)求曲线E的方程;(2)设P 是曲线E上的动点,点、在y轴上,△的内切BC PBC圆的方程为x12y21,求△面积的最小值.PBC21.(本小题满分12分)已知函数fx x22alnx.x(1)若f(x)在区间[2,3]上单一递加,务实数a的取值范围;(2)设f ()的导函数f'x的图象为曲线,曲线C上的不一样x C两点Ax 1,y 1、Bx 2,y 2所在直线的斜率为k ,求证:当 a ≤4时,|k |>1.请考生在第 22~24三题中任选一题作答,假如多做,则按所做的第一题记分.22.(本小题满分 10分)选修4-1:几何证明选讲如图,已知O 和M 订交于 、 B两点,为 M 的直径,延伸AADDB 交O 于C ,点G 为弧BD 的中点,连接AG 分别交O 、BD于点E 、F ,连接CE .(1)求证:AGEFCEGD ;(2)求证:GFEF 22 . AGCE23.(本小题满分 10分)选修4-4:坐标系与参数方程已知曲线C 1的参数方程为x2cos(为参数),以坐标原点Oy3sin为极点,x 轴的正半轴为极轴成立极坐标系,曲线C 2的极坐标方程为2.1)分别写出C1的一般方程,C2的直角坐标方程.2)已知M、N分别为曲线C1的上、下极点,点P为曲线C2上随意一点,求|PM|+|PN|的最大值.24.(本小题满分10分)选修4-5:不等式选讲已知函数fxx1x3m的定义域为.R(1)务实数m的取值范围.(2)若m的最大值为,当正数、知足21n时,求n ab3ab a2b7a4b的最小值.精选介绍强力介绍值得拥有。
2018衡水中学高三六调理科数学试题及答案
2017—2018学年度上学期高三年级六调考试数学(理科)试卷本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第I卷(选择题共60分)一、选择题(本题共12小题,每小题5分,共60分.从每小题所给的四个选项中,选出最佳选项,并在答题纸上将该项涂黑)1.已知数集«Skip Record If...»,设函数f(x)是从A到B的函数,则函数f(x)的值域的可能情况的个数为A.1 B.3 C.7 D.82.已知i为虚数单位,且«Skip Record If...»A.1 B.«Skip Record If...»C.«Skip Record If...»D.2 3.已知等差数列«Skip Record If...»的前n项和为«Skip Record If...»A.18 B.36 C.54 D.724.已知«Skip Record If...»为第二象限角,«Skip Record If...»A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»5.已知双曲线«Skip Record If...»轴交于A,B两点,«Skip Record If...»,则«Skip Record If...»的面积的最大值为A.1 B.2 C.4 D.86.某校毕业典礼由6个节目组成,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起,则该校毕业典礼节目演出顺序的编排方案共有A.120种B.156种C.188种D.240种7.在等比数列«Skip Record If...»中,«Skip Record If...»为A.64 B.81 C.128 D.2438.如图所示的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为72,27,则输出的«Skip Record If...»A.18 B.9 C.6 D.39.已知点M在抛物线«Skip Record If...»上,N为抛物线的准线l上一点,F为该抛物线的焦点,若«Skip Record If...»,则直线MN的斜率为A.±«Skip Record If...»B.±l C.±2 D.±«Skip Record If...»10.规定投掷飞镖3次为一轮,3次中至少两次投中8环以上的为优秀.现采用随机模拟实验的方法估计某人投掷飞镖的情况:先由计算器产生随机数0或1,用0表示该次投镖未在8环以上,用1表示该次投镖在8环以上;再以每三个随机数作为一组,代表一轮的结果.经随机模拟实验产生了如下20组随机数:据此估计,该选手投掷飞镖三轮,至少有一轮可以拿到优秀的概率为A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»11.已知三棱锥A-BCD的四个顶点A,B,C,D都在球O的表面上,«Skip Record If...»平面BCD,且«Skip Record If...»,则球O的表面积为A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»12.若对任意的实数t,函数«Skip Record If...»在R上是增函数,则实数a的取值范围是A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»第Ⅱ卷(非选择题共90分)二、填空题(本题共4小题,每小题5分,共20分)13.曲线«Skip Record If...»和直线«Skip Record If...»所围成的图形的面积是_________.14.若«Skip Record If...»的值为_________.15.某三棱锥的三视图如图所示,则该三棱锥的四个面中,最大面的面积为_________.16.已知函数«Skip Record If...»,数列«Skip Record If...»为等比数列,«Skip Record If...»«Skip Record If...»____________.三、解答题(共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生必须作答.第22,23题为选考题,考生根据要求作答)(一)必考题:共60分.17.(本小题满分12分)如图,在«Skip Record If...»的平分线BD交AC于点D,设«Skip Record If...»,其中«Skip Record If...»是直线«Skip Record If...»的倾斜角.(1)求sin A;(2)若«Skip Record If...»,求AB的长.18.(本小题满分12分)如图,在三棱柱«Skip Record If...»«Skip Record If...»分别为«Skip Record If...»的中点.(1)在平面ABC内过点A作AM∥平面«Skip Record If...»交BC于点M,并写出作图步骤。
河北省衡水中学2018届高三下学期第6周周考理科数学试题 Word版含解析
理数周日测试6一、选择题1.已知集合,则()A. B. C. D.【答案】C【解析】【分析】由条件可知A为偶数集,求出,即可得到.【详解】由条件可知A为偶数集,,故.故选C【点睛】本题考查集合的混合运算,属基础题.2.已知i是虚数单位,则()A. B. C. D.【答案】B【解析】【分析】根据虚数单位i的性质以及复数的基本运算法则,直接计算化简.【详解】故选B.【点睛】本题考查复数代数形式的混合运算.除法中关键是分子分母同乘以分母的共轭复数,实现分母实数化.3.已知,则()A. B. C. D.【答案】A【解析】【分析】利用诱导公式及同角的三角函数基本关系式即可化简求值.【详解】已知,则由三角函数的诱导公式可得.故选A.【点睛】本题考查的知识点是运用诱导公式化简求值,属于基础题.4.已知椭圆的离心率为,且椭圆的长轴与焦距之差为4,则该椭圆为方程为()A. B. C. D.【答案】D【解析】【分析】利用已知条件求出a,b,即可求解椭圆方程.【详解】设椭圆的焦距为,由条件可得,故,由椭圆的长轴与焦距之差为4可得,即,所以,,,故,故该椭圆的方程为. 【点睛】本题考查椭圆的简单性质椭圆方程的求法,是基本知识的考查.5.公元五世纪,数学家祖冲之估计圆周率的值的范围是:3.1415926<<3.1415927,为纪念祖冲之在圆周率的成就,把3.1415926称为“祖率”,这是中国数学的伟大成就.某小学教师为帮助同学们了解“祖率”,让同学们从小数点后的7位数字1,4,1,5,9,2,6随机选取两位数字,整数部分3不变,那么得到的数字大于3.14的概率为()A. B. C. D.【答案】A【解析】选择数字的方法有:种,其中得到的数字不大于3.14的数字为:,据此可得:得到的数字大于3.14的概率为 .本题选择A选项.点睛:求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的求和公式计算.二是间接求法,先求此事件的对立事件的概率,再用公式P(A)=1-P(),即运用逆向思维(正难则反),特别是“至多”,“至少”型题目,用间接求法就显得较简便.6.运行如图所示的程序,输出的结果为()A. 8B. 6C. 5D. 4【答案】D【解析】【分析】由已知中的程序语句,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】所给程序的运行过程如下:,;,;,;,,不满足,输出b的值为4.故选D.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.7.已知某几何体的三视图如图所示,则该几何体的表面积为()A. 6πB. 8πC. 6π+6D. 8π+4【答案】C【解析】【分析】几三视图可知,该几何体是一个圆柱的,结合直观图求相关几何量的数据,把数据代入柱体的表面积公式计算即可.【详解】三视图可知,该几何体是一个圆柱的,故表面积为.故选C.【点睛】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的结构特征及求相关几何量的数据是解答本题的关键.8.已知直线与之间的距离为2,则直线被圆截得的弦长为()A. 4B. 3C. 2D. 1【答案】A【解析】【分析】由条件可知,直线过圆心,则圆心C到直线的距离等于直线与之间的距离2,根据勾股定理可求直线被圆截得的弦长【详解】由条件可知,直线过圆心,则圆心C到直线的距离等于直线与之间的距离2,故直线被圆C截得的弦长为.故选A.【点睛】本题考查直线与圆的位置关系,以及直线与圆相交时的弦长问题,属于中档题.9.已知实数满足不等式组,则目标函数的最大值为()A. 1B. 2C.D.【答案】B【解析】【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【详解】等式组表示的平面区域如下图中的阴影部分所示:且点,,,易得目标函数在点C处取得最大值5.故选B.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.10.在边长为1的正中,点D在边BC上,点E是AC中点,若,则()A. B. C. D.【答案】C【解析】【分析】设,,,则,,则由求出,即可得到.【详解】设,,,则,,则故,即.【点睛】本题考查向量的线性运算及向量的数量积的运算,属中档题.11.已知定义在R上的函数,满足,且时,,图象如图所示,则满足的实数x的取值范围是()A. B. C. D.【答案】B【解析】【分析】由条件可知,的图象关于直线对称,结合可得,而,可得,由可得,结合图像根据对称性可得实数x的取值范围.【详解】由条件可知,的图象关于直线对称,结合可得,而,即,解之得,由可得,当时,由,解之得,所以,,再结合对称性可得x的取值范围是.故选B.【点睛】本题考查了基本初等函数的图象与性质、对数不等式等知识,属于中档题.12.已知函数的最小正周期为,且,则( )A. B. C. D.【答案】B【解析】由题可知:由最小正周期为2可得又代入可得:,得,则二、填空题13.在正方体中,点M是的中点,则与所成角的正切值为__________.【答案】2【解析】【分析】根据异面直线所成角的定义可得即为与所成角,在中计算即可.【详解】即为与所成角,取中点N,连接,则,则.即答案为2.【点睛】本题考查异面直线所成角的定义及计算,属基础题.14.已知双曲线的离心率为2,过双曲线的右焦点垂直于x轴的直线被双曲线截得的弦长为m,则__________.【答案】6【解析】【分析】根据双曲线的离心率求出a、b的关系,再求出过右焦点且垂直于x轴的直线被双曲线截得的弦长m,即可计算的值.【详解】双曲线的焦距为,则,即,则把代入双曲线可得,故,所以,.【点睛】本题考查了双曲线的简单几何性质的应用问题,是中档题.15.已知函数,若,且的最小值为m,则__________.【答案】3【解析】【分析】由题意,由可得,即,结合,且的最小值为m,即可求出的值.【详解】由可得,即,∴,则,当且仅当,即时,取得最小值2.故.即答案为3.【点睛】本题考查分段函数的运用,考查基本不等式的应用,考查学生的计算能力,属中档题.16.已知的三个内角所对的边分别为,且,,则__________.【答案】【解析】【分析】由及正弦定理可得,.由可得,由余弦定理可得,即,解之得.【详解】由及正弦定理可得,即,而,∴.由可得,由余弦定理可得,即,解之得(舍去负值).【点睛】本题考查利用正弦定理和余弦定理解三角形,属中档题.三、解答题17.已知等比数列满足:,且.(1)求的通项公式及前n项和;(2)若,求的前n项和.【答案】(1)(2)【解析】【分析】(1)设的公比为q,由可得,由此可求的通项公式及前n项和;2)由(1)可得,则,利用错位相减法可求的前n项和. 【详解】(1)设的公比为q,由可得,∴,∴,∴.(2)由(1)可得,则①所以,②由①②可得,所以,.【点睛】本题考查等比数列的通项公式及前n项和;以及利用错位相减法求和,属基础题.18.如图,三棱锥中,,,且.(1)求证:;(2)若,求三棱锥的体积.【答案】(1)见解析(2)【解析】【分析】(1)取的中点O,连接,.易证平面,又∵平面,∴,而O是的中点,∴.(2)由平面平面,平面,由条件可得,.则,则三棱锥的体积可求【详解】(1)取的中点O,连接,.∵,∴,∵,,,平面,∴平面,又∵平面,∴,而O是的中点,∴.(2)∵平面平面,平面,平面平面,∴平面,由条件可得,.则,∴三棱锥的体积为:.【点睛】本题考查线面垂直的证明以及三棱锥体积的求法,属中档题.19.某搜索引擎广告按照付费价格对搜索结果进行排名,点击一次付费价格排名越靠前,被点击的次数也可能会提高,已知某关键词被甲、乙等多个公司竞争,其中甲、乙付费情况与每小时点击量结果绘制成如下的折线图.(1)试根据所给数据计算每小时点击次数的均值方差并分析两组数据的特征;(2)若把乙公司设置的每次点击价格为x,每小时点击次数为y,则点(x,y)近似在一条直线附近.试根据前5次价格与每小时点击次数的关系,求y关于x的回归直线.(附:回归方程系数公式:)【答案】(1)见解析(2)【解析】【分析】(1)结合图象分别求出甲、乙公司的平均数和方差,根据其大小判断结论即可;(2)求出平均数,计算回归方程的系数,求出回归方程即可.【详解】(1)由题图可知,甲公司每小时点击次数为9,5,7,8,7,6,8,6,7,7,乙公司每小时点击次数为2,4,6,8,7,7,8,9,9,10.甲公司每小时点击次数的平均数为:,乙公司每小时点击次数的平均数为:.甲公司每小时点击次数的方差为:;乙公司每小时点击次数的方差为:,由计算已知,甲、乙公司每小时点击次数的均值相同,但是甲的方差较小,所以,甲公司每小时点击次数更加稳定. (2)根据折线图可得数据如下:则,,则,,∴所求回归直线方程为:.【点睛】本题考查了均值和方程的求法,考查回归方程问题,是一道中档题.20.如图,直线与y轴交于点A,与抛物线交于P,Q,点B 与点A关于x轴对称,连接QB,BP并延长分别与x轴交于点M,N.(1)若,求抛物线C的方程;(2)若,求外接圆的方程.【答案】(1)(2)【解析】【分析】(1)联立可得,设点,,由,可得,,,表示出.利用,可得,即可可得到抛物线方程;(2)设直线,的斜率分别为,点,由,,可得.则直线的方程为:,直线的方程为:,由此可得,结合可得,,∴,且,故,即是等腰三角形,且,则的外接圆的圆心一定在y轴上,设为,由圆心到点M,B的距离相等可解得,于是得到外接圆方程.【详解】(1)由可得,设点,,则,即,,,故.由可得(舍去负值),∴抛物线C的方程为.(2)设直线,的斜率分别为,点,,,∴.直线的方程为:,直线的方程为:,则,,则,由可得,∴,∴,∴,且,故,即是等腰三角形,且,则的外接圆的圆心一定在y轴上,设为,由圆心到点M,B的距离相等可得,解之得,外接圆方程为.【点睛】本题考查直线与抛物线的位置关系,考查抛物线方程的求法,考查圆的方程等知识,属难题.21.已知函数.(1)若的图像在处的切线与轴平行,求的极值;(2)若函数在内单调递增,求实数的取值范围.【答案】(1)极大值,无极小值;(2).【解析】试题分析:(1)求出,由求得,研究函数的单调性,即可求得的极值;(2)化简,可得,对求实数分三种情况讨论,分别利用导数研究函数的单调性,验证函数在内是否单调递增即可得结果.试题解析:(1)因为,所以.由条件可得,解之得,所以,.令可得或(舍去).当时,;当时,,所以在内单调递增,在内单调递减,故有极大值,无极小值;(2),则.设,①当时,,当时,,当时,,所以在内单调递增,在内单调递减,不满足条件;②当时,是开口向下的抛物线,方程有两个实根,设较大实根为.当时,有,即,所以在内单调递减,故不符合条件;③当时,由可得在内恒成立,故只需或,即或,解之得.综上可知,实数的取值范围是.22.以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为,直线l的参数方程为(其中t为参数).(1)把曲线C的极坐标方程化为普通方程;(2)若直线l与曲线C有两个公共点,求实数m的取值范围.【答案】(1)(2)【解析】【分析】(1)曲线C的极坐标方程化为4ρ2-3ρ2cos2θ=4,由此能求出曲线C的普通方程.(2)把代入,得5x2-8mx+4m2-4=0,由直线l与曲线C有两个公共点,能求出实数m的取值范围.【详解】(1)方程可化为,即,把代入可得,整理可得.(2)把代入可得,由条件可得,解之得,即实数m的取值范围是.【点睛】本题考查曲线的普通方程的求法,考查实数的取值范围的求法,考查根据的判别式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.23.已知函数.(1)关于x的不等式的解集为M,且,求实数m的取值范围;(2)求的最小值,及对应的x的取值范围.【答案】(1)(2)【解析】【分析】(1)分当时和当时两种情况解不等式,得到解集M,由,可得可解得实数m的取值范围;(2)利用三角不等式可得,可得的最小值,及对应的x的取值范围.【详解】(1)当时,不等式可变为,解之得,∴;当时,不等式可变为,解之得,∴x不存在.综上可知,不等式的解集为.由,可得,解之得,即实数m的取值范围是. (2),当且仅当,即时,取得最小值1,此时,实数x的取值范围是.【点睛】本题考查绝对值不等式的解法,三角不等式等知识,属中档题.24.已知函数.(Ⅰ)求函数在点处的切线方程;(Ⅱ)当函数处取得极值-2,求函数的解析式;(Ⅲ)当时,设,若函数在定义域上存在单调减区间,求实数b的取值范围.【答案】(1)(2)(3)【解析】【分析】(1)求出函数f(x)的导数,求得切线的斜率和切点,运用点斜式方程即可得到切线方程;(2)求得g(x)的导数,由题意可得g(2)=-2,g′(2)=0,解方程即可得到所求解析式;(3)若函数h(x)在定义域上存在单调减区间依题存在x>0使().h′(x)<0(x>0)即存在x>0使x2-bx+1<0,运用参数分离,求得右边的最小值,即可得到所求范围【详解】(Ⅰ)由(),可得(),∴在点处的切线方程是,即,所求切线方程为. (Ⅱ)∵又可得,且在处取得极值.∴可得解得,.所求().(Ⅲ)∵,().依题存在使,∴即存在使,不等式等价于(*)令(),∵.∴在上递减,在上递增,故,∵存在,不等式(*)成立,∴,所求.【点睛】本题考查导数的运用:求切线方程和单调区间、极值和最值,同时考查函数的单调性的运用以及存在性问题,属于中档题.。
河北省衡水中学2018届高三上学期一轮复习周测(一)数学(理)试卷及答案
衡水中学2017—2018学年高三一轮复习周测卷(一)理数第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、下列说法正确的是A .0与{}0的意义相同B .高一(1)班个子比较高的同学可以形成一个集合C .集合{}(,)|32,x y x y x N +=∈是有限集D .方程2210x x ++=的解集只有一个元素2、已知集合2{|60,},{|4,}A x x x x R B x x Z =+-≤∈=≤∈,则A B =IA .(0,2)B .[0,2]C .{}0,2D .{}0,1,23、设命题2:"1,1"p x x ∀<<,则p ⌝为A .21,1x x ∀≥<B .201,1x x ∃<≥C .21,1x x ∀<≥D .201,1x x ∃≥≥ 4、已知集合2{|0},{|lg(21)}A x x x B x y x =-≥==-,则集合A B =IA .1[0,)2B .[0,1]C .1(,1]2D .1(,)2+∞5、设,a b R ∈,则“22log log a b >”是“21a b ->”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6、设221:0,:(21)(1)01x p q x a x a a x -≤-+++<-,若p 是q 的充分不必要条件,则实数a 的取值范围是A .1(0,)2B .1[0,)2C .1(0,]2D .1[,1)27、已知命题2:,10p m R x mx ∀∈--=有解,命题2000:,210q x N x x ∃∈--≤,则下列选项中是假命题的为A .p q ∧B .()p q ∧⌝C .p q ∨D .()p q ∨⌝8、已知集合{|A x y A B φ===I ,则集合B 不可能是 A .1{|42}x x x +< B .{(,)|1}x y y x =- C .φ D .22{|log (21)}y y x x =-++9、设1,:()[(1)]0p q x a x a ≤---≤,若p 是q 的充分不必要条件,则实数a 的取值范围是A .3[1,]2B .3(1,)2C .3(,1)[,)2-∞+∞UD .3(,1)(,)2-∞+∞U10、已知命题2:[1,2],0p x x a ∀∈-≥,命题2:,220q x R x ax a ∃∈++-=,若命题p 且q 是真命题,则实数a 的取值范围是A .{}(,2]1-∞UB .(,2][1,2]-∞UC .[1,)+∞D .[2,1]-11、对于任意两个正整数,m n ,定义某种运算“*”,法则如下:当,m n 都是正奇数时,m n m n *=+;当,m n 不全为正奇数时,m n mn *=,则在此定义下,集合{(,)|16,,}M a b a b a N b N ++=*=∈∈ 的真子集的个数是A .721-B .1121-C .1321-D .1421-12、用()C A 表示非空集合A 中的元素个数,定义()(),()()()(),()()C A C B C A C B A B C B C A C A C B -≥⎧*=⎨-<⎩ , 若22{1,2},{|()(2)0}A B X x ax x ax ==+++=,且1A B *=,设实数a 的所有可能的取值集合是,则A .4B .3C .2D .1第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13、已知含有三个实数的集合既可表示成{,,1}b a a,又可表示成2{,,0}a a b +,则20172017a b +等于14、已知集合2{|230},{|1}A x R x x B x R x m =∈--<=∈-<<,若x A ∈是x B ∈的充分不必要条件,则实数m 的取值范围是15、已知集合{1,1},{|20}A B x ax =-=+=,若B A ⊆,则实数a 的所有可能取值的集合为16、下列说法错误的是 (填序号)①命题“1212,,x x M x x ∃∈≠,有1221[()()]()0f x f x x x -->”的否定是“1212,,x x M x x ∃∉≠,有1221[()()]()0f x f x x x --≤”;②若一个命题的逆命题,则它的否命题也一定为真命题; ③已知21:230,:13p x x q x+->>-,若()q p ⌝∧为真命题,则实数x 的取值范围是(,3)-∞-U (1,2)[3,)+∞U④“3x ≠”是“3x ≠”成立的充分条件三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤17、(本小题满分10分)已知集合2{|3327},{|log 1}x A x B x x =≤≤=> .(1)分别求,()R A B C B A I U ;(2)已知集合{|1}C x x a =<<,若C A ⊆,求实数a 的取值范围.18、(本小题满分12分)(1)已知:p ,关于x 的方程240x ax -+=有实数,:q 关于x 的函数224y x ax =++在区间[3,)+∞上是增函数,若“p 或q ”是真命题,“p 且q ”是假命题,求实数a 的取值范围; (2)已知22:(43)1,:(21)(1)0p x q x a x a a -≤-+++≤,若p ⌝是q ⌝的必要不充分条件,求实数a 的取值范围.19、(本小题满分12分)集合219{|()(3)0},{|ln()0}24A x x xB x x ax a =--==+++=(1)若集合B 只有一个元素,求实数a 的值;(2)若B 是A 的真子集,求实数a 的取值范围.20、(本小题满分12分)已知函数()41log ,[,4]16f x x x =∈的值域是集合A ,关于x 的不等式31()2()2x a x a R +>∈的解集为B ,集合5{|0}1x C x x -=≥+,集合{|121}(0)D x m x m m =+≤≤->. (1)若A B B =U ,求实数a 的取值范围;(2)若D C ⊆,求实数m 的取值范围.21、(本小题满分12分)已知函数()f x =A ,集合22{|290}B x x mx m =-+-≤. (1)若[2,3]A B =I ,求实数m 的值;(2)若12,()R x a x C B ∀∈∃∈,使21x x =,求实数m 的取值范围.22、(本小题满分12分)已知()f x 是定义域为R 的奇函数,且当12x x <时,1212()[()()]0x x f x f x -->,设:p “2(3)(128)0f m f m ++-<”.(1)若p 为真,求实数m 的取值范围;(2)设:q 集合{|(1)(4)0}A x x x =+-≤与集合{|}B x x m =<的交集为{}|1x x ≤-,若p q ∧为假,p q ∨为真,求实数m 的取值范围.。
2018届河北省衡水金卷全国高三大联考理科数学试题(解析版)
2018届河北省衡水金卷全国高三大联考理科数学试题(解析版)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则 ( )A. B.C. D.【答案】C【解析】.所以,.故选C.2. 记复数的虚部为,已知复数(为虚数单位),则为( )A. 2B. -3C.D. 3【答案】B【解析】.故的虚部为-3,即.故选B.3. 已知曲线在点处的切线的倾斜角为,则( )A. B. 2 C. D.【答案】C【解析】由,得,故.故选C.4. 2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币,如图所示是一枚8克圆形金质纪念币,直径22mm,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是( )A. B. C. D.【解析】根据题意,可估计军旗的面积大约是.故选B.5. 已知双曲线:的渐近线经过圆:的圆心,则双曲线的离心率为( )A. B. C. 2 D.【答案】A【解析】圆:的圆心为,双曲线的渐近线为.依题意得.故其离心率为.故选A.6. 已知数列为等比数列,且,则( )A. B. C. D.【答案】A【解析】依题意,得,所以.由,得,或(由于与同号,故舍去).所以..故选A.7. 执行如图的程序框图,若输出的的值为-10,则①中应填( )A. B. C. D.【答案】C【解析】由图,可知.故①中应填.8. 已知函数为内的奇函数,且当时,,记,,,则,,间的大小关系是( )A. B. C. D.【答案】D【解析】根据题意得,令.则为内的偶函数,当时,.所以在内单调递减.又,,.故,选D.9. 已知一几何体的三视图如图所示,俯视图是一个等腰直角三角形和半圆,则该几何体的体积为( )A. B. C. D.【答案】A【解析】由三视图可知该几何体是一个半圆柱与一个地面是等腰直角三角形的三棱锥构成的组合体,故其体积.故选A.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.10. 已知函数的部分图象如图所示,其中.记命题:,命题:将的图象向右平移个单位,得到函数的图象.则以下判断正确的是( )A. 为真B. 为假C. 为真D. 为真【答案】D【解析】由,可得.解得.因为,所以,故为真命题;将图象所有点向右平移个单位,..............................所以为假,为真,为假,为真.故选D.11. 抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线的焦点为,一条平行于轴的光线从点射出,经过抛物线上的点反射后,再经抛物线上的另一点射出,则的周长为 ( )A. B. C. D.【答案】B【解析】令,得,即.由抛物线的光学性质可知经过焦点,设直线的方程为,代入.消去,得.则,所以..将代入得,故.故.故的周长为.故选B.点睛:抛物线的光学性质:从抛物线的焦点发出的光线或声波在经过抛物线周上反射后,反射光线平行于抛物线的对称轴.12. 已知数列与的前项和分别为,,且,,,若恒成立,则的最小值是( )A. B. C. 49 D.【答案】B【解析】当时,,解得或.由得.由,得.两式相减得.所以.因为,所以.即数列是以3为首项,3为公差的等差数列,所以.所以.所以.要使恒成立,只需.故选B.点睛:由和求通项公式的一般方法为.数列求和的常用方法有:公式法;分组求和;错位相减法;倒序相加法;裂项相消法;并项求和.第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每题5分.13. 已知在中,,,若边的中点的坐标为,点的坐标为,则__________.【答案】1【解析】依题意,得,故是以为底边的等腰三角形,故,所以.所以.14. 已知的展开式中所有项的二项式系数之和、系数之和分别为,,则的最小值为__________.【答案】16【解析】显然.令,得.所以.当且仅当.即时,取等号,此时的最小值为16.15. 已知,满足其中,若的最大值与最小值分别为,,则实数的取值范围为__________.【答案】【解析】作出可行域如图所示(如图阴影部分所示)设,作出直线,当直线过点时,取得最小值;当直线过点时,取得最大值.即,当或时,.当时,.所以,解得.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.16. 在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bie nao).已知在鳖臑中,平面,,则该鳖臑的外接球与内切球的表面积之和为__________.【答案】【解析】设的中点为,如图,由,且为直角三角形,得.由等体积法,知.即,解得.故该鳖臑的外接球与内切球的表面积之和为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 已知函数,.(Ⅰ)求函数的最小正周期及其图象的对称轴方程;(Ⅱ)在锐角中,内角,,的对边分别为,,,已知,,,求的面积.【答案】(1)最小正周期,对称轴方程为;(2).【解析】试题分析:(1)化简函数得,其最小正周期,令即可解得对称轴;(2)由,解得,由正弦定理及,得,利用即可得解. 试题解析:(1)原式可化为,,,,故其最小正周期,令,解得,即函数图象的对称轴方程为,.(2)由(1),知,因为,所以.又,故得,解得.由正弦定理及,得.故.18. 如图,在四棱锥中,底面为直角梯形,其中,侧面平面,且,动点在棱上,且.(1)试探究的值,使平面,并给予证明;(2)当时,求直线与平面所成的角的正弦值.【答案】(1)见解析;(2).【解析】试题分析:(1)连接交于点,连接通过证得,即可证得平面;(2)取的中点,连接,可得两两垂直,建立空间直角坐标系,设与平面所成的角为,则,为平面的一个法向量.试题解析:(1)当时,平面.证明如下:连接交于点,连接.∵,∴.∵,∴.∴.又∵平面,平面,∴平面.(2)取的中点,连接.则.∵平面平面,平面平面,且,∴平面.∵,且,∴四边形为平行四边形,∴.又∵,∴.由两两垂直,建立如图所示的空间直角坐标系.则,,,,,.当时,有,∴可得.∴,,.设平面的一个法向量为,则有即令,得,.即.设与平面所成的角为,则.∴当时,直线与平面所成的角的正弦值为.点睛:高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.19. 如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分.为了解网络外卖在市的普及情况,市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到下表:(单位:人)(Ⅰ)根据以上数据,能否在犯错误的概率不超过的前提下认为市使用网络外卖的情况与性别有关?(Ⅱ)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出3人赠送外卖优惠卷,求选出的3人中至少有2人经常使用网络外卖的概率②将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为,求的数学期望和方差.参考公式:,其中.参考数据:【答案】(1)见解析;(2)①,②见解析.【解析】试题分析:(1)计算的值,进而可查表下结论;(2)①由分层抽样的抽样比计算即可;②由列联表,可知抽到经常使用网络外卖的网民的频率为,将频率视为概率,即从市市民中任意抽取1人,恰好抽到经常使用网络外卖的市民的概率为,由题意得.试题解析:(1)由列联表可知的观测值,.所以不能在犯错误的概率不超过的前提下认为市使用网络外卖情况与性别有关.(2)①依题意,可知所抽取的5名女网民中,经常使用网络外卖的有(人),偶尔或不用网络外卖的有(人).则选出的3人中至少有2人经常使用网络外卖的概率为.②由列联表,可知抽到经常使用网络外卖的网民的频率为,将频率视为概率,即从市市民中任意抽取1人,恰好抽到经常使用网络外卖的市民的概率为.由题意得,所以;.20. 已知椭圆:的左、右焦点分别为点,,其离心率为,短轴长为.(Ⅰ)求椭圆的标准方程;(Ⅱ)过点的直线与椭圆交于,两点,过点的直线与椭圆交于,两点,且,证明:四边形不可能是菱形.【答案】(1);(2)见解析.【解析】试题分析:(1)由,及,可得方程;(2)易知直线不能平行于轴,所以令直线的方程为与椭圆联立得,令直线的方程为,可得,进而由是菱形,则,即,于是有由韦达定理代入知无解.试题解析:(1)由已知,得,,又,故解得,所以椭圆的标准方程为.(2)由(1),知,如图,易知直线不能平行于轴.所以令直线的方程为,,.联立方程,得,所以,.此时,同理,令直线的方程为,,,此时,,此时.故.所以四边形是平行四边形.若是菱形,则,即,于是有.又,,所以有,整理得到,即,上述关于的方程显然没有实数解,故四边形不可能是菱形.21. 已知函数,其中为自然对数的底数. (Ⅰ)讨论函数的单调性及极值;(Ⅱ)若不等式在内恒成立,求证:.【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)函数求导得,讨论和演技单调性及极值即可;(2)当时,在内单调递增,可知在内不恒成立,当时,,即,所以.令,进而通过求导即可得最值.试题解析:(1)由题意得.当,即时,,在内单调递增,没有极值.当,即,令,得,当时,,单调递减;当时,,单调递增,故当时,取得最小值,无极大值.综上所述,当时,在内单调递增,没有极值;当时,在区间内单调递减,在区间内单调递增,的极小值为,无极大值.(2)由(1),知当时,在内单调递增,当时,成立.当时,令为和中较小的数,所以,且.则,.所以,与恒成立矛盾,应舍去.当时,,即,所以.令,则.令,得,令,得,故在区间内单调递增,在区间内单调递减.故,即当时,.所以.所以.而,所以.点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在平面直角坐标系中,已知曲线的参数方程为(,为参数).以坐标原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.(Ⅰ)当时,求曲线上的点到直线的距离的最大值;(Ⅱ)若曲线上的所有点都在直线的下方,求实数的取值范围.【答案】(1);(2).【解析】试题分析:(1)将直线的极坐标方程化为普通方程,进而由圆的参数方程得曲线上的点到直线的距离,,利用三角函数求最值即可;(2)曲线上的所有点均在直线的下方,即为对,有恒成立,即(其中)恒成立,进而得.试题解析:(1)直线的直角坐标方程为.曲线上的点到直线的距离,,当时,,即曲线上的点到直线的距离的最大值为.(2)∵曲线上的所有点均在直线的下方,∴对,有恒成立,即(其中)恒成立,∴.又,∴解得,∴实数的取值范围为.23. 选修4-5:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ)记函数的值域为,若,证明:.【答案】(1);(2)见解析.【解析】试题分析:(1)分段去绝对值解不等式即可;(2)利用绝对值三角不等式得..用作差法比较大小得到,即可证得.试题解析:(1)依题意,得于是得或或解得.即不等式的解集为.(2),当且仅当时,取等号,∴.原不等式等价于,.∵,∴,.∴.∴.。
河北省衡水中学2018届高三9月大联考数学(理)试题含答案
衡水金卷2018届全国高三大联考理数第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|540M x x x =-+≤,{}|24xN x =>,则( )A .{}|24M N x x =<<B .M N R =C .{}|24MN x x =<≤D .{}|2MN x x =>2。
记复数z 的虚部为Im()z ,已知复数5221iz i i =--(i 为虚数单位),则Im()z 为( ) A .2B .3-C .3i -D .33.已知曲线32()3f x x =在点(1,(1))f 处的切线的倾斜角为α,则222sin cos 2sin cos cos ααααα-+=( ) A .12B .2C .35D .38-4。
2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币.如图所示是一枚8克圆形金质纪念币,直径22mm ,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是( )A .27265mm πB .236310mm πC .23635mm πD .236320mm π5.已知双曲线C :22221x y a b-=(0a >,0b >)的渐近线经过圆E :22240x y x y +-+=的圆心,则双曲线C 的离心率为( ) A 5B 5C .2D 26.已知数列{}n a 为等比数列,且2234764a a a a =-=-,则46tan()3a a π⋅=( ) A .3-B 3C .3±D .37.执行如图的程序框图,若输出的S 的值为10-,则①中应填( )A .19?n <B .18?n ≥C .19?n ≥D .20?n ≥8.已知函数()f x 为R 内的奇函数,且当0x ≥时,()1cos x f x e m x =-+-,记2(2)a f =--,(1)b f =--,3(3)c f =,则a ,b ,c 间的大小关系是( )A .b a c <<B .a c b <<C .c b a <<D .c a b <<9。
衡水中学2018届高三数学上学期五调试题理科有答案
衡水中学2018届高三数学上学期五调试题(理科有答案)2017~2018学年度上学期高三年级五调考试数学(理科)试卷本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。
共150分。
考试时间120分钟.第I卷(选择题共60分)一、选择题(本题共12小题,每小题5分,共60分.从每小题所给的四个选项中,选出最佳选项,并在答题纸上将该项涂黑)1.设集合A.B.C.D.2.已知复数z满足(i是虚数单位),则A.B.C.D.3.要得到函数的图像,只要将函数的图像A.向左平移1个单位长度B.向右平移1个单位长度C.向左平移个单位长度D.向右平移个单位长度4.已知向量,则A.B.C.D.5.下列命题中正确的是A.若B.若C.若D.若6.已知一个几何体的三视图及有关数据如图所示,则该几何体的体积为A.B.C.D.7.若A.B.1C.2D.8.已知三角形的三边长构成等比数列,设它们的公比为q,则q的一个可能值为A.B.C.D.9.已知两点,若曲线上存在点P,使得,则正实数a的取值范围为A.(0,3]B.[1,3]C.[2,3]D.[1,2]10.抛物线三点,F是它的焦点,若成等差数列,则A.成等差数列B.成等差数列C.成等差数列D.成等差数列11.已知点P为双曲线右支上一点,分别为双曲线的左、右焦点,点I为△PF1F2的内心(三角形内切圆的圆心),若恒有成立,则双曲线的离心率的取值范围为A.(1,2]B.(1,2)C.(0,2]D.(2,3]12.已知是定义域为的单调函数,若对任意的,都有,且关于x的方程在区间(0,3]上有两解,则实数a的取值范围是A.(0,5]B.C.(0,5)D.[5,+∞)第Ⅱ卷(非选择题共90分)二、填空题(本题共4小题,每小题5分,共20分) 13.设直线相交于A,B两点,且弦长为,则a的值是__________.14.设分别是椭圆的左、右焦点,P为椭圆上任意一点,点M的坐标为,则的最小值为_________.15.已知抛物线,圆,直线自上而下顺次与上述两曲线交于点A,B,C,D,则的值是_________.16.已知四面体ABCD,AB=4,AC=AD=6,∠BAC=∠BAD=60°,∠CAD=90°,则该四面体外接球的半径为__________.三、解答题(共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生必须作答.第22,23题为选考题,考生根据要求作答) (一)必考题:共60分.17.(本小题满分12分)已知等差数列的公差不为零,且满足成等比数列.(1)求数列的通项公式;(2)记,求数列的前n项和.18.(本小题满分12分)已知函数上单调递增,在区间上单调递减.如图,在四边形OACB中,分别为△ABC的内角A,B,C的对边,且满足.(1)证明:.(2)若,求四边形OACB面积的最大值.19.(本小题满分12分)如图,四棱锥P-ABCD的底面ABCD为平行四边形,DA=DP,BA=BP.(1)求证:;(2)若,求二面角D—PC—B的正弦值.20.(本小题满分12分)已知椭圆,椭圆C的左焦点为A,右焦点为B,点P是椭圆C上位于x轴上方的动点,且,直线AP,BP与直线y=3分别交于G,H两点.(1)求椭圆C的方程及线段GH的长度的最小值;(2)T是椭圆C上一点,当线段GH的长度取得最小值时,求△TPA的面积的最大值.21.(本小题满分12分)已知函数.(1)若在其定义域内单调递增,求实数m的取值范围;(2)若有两个极值点的取值范围.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系中,圆C的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是,曲线的极坐标方程为,其中满足,曲线C1与圆C的交点为O,P两点,与直线l的交点为Q,求线段PQ的长.23.(本小题满分10分)选修4—5:不等式选讲已知函数.(1)若的解集为的值;(2)若,不等式恒成立,求实数a的取值范围.。
精品解析:河北省衡水中学2018届高三上学期二调考试数学(理)试题(解析版)
2017—2018学年度上学期高三年级二调考试数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】B【解析】由题意得,,所以,因此。
选B。
2. 已知为虚数单位,为复数的共轭复数,若,则()A. B. C. D.【答案】D学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...=∴3a=9,b=1,∴故选:C3. 设正项等比数列的前项和为,且,若,,则()A. 63或120B. 256C. 120D. 63【答案】C【解析】由题意得,解得或。
又所以数列为递减数列,故。
设等比数列的公比为,则,因为数列为正项数列,故,从而,所以。
选C。
4. 的展开式中的系数是()A. 1B. 2C. 3D. 12【答案】C【解析】试题分析:根据题意,式子的展开式中含的项有展开式中的常数项乘以中的以及展开式中的含的项乘以中的两部分,所以其系数为,故选C.考点:二项式定理.5. 已知中,,则为()A. 等腰三角形B. 的三角形C. 等腰三角形或的三角形D. 等腰直角三角形【答案】C【解析】∵,∴,∴,整理得,∴,∴或。
当时,则,三角形为等腰三角形;当时,则,可得。
综上为等腰三角形或的三角形。
选C。
6. 已知等差数列的公差,且,,成等比数列,若,为数列的前项和,则的最小值为()A. B. C. D.【答案】B【解析】由成等比可得(当且仅当,即时取等号),故选B.7. 如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该三棱锥的体积为()A. B. C. D.【答案】B【解析】由三视图可知,该几何体是如图所示的三棱锥(正方体的棱长为,是棱的中点),其体积为,故选C.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.8. 已知函数(为常数,)的图像关于直线对称,则函数的图像()A. 关于直线对称B. 关于点对称C. 关于点对称D. 关于直线对称【答案】A【解析】∵函数(为常数,)的图像关于直线对称,∴,得,解得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
sin A cos B ,则 B ; a b 4
3 . 5
16.设椭圆 C 的两个焦点是 F1 , F2 ,过点 F1 的直线与椭圆 C 交于 P , Q 两点,若
| PF2 || F1F2 | ,且 5 | PF1 | 6 | F1Q | ,则椭圆 C 的离心率为
.
三、解答题 (本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.) 17.已知数列 {an } 的前 n 项和 S n 满足 2 S n 3an 1( n N ) . (1)求数列 {an } 的通项公式; (2)求数列 {
A. (0,
2 ] 2
B. [
2 ,1) 2
C. (0,
3 ] 2
D. [
3 ,1) 2
6.一个四面体的顶点在空间直角坐标系 O xyz 中的坐标分别是 (0, 0, 0) , (1, 0,1) , (0,1,1) ,
1 ( ,1, 0) ,绘制该四面体的三视图时,按照如下图所示的方向画正视图,则得到的侧(左)视 2
-2-
A. 68
B.17
C.34
D.36
9.已知 e 为自然对数的底数,若对任意的 x [ ,1] ,总存在唯一的 y (0, ) ,使得
1 e
x ln x 1 a
A. ( , 0)
ln y y 成立,则实数 a 的取值范围是( ) y
B. ( , 0] C. ( , e]
, b 2 , a 3 ,则满足条件的三角形共有两个; 4 ③若 a , b , c 成等差数列, sin A , sin B , sin C 成等比数列,则 ABC 为正三角形;
②若 B ④若 a 5 , c 2 , ABC 的面积 S ABC 4 ,则 cos B
B. (0, ]
5 8
C. (0, ] [ ,1]
1 8
5 8
D. (0, ] [ , ]
1 8
1 5 4 8
-3-
二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上) 13.如图, 在半径为 2 的扇形 AOB 中,AOB 90 ,P 为弧 AB 上的一点, 若 OP OA 2 , 则 OP AB 的值为
2 e
D. ( , 1]
10.电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙 两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:
电视台每周安排的甲、乙连续剧的总播放时长不多于 600 min ,广告的总播放时长不少于
30 min ,且甲连续剧播放的次数不多于乙连续剧播放次数的 2 倍,分别用 x , y 表示每周计
.
14.若从区间 (0, e) ( e 为自然对数的底数, e 2.71828 )内随机选取两个数,则这两个数 之积小于 e 的概率为 .
15.已知在 ABC 中,角 A , B , C 的对边分别为 a , b , c ,则下列四个论断中正确的 是 ①若 . (把你认为是正确论断的序号都写上)
2 6
B.
2 3
C.
2 4
2 5
12.已知 a (sin
1 1 x,sin x ) , b (sin x, ) ,其中 0 ,若函数 f ( x) a b 在区 2 2 2 2
)
间 ( , 2 ) 内没有零点,则 的取值范围是( A. (0, ]
1 8
图可以为( )
-1-
A.
B.
C.
D. 7.函数 f ( x ) sin(ln
x 1 ) 的图像大致为( ) x 1
A.
B.
C.
D.
8.更相减损术是中国古代数学专著《九章算术》中的一种算法,其内容如下:“可半者半之, 不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之.”下图是该算 法的程序框图,若输入 a 102 , b 238 ,则输出 a 的值是( )
C.
5 5 或 2 2
D.
1 2
)
4.如图,5 个 ( x, y ) 数据,去掉 D (3,10) 后,下列说法错误的是(
A.相关系数 r 变大 C.相关指数 R 变大
2
B.残差平方和变大 D.解释变量 x 与预报变量 y 的相关性变强
x2 y2 5.已知 F1 , F2 分别是椭圆 2 2 1( a b 0) 的左、右焦点,若椭圆上存在点 P ,使 a b F1 PF2 90 ,则该椭圆的离心率 e 的取值范围为( )
划播出的甲、乙两套连续剧的次数,要使总收视人次最多,则电视台每周播出甲、乙两套连 续剧的次数分别为( A.6,3 ) C. 4,5 D.2,7
B.5,2
11.已知在正四面体 ABCD 中, M 是棱 AD 的中点, O 是点 A 在底面 BCD 内的射影,则异 面直线 BM 与 AO 所成角的余弦值为( A. ) D.
2.若复数 z 满足 z 3 4i 1 ( i 为虚数单位) ,则 z 的虚部是( A.-2 B.4 C. 4i D.-4
3.已知 1 , a1 , a2 , 4 成等差数列,1 , b1 , b2 , b3 , 4 成等比数列,则
a1 a2 的值是( ) b2
A.
5 2
B.
5 2
*
2n 1 } 的前 n 项和 Tn . an
18.如图,在四棱柱 ABCD A1B1C1D1 中,底面 ABCD 是梯形, AD / / BC ,侧面 ABB1 A1 为 菱形, DAB DAA1 .
-4-
(1)求证: A1 B AD . (2) 若 AD AB 2 BC ,A1 AB 60 ,D 在平面 ABB1 A1 内的射影恰为线段 A1 B 的中点, 求平面 DCC1D1 与平面 ABB1 A1 所成锐二面角的余弦值. 19.某保险公司针对企业职工推出一款意外保险产品,每年每人只要交少量保费,发生意外后 可一次性获赔 50 万元. 保险公司把职工从事的所有岗位共分为 A , B ,C 三类工种,根据历 史数据统计出三类工种的赔付频率如下表(并以此估计赔付概率).