太阳自动跟踪系统模板
《2024年太阳能自动跟踪系统的设计与实现》范文
《太阳能自动跟踪系统的设计与实现》篇一一、引言随着环境保护和可再生能源的日益重视,太阳能的利用成为了全球关注的焦点。
太阳能自动跟踪系统作为一种提高太阳能利用效率的重要手段,其设计与实现显得尤为重要。
本文将详细阐述太阳能自动跟踪系统的设计原理、实现方法和应用前景。
二、系统设计目标本系统的设计目标是为了提高太阳能的利用率和发电效率,通过自动跟踪太阳的运动,使太阳能电池板始终面向太阳,从而最大限度地接收太阳辐射。
同时,系统应具备操作简便、稳定可靠、成本低廉等特点。
三、系统设计原理太阳能自动跟踪系统主要由传感器、控制系统和执行机构三部分组成。
传感器负责检测太阳的位置,控制系统根据传感器的数据控制执行机构进行相应的动作,使太阳能电池板能够自动跟踪太阳。
1. 传感器部分:传感器采用光电传感器或GPS传感器,实时检测太阳的位置。
光电传感器通过检测太阳光线的强度和方向来确定太阳的位置,而GPS传感器则通过接收卫星信号来确定地理位置和太阳的位置。
2. 控制系统部分:控制系统是太阳能自动跟踪系统的核心部分,负责接收传感器的数据,并根据数据控制执行机构的动作。
控制系统采用微处理器或单片机等控制器件,通过编程实现控制算法。
3. 执行机构部分:执行机构主要负责驱动太阳能电池板进行动作。
常见的执行机构有电机、齿轮、导轨等,通过控制执行机构的动作,使太阳能电池板能够自动跟踪太阳。
四、系统实现方法1. 硬件实现:太阳能自动跟踪系统的硬件主要包括传感器、控制系统和执行机构。
传感器和执行机构的选择应根据实际需求和预算进行选择,而控制系统的硬件则需根据所采用的微处理器或单片机等器件进行设计。
2. 软件实现:软件实现主要包括控制算法的编写和系统调试。
控制算法的编写应根据传感器的数据和执行机构的动作进行编程,通过控制算法实现太阳能电池板的自动跟踪。
系统调试则需要对整个系统进行测试和调整,确保系统的稳定性和可靠性。
五、应用前景太阳能自动跟踪系统的应用前景广阔,可以广泛应用于太阳能发电、太阳能热水器、太阳能干燥等领域。
单轴太阳能光伏发电自动跟踪控制系统设计
单轴太阳能光伏发电自动跟踪控制系统设计摘要以常规能源为基础的能源结构随着资源的不断耗用将愈来愈不适应可持续发展的需要,加速开发利用太阳能等可再生能源已成为人们的共识。
利用洁净的太阳光能,以半导体光生伏打效应为基础的光伏发电技术有着十分广阔的应用前景。
本课题主要论述了单轴太阳能自动跟踪系统的设计方法。
对自动跟踪控制系统的组成及其功能进行了详细的分析与研究,采用单片机AT89C52作为控制芯片,设计了整套自动跟踪装置。
所设计出的系统具有体积小、功耗低、成本低、抗干扰能力强等特点。
单轴太阳能自动跟踪系统通过单片机控制系统自动跟踪太阳方位角,高度角可手动进行调整,使太阳能电池保持较大的发电功率。
通过对单轴自动跟踪系统与双轴自动跟踪系统发电效率的比较,理论证明它的可行性。
本设计取消了用于检测太阳能电池板法线与太阳光线间夹角的传感器,而直接利用太阳能电池板发电量作为角度调节依据实现控制。
我国牧区大量使用的是无跟踪的光伏系统,太阳能发电效率较低。
本文所述的单轴跟踪系统,结构简单,性价比高,特别适宜在这些地区使用。
关键词:光伏系统;太阳角自动跟踪;单轴跟踪系统AbstractWith the resources being used continuously, the energy structure based on Conventional energy resources will not more and more adapt to requirement of sustainable development. So accelerating the exploitation and utilization of renewable resources that solar energy is principle part has been our common ideas. Using the clean solar light energy, the technology of photovoltaic generating electricity is very promising. The thesis presents a new optimal design method.This thesis mainly describes a method of single axis solar energy automatic tracing system. Every part of this automatic system and its function are analyzed in detail. A set of automatic tracing device is designed with Microcontroller AT89C52. This system has four characteristics, such as smaller cubage, lower power, lower cost, more robust despite strong interfere. Moreover, some programs are designed to debug the designed system, to test its reliability and the results of test are given.Single axis solar energy automatic tracing system follows the orientation angle with Microcontroller system. Height angle can be adjusted by hand, it makes the solar cell keep the higher electricity power.The single axis solar energy automatic tracing system is compared with the double axis solar energy automatic tracing system. we testify its feasibility in theory. Double axis solar energy automatic tracing system consists of solar transducer, this device gets rid of transducer , it uses power of solar cell as angle regulation basis to realize controlling.In a pasturing area of our country, they use photovoltaic system without tracing device, solar electricity efficiency is lower, the tracing system we designed has better tracing effect, its configuration is simple, the capability price ratio is high, it is adapt to be use there in particular. Key words Photovoltaic system; Solar angle automatic tracing; Single axis tracing system 目录中文摘要 (I)Abstract.......................................................................................................II 1 引言. (1)1.1 课题背景 (1)1.2 课题内容..................................................................................... . (1)2 自动跟踪控制的总体设计方案 (2)2.1 控制方法的确定 (2)2.1.1 本课题设计方法的提出 (3)2.1.2 单轴自动跟踪系统数学模型的建立 (4)2.2 设计任务 (4)2.2.1 设计目标................................................................................... .. (4) 2.2.2 设计要求 (4)2.3 总体设计方案 (5)2.3.1 硬件设计方案 (5)2.3.2 软件设计方案 (6)2.4 可靠性设计 (6)2.4.1 单片机应用系统的硬件抗干扰技术 (6)2.4.2 单片机应用系统的软件抗干扰技术 (7)3 太阳能光伏发电系统的基本组成 (9)3.1 概述 (9)3.2 太阳能电池 (9)3.2.1 太阳能电池工作原理 (9)3.2.2 太阳能电池的分类 (10)4 太阳能辐射能量分析 (13)4.1 日照时间和太阳位置的计算 (13)4.1.1太阳能中天文参数的计算 (13)4.1.2水平面太阳位置的计算 (14)4.2 太阳辐射能的有关计算 (15)5 控制系统的硬件设计 (16)5.1 总体设计方案 (16)5.2 单片机AT89C52简介 (16)5.3 时钟芯片的选择 (17)5.4 印刷版电路的制作 (17)5.5 电机控制电路 (18)5.6 电机驱动电路 (19)6 控制系统的软件设计 (21)6.1 主程序设计 (21)6.2 喂狗程序 (21)6.3 电机驱动程序设计 (24)6.4 数据采集处理程序设计 (24)6.4.1 数据采集子程序 (24)6.4.2 数据处理子程序 (25)6.5 外部中断INT0 中断服务程序设计 (26)6.6 自动控制的优化设计 (27)7 结论 (28)8 致谢 (29)参考文献 (30)附录系统总原理图1引言1.1 课题背景能源问题关系到经济是否能够可持续发展。
太阳位置自动追踪系统的设计
太阳位置自动追踪系统的设计太阳位置自动追踪系统的设计引言:太阳是地球上一切生命的源泉,因此研究太阳的运动轨迹对于各个领域都具有重要意义。
然而,由于地球自转和公转的复杂性,太阳的位置是不断变化的。
为了更好地利用太阳能、实现太阳能追踪和降低能源消耗,设计一套太阳位置自动追踪系统是非常有必要的。
一、系统概述太阳位置自动追踪系统是一种通过感知和控制技术实现的系统,可以实时获取太阳的位置信息,并使太阳能装置随之自动调整方向。
该系统利用传感器获取地球上某一特定位置的太阳的位置信息,并通过控制器控制电机或其他执行机构来实现太阳能装置的自动追踪。
二、系统组成1. 光照传感器:光照传感器的作用是感知太阳的强度和位置信息。
利用传感器测量太阳光的强度,可以得到太阳的位置角度信息,并将其输入控制器进行分析和处理。
2. 控制器:控制器是系统的核心部分,它接收光照传感器的输入,并通过计算和判断决定太阳能装置的转动角度。
控制器还可以根据设定的参数,调整正在工作的执行机构,使其按照预定方向追踪太阳的运动。
3. 执行机构:执行机构是通过控制器发出的信号,控制太阳能装置的转动。
常用的执行机构有电机、液压缸等。
通过控制执行机构的运动,太阳能装置可以实现自动追踪太阳,最大限度地接收太阳能。
三、系统工作原理光照传感器感知到太阳的位置和光强度后,将信息传递给控制器。
控制器根据预设参数和算法分析这些数据,并产生相应的控制信号,驱动执行机构转动。
通过与预设目标进行比对,控制器可以精确地控制执行机构的运动,使太阳能装置随着太阳的运动而不断调整自身位置和方向。
四、系统设计与实施在设计太阳位置自动追踪系统时,需要考虑以下几个方面:1. 传感器选择与性能:选择合适的光照传感器,具备感知太阳位置和强度的功能,并具有高精度、高灵敏度的特点。
2. 控制器算法:设计适用于太阳位置自动追踪的控制算法,能够实时分析光照传感器的数据,并根据算法输出相应的控制信号。
太阳光自动跟踪设计_图文(精)
摘要通过分析全国日照时数表得出 : 开环系统在太阳能光伏工程中效率不高而并不适合采用。
为合理地利用太阳能 , 提高其跟踪效率而采用混合控制系统。
文中着重分析了双轴跟踪的原理提出了手动式方位角跟踪和自动式八方位高度角跟踪 , 引出了分级接收跟踪原理 , 设计了软件流程并和一套任意方位跟踪系统。
运行结果表明 , 该系统能实现太阳光任意方位检测并迅速跟踪有效降低系统运行功耗 ,减少机械结构损耗 ,跟踪精度可调 , 可望在太阳能光伏工程中获得应用。
并促进太阳光的接收效率。
【关键词】太阳能跟踪系统;时空控制;光强控制;跟踪传感器AbstractThe open system is not suitable for adoption in solar photovoltaic engineering because of its inefficiency through analyzing the national sunshine duration ing the mixture control system can enhance its track efficiency and make full use of solar energy reasonably.The paper analyzed the two axle track principle emphatically,then proposed the manual azimuth tracking and the automatic altitude angle tracking of 8positions,educed hierarchical receive track principle,designed the software flow and a suit of arbitrariness azimuth track system.Running results indicated that the system can accomplish solar arbitrariness azimuth detection and tracking rapidly,fall running power consume efficiently,reduce consume of mechanical structure,and have adjustable tracking precision.It may obtain applications in solar photovoltaic engineering.【Key words】solar Automatic tracking system;time and space contro;l light intensity control;solar tracking sensor目录第一章引言 11.1 综述1 1.2 太阳能自动跟踪系统现状11.2.1压差式太阳能跟踪器⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 11.2.2时钟式跟踪器⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 11.2.3控放式太阳能跟踪器⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 21.3 我国光伏太阳能发电前景2第二章自动跟踪器的结构与原理 4第三章机械控制部分 73.1 主要结构73.1.1探测头⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ .73.1.2跟踪控制器 (LM339 及89C51⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯73.1.3机械传动机构⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯83.2 机械系统的组成83.3 机械系统的安装83.3.1电机的固定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯83.3.2电机的摆放⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 93.3.3电机的平衡⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 93.3.4双轴跟踪系统⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 9第四章电子控制部分 114.1电路主要组成部分114.2软件设计11附录 13参考文献 16致谢 18第一章引言1.1 综述随着现代工业的发展,全球能源危机和大气污染问题日益突出,太阳能这个清洁的可再生能源,已受到许多国家的高度重视和利用。
太阳自动追踪器设计
太阳自动追踪器设计二章太阳能电池板的自动寻光电路2.1寻光元件光敏电阻器又叫光感电阻,是利用半导体的光电效应制成的一种电阻值随入射光的强弱而改变的电阻器;入射光强,电阻减小,入射光弱,电阻增大。
光敏电阻器一般用于光的测量、光的控制和光电转换(将光的变化转换为电的变化)。
通常,光敏电阻器都制成薄片结构,以便吸收更多的光能。
当它受到光的照射时,半导体片(光敏层)内就激发出电子—空穴对,参与导电,使电路中电流增强。
一般光敏电阻器结构如图2.1所示。
根据光敏电阻的光谱特性,可分为三种光敏电阻器:紫外光敏电阻器:对紫外线较灵敏,包括硫化镉、图2.1 光敏电阻器结构硒化镉光敏电阻器等,用于探测紫外线。
红外光敏电阻器:主要有硫化铅、碲化铅、硒化铅。
锑化铟等光敏电阻器,广泛用于导弹制导、天文探测、非接触测量、人体病变探测、红外光谱,红外通信等国防、科学研究和工农业生产中。
可见光光敏电阻器:包括硒、硫化镉、硒化镉、碲化镉、砷化镓、硅、锗、硫化锌光敏电阻器等。
主要用于各种光电控制系统,如光电自动开关门户,航标灯、路灯和其他照明系统的自动亮灭,自动给水和自动停水装置,机械上的自动保护装置和“位置检测器”,极薄零件的厚度检测器,照相机自动曝光装置,光电计数器,烟雾报警器,光电跟踪系统等方面。
2.2 电压比较元件2.2.1 LM358 双运算放大器概述LM358 内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。
它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。
LM358 的封装形式有塑封8引线双列直插式和贴片式。
2.2.2 LM358特性✓内部频率补偿✓直流电压增益高(约 100dB)✓单位增益频带宽(约 1MHz)✓电源电压范围宽:单电源(3—30V); 双电源(±1.5 一±15V)✓低功耗电流,适合于电池供电✓低输入偏流✓低输入失调电压和失调电流✓共模输入电压范围宽,包括接地✓差模输入电压范围宽,等于电源电压范围✓输出电压摆幅大(0 至Vcc-1.5V)图2.2 LM358引脚图2.3 继电器工作原理2.3.1继电器(relay)的工作原理和特性当输入量(如电压、电流、温度等)达到规定值时,使被控制的输出电路导通或断开的电器。
向日葵式自动跟踪系统设计1
向日葵式自动跟踪系统设计太阳能作为一种清洁无污染的能源,发展前景非常广阔,太阳能发电已成为全球发展速度最快的技术。
然而它也存在着间歇性、光照方向和强度随时间不断变化的问题,这就对太阳能的收集和利用提出了更高的要求。
目前很多太阳能电池板阵列基本上都是固定的,没有充分利用太阳能资源,发电效率低下。
据实验,在太阳能光发电中,相同条件下,采用自动跟踪发电设备要比固定发电设备的发电量提高 35 % ,因此在太阳能利用中,进行跟踪是十分必要的[1]。
系统的总体设计原理是根据太阳在天空的运行轨迹随着每天的时间和日期的周期性变化得来的,51单片机利用太阳角度的变化规律,根据太阳角度与时间的对应关系来控制双轴电机驱动系统从而使得实验板与太阳光线保持垂直。
由于使用了电压采样反馈调整控制技术,该系统具有实时性高、可靠性强、精度高等优点。
一、机械部分设计如图1所示,向日葵板是固定在双轴系统之上的。
轴1必须与地轴保持平行关系。
以济南市为例,济南处在北纬36.65°,所以轴1与底座的夹角为36.65°才能保持轴1与地轴平行。
太阳在地球上的直射范围是从南纬23.5°到北纬23.5°,在半年之中变化了47°。
所以向日葵板的轴在纵向的变化范围为47°,每半个月的转动角度约为4°。
在横向的转动中,从早晨的6点开始到晚上的6点共转动180°,约每半个小时转动7.5°。
轴端的电位器通过分压把角度值转化为电压值,进而通过AD芯片,把电压值转化为数值,从而达到了把角度值转化为数据的目的。
图1二、电路控制部分设计1 、时钟信号产生电路由于系统需要精确的实时时钟,并且需要调时方便的电路,以保证向日葵板与太阳光线的垂直。
由于单片机的实时时钟误差不易控制,调试不方便,所以采用DALLAS公司生产的ds1302时钟芯片。
该时钟芯片具有实时时钟和31字节的静态RAM,采用串行通讯,可方便的与单片机接口。
太阳光跟踪系统设计
太阳光跟踪系统设计石强机电工程学院04085159太阳光跟踪系统设计1,设计理念太阳能是一种应用前景无限宽广的新型能源,如何高效的运用太阳能是当前的一大研究主题,应用太阳能一方面是要有很好的光能转化效率,最基本的是要能充分的利用能接收光照的时间,另一方面则是要降低系统设计的功耗,即尽可能少的消耗能量。
本设计利用光敏电阻构成的测光电路对太阳光方向进行检测,将检测信息传给CPU,CPU通过传来的检测信息,改变控制舵机的信号使检测系统能调整到正对太阳光的方向,即实现了对太阳光的跟踪;太阳的方位在一天的时间中总是在改变,能始终捕获到太阳的方向,就相当于可以提高接收光能的时间,这样就可以尽可能多的获取太阳能。
超低功耗处理芯片的使用,及小型舵机的使用,加上系统的低功耗设计模式(如一般分压时采用大的电阻来降低电流损耗)可以为系统尽可能的减小功耗。
本设计旨在能最大限度的使用新型能源——太阳能;因为有了对太阳光方向的跟踪,就可以实时的将系统调整到太阳光正对的方位,如太阳能电池板等,这样就可以获得最大的太阳光能量。
2,创意来源当今社会,随着对新能源技术的重视度加深,新能源应用技术方面也得到了很大的发展;太阳能作为最有潜力的新型能源,其利用将是极具吸引力的。
当前由于太阳能的使用受到诸多的局限,一方面是自然条件的局限,因为太阳的方向是时刻改变着的,而基本架设的太阳能电池板是固定不动的,这样,在一天的时间内,固定方向的太阳能接收能力自然是有限的;另一方面是科技水平的局限,即当前生产出来的太阳能——电能转化设备的效率并不高,以至于无法提供较大的功率。
虽然后者本人暂时无能为力,但是却可以在前者上下功夫;曾听闻舍友说清华曾今有全太阳能供电车设计,这种车全身装载太阳能电池板,可以载一人(当然对人的体重还是有限制的),这就说明,相对较高的光电转化设备已经在展现,如果在此同时能提高接收光照的时间的话,效果定然更好。
本系统设计通过光照检测,最终达到系统能自动识别光照方向,实现自动调整,始终跟踪太阳光;至于加载高性能的太阳能电池板对系统进行供电,暂时不作扩充,但是本设计的最终目的在于配合太阳能电池板的使用,提高光能的使用效率。
全天候太阳能跟踪系统设计.doc-推荐下载
全天候太阳能跟踪系统设计
专 业: 姓 名: 学 号: 指导老师: 职 称:
信息科技技术学院 吴文贤
0601411006 李福 教授
广东·珠海 二○○一○年五月
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
太阳自动跟踪系统资料
绪论21世纪是太阳能时代。
在未来的40年中,人类可以实现100%的可再生能源供电。
不再需要中东的石油、西伯利亚的天然气以及澳大利亚的铀。
实际上,目前在我们家门口就已经获得了未来能源的载体:太阳、风力、水力、地热能,以及来自农田和林地的生物能。
根据欧盟报告,2050年全球能源供给分配应当为:40%太阳能,30%生物能,巧%风能,10%水能,5%原油。
报告论述了如何达到这种经济、环保、和平并且可持续的能源供给状态。
跨国石油公司,比如壳牌、惠普等,已经在向着这种能源供给状态发展。
地球上的万物生长都依赖于太阳的存在,太阳给我们提供了巨大的能量源,地球上大部分的能源归根结蒂也来自于太阳。
比如石油、煤炭等化石能源都是过去的动植物通过吸收太阳能不断的生长,后来这些动植物被掩埋在土壤下形成的能源,这其实是太阳能一种形式的转换,并被存储了下来,直到今天被人类开采使用。
太阳能开发利用的潜力是相当巨大,据统计,全世界人们一年所使用的能量总和仅仅相当于太阳辐射到地球能量的数万分之一。
在化石能源即将枯竭的未来,在未来能源方面,太阳能给人类带来新的生机。
太阳在一天中不断改变位置,这造成太阳能存在着密度低、间歇性的特点,且光照方向和度随时间不断变化。
传统太阳能电池板固定在一个角度,不能时刻工作在最大效率处,而采用双轴太阳能跟踪系统的太阳能电池板在功率保持一定的情况下可以提升36% 的发电量,提高太阳能的利用率。
第一章跟踪系统的控制方案目前光跟踪技术主要是两种方法:1.视日运行轨道跟踪方法。
2.光电自动跟踪方法。
1.1视日运行轨道跟踪视日运行轨道跟踪技术是一种根据理论计算的太阳运行的轨迹而采取的一种跟踪技术,根据跟踪的方位它主要分为两种:单轴跟踪和双轴跟踪。
1.1.1单轴跟踪单轴跟踪分为三种方式:1.倾斜布置东西追踪;2.焦线南北水平布置,东西跟踪;3.焦线东西水平布置,南北跟踪。
它们跟踪原理是相同,即电池阵列绕单一轴转动,其转动方向为自东向西或者南北方向,自东向西单轴跟踪方式是跟踪太阳方位角变化,驱动电池阵列转动,使电池阵列方位角与太阳方位角相同。
太阳位置自动追踪系统的设计
太阳位置自动追踪系统的设计摘要:随着太阳能利用技术的进步,太阳能系统的效率和功率输出已经成为人们关注的焦点。
为了最大程度地提高太阳能系统的效能,太阳位置自动追踪系统应运而生。
本文将介绍原理以及实现方法,并对其应用前景进行谈论。
一、引言太阳能是一种清洁、可再生的能源,具有丰富的资源和宽广的利用前景。
然而,太阳能的效率受多种因素影响,其中太阳的位置是重要的影响因素之一。
传统的太阳能系统通常接受固定的安装角度来抓取太阳的光照,但因为太阳的位置在不息变化,这种固定角度的安装方式无法充分利用太阳能资源。
因此,对于提高太阳能利用效率至关重要。
二、原理原理基于太阳在天空中的运动规律。
太阳每天从东方升起,经过正午后逐渐西沉,最后在西方落下。
太阳位置自动追踪系统通过测量太阳的方位角和高度角,实时调整太阳能系统的朝向角度,以保持最佳的光照接见效果。
详尽而言,太阳位置自动追踪系统包含三个主要组成部分:太阳位置传感器、控制算法和驱动装置。
太阳位置传感器通常接受光电二极管或CCD摄像头来感知太阳的方位角和高度角。
控制算法负责依据传感器测量的太阳位置信息计算出太阳能系统的朝向角度,并将结果传递给驱动装置。
驱动装置依据控制信号调整太阳能系统的朝向角度,以实现太阳自动追踪。
三、太阳位置自动追踪系统的实现方法1. 太阳位置传感器的选择:太阳位置传感器是太阳位置自动追踪系统的核心组件,其准确度和响应速度直接影响系统的性能。
传感器的选择要思量其测量范围、灵敏度、抗干扰能力等因素,以满足太阳位置测量的要求。
2. 控制算法的设计:依据太阳位置传感器测量的太阳位置信息,控制算法需要能够快速准确地计算出太阳能系统的朝向角度。
控制算法可以接受传统的PID控制方法或更高级的模糊控制、神经网络控制等方法,以实现最优的追踪精度和响应速度。
3. 驱动装置的选型:驱动装置依据控制信号调整太阳能系统的朝向角度,常见的驱动装置包括电动驱动装置和液压驱动装置。
太阳能电池板自动追踪系统的设计
太阳能电池板自动追踪系统结构设计1目录1.课程项目任务书 (3)2.项目选题构思 (4)2.1选题的背景依据 (4)2.2 方案的分析 (4)2.3项目规划 (4)3.项目整体设计 (5)4.项目运行 (5)4.1三维设计图 (5)4.2实物设计 (8)4.3 整体调试 (8)5.总结与体会 (9)21.课程项目任务书本学期开展可编程控制系统设计与实现课程项目,是为了培养学生运用专业知识解决实际应用的能力,进一步加强一般控制系统的安装调试技能训练,引导学生进行项目任务要求分析及项目实施工作方法选择,建立创新意识、激发其对专业学习兴趣和热情,培养学生团队的工作作风。
2.项目选题构思2.1选题的背景依据目前对于能源大多行业还在使用传统的煤炭,电能等,而现在据国务院印发的“十四五”节能减排综合工作方案的通知可以明确看出未来的能源市场会被新型的绿色能源所据,太阳能无疑是非常好的选择,但是现在的太阳能收集装置大多都是靠着大的占地面积才能收集到能源,因为太阳会随着时间偏移,使得收集能量的效率大幅降低,这对于将太阳能运用到生活中无疑是不小的缺陷,同时在操作太阳能板块时操作不规范将会导致不小的能量损失,而本次项目的设计灵感无疑是由此产生的。
2.2 方案的分析我们先设计电路,进行仿真,然后再使用三维软件搭建结构。
我们在实物的顶端全方面安装的光敏电阻,连接到arduion主板,在电脑上使用的arduion软件进行编程,同时配对适应的步进电机,光敏电阻发出信号至主板,主板根据编程带动步进电机,使太阳能板可以精准的收集太阳能,同时因为可运动的结构使得需要的占地面积得到减少,可以大幅度的提高能力的收集率。
2.3项目规划3.项目整体设计本设计采用Arduino Nono来实现控制,用光敏电阻传递信号,本项目用到了两个步进电机,一个来控制控制横向运动,一个控制纵向运动。
利用光敏电阻接收信号,根据光敏电阻的信号。
4.项目运行4.1三维设计图机械三维装配图如图4.1-4.2所示。
太阳能自动跟踪装置控制系统设计
题目太阳能自动跟踪装置控制系统设计目录摘要 (1)1 设计研究背景及意义 (2)2 主要研究内容 (3)2.1 系统的设计目标 (3)2.2 设计的主要内容 (3)3 系统的总体设计 (4)3.1 太阳自动跟踪方式的确定 (4)3.2 本设计的设计思想 (4)4 太阳能充电控制器的设计 (5)4.1 太阳能电池的选型 (5)4.2 蓄电池的选型 (7)4.2.1 铅酸蓄电池基本概念 (7)4.2.2 本系统蓄电池的选型 (8)4.3 太阳能充电控制器的设计 (8)4.3.1 UC3906芯片的介绍 (9)4.3.2 BUCK电路的设计 (9)4.4 充电控制器外围电路设计 (11)5 跟踪系统传感器检测装置的设计 (13)5.1 阴天检测装置的设计 (13)5.2 白天黑夜检测装置 (14)5.3 太阳位置传感器的介绍 (15)5.3.1 传感器检测部分的设计 (15)5.3.2 光敏二极管的介绍 (17)5.3.3 LM324芯片的介绍 (17)6 视日运动轨迹模块设计 (18)6.1 太阳赤纬角的计算 (18)6.2 太阳高度角的计算 (18)6.3 太阳方位角的计算 (18)6.4 日出日落时间计算 (19)7 执行器件的选型 (19)7.1 步进电机的选型 (19)7.2 步进电机驱动器的选型 (20)7.3 执行器件的连接方式 (21)8 控制系统的设计 (21)8.1 单片机电源模块的设计 (22)8.2 驱动器电源模块的设计 (23)8.2.1 GS3660芯片介绍 (23)8.2.2 Boost电路基本拓扑设计 (25)8.2.3 驱动器电源模块的硬件设计 (26)8.3 单片机硬件系统设计 (27)8.3.1单片机简介 (27)8.3.2 单片机的特点 (27)8.3.3 AT89C51单片机的特性 (28)8.4 单片机软件系统的设计 (28)8.4.1 主程序的设计 (28)8.4.2 光电追踪模块 (31)8.4.3 视日跟踪模块 (31)9 结论 (32)参考文献: (34)谢辞 (35)附录 (36)李鹏万指导老师:杨宛章、张静摘要:太阳能作为一种新型清洁能源,受到了世界各国的广泛重视。
太阳能自动跟踪系统设计
3 详细设计
3.1 单片机概述
单片机因将其主要组成部分集成在一个芯片上而得名,具体说就是把中央处理器CPU(Central processing unit)。随机存储器RAM(Random access memory)。只读存储器ROM(Read only memory)。中断系统、定时器/计数器以及I\O(Input/output)接口电路等主要微型机部件集成在一个芯片上。虽然单片机只是一个芯片,但从组成和功能上看,它已具有了计算机系统的属性。为此,称它为单片微型计算机SCMC(Single chip micro computer),简称单片机。 单片机主要应用与控制领域,用以实现各种测试和控制功能,为了强调起控制属性,也可以把单片机称为微控制器MCU(Micro controller unit)。在国际上,“微控制器”的叫法似乎更通用一些,而在我国则比较习惯用“单片机”这一名称。 单片机在应用时,通常是处于控制系统的核心地位并融入其中,即以嵌入的方式进行使用,为了强调其"嵌入"的特点,也常常将单片机称为嵌入式微控制器EMCU(Embedded micro controller unit)。在单片机的电路和结构中,有许多嵌入式应用的特点。
(4)信息和通信产品方面.信息和通信产品的自动化和智能化程度很高,这当然离不开单片机的参与,例如计算机的外部设备和自动化办公设备中,都有单片机在其中发挥着作用。
(5)军事装备方面。科技强军、国防现代化离不开计算机,在现代化的飞机、军舰、坦克、大炮、导弹火箭和雷达等各种军用装备上,都有单片机深入其中。
3.1.4单片机基础
根据控制应用的需要,可以将单片机分成为通用型和专用型两种类型。通用型单片机是一种基本芯片,他的内部资源比较丰富,性能全面且适用性强,能覆盖多种应用需要。用户可以根据需要设计成各种不同应用的控制系统,即通用单片机有一个在设计的过程,通过用户的进一步设计,才能组建成一个以通用单片机芯片为核心再配以其它外围电路的应用控制系统。然而在单片机的控制应用中,有许多时候是专门针对某个特定产品的,例如电度表和IC卡读写器上的单片机等。这种应用的最大特点是针对性强而且数量巨大,为此厂家常与芯片制造商合作,设计和生产专用的单片机芯片。由于专用单片机芯片是针对一种产品或一种控制应用而专门设计的,设计时已经对系统结构的最简化,软硬件资源利用的最优化,
太阳方向跟踪指示系统
目录一、《传感器》课程设计任务书 (3)二、课题背景意义.................................. 错误!未定义书签。
三、总体方案设计 (4)3.1 太阳运行规律分析 (4)3.1.1地球的公转与赤纬角 (4)3.1.2地球的自转与太阳时 (5)3.2太阳方向光电辨向方案设计 (5)3.3总体方案框图 (6)四、系统硬件设计 (6)4.1电源模块设计 (6)4.1.1相关元器件介绍 (7)4.1.2应用电路 (7)4.2太阳位置检测传感器设计 (8)4.2.1元器件选择 (8)4.2.2相关元器件介绍 (9)4.2.3传感器结构设计 (9)4.3窗口比较电路设计 (10)4.3.1相关元器件介绍 (10)4.3.2电路设计 (10)4.3.3关于窗口比较电路的引申思考 (12)4.4LED显示模块设计 (13)441相关元器件介绍 (13)442电路设计 (14)五、心得体会 (14)六、参考文献 (15)七、附录 (16)7.1电路原理图 (16)7.2电路仿真图结果 (16)7.3实物照片 (16)一、《传感器》课程设计任务书1总要求能够独立进行小型检测模块系统方案的设计及论证,选择合理的传感器、设计必要的接口电路等,以及合理选择有关元器件及正确使用相关工具与仪器设备等,并且能结合实际调试与实验进行有关精度分析与讨论。
2、总任务针对总要求进行原理及方案论证、模块设计、接口电路设计、焊接或插接与调试、精度分析以及撰写报告等工作。
3、设计题目太阳方向指示系统4、设计内容设计一个太阳追踪系统,实现对太阳方向的追踪。
受时间条件限制,要求使用实验室提供的材料,结合所学知识以及自己查阅的资料,设计一个系统,能对太阳在天空不同位置作出反应。
5、具体要求:(1)根据资料,理论计算,选择好相应电子元器件,并画出相应电路图。
(2)将所得电路导入protues,调试,得出仿真结果。
(3)在面包板上连接出系统实物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绪论21世纪是太阳能时代。
在未来的40年中,人类可以实现100%的可再生能源供电。
不再需要中东的石油、西伯利亚的天然气以及澳大利亚的铀。
实际上,目前在我们家门口就已经获得了未来能源的载体:太阳、风力、水力、地热能,以及来自农田和林地的生物能。
根据欧盟报告,2050年全球能源供给分配应当为:40%太阳能,30%生物能,巧%风能,10%水能,5%原油。
报告论述了如何达到这种经济、环保、和平并且可持续的能源供给状态。
跨国石油公司,比如壳牌、惠普等,已经在向着这种能源供给状态发展。
地球上的万物生长都依赖于太阳的存在,太阳给我们提供了巨大的能量源,地球上大部分的能源归根结蒂也来自于太阳。
比如石油、煤炭等化石能源都是过去的动植物通过吸收太阳能不断的生长,后来这些动植物被掩埋在土壤下形成的能源,这其实是太阳能一种形式的转换,并被存储了下来,直到今天被人类开采使用。
太阳能开发利用的潜力是相当巨大,据统计,全世界人们一年所使用的能量总和仅仅相当于太阳辐射到地球能量的数万分之一。
在化石能源即将枯竭的未来,在未来能源方面,太阳能给人类带来新的生机。
太阳在一天中不断改变位置,这造成太阳能存在着密度低、间歇性的特点,且光照方向和度随时间不断变化。
传统太阳能电池板固定在一个角度,不能时刻工作在最大效率处,而采用双轴太阳能跟踪系统的太阳能电池板在功率保持一定的情况下可以提升36% 的发电量,提高太阳能的利用率。
第一章跟踪系统的控制方案目前光跟踪技术主要是两种方法:1.视日运行轨道跟踪方法。
2.光电自动跟踪方法。
1.1视日运行轨道跟踪视日运行轨道跟踪技术是一种根据理论计算的太阳运行的轨迹而采取的一种跟踪技术,根据跟踪的方位它主要分为两种:单轴跟踪和双轴跟踪。
1.1.1单轴跟踪单轴跟踪分为三种方式:1.倾斜布置东西追踪;2.焦线南北水平布置,东西跟踪;3.焦线东西水平布置,南北跟踪。
它们跟踪原理是相同,即电池阵列绕单一轴转动,其转动方向为自东向西或者南北方向,自东向西单轴跟踪方式是跟踪太阳方位角变化,驱动电池阵列转动,使电池阵列方位角与太阳方位角相同。
这类跟踪方式结构简单,控制容易,在光照强度大和光照相当稳定的地方实施这类跟踪方式比较适宜。
但这类跟踪方式存在一个最大缺点是除了正午这个时刻外在其他时侯不能保持电池阵列接收光辐射面与太阳光线垂直,这样大大降低了光的吸收效率,造成了能量的流失大,影响了整个光伏发电的效率。
1.1.2双轴跟踪双轴跟踪是一种全方位的跟踪技术,它弥补了单轴跟踪的不足之处,目前视日运动轨迹的双轴跟踪主要分为两种方式:极轴跟踪方式,高度一方位角太阳轨迹跟踪方式。
极轴跟踪方式:是聚光镜的一轴指向地球北极,即与地球自转轴相平行,故称为极轴;另一轴与极轴垂直,称为赤纬轴。
工作时反射镜面绕极轴运转,其转速的设定与地球自转角速度大小相同方向相反用以追踪太阳的视日运动;反射镜围绕赤纬轴作俯仰转动是为了适应赤纬角的变化,通常根据季节的变化定期调整。
这种追踪方式并不复杂,但在结构上反射镜的重量不通过极轴轴线,极轴支承装置的设计比较困难。
高度一方位角太阳轨迹跟踪是一种地平坐标系统跟踪方式,它是当今比较先进的一种跟踪方式,跟踪精度较高。
高度一方位角跟踪方式通过计算具体地点和具体时刻的太阳运动轨迹(高度角和方位角表示运行轨迹),根据光伏电池阵列的具体位置,先沿着垂直轴转动弥补方位角偏差,然后沿水平轴转动弥补高度角偏差,以保证电池阵列与太阳运行轨迹一致。
这种方式受天气季节性影响较小属于一种理论计算轨迹程序控制跟踪方式。
由于理论计算轨迹与实际运行轨道误差小,因此该跟踪方式跟踪精度较高,这种方式缺点是受跟踪系统机械影响比较大,在系统长期运行或者外力影响造成机械误差后,会造成跟踪偏差变大,影响了跟踪精度。
1.2光电自动跟踪光电跟踪技术是利用光信号强度的变化转化成电信号大小的变化,这种变化差异作为一种感知输入来控制跟踪装置跟踪太阳的一种技术。
目前,光电自动跟踪装置根据传动方式分类有:重力式跟踪装置、电磁式跟踪装置、电动式跟踪装置、压差式跟踪装置和控放式跟踪装置等。
光电跟踪是通过光传感元件如光敏电阻、硅光电管等接受太阳光,由于太阳运动,造成太阳光入射角度的变化,这样通过多个相同类型的光传感器敷设到不同方位,使得传感器之间产生偏差信号值,此信号经过放大后,输入到控制系统单元,控制单元计算位置偏差值,然后控制跟踪系统驱动装置调整电池阵列位置保持它与太阳光垂直。
这种方式的优点是跟踪精度高,实时跟踪性能好,它反映了实际跟踪情况,受机械偏差影响小。
缺点是受天气季节气候影响大,天阴的情况下,光传感元件效果差,极容易产生误差,严重的情况下,会造成驱动装置误动作。
第二章 跟踪控制系统设计在太阳光的采集过程中,为了能够最大效率地采集太阳光,要求太阳能板始终与太阳保持一个最佳角度,因此必须跟踪太阳。
常见的跟踪控制系统,按照被控制量对控制量是否存在着反馈可分为闭环、开环和混合控制方式。
闭环控制能够通过反馈来消除误差,但感光元件在稍长时间段内接收不到太阳光会导致跟踪系统的失效,甚至会引起执行机构的误动作;开环跟踪虽然在任何天气下都可以正常工作,但是在跟踪过程中产生的累积误差自身并不能消除;混合控制方式结合了两者的优点并克服了两者的缺点,能够得到最佳的控制效果。
结束 开始 是否是晴天? 是否是垂直? 驱动电机 根据日期时间计算高度角和方位角 根据高度角和方位角驱动电机第三章跟踪控制系统硬件电路3.1控制电路本文以AT89C52为主控制器,实现了一种混合控制,系统示意图如图1所示。
主要电路份为三部分:单片机、键盘显示接日芯片和日历时钟芯片之间的通信电路;以光敏电阻为感光元件的反馈电路;单片机控制步进电机的驱动电路。
3.1.1控制单元AT89C52控制部件选择ATMEL公司生产的AT89C52型单片机。
AT89C52是一种低功耗、高性能的8位单片机,片内带有4KB的flash可编程可擦除只读存储器,它采用CMOS 工艺和高密度非易失性存储器(NURAM)技术,而且引脚和指令系统都与MCS-51兼容。
AT89C52是一种功能强、灵活性高且价格合理的单片机,可方便地应用在各种控制领域。
3.1.2日历时钟芯片DS1302DALLAS公司生产的串行实时时钟芯片DS1302,它具有实时时钟和31字节的静态RAM,采用串行通信,可方便地与单片机接口。
DS1302可提供秒、分、时、日、星期、月和年,并带闰年补偿,可采用12h或24h方式计时,采用双电源:主电源和备用电源供电。
3.2传感器使用两只光敏传感器与两只比较器分别构成两个光控比较器控制电动机的正反转。
由于一年四季、早晚和中午环境光和阳光的强弱变化范围都很大,所以上述两种控制器很难使大阳能接收装置四季全天候跟踪太阳。
这里介绍的是将 4 个完全相同的光敏电阻分别置于太阳光接收器的东西南北方向,负责检测这四个方向的光源强度。
如果太阳光垂直照射在太阳能电池板板上,东西( 南北) 两个光敏电阻所接收到的太阳强度相同,其阻值完全相同,此时电动机不转动。
当太阳光方向与电池板垂直方向有夹角时,接收光强多的光敏电阻阻值减少,再经过运算放大电路和信号调整芯片输出电压,从而驱动电动机转动,直至两个光敏电阻上的光照强度相同,称为光敏电阻光强比较法。
其优点在于控制较精确且电路比较容易实现。
光电模块检测的俯视图,其由 5 只光敏电阻组成。
正中央一只,旁边四只围成一圈。
第四章跟踪系统机械部分太阳跟踪装置的载体是太阳能电池板,电池板面积比较大,带动它所需力量较大,考虑到跟踪平台在输入功率较小的情况下带动较大的电池板工作,机械结构又对会聚光线的强度存在影响等因素,跟踪平台机械部件设计一般应满足一下要求:(1)光伏发电太阳跟踪装置的机械执行机构能够进行大范围的跟踪,其跟踪范围要求大于或等于太阳的运动范围,并要避免极限位置锁死;当跟踪平台在运动载体上运行时,载体的运动不确定,可能朝各个方向行驶,相对于跟踪平台来说,太阳的运动变得更加复杂。
所以跟踪平台两个方向的跟踪范围应该设置的较大,以应对可能出现的情况。
(2)光伏发电太阳跟踪装置的机械执行机构还要有较好的防风性。
跟踪平台一般用于固定安装的场合,或者安装在中低速运送的载体上(太阳能车、船),实现对太阳能双维大范围自动跟踪。
在高速运动的载体上工作,如果遇到很大的逆向风,采用防风性能一般的平台,极有可能导致平台被吹动或者吹翻,无法进行正常运转工作;采用能够自锁的机构,如锅轮传动或者螺旋传动机构,遇到逆风情况,跟踪平台不会被风吹动或者吹翻,保持正常运转。
(3)较大的输出功率,工作能耗小于给定值;综合各种传动结构,齿轮传动具有传动比准确、传递扭矩大的优点;以上两种传动比都较大,能在使用功率较小的普通电机的同时传递足够大的动力,比较适合在中低速运动载体上运行的需求;但这两种结构在传动时存在间隙,没有谐波传动跟踪精度高。
(4)结构紧凑,可靠性高;如果系统的结构比较松散,长期逆风工作变形会较大,刚性降低,提高刚性需要加固结构或者使用刚性好的材料,这些都会使成本增加,而且传动部件的性能易受到影响,跟踪装置的寿命及可靠性降低。
此外,应尽量简化加工工艺,进一步提高跟踪装置性价比。
4.1机械结构简图步进电机、轴承和箱体等未画出4.2机构受力太阳能电池板面积为100mm ⨯80mm ,面积较小,所以忽略风力影响,则整个机构受外力为太阳能电池板自身重量10kg ,竖直向下。
太阳能电池板重力产生的转矩)2/(cos b a mg T +⨯⨯=θθ为太阳能电池板与竖直方向夹角a 为齿轮4到太阳能电池板距离b 为太阳能电池板宽度则最大转矩为=⨯⨯⨯=⨯+⨯=--22max 10558.91010)2/3040(mg T 5.39M N ⋅第五章驱动单元设计5.1步进电机现在比较常用的步进电机包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)和单相式步进电机等。
反应式步进电动机采用高导磁材料构成齿状转子和定子,其结构简单,生产成本低,步距角可以做的相当小,一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。
反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩,但动态性能相对较差。
永磁式步进电机转子采用多磁极的圆筒形的永磁铁,在其外侧配置齿状定子。
用转子和定子之间的吸引和排斥力产生转动,它的出力大,动态性能好,但步距角一般比较大。
一般为两相,转矩和体积较小,步进角一般为7.5度或15度。
混合式步进电机是指混合了永磁式和反应式的优点。
它又分为两相和五相:两相步进角一般为1.8度而五相步进角一般为0.72度。
这种步进电机的应用最为广泛,它是PM和VR的复合产品,其转子采用齿状的稀土永磁材料,定子则为齿状的突起结构。